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Colorectal cancer represents the third most diagnosed malignancy globally,
with liver metastasis occurring in approximately 50-60% of patients following
initial treatment. Current surveillance strategies utilizing carcinoembryonic
antigen monitoring and interval cross-sectional imaging demonstrate significant
limitations in early hepatic recurrence detection, often identifying disease
at advanced, unresectable stages. This study addresses the critical research
gap in Al-driven surveillance frameworks by developing a novel ensemble
deep learning model for early liver metastasis prediction in colorectal cancer
patients. The methodology employed six state-of-the-art architectures including
ResNet50, MobileNetV2, DenseNet121, CNN-LSTM, and Swin Transformer as
feature extractors through transfer learning, followed by weighted soft voting
ensemble learning combining the top-performing models. The framework was
evaluated on a comprehensive dataset of 1,628 medical images from colorectal
cancer patients, with rigorous statistical validation using Friedman and Wilcoxon
signed-rank tests. Results demonstrated that the ensemble model combining
ResNet50 and Swin Transformer achieved superior performance with 75.48%
accuracy, 79.0% sensitivity, 73.6% specificity, and 0.8115 AUC, representing
statistically significant improvements over all individual architectures. The
ensemble approach successfully addressed the challenging nature of the dataset
where multiple state-of-the-art models achieved near-random performance,
demonstrating the effectiveness of architectural diversity in medical image
analysis. The clinical impact of this work extends to enhancing early detection
capabilities that could increase patient eligibility for curative interventions, with
balanced diagnostic performance suitable for surveillance applications. The
computationally efficient framework requires only 0.39s per image inference
time, making it feasible for integration into existing clinical workflows and
potentially improving outcomes for colorectal cancer patients through earlier
identification of hepatic recurrence.
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1 Introduction

Colorectal cancer (CRC) remains a leading cause of global
cancer morbidity and mortality, accounting for nearly one in
ten cancers and close to one in ten cancer deaths worldwide
according to the most recent GLOBOCAN 2022 update (Bray et al.,
2024). In 2022, approximately 1.93 million new CRC cases and
904,000 CRC deaths were estimated, underscoring a substantial
and growing burden that contributes significantly to worldwide
cancer incidence and mortality. Contemporary summaries from
international agencies similarly emphasize CRC as the third most
diagnosed malignancy and the second leading cause of cancer
death globally, reflecting persistent gaps in early detection and
surveillance (Siegel et al., 2024). Broader analyses of gastrointestinal
cancers indicate that GI malignancies, including CRC, account
for roughly one-third of global cancer deaths, further highlighting
CRC’s central role in worldwide cancer outcomes and the need
for improved strategies across the care continuum (Tian et al,
2024). Hepatic recurrence represents a major clinical challenge
among CRC survivors, as the liver is the most common site
of metastasis and relapses following initial treatment, including
resection of Colorectal Liver Metastases (CRLM) (Patel et al., 2023).
Despite advances in systemic therapy and hepatic surgery, overall
recurrence after initial liver resection occurs in approximately
50%—60% of patients, with intrahepatic recurrence reported in
20%—47%, patterns consistent with occult micro metastatic disease
not visible on baseline imaging. Early recurrence often within
6 months of hepatectomy occurs in a considerable fraction of
patients and is associated with adverse tumor and treatment
factors such as poor differentiation, billboard involvement, margin
positivity, major hepatectomy, and postoperative complications,
all of which portend inferior long-term survival (Guo et al,
2024). Although repeat liver resection can improve survival in
selected patients with isolated intrahepatic relapses, the therapeutic
window narrows quickly when detection is delayed, making earlier
identification of hepatic recurrence pivotal for enabling potentially
curative interventions.
for CRC
anchored in serial Carcinoembryonic Antigen (CEA) monitoring

Current post-treatment surveillance strategies
and interval cross-sectional imaging with Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI) are codified across
major society guidelines but show important limitations for early
hepatic recurrence detection. CEA exhibits variable performance,
with sensitivity and specificity influenced by threshold selection,
and a considerable proportion of CEA-detected relapses are
unresectable at the time of identification, implying delayed capture
of actionable disease. CT surveillance, commonly recommended
at semi-annual to annual intervals for up to 5 years after curative
treatment, improves detection when combined with CEA but
remains constrained by interval scheduling, radiation exposure,
small lesion conspicuity, and inter-reader variability, all of
which limit sensitivity for very early hepatic relapse. Liver MRI
offers superior soft-tissue contrast and lesion characterization
compared with CT, yet resource demands, variability in access,
and inconsistent adherence to intensive schedules reduce its utility
for widespread early detection in routine practice (Lauretta et al.,
2023). Parallel advances in deep learning and artificial intelligence
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(AI) have transformed medical image analysis, with accumulating
evidence that AI can match or exceed expert performance by
leveraging high-dimensional features beyond human perception.
In CRC imaging specifically, recent systematic analyses of Al
models trained on radiologic data report high diagnostic accuracy
for predicting distant metastasis, with pooled estimates indicating
strong sensitivity and specificity that could translate into earlier
detection relative to conventional reads. The capability of deep
neural networks to detect subtle textural and morphological
signatures that preceded overt radiologic progression suggests
an opportunity to identify hepatic recurrence at smaller lesion
sizes, potentially increasing eligibility for curative resection or
ablation Nonetheless, translation to routine surveillance has been
uneven due to study heterogeneity, non-standardized imaging
protocols, and a paucity of prospective, real-world validation
embedded within longitudinal follow-up pathways (Zhang et al.,
2022). A critical research gap persists there is not widely adopted,
validated, Al-driven surveillance framework specifically tailored
to early hepatic recurrence detection in CRC that integrates with
guideline-based follow-up and demonstrates improvements in
time-to-detection, respectability, and survival. Existing guidelines
largely specify the cadence and modalities of surveillance but
do not incorporate Al-enhanced image analysis or standardized
multimodal fusion of biomarkers and imaging features into routine
workflows, and most Al studies have not been designed to target
early hepatic recurrence as a primary, clinically actionable endpoint
in prospective surveillance settings. In view of the global burden
and the prognostic importance of timely detection, a rigorously
validated AI framework focused on early hepatic relapses would
address a consequential unmet need in oncologic surveillance
(Sung et al., 2021).

Accordingly, this study proposes an advanced deep learning
model for early hepatic recurrence detection in patients with
CRC, integrating multiphasic imaging with clinically available
biomarkers to enhance sensitivity while maintaining acceptable
specificity within standard surveillance intervals. By targeting
sub-radiologic or subtly radiologic hepatic changes predictive of
imminent recurrence, the model aims to shift detection earlier in
the disease trajectory, thereby increasing the proportion of patients
eligible for potentially curative local therapies and improving
downstream outcomes. Framed against the rising global burden of
CRC and the limitations of existing surveillance approaches, this
Al-enabled framework seeks to deliver an innovative and impactful
contribution to oncology and precision medicine through smarter
detection strategies and optimized care pathways.

The main contribution in this study is the following:

1. First validated ensemble framework introduces a statistically
validated ensemble methodology for liver metastasis detection,
addressing fundamental gaps in current Al-driven diagnostic
systems beyond single-model approaches.

2. Novel King Hussain Cancer Center (KHCC) dataset presents a
comprehensive real-world cancer imaging dataset from KHCC,
providing standardized benchmark data for hepatic metastasis
detection research.

3. Multi-architecture integration develops a hybrid approach

(ResNet50) with

combining CNN feature extraction
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transformer-based global modeling (Swin Transformer) to
optimize sensitivity and specificity metrics simultaneously.

4. Probabilistic decision framework implements weighted soft
voting mechanisms to generate interpretable confidence scores
for clinical decision support systems.

