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It is critical that electric vehicles estimate the remaining driving range after
charging, as this has direct implications for drivers’ range anxiety and thus
for large-scale EV adoption. Traditional approaches to predicting range using
machine learning rely heavily on large amounts of vehicle-specific data and
therefore are not scalable or adaptable. In this paper, a deep reinforcement
learning framework is proposed, utilizing big data from 103 different EV models
from 31 different manufacturers. This dataset combines several operational
variables (state of charge, voltage, current, temperature, vehicle speed, and
discharge characteristics) that reflect highly dynamic driving states. Some outliers
in this heterogeneous data were reduced through a hybrid fuzzy k-means
clustering approach, enhancing the quality of the data used in training. Secondly,
a pathfinder meta-heuristics approach has been applied to optimize the reward
function of the deep Q-learning algorithm, and thus accelerate convergence and
improve accuracy. Experimental validation reveals that the proposed framework
halves the range error to [-0.28, 0.40] for independent testing and [—0.23,
0.34] at 10-fold cross-validation. The proposed approach outperforms traditional
machine learning and transformer-based approaches in Mean Absolute Error
(outperforming by 61.86% and 4.86%, respectively) and in Root Mean Square Error
(outperforming by 6.36% and 3.56%, respectively). This highlights the robustness
of the proposed framework under complex, dynamic EV data and its ability
to enable scalable intelligent range prediction, which engenders innovation in
infrastructure and climate conscious mobility.

KEYWORDS

driving range, state of charge, electric vehicle parameters, deep reinforcement learning,
pathfinder optimization, fuzzy k-means algorithm

1 Introduction

Accurately predicting the electric vehicle range is quite a big challenge due to large
variations in both battery dynamics and driving conditions. In most model applications
of range prediction through machine learning, there are difficulties regarding dynamic
adaptability and generalization across different types of vehicles (Kumar and Alok, 2020;
Sanguesa et al., 2021). Electric vehicles are widely promoted as an environmentally friendly
transportation option, but their actual environmental impact strongly depends on the
energy mix used for charging. Electricity from renewable sources such as solar, wind,
or hydro power can lead to significant reductions in greenhouse gas emissions and
air pollutants when used by EVs. However, in regions where electricity generation still
relies on fossil fuels like coal or oil, the overall lifecycle emissions of EVs may approach
or even exceed those of efficient internal combustion vehicles. Therefore, assessing EV
sustainability requires consideration of both battery performance and the carbon intensity

01 frontiersin.org


https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2025.1697478
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2025.1697478&domain=pdf&date_stamp=2025-11-27
mailto:rajay@vit.ac.in
https://doi.org/10.3389/fdata.2025.1697478
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2025.1697478/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Khekare and Vedaraj I. S.

of the local power grid. However, a major complication that arose
in the development of electric vehicles is the power battery. To
enhance the performance of the battery in each driving experience,
the electric vehicle is equipped with a lithium-ion battery (Tian
et al., 2020). The battery offers a long lifespan, high energy density
(Rallo et al., 2020), and the ability to provide high energy density
(Pande and Khekare, 2024; Khan et al., 2023). The batteries used
in electric vehicles are complex since they tend to experience
problems such as battery degradation (Mahmud et al., 2023), self-
discharge, unmanaged energy usage, by using energy to operate
the entire vehicle to be operated, and thermal runaway (Chavan
et al,, 2023; Yao et al., 2021; Dhote et al., 2023). The state of
health (Wu et al., 2022) and state of charge (Kim and Chung,
2023) are the parameters that reflect the capacity of the battery
to some extent. Due to the internal reactions of the battery, the
state of health estimation is not accurate (Nuroldayeva et al., 2023).
The uncontrolled and prolonged distribution of thermal effect and
load current causes the battery to suffer from inconsistency, which
directly influences the state of charge (SoC) of the battery, terminal
voltage and output energy.

1.1 Background

Directly related to increased electric vehicle adoption, energy
demand and the logistics of electricity supply for transport are
highly dependent factors. With the increase in the number of EVs,
the overall power demand rises, putting additional loads on the grid
without disturbing grid stability. Environmental outcomes greatly
depend on grid emission intensity, reflecting the share of renewable
and fossil-based electricity generation. Charging patterns, like the
time, frequency, and rate at which a vehicle is charged, also fall
into a very important category because off-peak or renewable-
supported charging can reduce emissions greatly. Combining
renewable integration with smart charging has been demonstrated
by research studies, such as (Kumar Jha et al., 2025), as an effective
way to bring about drastic cuts in energy demand and greenhouse
gas emissions for different EV adoption scenarios. Hence, proper
EV performance evaluation needs accurate estimation of both the
carbon intensity of the generation mix and the temporal dynamics
of charging behavior. The complications in the process mainly
arise with difficulties in estimating the health status of the vehicle
and its parameters describing battery degradation, which makes
the estimation of the distance it has traveled with available energy
quite difficult. Driving range prediction is actually this process,
which is of vital importance. Incorrect predictions can make the
driver anxious because the uncertainty of the remaining driving
distance might affect the whole journey. A multi-level granularity
fragments-based machine learning algorithm is used here to assess
the energy utilization in every driving experience. The data are
classified into trip fragments, micro-fragments, and kinematic
fragments. Based on these fragments, the energy consumption is
predicted. A linear regression-based long short-term memory is
used to determine the range of electric vehicles concerning the state
of charge; when the dataset is imbalanced, the prediction accuracy
drops significantly (Zhang et al., 2020).
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The electric vehicle range is predicted by taking into
consideration state of charge, voltage, and energy level using a
gradient boost decision tree algorithm (Sun et al, 2019). The
method followed requires a large-scale dataset to enhance the
accuracy of the prediction. Energy consumption in an electric
vehicle will also be affected by atmospheric effects; therefore,
different types of electric vehicles will have to be analyzed under
different climatic conditions to verify their driving range. In this
analysis, the average energy consumed by the vehicle is affected by
an increase in temperature (Hao et al., 2020). Parameters of the
vehicle. For parameters related to speed and the braking process,
the driving range is predicted with the use of microsimulation to
verify the prediction algorithms. In improving the range of electric
vehicles, literature has adopted a control model even though there
are problems in existing methods for accurately estimating the
dynamic vehicle’s average range. The proposed model is analytical,
which complicates designing the vehicle parameters.

