AUTHOR=Pavithran M. S. , Vadivel S. M. TITLE=Explainable attrition risk scoring for managerial retention decisions in human resource analytics JOURNAL=Frontiers in Big Data VOLUME=Volume 8 - 2025 YEAR=2026 URL=https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2025.1699561 DOI=10.3389/fdata.2025.1699561 ISSN=2624-909X ABSTRACT=IntroductionEmployee turnover remains a significant challenge for organizations as it becomes difficult for them to retain the same employees and continue with their operations efficiently. With the assistance of predictive analytics, HR managers will be able to foresee and lower the potential turnover. Conventional research has focused on the effectiveness of technical models, yet there is a lack of studies investigating the interpretability and reliability of managerial forecasts.MethodsThis research used the Employee Attrition dataset and applied various pre-processing methods, including label encoding, feature scaling, and SMOTE for class balancing. Machine learning models were trained and optimized using grid search with stratified cross-validation. The best-performing model was calibrated using the sigmoid method to ensure the accuracy of the predicted probabilities. LIME enabled local interpretability, thus providing practical insights into individual employee attrition-related risks. Permutation feature importance analysis and SHAP summary plots helped in better understanding the model by showing the individual features that contributed to the attrition probability.ResultsThe Random Forest classifier achieved the highest AUC-ROC score of 97.37%. Risk distribution visualizations highlight employees with the highest attrition probability, and calibration is the main reason for the Brier Score reduction from 0.03873 to 0.03480.DiscussionThe study concludes that by prioritizing interventions and increasing the accuracy of retention strategies, a calibrated, interpretable, and risk-stratified model can enhance HR decision-making. This framework aids HR leaders in transitioning from reactive to proactive workforce management by leveraging data-driven insights.