The remainder of this paper is organized as follows: Section
2 provides a comprehensive review of related work, tracing the
evolution from traditional radiomics approaches to advanced deep
learning methodologies and identifying critical gaps in ensemble
validation frameworks. Section 3 details our methodology,
including the KHCC dataset characteristics, preprocessing pipeline,
and the ensemble learning framework combining ResNet50 and
Swin Transformer architectures through weighted soft voting.
Section 4 presents comprehensive results demonstrating the
ensemble model’s superior performance with rigorous statistical
validation using Friedman and Wilcoxon signed-rank tests,
followed by detailed comparative analysis with existing literature,
clinical implications, and study limitations. Finally, Section 5
concludes with key findings and future research directions for
Al-enhanced surveillance in colorectal cancer management.

2 Related work

Recent years have witnessed rapid progress in the application
of artificial intelligence (AI) for detection and prognosis for
colorectal cancer (CRC) liver metastasis detection and prognosis.
A diverse body of research has explored radiomics, traditional
machine learning, and deep learning approaches across multiple
imaging modalities including CT, MRI, and PET/CT, as well
as non-imaging clinical biomarkers. While these studies report
promising results, they vary widely in methodology, dataset scale,
and validation rigor, leading to challenges in reproducibility and
clinical translation. The following review critically examines prior
work, tracing the evolution of Al methods, comparing performance
across modalities, analyzing dataset and validation limitations, and
identifying current gaps that motivate our proposed approach.

2.1 Evolution of Al approaches

The application of artificial intelligence in predicting liver
metastases has evolved significantly, transitioning from traditional
machine learning and radiomics to more sophisticated deep
learning architectures and novel computational paradigms. As
shown in Table 1, early approaches, such as those in Wang J. P.
et al. (2025) and Jing et al. (2025), relied on conventional machine
learning algorithms like Random Forest and Support Vector
Machines (SVM) combined with radiomics feature extraction from
CT and MRI scans. These studies established the feasibility of
using quantitative image features to predict metachronous liver
metastases (MLM). More recent work, like Miyamoto et al. (2025),
continues to refine this approach, using Random Forest and
Boruta algorithms to predict chemotherapy response from CT
radiomics with high accuracy. The field has since progressed toward
deep learning, as demonstrated in Lu et al. (2021), Xia et al
(2024), and Kinoshita et al. (2023), which utilize Convolutional
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Neural Networks (CNNs) and Vision Transformers (ViTs) to
automatically learn hierarchical features. This shift reduces the
need for manual feature engineering. A key advancement is
the focus on model interpretability; Wu et al. (2025) developed
a model for stage II CRC using an Artificial Neural Network
(ANN) and explained its predictions with the SHAP algorithm,
addressing the “black box” problem. The trend toward multimodal
integration is also prominent. Li et al. (2025) developed a
metabolic-imaging model, combining radiomics with metabolic
biomarkers to enhance prognostic prediction. A novel direction
is presented in Rocca et al. (2021), which introduced Formal
Methods (FMs) as an alternative to traditional AI, demonstrating
high precision in very small datasets by using mathematical logic
to verify predefined properties rather than learning from large
volumes of data. The comprehensive review in Huang et al. (2025)
effectively summarizes this evolution, covering the spectrum from
conventional ML to advanced deep learning and its applications in
precision medicine.

2.2 Imaging modality analysis

The choice of imaging modality remains a critical factor,
with CT being the most common due to its wide availability
and detailed anatomical resolution, as seen in numerous studies
including Wang J. P. et al. (2025), Huang et al. (2025), Li et al.
(2025), Miyamoto et al. (2025), Kinoshita et al. (2023), and Rocca
et al. (2021). Research continues to optimize CT’s utility; for
example, Kanan et al. (2024) showed that deep learning image
reconstruction (DLIR) significantly improves metastasis detection
over standard methods. While MRI is noted for its superior
soft-tissue contrast, multimodal approaches combining CT and
MRI (Wang J. P. et al.,, 2025) have not yet shown a statistically
significant advantage, indicating a need for more sophisticated
fusion techniques. The meta-analysis in Chen et al. (2025) provides
a high-level comparison, reporting a pooled Area Under the
Curve (AUC) of 091 across modalities for predicting distant
metastasis but also noting that MRI may offer higher specificity.
The systematic review in Grover and Gupta (2024) reinforces that
while CT and MRI are standard, advanced techniques like 3D and
dynamic imaging are still not fully exploited, despite their potential
to offer more comprehensive spatial and functional information.

2.3 Performance comparison across
studies

The performance of AI models varies widely, reflecting the
diversity of methods and data. Radiomics-based machine learning
models continue to show strong performance, with AUCs for
predicting treatment response and recurrence ranging from 0.761
to 0.87 (Jing et al.,, 2025; Miyamoto et al., 2025). Deep learning
models often achieve higher metrics. The RECORD pipeline in
Xia et al. (2024) reported an average AUC of 0.981 for response
classification, while the interpretable model in liver (11) achieved
an AUC up to 0.846 in external validation for predicting recurrence
risk. The meta-analysis in Chen et al. (2025) found a robust
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TABLE 1 Comparative summary of recent deep learning approaches for liver metastasis prediction.

10.3389/fdata.2025.1700292

Dataset/ Imaging Gap/limitation Contribution
patients modality
WangJ. P. etal. 157 CRC pts CT & MRI Radiomics (RF) Small sample, single center, | First study to integrate CT Merged with AUC:
(2025) (retro) limited multimodal and MRI for MLM 0.82.
benefit. prediction.
Feng et al. (2025) 865 CRC pts Clinical Lab ML (RF) Single-center, Developed a cost-effective CRLM-Lab6 model
(retro/pro) Data cross-sectional design. model using standard lab AUC: 0.94.
data.
Luetal. (2021) 1,028 mCRC CT DL Single trial data, limited Showed DL utility on serial DL-Nomo C-Index:
pts (trial) (CNN-RNN) interpretability. CTs for early response 0.694.
prediction.
Xia et al. (2024) 206 pts (multi- CT DL (CNN, ViT) Excluding non-liver Developed an automated RECORD pipeline
national) metastases, needs pipeline mimicking a avg. AUC: 0.981.
prospective validation. radiologist’s workflow.
Wang J. etal. (2025) | Systematic CT, MRI, DL Underuse of 3D/dynamic Provided a comprehensive Reported top
review genetic imaging, lack of overview and proposed a accuracy of 99.38%
generalizability. benchmark framework. in reviewed studies.
Guo et al. (2024) 574 uCRLM pts Clinical Data ML (RSF) Retrospective, potential Externally validated a 3-year AUC: 0.873
(retro) sample size bias. prognostic model for (train), 0.730
IAIT-treated patients. (external).
Jing et al. (2025) 51,265 CRC pts Clinical Data ML (RF) Lacks some First large-scale, RF model AUC:
(SEER) clinical/treatment data. population-based ML 0.956 (internal),
model for metastasis 0.912 (external).
prediction.
Wu et al. (2024) 212 CRC pts CT Radiomics (RF) Retrospective, Developed a fusion model Fusion model AUC:
(retro) single-center, small sample. | integrating radiomics and 0.761.
clinical data.
Kanan et al. (2024) Meta-analysis US, CT, MRI Radiomics & High study heterogeneity, Evaluated Al for recurrence Pooled AUC for
(33 studies) DL mostly retrospective. prediction, stressing quality HCC-SR
assessment. recurrence: 0.86.
WangJ. P. etal. 121 pts (retro) CT DL Image Retrospective, single Showed advanced DLIR-high
(2025) Recon. (DLIR) manufacturer. reconstruction can improve improved
metastasis detection. metastasis
detection.
Huang et al. (2025) 769 Stage IT CT ML (ANN), Retrospective, only portal Developed an interpretable Combined model
CRC pts SHAP venous phase. model to guide ACT AUC: 0.846
(multi-center) decisions. (validation).
Lietal. (2025) Review article Multi-modal AI/ML (SVM, Data heterogeneity, lack of Comprehensive overview of N/A
RE DL) standardization. AT’s role in CRLM
classification.
Miyamoto et al. 197 CRLM pts CT ML (ensemble) Single-center, initial data Developed a robust model, 3-month recurrence
(2025) (retro) leakage risk. highlighting and mitigating model AUC: 0.723.
data leakage.
Kinoshita et al. 150 CRLM pts CT Radiomics (RF) Small sample, Demonstrated utility of ML Validation AUC:
(2023) (retro) retrospective, manual for predicting 0.87 for chemo
segmentation. chemotherapy response. response.
Xia et al. (2024) 543 HCC pts CT DL Single-center, only solitary Developed a DL model to Test AUC: 0.71 for
(retro) (DenseNet121) HCCs. predict early postoperative early recurrence.
HCC recurrence.
Chen et al. (2025) Meta-analysis CT, MRIL, US AI (ML/DL) High study heterogeneity, Systematically evaluated Pooled AUC: 0.91
(17 studies) regional bias. AT’s diagnostic accuracy for for distant
metastasis. metastasis.
Rocca et al. (2021) 30 CRC pts CT Formal Very small sample, manual Introduced Formal Accuracy: 93.3%,
(pilot) Methods segmentation. Methods as a novel Precision: 100%.
approach for small cohorts.