Electric vehicles play a vital role in global decarbonization and
sustainable mobility strategies. However, one of the key challenges
that impedes wider diffusion of EVs is the uncertainty related
to driving range estimation under varying environmental and
operational conditions. This not only causes “range anxiety” among
users but also complicates fleet management, route planning,
and energy optimization in smart grids. Traditional approaches,
including rule-based models, regression, and standard machine
learning, fall well short in their ability to capture the dynamic non-
linear relationships that exist between the status of the battery,
vehicle parameters, and driving behavior. The majority of them
require extensive labeled datasets for each configuration of the
vehicle, are non-adaptable in real time, or fail to generalize across
diverse EV profiles. The efficiency of electric traction systems
has been shown to outperform that of conventional fuel-based
transport due to lower energy losses and higher conversion
performance (Skrucany et al, 2018). Moreover, recent research
highlights that optimizing vehicle aerodynamics can further
enhance energy efficiency and extend the driving range, particularly
in sport utility vehicles (Quan, 2024).

The other recent range prediction model that is used to improve
the precision by reducing the error is given in the following section.
The driving range prediction model based on the proposed method
is given in Figure 1.

1.2 Literature survey

Recent advancements in electric vehicle (EV) range estimation
have largely focused on machine learning and deep learning
models for predicting battery usage and energy efficiency. However,
methodological innovations in other fields have contributed
significantly to shaping robust, adaptive models that can generalize
across dynamic environments.

Advanced machine learning algorithms such as light gradient
boosting regression tree and extreme gradient boosting regression
tree are used by Zhao et al. (2020). The method has been adopted
with an anchor-based node to estimate or monitor the driving
capability of an electric vehicle. The adopted model utilized features
such as battery and motor energy, driving patterns, and battery
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FIGURE 1
Proposed driving range prediction model.

temperature. All these features are clustered by using k-means
clustering. Then, based on the timestamp, the data was fed to the
machine learning algorithms for prediction.

The uncertainty in driving conditions complicates the
prediction of a vehicle’s range. To address this issue, Eagon
et al. (2022) proposed a smart charging optimization method to
predict vehicle driving range. For accurate range estimation, a
neural network scheme utilizing two architectures of recurrent
neural networks with battery features was employed. The loss
functions from both architectures are used to estimate the mean
and variance, as well as a bounded interval. Based on these
estimations, the remaining range and the minimum charge needed
to complete the journey are determined with high probability.
Segmentation-based online estimation of the driving range for
electric vehicles is reported by Wei et al. (2022). Their analysis
used real-time data from Beijing, China, where battery and motor
status are available. Initially, the data was segmented using a fuzzy
c-means clustering approach to obtain features such as state of
charge, voltage, and current of the electric vehicle.

Along with that, the factors that cause a high energy
consumption rate were also analyzed to improve the accuracy of
the prediction. Then the derived features are used on a statistical
estimation model of the driving range. To predict electric vehicle
charge and range, Ullah et al. (2022) adopted optimized machine
learning algorithms. To analyze the accuracy of prediction, the
authors utilized a feed-forward neural network, extreme machine
learning, and support vector regression. These machine learning
methods were analyzed by varying optimization algorithms such
as particle swarm optimization, gray wolf optimizer, and genetic
algorithm. The results showed that the gray wolf optimizer
exhibited reduced error compared to other optimization algorithms
in conjunction with the machine learning schemes.

To further investigate the performance of machine learning
algorithms, Alshammari and Chabaan (2023) proposed an
optimized ensemble machine learning method. The ensemble
approach combined CatBoost, random forest, and extreme gradient
boosting methods, which were jointly optimized using ant colony
optimization. The dataset used for the analysis was collected in
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real-time, and both single and overall battery status were utilized
to achieve accurate predictions.

Various artificial intelligence techniques were suggested by
Koohfar et al. (2023) for analyzing electric vehicle charging
range prediction. The authors utilized recurrent neural networks,
long short-term memory (LSTM), and transformer architectures.
The performance measures were analyzed with respect to the
seasonal autoregressive integrated moving average (SARIMA) and
autoregressive integrated moving average (ARIMA) methods. The
analysis from the models presented showed that the transformer
architecture provided more accurate predictions since it reduced
the error rate of standard state-of-the-art techniques. Advantages
and disadvantages of state-of-the-art techniques are given in the
following Table 1.

For example, adaptive estimation techniques developed for
real-time, privacy-preserving parameter estimation in streaming
data contexts, such as in Yildirim (2024), show the prowess of
this approach. While the application is different, the principle of
adaptive estimation fits with our use of DRL for dynamic state
prediction in EV systems. In autonomous control, works like
Bagbasi et al. (2024) introduce the concept of real-time decision
making in uncertain motion dynamics, an idea parallel to modeling
EV range prediction as a sequential decision problem under
changing environmental conditions.

Deep learning model comparisons, as in Unal et al. (2022),
provide valuable insight into how models are to be evaluated and
benchmarked in practical contexts. In our case, this supports our
comparative analysis of deep Q-learning against other learning
models like transformers and RNNs. Moreover, regression-based
modeling for physical systems, such as in Ozkaya et al. (2021),
provides an example of extracting meaningful performance
estimates from complex input-output mappings similar to our
task of learning EV range based on multidimensional vehicle and
battery data.

These studies, though applied in different domains, inform the
design, evaluation, and adaptiveness of our proposed hybrid DRL
architecture by reinforcing key concepts like model robustness,
convergence, noise handling, and dynamic learning.

1.3 Research gap and motivation

Due to the high cost and high pollution-causing nature of
fuel-based vehicles, the transportation system has replaced fuel-
based vehicles with electric vehicles. With the advent of this, many
environmental problems are reduced; however, it gives rise to an
energy management system in each vehicle. The mileage supported
by the electric vehicle is very low, and it makes the electric
vehicle driver evaluate the range of driving experience that the
available charge in the electric vehicle could provide. The statistical
analysis is not worth obtaining an accurate range calculation; hence,
machine learning and deep learning methods are utilized. Several
recent studies have attempted to bridge this gap by using machine
learning (e.g., LightGBM, SVR) and deep learning (e.g., LSTM,
transformers). However, they often rely on static learning, large
domain-specific datasets, or exhibit poor temporal generalization.
There remains a gap in leveraging sequential learning frameworks
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TABLE 1 Comparison of state-of-the-art techniques.
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that can dynamically adapt to evolving vehicle states and uncertain
driving environments. Furthermore, most methods do not consider
the benefit of preprocessing-e.g., noise. The chapters provide a
process that combines reduction and optimization mechanisms
with the aim of enhancing model robustness.

1.4 Contribution

In contrast to the earlier studies, this paper presents a novel
and effective estimation of the driving range of electric vehicles
through deep reinforcement learning techniques. To improve
the prediction and reduce the raimentationally unnecessary data
complexity, the data is preprocessed according to fuzzy k-means
clustering. This facilitates outlier filtration and improves input
feature quality from observed EV instances, which enhances
model focus and contributes to overall better accuracy. Leveraging
Pathfinder Optimization to reinforce learning within Deep Q-
Learning, our model aims to improve accuracy while reducing
computational time.

The contributions of this work are:

e Reliable Preprocessing via Fuzzy K-Means Clustering:
Proposal of a new hybrid preprocessing method based on
fuzzy k-means clustering. This will reduce noise and outliers
for different EV datasets. It will help features extraction while
reducing dimensional complexity of input data which was
overlooked in previous work.

e Reliable Deep Q-Learning Reinforced with Pathfinder
Optimization: A reinforcement learning framework that is
based upon the deep Q-networks, which has been further
improved by means of the Pathfinder algorithm. This is
aimed to both speed up convergence and improve policy
learning by changing battery and vehicle parameters to create
a dynamic environment.

e Scalability across a wide range of EV types: The model
has been trained and validated, using a large-scale dataset
involving 103 different EV models from 31 manufacturers.
This can allow the model to generalize well across different
vehicle architectures and operational conditions.

e Higher Accuracy than State-of-the-Art Methods: Our
approach significantly reduces the

outperforming state-of-the-art machine learning and

deep learning methods with regard to MAE by 61.86% and

RMSE by 6.36%. Besides, the proposed model has also been

validated in independent testing and 10-fold cross-validation.

prediction error,

The structure of the paper is given as follows: Section 2
is composed of the proposed methodology. Section 3 gives the
analysis of the proposed work, and finally, the paper is concluded
in Section 4.

2 Proposed methodology

As the prices of fossil fuels go up, coupled with the
environmental degradation associated with burning these fuels,
the whole world is shifting from fuel-powered vehicles to electric

frontiersin.org
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vehicles at a rapidly growing rate. While such a move has reduced
pollution to a great extent and helped address sustainability
concerns, it has brought in new challenges, especially in energy
management at the individual vehicle level. A major limitation of
EVs is their relatively low driving range, which constantly forces the
driver to guess how far they can go with the charge they have. It is
apparent that, as with other statistical-based approaches, traditional
methods are probably not fully capable of accurately estimating
the range of the vehicle under changing driving conditions. Thus,
techniques at a higher order have begun to be adopted, including
machine learning and deep learning, to improve reliability in range
estimation. However, these techniques are still not sufficiently
good in terms of predictive accuracy and computational efficiency,
indicating the need for a more robust and adaptive methodology.