of 0.723. A novel approach using Formal Methods in Rocca
et al. (2021) reported 100% precision on a small pilot cohort,
suggesting its potential where large datasets are unavailable. In

pooled AUC of 0.91 for predicting distant metastasis. Even models
focused on more challenging tasks, such as the 3-month recurrence
prediction in Li et al. (2025), reached a clinically useful AUC

Frontiers in Big Data 04 frontiersin.org


https://doi.org/10.3389/fdata.2025.1700292
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Nasayreh et al.

contrast, models based solely on clinical data also demonstrate
strong predictive power; Feng et al. (2025) achieved an AUC of 0.94
using only lab tests, and Guo et al. (2024) reached an AUC of 0.956
on the large SEER database, highlighting that data scale can be as
important as data type.

2.4 Dataset scale and validation challenges

The scale of datasets and the rigor of validation methods are
crucial for the clinical translation of AT models. Many studies are
still limited to smaller, single-center retrospective cohorts (Wang
J. P. et al, 2025; Jing et al., 2025; Li et al., 2025; Miyamoto
et al., 2025), which may not be generalizable. The pilot studied in
Rocca et al. (2021) intentionally used a small cohort (30 patients)
to demonstrate the utility of Formal Methods in such scenarios.
In contrast, large-scale, multi-center studies are becoming more
common. (Lu et al., 2021) utilized a cohort of 769 patients from
three medical centers, while Lu et al. (2021) and Xia et al. (2024)
leveraged data from international clinical trials. The most extensive
dataset was used in Guo et al. (2024), which included over 50,000
patients from the SEER database. These larger studies provide
more robust and generalizable models. A critical methodological
challenge highlighted by Li et al. (2025) is the risk of “data leakage,”
where post-operative information inadvertently contaminates the
training of a pre-operative prediction model, leading to artificially
inflated performance metrics. This underscores the need for
stringent temporal validation. The meta-analyses in Wu et al.
(2024) and Chen et al. (2025) both confirm that most studies are
retrospective and often geographically concentrated, emphasizing
the persistent need for prospective and diverse external validation.

2.5 Current gaps and limitations

Despite significant progress, several key challenges persist.
The lack of methodological standardization across studies, from
imaging protocols to model development, remains a major barrier
to comparing and integrating findings, a limit noted in the review’s
Wu et al. (2024) and Huang et al. (2025). The “black box”
nature of complex models like deep neural networks is another
significant hurdle for clinical adoption. In response, recent work
has focused on interpretability, with (Wu et al., 2025) successfully
using the SHAP algorithm to explain feature contributions in
their predictive model, making the results more transparent to
clinicians. Data availability and quality continue to be a primary
constraint. As highlighted in Li et al. (2025), a major and often
overlooked limitation is the risk of data leakage in prognostic
studies, which can render models clinically invalid. This calls for
more rigorous study design and peer review. The challenge of
working with small datasets is addressed by Rocca et al. (2021),
which proposes Formal Methods as a viable alternative to data-
hungry deep learning models. Finally, the meta-analysis in Chen
et al. (2025) and review in Huang et al. (2025) reiterate a common
theme: the vast majority of studies are retrospective and lack robust,
prospective external validation. Bridging this gap between model
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development and clinical utility is the most critical step for the
future of Al in oncology.

In summary, the literature demonstrates substantial progress
from handcrafted ML to transformer-augmented DL approaches,
with robust performances achieved in large multicenter cohorts.
Nevertheless, generalizability, reproducibility, and clinical
integration remain critical barriers. Furthermore, the paradoxical
strength of clinical-only models suggests that future work must
focus on holistic, multimodal integration rather than siloed
imaging analysis. These gaps collectively motivate the present
work, which seeks to develop a clinically translatable AI framework

for early and accurate detection of CRC liver metastases.

3 Methodology

This study employed a comprehensive machine learning
pipeline for liver metastasis detection and classification using
medical imaging data. The methodology in Figure 1 began with a
curated dataset of liver CT scans from 82 patients, which underwent
systematic preprocessing including DICOM format handling,
image normalization, RGB conversion, and standardization to 224
X 224-pixel resolution. The dataset was strategically partitioned
into training (67 patients), validation (10 patients), and test
(5 patients) sets, with data augmentation techniques applied to
enhance model robustness and generalization. Five state-of-the-
art deep learning architectures were evaluated as transfer learning
models: ResNet50, MobileNetV2, DenseNet121, CNN-LSTM, and
Swin Transformer. To optimize predictive performance, an
ensemble learning approach was implemented, featuring model
selection based on Area Under the Curve (AUC) metrics, with
the top-performing models (ResNet50 and Swin Transformer)
combined through weighted voting mechanisms. The integration
strategy leveraged both convolutional neural networks and
transformer architectures to capture local and global image
features effectively. Model performance was rigorously assessed
using multiple evaluation metrics including accuracy, sensitivity,
specificity, and AUC, with statistical validation performed through
Friedman and Wilcoxon tests to ensure the reliability and
significance of the results.

3.1 Dataset

Based on the dataset information shown in Figure 2, the
King Hussein Cancer Center (KHCC) Liver Metastasis Predictive
Analysis Study represents a comprehensive clinical dataset for
advanced medical imaging and clinical outcomes research. The
dataset comprises 83 total cases collected during the study
period from 2019 to 2024 at KHCC, with 32 cases (38.6%)
presenting with later metastasis and 51 cases (61.4%) showing no
later metastasis development. The cohort demonstrates balanced
gender distribution with slight female predominance in the
later metastasis group. Age distribution analysis reveals that
patients with later metastasis had a mean age of 54.8 £ 13.6
years, while those without later metastasis averaged 54.4 £ 14.9
years, indicating comparable age demographics across groups.
Follow-up periods extended to 34.4 + 23.0 months for the
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FIGURE 1

Framework of the deep learning-based liver metastasis detection system employing ensemble learning and comprehensive performance evaluation.
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metastasis group and 47.1 & 26.1 months for the non-metastasis
group. The dataset maintains complete clinical validation with
100% data completeness across all critical variables, including
clinical validation, radiological assessment, DICOM image quality,
treatment history, metastasis status, gender information, age
at diagnosis, and patient demographics. Professional DICOM
processing involved advanced medical imaging preprocessing with
noise reduction and standardization, along with automated quality
control through manual validation by certified radiologists as
shown in Figure 3, ensuring IRB-compliant data anonymization
and privacy protection protocols throughout the research process.
This study was approved by the KHCC Institutional Review
Board (IRB# 24KHCC235F) with appropriate ethical oversight for
retrospective medical imaging research.

3.2 Preprocessing

The dataset preprocessing pipeline implemented a multi-stage
approach to prepare DICOM medical images for deep learning
classification. Initially, 82 patients with liver DICOM images
were identified, comprising 50 patients without metastasis (class

Frontiersin Big Data

0) and 32 patients with later metastasis (class 1) as shown in
Table 2. The patient cohort was strategically split at the patient
level to prevent data leakage, with 67 patients allocated for
training, 10 patients for validation, and 5 patients for testing.
Each patient contributed multiple DICOM slices, resulting in
varying numbers of images per split. The DICOM preprocessing
involved reading pixel arrays with forced loading, normalizing
intensity values to the 0-255 range using min-max scaling,
and converting grayscale images to 3-channel RGB format for
compatibility with pretrained models. To address the inherent class
imbalance in the training set, a cost-sensitive learning strategy
was adopted instead of oversampling. Specifically, a weighted
Binary Cross-Entropy (BCE) loss function was implemented, where
a calculated positive class weight (Posyeign;) was applied to the
minority class (metastasis) based on the ratio of negative to
positive samples (Buda et al., 2018). This approach inherently
penalizes misclassifications of the minority class more heavily
during backpropagation, effectively balancing the learning process
without introducing data redundancy or the potential leakage
risks associated with replicating images. Image preprocessing
included resizing to 224 x 224 pixels, tensor conversion,
and ImageNet normalization (mean = [0.485, 0.456, 0.406],
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FIGURE 2

Comprehensive analysis of the KHCC liver metastasis cohort (n = 83) showing: (a) distribution of later metastasis cases (38.6% vs. 61.4%), (b) age
demographics by metastasis status, (c) gender distribution across groups, (d) follow-up duration patterns, and (e) DICOM slice selection analysis for
radiological image curation quality assessment.
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FIGURE 3
Sample of liver metastasis CT images

TABLE 2 Patient and image distribution across dataset splits with class balancing.

Training 67 41 26
Validation 10 6 4
Test 5 3 2

std = [0.229, 0.224, 0.225]). This strategy ensures robust model
optimization while maintaining the integrity of the natural clinical
data distribution.

3.3 Overview of the proposed approach

This study proposes a comprehensive deep learning framework
for liver metastasis prediction using the Liver Metastasis
Prediction Dataset. The methodology employs six state-of-the-art
pretrained convolutional neural networks (CNNs) and transformer
architectures as feature extractors through transfer learning,
followed by ensemble learning to combine the top-performing
models. The framework integrates diverse architectural paradigms
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5,271 3,355 1,916 0.57
527 331 196 0.59
416 273 143 0.52

to leverage complementary feature representations for robust
metastasis classification.

3.3.1 ResNet50

ResNet50V2 implements the residual learning framework
proposed by He et al. (2016) to address the degradation problem
in deep networks. Unlike the original V1, the V2 variant utilizes
pre-activation residual units where Batch Normalization (BN) and
ReLU activation precede the convolution operations. This improves
gradient propagation through the network. The output yjof the I-th
residual block is formally defined as:

yi = h(xp) + Fx, {Wh}) (1)
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Where x;is the input feature vector, h(x;)denotes the identity
mapping (skip connection), and Frepresents the residual mapping
function to be learned, composed of a stack of 1 x 1, 3 x 3, and
1 x 1 convolutions.

3.3.2 MobileNetV2

MobileNetV2, introduced by Sandler et al. (2018), utilizes
inverted residual blocks with linear bottlenecks to optimize
computational efficiency while maintaining representational
capacity. Unlike standard residual blocks, it expands the input to a
higher dimension, applies depthwise convolution, and projects it
back to a lower dimension. The operation for an input tensor x is
formulated as:

y = Conv x1(DWConv(Conv,; (x, t))) 2)

Where Conv;y; represents pointwise convolution, DWConv
denotes depthwise convolution, and ¢ is the expansion factor.
The linear bottleneck design removes the non-linear activation
at the final output layer to preserve information flow in low-
dimensional manifolds.

3.3.3 DenseNet121

DenseNetl121 implements dense connectivity patterns as
proposed by Huang et al. (2017), where each layer receives feature
maps from all preceding layers. The dense block connectivity is
defined as shown in Equation 3:

x = Hj ([x0, %15 - x1-1]) (3)

Where [xo,xl, e -xl,l] represents the concatenation of
feature maps from layers 0,...,I-1, and H; (.) denotes the composite
function consisting of batch normalization, ReLU activation, and
3 X 3 convolution. This architecture promotes feature reuse and
alleviates the vanishing gradient problem.

3.3.4 CNN_LSTM

The CNN-LSTM model represents a hybrid deep learning
approach that combines convolutional neural networks with
recurrent neural networks for enhanced feature learning and
temporal modeling. The architecture employs a CNN backbone as
the feature extractor, with the final classification layer replaced by
an identity function to output high-dimensional feature vectors.
These CNN-derived features are then projected through a linear
layer to 128 dimensions before being fed into a bidirectional
LSTM network consisting of 2 layers with 128 hidden units each.
The bidirectional LSTM processes the projected features as a
sequence (treating each image as a single time step), enabling
the model to capture both forward and backward temporal
dependencies, resulting in 256-dimensional output features (128
x 2 for bidirectional processing). A regularized classifier head
with dropout layers (0.7 dropout rate), batch normalization, and
ReLU activations processes the LSTM output through two fully
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connected layers (256— 64— 1) before sigmoid activation for
binary classification. This hybrid architecture aims to leverage
both the spatial feature extraction capabilities of CNNs and the
sequential modeling strengths of LSTMs, potentially capturing
complex patterns that might be missed by purely convolutional
approaches in medical image analysis tasks (Donahue et al., 2015).

3.3.5 Swin transformer

The Swin Transformer, introduced by Liu et al. (2021),
shifted
window-based self-attention. Recent advances in transformer-

implements hierarchical vision transformers using
based architecture have demonstrated superior performance
over traditional CNNs in complex visual recognition tasks, with
attention mechanisms proving particularly effective in drawing
connections among different parts of images while maintaining
computational efficiency through patch-based processing
strategies. The hierarchical attention approach aligns with findings
from multi-scale analysis frameworks, where capturing features
at different resolution levels and spatial relationships has shown
significant improvements in classification accuracy compared
to fixed-scale processing methods (Tuncer et al., 2022; Eralp
and Sefer, 2024). Transformer-based modules are increasingly
integrated into medical image segmentation to capture long-range
dependencies and global contextual information, overcoming
the locality limitations of traditional Convolutional Neural
Networks (CNNs). By leveraging self-attention mechanisms, these
architectures effectively model global anatomical relationships
while preserving local feature details, resulting in improved
segmentation accuracy for complex, irregular structures.

The shifted window multi-head self-attention (SW-MSA)

mechanism is computed as shown in Equation 4:

A(Q,K,V) = SoftMax (QTK + B) %4 (4)
Vd
Where B € RM*xM represents the relative position bias
matrix, and d denotes the query/key dimension. The shifting
operation enables cross-window connections while maintaining
linear computational complexity with respect to image size.

3.4 Transfer learning strategy

All backbone models are initialized with ImageNet pretrained
weights to leverage low-level feature representations learned
from natural images. We employ a two-stage training strategy.
Initially, all pretrained layers are frozen, and only the classifier
head undergoes training for 10 epochs. Subsequently, the entire
network is fine-tuned with a reduced learning rate of 0.0001 to
adapt pretrained features to the liver metastasis domain. This
approach has proven highly effective in medical diagnostics,
significantly enhancing classification accuracy and convergence
speed by fine-tuning established weights for specific tasks such as
lesion segmentation or pneumonia detection (Thapar et al., 2025;
Khan et al., 2023b).