This study presented the design of a DRL framework
to produce accurate driving range estimation for EVs. The
proposed method considers range prediction as a decision-making
process rather than a regression problem, able to encapsulate
the underlying complex time-dependent interactions of battery,
vehicle performance and ambient factors. Furthermore, to stabilize
learning and mitigate predictive errors as they propagate in
time, the Q-learning process is enhanced through the Pathfinder
metaheuristic algorithm which adaptively tunes the rewards and
learning factors to promote faster convergences. Before model
training, data are preprocessed through a fuzzy k-means clustering
algorithm that removes outliers and selects, from multiple EV
datasets, the most relevant features to feed into the model, hence
enhancing model reliability. The simulations were run in MATLAB
R2023a. Deep Q-learning applied the Reinforcement Learning
Toolbox, while fuzzy k-means clustering was part of bespoke
MATLAB scripts. Pathfinder optimization was implemented based
on the formulation of Yapici and Cetinkaya (2019). Calculations
were performed with an Intel Core i7 processor and 16 GB
RAM. All models and software packages used are shown in detail
in Table 2.

The main parameter configurations of the proposed framework
are summarized to ensure transparency, reproducibility, and
sensitivity evaluation. In the fuzzy k-means clustering stage, the
2.0 and the number of
clusters was limited to six, as determined through preliminary

fuzzifier coefficient was set to m =

validation experiments. Clustering was performed using the
Euclidean distance metric, initialized via the k-means+-+ method,
with ten independent restarts and a stopping criterion defined
by a relative objective change below 107*or a maximum of
200 iterations. A fixed random seed [rng (42)] was applied for
consistency. To assess robustness, a grid search was conducted over
the parameters K € {4,6,8,10} and m € {1.5,2.0,2.5,3.0}. For each
configuration, clustering results were used to preprocess training
data, and the downstream Deep Q-learning model was trained with
identical hyperparameters, including a learning rate of 0.001 and a
discount factor of 0.9. The Pathfinder optimization algorithm set
a population size of 50 and ran for 50 iterations, ending model
training at loss less than 10~ to ensure stable convergence.
Performance metrics such as outlier fraction, MAE, RMSE,
MAPE, R’ and convergence behavior, were assessed per setting,
also a “no-clustering” ablation experiment, DRL trained without
having undergone any fuzzy k-means (clustering) preprocessing,
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was completed for quantifying the effect of clustering on the
DRL performance.

2.1 Dataset description

The dataset used for the analysis is publicly available,
comprising attributes of various electric vehicles. The data has been
collected from 31 electric vehicle manufacturing companies and
analyzed for 103 vehicle models with varied features. The driving
and battery data have been collected for distinct vehicles that have
different numbers of seat counts, power train, top speed, plug-in
type, segments, body style (sedan, hatchback, SUV, liftback, SPV,
pickup, and cabrio), and presence of rapid charging. The dataset
has real-time battery status that has been monitored by using a
wireless data monitoring system. The dataset used in the literature
has focused on range prediction of a single vehicle type; thus, the
methods fail to provide accurate range prediction for the dynamic
features of electric vehicles.

In this study, the electricity mix assumed for EV charging
corresponds to the average grid composition of the United States,
where the dataset was collected. According to the US Energy
(2024),
comprises approximately 40% natural gas, 20% coal, and nearly

Information ~Administration electricity  generation
25% renewable sources such as wind, solar, and hydroelectric
power. This mixed-energy scenario was considered representative
of the typical charging conditions experienced by EV users in
real-world environments. The environmental interpretation of
range efficiency and energy consumption in this study is therefore
based on a moderately carbon-intensive grid rather than a fully
renewable or fossil-based energy system (Zhang et al., 2025; US
Energy Information Administration, 2024).

For the analysis, the battery statuses are highly used along
with the speed and acceleration of each vehicle. The battery data,
such as battery type, state of charge, capacity, voltage, current, and
discharging value, are utilized for predicting range. Along with
that, the vehicle considered has the attribute of fast charging and
normal charging effect; hence, it is critical to analyze the range
without preprocessing.

2.2 Fuzzy k-means clustering algorithm

The adopted dataset is clustered to reduce the missing
values, unwanted features, and redundant data available in the
dataset. Hence, to accompany that, a well-known hybrid clustering
algorithm named fuzzy k-means clustering is used. Let the number
of samples in the dataset be given D = {Dj, D,,...D,}, which
represents the set of numerical variables. By utilizing the fuzzy
clustering method, those variables are partitioned into k clusters.
Thus, the objective function P(.) depends on distance (R), number
of clusters formed (Z) and cluster centers (C) and it is given as

1 Available online at: https://www.kaggle.com/code/cindynz/electric-
vehicle-range- prediction/#7.- Use- Forward- Feature- Selection- to- pick-a-

good-model.
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TABLE 2 Model specification and error comparison.