The feature vector f, extracted by the backbone (after Global
Average Pooling), is passed through a Dropout layer and a Fully
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Connected (FC) layer. The probability of malignancy yis computed
using the Sigmoid activation function, as shown in Equation 5:

1

_ — T — -
Py=1|x)=0c(W'f+b) = L o Wir+h)

5)

Where Wand bare the learnable weights and bias of the final
dense layer, and the output represents the probability of the positive
class (Metastasis).

3.5 Loss functions

The selection of appropriate loss functions is critical for
optimizing deep learning models in medical image classification
tasks, particularly when dealing with imbalanced datasets
common in clinical applications. Our framework implements
multiple loss function strategies to ensure robust training and
optimal convergence across different class distributions and
model architectures.

3.5.1 Cross-entropy loss
The standard cross-entropy loss function is employed as the
primary optimization objective as shown in Equation 6:

N C
1 N
Leg = 3 viclog (ic) (6)

i=1 c=1

Where N denotes the batch size, y; . represents the ground truth
label, and y; . denotes the predicted probability (Mao et al., 2023).

3.5.2 Focal loss

To address potential class imbalance in the liver metastasis
dataset, we additionally implement focal loss as proposed by Thapar
et al. (2025) as shown in Equation 7:

L = o (1= Jic)” log (Jic) @)

Where «, represents the class-specific weighting factor and y
denotes the focusing parameter (Lin et al., 2017). This formulation
down-weights well-classified examples and focuses learning on
hard cases.

3.6 Model evaluation and selection

All six backbone models undergo identical training procedures
using 5-fold cross-validation. Model performance is assessed using
multiple metrics including accuracy, precision, recall, Fl-score,
Macro-F1, and area under the ROC curve (AUC). The AUC serves
as the primary selection criterion due to its robustness to class
imbalance and its ability to evaluate model performance across all
classification thresholds as shown in Equation 8:

1
AUC = / TPR(t)d [FPR(t)] (8)
0
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Where TPR denotes the true positive rate and FPR represents
the false positive rate at threshold . The AUC metric provides a
single scalar value summarizing the model’s discriminative ability
across all possible decision thresholds.

The top two performing models based on validation AUC
scores are selected for ensemble learning.

3.7 Ensemble learning methodology
(weighted soft voting)

The ensemble combines predictions from the top-performing
models using a Weighted Soft Voting mechanism. Unlike hard
voting, which relies on discrete labels, soft voting aggregates the
predicted probabilities. Let Pr(y = 1 | x) be the probability output
of the k-th model. The weight wy for each model is dynamically
assigned based on its validation AUC score to prioritize more
robust models as shown in Equation 9:

AUC

== = )
K
11 AUG;

Wi =

The final ensemble probability Posempie is derived from the
weighted linear combination of individual probabilities as shown
in Equation 10:

K
i)ensemble(y =1]|x)= ZWk . Pk()/ =1]|x)
k=1

(10)

Where K represents the number of selected models. The final
class label is determined by applying a threshold of 0.5 to D,comble-

3.8 Rationale for CNN-transformer
ensemble

The combination of CNN-based architecture with transformer-
based models leverages complementary inductive biases for
improved generalization. CNNs excel at capturing local spatial
through
convolution operations and pooling mechanisms. Conversely,
and global
contextual information through self-attention mechanisms. For

patterns and hierarchical feature representations

transformers capture long-range dependencies
liver metastasis prediction, this synergy enables the model to
simultaneously detect local pathological patterns (via CNNs)
and global anatomical relationships (via transformers). The
ensemble approach mitigates individual model limitations while
enhancing robustness to variations in imaging conditions and
pathological presentations. To aggregate these complementary
features, a soft voting strategy was strictly employed over hard
voting. Hard voting was excluded because it relies on discrete class
labels (majority rule), which create undefined tie scenarios in a
two-model ensemble. Furthermore, hard voting discards valuable
probabilistic confidence scores. By using soft voting, the ensemble
preserves the continuous probability outputs, ensuring that the
final prediction reflects not just the class label, but the combined
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confidence of both architectures, resulting in a more discriminative
and calibrated diagnostic outcome.

3.9 Performance evaluation methods

Accuracy, precision, sensitivity, specificity, F1 score, and
AUC as shown in Equations 11-19 are the metrics used to
assess the performance of our multi-model approach for liver
metastasis detection. Each metric provides valuable insight into the
model’s diagnostic capabilities, and their comprehensive evaluation
ensures robust assessment of the model’s clinical utility for liver
metastasis prediction.

TP:
correctly identified)

True Positives (cases with liver metastasis
TN: True Negatives (correctly identified non-metastatic cases)
FP: False Positives (non-metastatic cases incorrectly classified
as metastatic)

FN: False Negatives (metastatic cases misclassified as non-
metastatic)

Accuracy

Measures the proportion of all correct predictions (both true
positives and true negatives) out of the total number of cases.

TP+ TN

A =
CUTaY = TP L IN + FP + EN

(11)
e Precision

Or called (Positive Predictive Value): Quantifies the accuracy
of the positive predictions, representing the fraction of predicted
metastatic cases that are metastatic.

TP

Precision = ——
TP + FP

(12)

e Sensitivity (true positive rate)

Or called recall, it measures the model’s ability to correctly
identify all actual metastatic cases.

TP

Sensitivity = m

(13)
e Specificity (true negative rate)

Measures the model’s ability to correctly identify all actual
non-metastatic cases.

TN

—~ (14)
TN + FP

Specificity =
e F1 Score
The harmonic mean of precision and sensitivity provides

a balanced measure of performance, especially important for
imbalanced medical datasets.
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Precision*Sensitivity

F1 Score = 2* (15)

Precision + Sensitivity

e Area Under the Curve (AUC)

Represents the model’s ability to distinguish between positive
and negative classes across all classification thresholds. An AUC of
1.0 indicates a perfect classifier.

TP

TPR= ———— (16)

TP + EN
FPR = kP (17)

" FP+TN

1
AUC = / TPRd (FPR) (18)
0
n-l FPR; + FPR;

AUC = Y (FPRiy; — FPR)* —— =1 (19)

2

i=1

The Friedman test as shown in Equation 20 is employed

for statistical comparison of multiple algorithms across

different datasets.

12N ko= k+1)?
Friedman = x% = ———— Rj — —— 20
F k(K+1)Zj=l<] 2 > (20
Where xIZ; represents the test statistic derived from the
discrepancies between the average ranks and the anticipated rank
% in the Friedman test; in this context, N signifies the number
of datasets, k indicates the total number of algorithms, and R;

representing its average rank.
e Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test as shown in Equation 21 is used
for pairwise post-hoc comparisons following the Friedman test to
determine which specific algorithms differ significantly.

21

Where W represents the test statistic, x; and y; are paired
observations from two algorithms, and R; is the rank of the absolute
difference |x; - yi|.

This study demonstrates the effectiveness of using ensemble
deep learning models for liver metastasis classification. By
combining multiple architectures and employing rigorous
statistical evaluation through Friedman and Wilcoxon tests, we
show significant improvements in classification performance.
Comprehensive evaluation metrics confirm the robustness of
the ensemble approach, providing a reliable and statistically
validated solution for real-world liver metastasis detection in
medical imaging.
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TABLE 3 Hyperparameters used for model training and selection.

10.3389/fdata.2025.1700292

Hyperparameter Value Rationale/selection method

Image size 224 x 224 Standard input size for most pre-trained models (e.g., ResNet, DenseNet, Swin).