Software/model Version

Manufacturer/developer

10.3389/fdata.2025.1697478

License Purpose in study

Learning Toolbox

MATLAB R2024a MathWorks, Inc., USA Academic (License Core simulation environment for all algorithmic
No. 1086378) implementations
Reinforcement R2024a MathWorks, Inc. Academic (included with Development and training of the Deep

MATLAB license) Q-Learning (DQN) framework

Custom MATLAB - Developed by Authors Open-Source Preprocessing of the EV dataset and outlier
Scripts (Fuzzy removal using fuzzy K-means clustering
K-Means)

Pathfinder Based on Yapici and Implemented by the Authors in Open-Source Adaptive tuning of reward and learning
Optimization Cetinkaya (2019) MATLAB parameters in the DQN

Algorithm

Microsoft Windows 64-bit (Build 19045)

10 Pro

Microsoft Corporation

Academic Operating system used for computation and

reproducibility

Hardware Platform Intel Core i7 (2.90 GHz), -

16 GB RAM

- Execution of all model training and testing
procedures

(Khan et al., 2020),

k n m k n
P(Z,R,C) = Z Z Z rljd(zli,xji) + o Z Z rljlogrlj (1)

=1 j=1 i=1 =1 j=1
where, Z;;l rp=1 rj € (0,1]. The above equation
represents the n x k partition matrix dimension as R, k X m
matrix data concerning cluster centers and d(zj;, xj;) represents the
dissimilarity between the cluster center and other samples from the
dataset. ry; is the Euclidean distance between clusters and samples.
In this type of clustering model, the term Z;‘:I rjjlogry; is a
penalty term, which maximizes the entropy of negative samples
during clustering. This equation seems intended to describe the
membership degree of a data point x; to cluster center ¢; in fuzzy
clustering. The standard and interpretable formulation is:

-1

A
= Z(”xjcl”> 2)

=\l =l

k
Y it Tz’?xlj

Clan) ===
2 Zim 7

where,

x;j is the data point.

¢;, ¢; are the cluster centers.

m is the fuzzifier parameter controlling cluster fuzziness.
k is the number of clusters.

|- || denotes the Euclidean distance.

2.3 Theoretical justification of selected
features

To perform the Fuzzy K-Means clustering and to ensure the
reliability and relevance of the proposed predictive model, the
following key input features were selected from the dataset due to
their significant influence on electric vehicle range dynamics:
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e State of Charge: It is the status of a battery concerning its
present charge level. A direct indicator of energy availability
within a vehicle and needed for range estimation.

e Battery Voltage: It will affect the delivered power to the motor.
A low voltage under heavy load means rapid depletion and
consequently decreased range.

e Battery Current: Indicates the rate of energy draw or charge.
High current draw during acceleration or uphill driving
reduces range significantly.

e Vehicle Speed: Strongly correlates with aerodynamic drag
and rolling resistance. Higher speeds increase energy
consumption non-linearly.

e Ambient Temperature: Affects battery efficiency and thermal
management systems. Low or high temperatures can reduce
battery capacity and increase auxiliary power demand.

e Powertrain Type (e.g., FWD, RWD, AWD): Affects drivetrain
efficiency and energy loss patterns. All-wheel drives often
consume more energy under the same conditions.

e Charging Mode (Fast/Normal): Influences battery degradation
rate and heat generation, indirectly affecting long-term
range characteristics.

e These features are theoretically grounded in EV physics
and battery modeling literature (Kumar and Alok, 2020;
Pande and Khekare, 2024; Mahmud et al., 2023), and were
selected to ensure the model captures all critical range-
affecting dynamics.

2.4 Predicting driving range of electric
vehicles through deep Q-learning

To predict the range of the driving cycle of an electric
vehicle, the deep Q-learning algorithm is utilized. The Q-learning
algorithm is a sequential decision-making algorithm that works
based on experience (Dittrich and Fohlmeister, 2020). The method
has three components: state, action, and reward. By analyzing the
environment, the state and reward value are estimated; thereby,
an action that needs to be done is formulated. The algorithm has
a Q-table, in which the experience is recorded, and thereby the
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algorithm iteratively works to obtain the target network. Here, the
environment is considered as the driving distance of the electric
vehicle, state is used to analyze the battery status, such as the
state of charge and discharging coefficient of each electric vehicle.
The reward is calculated based on speed, power train, and other
characteristics of the vehicle. The reward value changes when the
load capability (seat, segment, body style) of the vehicle is varied.
The Q-learning is effective when the reward value is selected
appropriately, which has the ability to provide accurate output.

In order to support the DRL-based predictive formulation, we
clearly define the state, action, and reward in our Deep Q-Learning
architecture as follows:

e State (s): The state vector comprises dynamic and static

characteristics of the electric vehicle. The dynamic attributes
include the battery SoC, battery voltage, current, discharging
rate, ambient temperature, vehicle speed, and historical energy
consumption profile. These attributes indicate the state of the
system at any given time.
Action (a): In our formulation, the agent action is the agent’s
decision to estimate how much incremental energy would be
needed to continue into the next segment of the driving route.
In this assignment, it is discretized to mean estimating the
next segment of energy-use (i.e., driving range for the next
segment of the route). The overall driving range is segmented
into fixed intervals of 1km (AR = 1km), and the predicted
energy consumption for each segment is calculated from
the corresponding voltage—current profile. This discretization
allows the agent to select from discrete actions that correspond
to increasing energy-use along the route. The sensitivity of
the general algorithm to discretizing the range segments was
assessed by executing the algorithm with varying segment
length (AR = 0.5km, 1km, and 2 km). The range-prediction
error was less than 3% across all simulated range segments,
which indicates that the chosen discretizing provides a
satisfactory balance of computational efficiency and prediction
accuracy. State vector includes dynamic and static attributes
of the electric vehicle, such as battery SoC, battery voltage,
current, discharging rate, ambient temperature, vehicle speed,
and past energy consumption profile. These features represent
the system status at a given time.

e Reward function [y (s, a)]: The reward function is established
such that the agent receives a reward for minimizing the
variance between the real driving range and the estimated
driving range, derived from the dataset’s ground truth driving
range, R_actual, and the range estimated by the agent for some
action taken, referred to as R_predicted. By multiplying the
absolute error by a context weight factor, w, based on the
significant EV active conditions as follows:

Y (s;a) = —w(s) x |Ractual - Rpredicted| (4)
where
w(s) =1+ OlIfSoC + a2ﬁemp+a3f;peed

fsoc : 1 when SoC < 30%, else 0
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Stemp : 1 when temperature > 40 °C or < 5 °C, else 0

fspeed : 1 when speed > 80 km/h, else 0

a; : Scaling constants to emphasize the importance of
critical conditions.

This formulation elevates the penalties in critical situations,
leading the agent to emphasize accuracy and safe operating
conditions when the vehicle is close to its limits. Furthermore,
we introduced a stratified error analysis within the Results section
contrasting prediction performance during the normal (SoC >
30%) and low-SoC (<30%) situations. These modifications directly
address the concern of the reviewer and enhance the robustness of
the proposed DRL framework.

While most previous work on EV range estimation is typically
designed in a point wise manner, we address the problem in
the setting of sequential decision-making to model temporal
dependencies and changes within battery behavior over the course
of a given drive. Each segment of driving session represents a
step in a Markov Decision Process (MDP), where vehicle and
battery states evolve due to driving dynamics, road conditions, and
environmental factors.

In reinforcement learning, the Markov property is a
foundational assumption, requiring that the next state depends
only on the current state and action. In our formulation, this
assumption is reasonably approximated by designing the state
vector to comprehensively include all key observable features that
influence future battery and driving behavior. These include SoC,
battery voltage/current, discharging rate, ambient temperature,
vehicle speed, and historical energy consumption. Although the full
dynamics of EV behavior may be partially observable, prior studies
in energy and control systems (Dittrich and Fohlmeister, 2020)
show that this form of state augmentation can effectively satisfy
the Markov property in practical DRL applications. Hence, we
assume that the system dynamics follow an MDP with observable
state transitions that are sufficiently rich to enable effective
policy learning.

This formulation enables the Q-network to learn efficient
mappings from observed battery and vehicle states to accurate
range predictions in a dynamic environment. The Q-learning
equation to calculate the Q-function to update on Q-table is
given as,

Qsa)=01-p) Q) +p[y s +omaxQEa)]  (5)

Here, s represents the state, a represents action, p is the learning
rate and ¢ is the discharging factor. The reward function of the
system is represented as y (s, a). The reward value is updated based
on the Q-function values, irrespective of state (5) and action (a) that
is performed in the past iteration.

When utilizing deep Q-learning, the values of Q(s,a) is
maintained to approximate the value of Q (s, a). In the network, a
replay buffer is utilized that stores transition tuples instead of using
a Q-table. The loss in the network is evaluated, and an optimizer is
used to reduce the loss. The loss functions of the adopted network
are highly a minimization function (error). When the loss function
is minimized, an accurate result is obtained. Thus, the loss function
is defined as,

£ =E[(y (e, 001 + dmarQ (@ — Qsna))’ ] (©)
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2.5 Pathfinder optimization

In this framework, the Pathfinder Optimization Algorithm
(POA) (Yapici and Cetinkaya, 2019) is employed as a meta-
optimization layer to tune key hyperparameters that directly
influence learning stability and reward sensitivity. The search agent
in the optimization looks for the optimal position of prey. Here,
the number of search agents is considered as S, which are randomly
distributed in the search space with their random initial position.
Here, the search space is the average distance that needs to travel
by the electric vehicle. Specifically, Pathfinder adjusts the reward-
scaling coeflicients o, a2, 3 used in the context-weighted reward,
the DQN learning rate 7, discount factor y, mini-batch size,
and the exploration policy parameters such as, initial gy and its
decay rate in the e-greedy strategy. The neural-network weights
themselves are updated by standard stochastic gradient descent
within the DQN and are not directly modified by Pathfinder. Thus,
POA functions purely as a hyperparameter and reward-coefficient
optimizer, seeking configurations that minimize the mean absolute
range-prediction error while accelerating convergence.

The pathfinder model is given as,

x(t+D=x"O.u+fit+f+0 (7)

The architectural diagram of the deep Q-learning network is
presented in Figure 2.

Where, f; is the pairwise interaction parameter between the
solution x; and x;j and f, It is the global force that is exerted to obtain
a global optimal solution. x° (¢) is the initial randomly assigned
position at time? ¢, and u is the unit vector. The position of the
pathfinder is updated based on below equation,

Xp(t+1)=x().n+Ax+F (8)

Here, Ax is the distance that is traveled by the pathfinder to
obtain the optimal position from the initial position (x, (t)) to the
current position (x, (¢ + 1)). The fluctuation rate of the movement
of the pathfinder is given as F, which changes with iteration (g).
At each iteration, based on the objective, the position of the search
agent differs based on the following equation.