Batch size 6 Determined empirically as the maximum size that fit within GPU memory constraints while ensuring
stable training.

Pre-training True Utilized ImageNet pre-trained weights to leverage transfer learning, which is standard for medical

imaging tasks.

Dropout rate (Classifier) 0.7

A relatively high value selected after preliminary experiments to provide strong regularization and
combat overfitting on the dataset.

generalization.

LSTM hidden units 128 (For CNN-LSTM) Chosen as a balanced value to capture sequential information without excessive
complexity.

LSTM layers 2 (For CNN-LSTM) Selected to allow for more complex temporal feature extraction.

Optimizer AdamW Chosen over standard Adam for its improved weight decay implementation, which often yields better

Initial learning rate 5e-4 (0.0005)

and stability.

Selected based on empirical tuning; this value provided a good balance between convergence speed

Weight decay le-4 (0.0001)

A common default value for AdamW that provides light $L_2$ regularization.

Max epochs 25

Set as an upper limit. All models stopped earlier due to the early stopping criterion.

Loss function Binary Cross-Entropy (BCELoss)

Standard loss function for binary classification problems.

Early stopping patience 6 epochs

Allowed the model to continue for 6 epochs without validation loss improvement before stopping.

Gradient clipping norm 1.0

Applied to prevent exploding gradients, ensuring training stability.

LR scheduler ReduceLROnPlateau Chosen to dynamically decrease the learning rate when the validation loss plateaus.
LR scheduler factor 0.7 A moderate reduction factor, allowing for finer-grained tuning as training progresses.
LR scheduler patience 3 epochs Reduced the learning rate if validation loss did not improve for 3 consecutive epochs.

4 Results and discussion

All experiments were conducted on a high-performance
computing system equipped with dual NVIDIA GeForce RTX
4090 GPUs, each providing 24 GB of VRAM for a total of 48
GB GPU memory. This substantial computational capacity
enabled efficient training of large-scale deep learning models and
facilitated batch processing of the extensive DICOM image dataset.
The parallel GPU configuration significantly reduced training
time while allowing for larger batch sizes and more complex
model architectures to be explored effectively. This section
presents the comprehensive results of our deep learning ensemble
models, including implementation details and hyperparameter
configurations, results analysis, statistical validation using
Friedman and Wilcoxon tests, comparative analysis with radiomics
and advanced deep learning methodologies, clinical impact and

translation potential, and key limitations of the study.

4.1 Implementation details and
hyperparameter selection

The models were implemented using the PyTorch framework
and trained on an NVIDIA GPU. The selection of hyperparameters
was a critical step guided by a combination of common practices
in medical image analysis, values reported in the source literature
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for the pre-trained models, and empirical tuning based on
performance on our dedicated validation set.

All models were trained using the AdamW optimizer, chosen
for its effective weight decay implementation, and a Binary Cross-
Entropy (BCELoss) function. To prevent overfitting, we employed
several regularization techniques:

1. Heavy dropout layers (p=0.7) in the classifier head.

2. An early stopping mechanism that monitored the validation
loss, terminating the training if no improvement was observed
for 6 consecutive epochs.

3. Alearning rate scheduler (ReduceLROnPlateau) which reduced
the learning rate by a factor of 0.7 if the validation loss plateaued
for 3 epochs.

The final set of hyperparameters used for training all models is
detailed in Table 3.

4.2 Results analysis

The comprehensive performance of each model on the
independent test set, calculated as the average of five experimental
runs to ensure statistical reliability, is detailed in Table 4 and
visually summarized in Figure 4. The results clearly demonstrate
the superior efficacy and stability of the multi-model Ensemble
approach for this complex medical imaging task. The Ensemble
model emerged as the top performer, achieving a robust mean
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TABLE 4 The performance metrics for each model evaluated on the independent test set (Mean + STD).

Accuracy Sensitivity Specificity F1-Score Training time (min)
MobileNetV2 0.437 4 0.071 0510 4 0.082 0399 + 0.065 0.384 + 0.073 0.3922 + 0.062 33.8
ResNet50 0.687 4 0.058 0.790 + 0.069 0.634 + 0.061 0.635 + 0.059 0.7875 4 0.051 329
DenseNet121 0.432 4 0.068 0.434 £ 0.075 0.432 £ 0.070 0.344 + 0.069 0.5101 £ 0.065 34.0
CNN-LSTM 0372 4 0.085 0.476 % 0.091 0319 4 0.088 0.343 + 0.082 0.3486 + 0.079 33.0
Swintransformer 0.699 4 0.051 0.552 4 0.062 0.777 4 0.048 0.558 + 0.055 0.7639 + 0.042 418
Stacking model 0.610 4 0.072 0.251 4 0.095 0.798 + 0.059 0.307 + 0.085 0.7370 + 0.068 >1
Ensemble model 0.754 4 0.039 0.790 4 0.045 0.736 % 0.041 0.689 + 0.043 0.8115 + 0.035 >1
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FIGURE 4
Comparative performance analysis of individual and ensemble models.

accuracy of 0.754 (£0.039) and an Area Under the Curve (AUC)
of 0.8115 (£0.035). The relatively low standard deviation values
indicate that the Ensemble model offers consistent predictions
across different data folds, minimizing the variability often seen
in individual deep learning models. Furthermore, it maintained
a well-balanced profile with a sensitivity of 0.790 (£0.045) and a
specificity of 0.736 (£0.041), making it a reliable diagnostic aid for
identifying both positive and negative cases.

While the Stacking model did not match the Ensembles
overall accuracy (0.610 % 0.072), it notably achieved the highest
specificity among all models at 0.798 (£0.059). However, this
strength was heavily offset by a critically low mean sensitivity
of 0.251 (40.095), rendering it less effective for screening
purposes where missing positive cases is a primary concern.
Among the individual architectures, Swin Transformer and
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ResNet50 proved to be the most effective standalone models,
yielding mean accuracies of 0.699 (£0.051) and 0.687 (£0.058),
respectively. Interestingly, ResNet50 matched the Ensemble
model’s sensitivity (0.790), suggesting it is particularly capable
of detecting metastatic features, though with slightly less overall
precision. Conversely, MobileNetV2, DenseNet121, and the hybrid
CNN-LSTM models failed to generalize well on this dataset.
Their mean AUC values ranged between 0.3486 and 0.5101,
often falling near or below the threshold of random chance
(0.5), which confirms their unsuitability for this specific predictive
application. However, the extended training duration for the Swin
Transformer is attributed to the computational complexity of its
self-attention mechanisms compared to CNN-based architectures.
At the same time, the negligible times for the Ensemble
and Stacking models highlight their efficiency in leveraging
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FIGURE 5
Confusion matrices for model performance on the test set.

pre-trained base models without requiring significant additional
computational resources.

Combined ResNet50 and Swin Transformer, demonstrated
the most balanced performance with 113 true positives and 201
true negatives, against 72 false positives and 30 false negatives as
shown in Figure 5. An analysis of the component models reveals
the source of the ensemble’s effectiveness: ResNet50 was highly
sensitive (TP = 113, FN = 30) but produced many false alarms
(FP = 100), whereas the Swin Transformer exhibited the opposite
characteristic with high specificity (TN = 212, FP = 61) but
lower sensitivity, missing 64 positive cases. By combining these
complementary strengths, the ensemble model achieved a more
reliable balance.

The stacking model, employing a meta-learner approach with
ResNet50 and Swin Transformer as base models, displayed a
distinctly different classification pattern with 218 true negatives
and only 36 true positives, accompanied by 55 false positives and
107 false negatives. This configuration reflects the stacking model’s
prioritization of specificity over sensitivity; it excelled at correctly
identifying negative cases but failed to capture a substantial portion
of positive cases. The high number of false negatives (107) indicates
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that the meta-learner was overly conservative in its positive
predictions, resulting in a lower recall that would be problematic
in a clinical setting where missing positive cases carries significant
diagnostic consequences.