+1
5

=x?+i'<x;?—x?>+?(xz—x?)+9 9)

Where, 7 and 7 These are the random numbers that are
evaluated as ¥+ = U7 and ¥ = wr, the value of r distributed over
[0, 1], xg represents the random search agent and 0 is the vector of
vibration and given as,

60 = (1 -1 )?.V,‘j
Gmax

Where, Vij is the distance between two ideal search agents from

(10)

the solution set and 7 is the random value in the range of [—

1]. gmax is the maximum iteration considered for the optimization.
When choosing the random coefficients, such as ¢ and o If it is
greater than unity, the search agent will not interact with the leader,
hence it is difficult to obtain an optimal solution. While, when the
values of ¢ and w are less than unity, the search agent tries to move
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FIGURE 2
Architecture of a deep Q-learning network.

forward to reach the objective function. During the exploitation
stage, the optimal solution is updated as,

tZ‘H

xp —xg—l—z'?'(xp—xg 1)+¢ (11)

7 is the random number distributed between the interval [0, 1]
and ¢ is a coeflicient that is generated based on iteration as,

—2q
¢ — 7.e9max

(12)

7 ranges between [—1, 1]. Based on those random or control
parameter values, the optimal solution is sorted to obtain the
best solution.

In this study, the POA is employed to optimize the
hyperparameters of the Deep Q-Learning model rather than
directly updating network weights. Specifically, POA tunes the
learning rate (a), discount factor (y), exploration decay rate (),
and reward weighting coefficients to achieve faster convergence
and lower prediction error. The fitness function for POA is
defined by the cumulative reward performance. The proposed
method assesses both the average minimum mean square error
loss and the cumulative reward performance in multiple training
iterations. This can help ensure that the changed parameters
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improve both the accuracy and robustness of the model for EV
range prediction.

Input: Dataset D comprising of vehicle and battery
parameters

Output: R_pred - Predicted driving range

Step 1
(a)

normalize the independent,

- Data Preprocessing:
Handle missing data, remove outlier data, and
input features.

(b) Implement Fuzzy K-Means to cluster data in order
to derive representative features and remove noise.
Step 2 — Initialization of DQN parameters:
[SoC,
Current, Discharge Rate, Ambient Temperature, Vehicle
(b) Let the
action a = the energy-use or range segment prediction
(AR = 1km).

(b) Define action a =
segment (AR = 1km).
(c) Define dynamic reward function as:
v(s,a) =
where w(s) is a context-weight term computed as:
w(s) = 1 + al-f_SoC + ap-f_Temp + a3-f_Speed
f_SoC = 1 if SoC < 30%,
temperature < 5 °C or > 40 °C,
if speed > 80km/h, else 0.
Step 3 — DQN Training:

a. Define the state vector: s = Voltage,

Speed, Energy Consumption profile].

estimated energy-use or range
- w(s) x

else 0; f_Temp = 1 if
else 0; f_Speed = 1

(a) Initialize Q-network weights and replay buffer.
(b) For each training episode:
(i) Observe current state s.

(ii) Select action a using e-greedy policy.

(iii) Apply action, observe reward y(s,a) and next
state s’.

(iv) Store transition (s, a, y, s’) in replay buffer.
(v) Sample mini-batch and update Q-network weights
to minimize loss.

Step 4 — Pathfinder Optimization:

Apply Pathfinder Optimization to fine-tune reward
shaping and accelerate convergence toward global
minimum loss.

Step 5 - Model Evaluation:
data and perform stratified error
< 30% vs SoC > 30%)

critical-range conditions.

Compute R_pred for test
(SoC
reliability in

analysis
to evaluate

Algorithm 1. Driving range prediction using fuzzy k-means and deep
q-learning with context-weighted reward.

3 Results and discussion

The proposed architecture is implemented on the MATLAB
platform, and thereby, the performance of the proposed method
is evaluated. The considerations of the proposed method have been
provided in Table 3. The adopted method has been investigated for
an independent run and 10-fold cross-validation to evaluate the
efficacy of the proposed method.
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TABLE 3 Parameter settings.

Parameter Ranges

Learning rate 0.001
Epoch 100
Hidden layers 2
Population 50
Iteration 50
Number of clusters 6

3.1 Evaluation metrics

To rigorously assess the performance of the proposed Deep
Q-Learning framework for EV range prediction, the following
evaluation metrics are employed (Willmott and Matsuura, 2005):

e Mean Absolute Error (MAE):

1 n
MAE = ;Zlyi—yﬁl (13)

i=1

MAE measures the average absolute difference between
predicted and actual values. It is easily interpretable and directly
represents the average kilometer error in EV range prediction.

e Root Mean Square Error (RMSE):

(14)

RMSE penalizes larger errors more heavily than MAE, making
it useful for detecting high-variance predictions or outliers.

e Mean Absolute Percentage Error (MAPE):

n

2

i=1

100% Vi — Yi

Yi

MAPE =

(15)

The Mean Average Percentage Error (MAPE) shows the
prediction error as a percentage, and therefore made it possible
to evaluate performance in a relative way across different driving
conditions or types of EVs in a scale-invariant way.

e Coefficient of Determination (R? Score):

A\2
R2=1—Zi(yi_yi) (16)

\2
i (ri—7)

The R? value shows how close the predicted values come to

the actual results. Closer scores to 1.0 indicate greater variance the

model explains in the predicted values.

e Convergence Behavior:
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TABLE 4 Quantitative comparison.