To provide interpretability and transparency into the ensemble
decision-making process, Gradient-weighted Class
Activation Mapping (Grad-CAM) was employed to visualize

model’s

the regions of interest that contributed most significantly to
the model’s predictions. The Grad-CAM heatmaps as shown in
Figure 6 reveal which anatomical areas within the CT images the
ensemble model prioritized when making metastasis classification
decisions. The visualizations demonstrate that the ensemble model
consistently identifies and focuses on clinically relevant regions
associated with metastatic disease, including peripheral lung
areas and regions showing nodular or infiltrative patterns. The
intensity and spatial distribution of the heatmaps (ranging from
blue indicating low activation to red indicating high activation)
provide a quantitative measure of the model’s attention across
different anatomical regions. This visualization approach not
only validates that the ensemble model is learning medically
meaningful features but also enhances clinical interpretability by
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FIGURE 6
Grad-CAM visualization of the voting ensemble model on representative CT scans. Top row: original CT images. Bottom row: Grad-CAM heatmaps
showing model activation intensity (blue = low, red = high), highlighting the anatomical regions influencing classification decisions.

Voting_Ensemble - Grad-CAM Visualization

allowing radiologists to verify that the model’s predictions are
based on appropriate diagnostic indicators rather than spurious
correlations. The consistency of activation patterns across multiple
test cases suggests robust and generalizable feature extraction,
strengthening confidence in the model’s diagnostic utility for
clinical deployment.

4.3 Statistical significance of ensemble
performance

Given the challenging dataset characteristics, statistical
validation focused specifically on the ensemble model’s superiority
over constituent models.

4.3.1 Friedman test for model ranking

To validate the performance of the proposed models,
a thorough statistical analysis was conducted, focusing on
establishing the superiority of the ensemble approach. The non-
parametric Friedman test was first employed to assess whether the
observed differences in model accuracy rankings were statistically
significant. The results of the test were highly significant (p <
0.001) with a perfect Kendall's W effect size of 1.000, confirming
that the performance variations among the models were not due to
random chance. The test established a clear performance hierarchy,
as detailed in Table 5, ranking the Ensemble Model first, followed by
the Swin Transformer, ResNet50, Stacking Model, MobileNetV2,
DenseNet121, and CNN-LSTM, respectively.
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TABLE 5 Friedman test results - model ranking by accuracy.

Model Rank

Ensemble model 1
Swin transformer 2
Resnet50 3
Stacking model 4
MobileNetV2 5
DenseNet121 6
CNN-LSTM 7

4.3.2 Wilcoxon signed-rank test for ensemble
validation

Following the Friedman test, post-hoc pairwise comparisons
were performed using the Wilcoxon signed-rank test to specifically
verify the Ensemble model’s superiority over each individual
architecture. As summarized in Table 6, the analysis revealed that
the Ensemble model provided a statistically significant performance
increase against all other models (p < 0.05). Compared to the
best-performing individual models, the Ensemble offered a 5.50%
improvement in accuracy and a 4.76% increase in AUC over the
Swin Transformer (p = 0.028), as well as a 6.70% accuracy and
2.40% AUC improvement over ResNet50 (p = 0.028).

The Stacking Model, while demonstrating competitive
performance, was significantly outperformed by the Ensemble
approach with a 14.40% accuracy improvement and a 7.45%
AUC improvement (p=0.047). This finding underscores the
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TABLE 6 Wilcoxon signed-rank test - ensemble vs. all models.

Comparison p-value* Accuracy
improvement improvement

Ensemble vs. swin 0.028 +5.50% +4.76%

transformer

Ensemble vs. 0.028 +6.70% +2.40%

ResNet50

Ensemble vs. 0.047 +14.40% +7.45%

stacking

Ensemble vs. 0.012 +31.70% +41.93%

MobileNetV2

Ensemble vs. 0.012 +32.20% +30.14%

DenseNet121

Ensemble vs. 0.012 +38.20% +46.29%

CNN-LSTM

The symbol (*) denotes Statistical Significance. It indicates that the p-value is below a specific
threshold (typically p < 0.05), proving that the model’s performance improvements are
scientifically valid and not due to random chance.

Ensemble’s superior ability to leverage complementary strengths
of base models through simple averaging compared to the
meta-learner approach employed in stacking. The performance
gains were even more pronounced when compared against the
lower-performing models, with accuracy and AUC improvements
ranging from approximately 31.70% to over 46.20% (MobileNetV2,
DenseNet121, and CNN-LSTM; p = 0.012). All comparisons
yielded large to very large effect sizes, confirming that the Ensemble
approach provides not only a statistically significant but also a
practically meaningful enhancement in predictive performance.

4.4 Comparative analysis with related work
and discussion

Our ensemble methodology addresses critical gaps identified
in the literature, where existing approaches predominantly focus
on individual model optimization without systematic ensemble
validation or statistical comparison frameworks. The following
analysis positions our results within the context of radiomics, deep
learning, and hybrid approaches while highlighting the unique
contributions of our validated ensemble framework for early liver
metastasis detection.

4.4.1 Performance Comparison with Radiomics
and Traditional Machine Learning Studies

Our ensemble model achieved an AUC of 0.8115 and 75.48%
accuracy, positioning it competitively within the radiomics-based
literature. When compared to early radiomics approaches, Wang
J. P. et al. (2025) reported AUC values of 0.82 using Random
Forest with merged CT and MRI modalities on 157 patients, though
their approach suffered from limited multimodal benefits and small
sample size constraints. Our ResNet50 component alone (AUC
0.7875) demonstrates comparable performance to their multimodal
fusion result, while our ensemble approach surpasses their best
reported metrics despite addressing the more challenging task of
early metastasis prediction rather than general MLM detection.
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The fusion model approach in Wu et al. (2024) achieved AUC
0.761 on 212 patients using radiomics combined with clinical
data, representing the traditional handcrafted feature extraction
paradigm. Our ensemble’s superior performance (AUC 0.8115)
demonstrates the effectiveness of deep learning feature extraction
over manual radiomics engineering, particularly when leveraging
architectural diversity through ensemble methodologies. Recent
radiomics work (Miyamoto et al., 2025) achieved AUC 0.87
for chemotherapy response prediction using Random Forest and
Boruta algorithms on 150 patients. While their performance
appears competitive, their focus on treatment response differs
fundamentally from our early recurrence detection objective.
Additionally, their single-center retrospective design with manual
segmentation represents methodological limitations that our
approach addresses through automated feature extraction and
statistical validation.

4.4.2 Comparison with advanced deep learning
and hybrid approaches

The RECORD pipeline (Xia et al., 2024) represents the
current state-of-the-art, achieving exceptional AUCs of 0.981
for response prediction using CNN + Vision Transformer
architectures on 206 patients across 60 international centers.
However, their focus on treatment response prediction differs
fundamentally from our early metastasis detection objective, and
their exclusion of non-liver metastases limits clinical applicability.
Our ensemble provides the first validated framework specifically
targeting early hepatic recurrence with balanced diagnostic
performance suitable for surveillance applications. Similarly, Lu
et al. (2021) applied CNN-RNN architectures to 1,028 patients
from the VELOUR trial, achieving a C-index of 0.694 for early
response prediction. While their larger dataset size contrasts with
our focused institutional approach, our ensemble accuracy of
75.4% demonstrates competitive discriminative performance while
addressing the critical gap in early recurrence detection rather than
treatment response monitoring.

Furthermore, the interpretable ANN model (Wu et al,
2025) achieved an AUC of 0.846 in external validation across
769 stage II colorectal cancer patients from multiple centers,
addressing the “black box” limitation through SHAP explanations.
While their focus on interpretability represents an important
advancement, our ensemble prioritizes performance optimization
through architectural diversity. This aligns with recent findings
in other medical domains; for instance, Khan et al. (2023a)
demonstrated that attention-based CNNs significantly enhance
feature discrimination in complex classification tasks, while Kujur
et al. (2022) utilized multistage fully convolutional networks to
improve segmentation precision. By integrating Swin Transformers
(which utilize shifted-window attention) with standard CNNs,
our approach leverages these architectural strengths to achieve
statistically validated improvements over individual components.
Additionally, deep learning image reconstruction (Kanan et al,
2024) has shown improved metastasis detection capabilities over
standard CT methods. Our approach complements such technical
advances by providing robust ensemble frameworks capable of
leveraging improved image quality while maintaining diagnostic
reliability across varying imaging conditions.
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4.4.3 Novel methodological approaches and
clinical biomarker models

Recent innovative approaches provide important context for
our ensemble methodology. The Formal Methods approach (Rocca
et al., 2021) achieved 93.3% accuracy with 100% precision on 30
patients, demonstrating mathematical logic-based verification as an
alternative to data-driven AL. While their approach addresses data
scarcity scenarios, the extremely small sample size limits clinical
generalizability compared to our statistically validated ensemble
with rigorous cross-validation on 83 patients.

The clinical biomarker model (Feng et al., 2025) achieved
exceptional performance (AUC 0.94) using machine learning
on laboratory data from 865 patients, representing the
highest reported discrimination in the literature. However,
their approach addresses initial risk stratification rather than
imaging-based surveillance monitoring. Our ensemble addresses
the complementary clinical need for radiological follow-up,
demonstrating that sophisticated architectural combinations
can extract meaningful predictive signals from complex medical
imaging data where individual models fail. Large-scale clinical
data approaches, such as Guo et al. (2024) with over 50,000
SEER database patients (AUC 0.956), highlight the power of
population-scale datasets. However, these approaches lack the
temporal imaging surveillance component essential for detecting
early recurrence patterns. Our framework bridges this gap by
providing imaging-based early detection capabilities with clinically
feasible computational requirements (0.39 s per image).

4.4.4 Meta-analysis validation and statistical rigor

Our results align with pooled performance estimates from
systematic analyses while addressing critical validation gaps. The
meta-analysis (Chen et al., 2025) of 17 studies reported pooled
sensitivity of 0.86, specificity of 0.82, and AUC of 091 for
distant metastasis prediction. Our ensemble’s performance profile
(sensitivity 0.790, specificity 0.736, AUC 0.8115) falls within one
standard deviation of these estimates while providing the statistical
validation (Friedman and Wilcoxon tests) notably absent from
most individual studies reviewed.

The hepatocellular carcinoma recurrence meta-analysis
(Wu et al., 2024) involving 33 studies reported pooled AUC of
0.86, though with high study heterogeneity and predominantly
retrospective designs. Our ensemble performance (AUC 0.8115)
demonstrates competitive results while addressing the statistical
validation gaps identified across the literature. Critically, most
reviewed studies Wang J. P. et al. (2025), Jing et al. (2025), Li
et al. (2025), Miyamoto et al. (2025) suffer from single-center
retrospective designs without rigorous statistical comparison
Our these
limitations through systematic model comparison using non-

frameworks. ensemble methodology addresses

parametric statistical tests, providing the first validated ensemble
framework for liver metastasis detection with documented
superiority over individual architectures.

4.5 Clinical impact and translation
potential

The
directly to meaningful clinical outcomes that address current

ensemble model’s performance metrics translate
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surveillance limitations. The achieved accuracy of 75.48% with
balanced sensitivity (79.0%) and specificity (73.6%) represents a
substantial improvement over individual models and conventional
surveillance approaches that often detect recurrence at advanced
stages. The AUC of 0.8115 demonstrates robust discriminative
ability, providing clinicians with reliable diagnostic support
for early metastasis detection. The balanced performance profile
addresses a critical clinical need where high sensitivity ensures early
detection of metastatic lesions while adequate specificity minimizes
false positives that could lead to unnecessary interventions. This
equilibrium between sensitivity and specificity, achieved through
the ensemble approach, overcomes the limitations observed in
individual architectures where models like SwinTransformer
showed high specificity (77.7%) but poor sensitivity (55.2%),
while ResNet50 demonstrated high sensitivity (79.0%) but lower
specificity (63.4%). The ensemble frameworK’s ability to maintain
both metrics above 73% provides clinicians with a more reliable
diagnostic tool suitable for routine surveillance protocols.

4.6 Limitation

This study acknowledges several key limitations. The dataset,
while substantial with 1,628 images, represents a single-institution
cohort from KHCC that may not capture the heterogeneity across
different clinical centers and patient populations. The binary
classification framework does not incorporate staging information
or temporal progression patterns relevant to clinical decision-
making. Methodologically, the ensemble approach assumes
linear combinations that may not capture complex non-linear
interactions between model predictions, and the retrospective
design limits assessment of real-world clinical impact. The
absence of external validation on independent datasets constrains
generalizability, though robust statistical validation supports
methodological soundness. From a clinical perspective, practical
implementation challenges, including workflow integration,
training requirements, and cost-effectiveness considerations,
remain unaddressed, requiring prospective validation to confirm
clinical utility and patient outcomes.

5 Conclusion

This study successfully developed and validated a novel
Ensemble Deep Learning Framework for early liver metastasis
detection in colorectal cancer patients, addressing a critical gap
in current oncological surveillance strategies. By synergizing the
local feature extraction capabilities of ResNet50 with the global
context modeling of the Swin Transformer, the ensemble approach
achieved statistically significant performance improvements over
individual architectures. On an independent test set, the model
demonstrated a robust mean accuracy of 75.4% (£3.9%) and
an AUC of 0.8115 (£3.5%), significantly outperforming baseline
models like MobileNetV2 and CNN-LSTM, which failed to
achieve adequate discrimination. The primary contribution lies
in creating a clinically viable AI framework that prioritizes
high sensitivity (79.0%) to minimize missed diagnoses while
maintaining computational efficiency suitable for real-world
deployment on standard clinical workstations.
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Despite these promising results, several limitations must be
acknowledged. First, the study was conducted using a single-
institution dataset from the King Hussein Cancer Center (KHCC).
While high-quality, this limited geographic scope may constrain
the model’s generalizability to diverse patient populations and
scanner protocols found in other healthcare settings. Second,
the current framework utilizes a binary classification scheme
(Metastasis vs. No Metastasis), which simplifies the complex
clinical reality of cancer staging and does not differentiate
between metastatic subtypes or primary liver tumors. Third,
although we replaced oversampling with cost-sensitive learning
(class weights) to mitigate overfitting, the relatively small
size of the dataset remains a constraint for training data-
hungry transformer architectures, potentially limiting their peak
performance. To address these challenges, future research will
focus on validating the model prospectively across multiple
institutions. To overcome privacy barriers in multi-center trials,
we will explore Federated Learning frameworks, allowing the
model to learn from decentralized datasets without sharing
sensitive patient data. Additionally, to reduce dependency on large,
labeled datasets, we will investigate Self-Supervised Learning (SSL)
and Zero-Shot Transfer Learning approaches. These techniques
could allow the model to leverage vast amounts of unlabeled
medical imaging data to learn robust feature representations
before fine-tuning on specific metastatic tasks. Finally, we plan
to expand the framework to a multi-class setting capable of
staging metastases and utilizing longitudinal temporal analysis to
detect subtle disease progression over serial scans. In summary,
the demonstrated success of this ensemble approach opens new
avenues for sophisticated, Al-enhanced applications in precision
oncologic surveillance.
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