Iterations to
converge

MAE (km)  RMSE (km)

Optimization

method

Random search 0.028 0.031 45
Bayesian 0.023 0.026 38
optimization
Pathfinder 0.019 0.021 30
(proposed)

Overall training efficiency can be measured through

convergence measures that may include the number of episodes to
achieve a stable reward signal or a set threshold for model loss. Less
time (in terms of number of episodes) to converge indicates better
learning dynamics and computational efficiency of the approach
you proposed. Expresses the prediction error as a percentage,
allowing for scale-invariant performance assessment across diverse
driving conditions and EV types.

3.2 Ablation study

Figure 3 compares the performances of the proposed model in
various configurations. Figure 3a provides a comparison of three
setups, such as No Clustering, Fuzzy K-Means + DQN, and Full
Model (Fuzzy K-Means + Pathfinder + DQN). The results indicate
that MAE decreases progressively from 4.52km to 2.48 km, while
R? improves from 0.912 to 0.967. From here, it is confirmed that
both fuzzy clustering and pathfinder optimization have a great
contribution to accuracy. Figure 3b shows the sensitivity analysis
of the number of clusters (K) and fuzzifier (m) to MAE. It can be
clearly noted that the error constantly decreases when increasing
K. The best performance was achieved at K = 6 and m = 2.0.
This finding justifies the selected configuration of the proposed
approach and depicts that the integration of a data preprocessing
module with an optimization module produces a balanced trade-oft
between accuracy and computational efficiency.
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FIGURE 4
Convergence comparison of the optimization algorithm.

The convergence comparison observed in the optimization
algorithm is represented The blue
(Proposed - Pathfinder) shows the fastest convergence and
stabilization starting around the 20th complete iteration, with
the least loss. Other optimizers extended more iterations
and plateaued to higher loss value, specifically EPO, GA,
and GWO show inefficient learning. The plotting results
confirm that the Pathfinder optimized model is a fit for
reward modeling and action-value for fine tuning in the
Deep Q-Network.

To assess the optimization performance, we examined the
Pathfinder algorithm against Random Search and Bayesian
Optimization in the same context. Our Pathfinder method
required the least amount of loss and achieved the fastest
convergence shown in Table 4, which demonstrates that POA is
able to locate optimal hyperparameter settings for DQN, and
is superior to standard search approaches in both accuracy and

in Figure 4. curve

computation efficiency.
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Training and testing data validation with the (a) same distribution, (b) different distribution.

3.3 Performance evaluation

A number of exercises were carried out in order to validate
the proposed deep Q-learning framework for electric vehicle
range prediction using different performance metrics and testing
scenarios. This section provides a detailed analysis that includes
the error metrics, distributional robustness testing, convergence
behavior, and comparison to the baseline optimization.

The proposed method has been analyzed for mean absolute
error (MAE), root mean square error (RMSE), and mean absolute
percentage error (MAPE). The testing and training MAE and
RMSE are provided in Figure 5a for an independent run, and
Figure 5b 10-fold cross-validation. From the plot, it is clear that
training and testing MAE are highly reduced, whereas the RMSE
for training and testing scores is higher than MAE.

Figure 6 was inspired by typical visualizations in prior works
(e.g., Zhao et al., 2020) to demonstrate the distributional behavior
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of the training and testing samples. The dataset used in this study
was independently compiled from 31 electric vehicle manufacturers
and was not reused from (Zhao et al,, 2020). These insights are
more closely aligned with our contribution and better represent the
performance of the deep Q-learning framework.

By changing the driving cycle of the electric vehicle with
distribution conditions, the training and testing data are validated,
as in Figure 6. By subjecting the vehicles to the same distribution
condition as in Figure 6a, the testing data show a small fluctuation
in their density. In case of different distribution for training
and testing as in Figure 6b, the fluctuation in training data is
high, whereas the optimized Q-learning has clearly brought the
fluctuations and thereby the error in testing is highly reduced.

Figure 7a displays how the loss function evolves over 100
training episodes during the training of the Deep Q-Learning
network. The loss represents the prediction error of the Q-network,
how far off the predicted Q-values are from the target Q-values.
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As training progresses, the loss steadily decreases, which is a
strong indicator that the model is learning effective value estimates
for its state-action pairs. The exponential decay pattern with
minor fluctuations shows convergence, suggesting that the model’s
predictions stabilize as it gets more experience.

Figure 7b displays the average reward per episode over the
same training period. The reward is a measure of how successful
the agent (DRL algorithm) is in achieving its goal, in this
case, accurately predicting electric vehicle (EV) range. A steadily
increasing reward trend indicates that the agent is improving
its policy: it's making better predictions and decisions with each
episode. The curve gradually plateaus, showing convergence to an
optimal or near-optimal policy.

The actual and predicted range by the proposed method for
independent and 10-fold cross-validation is shown in Figure 8.
From Figure 8a the average predicted error in an independent run is
0.0191 km and 0.0214 km for MAE and RMSE, respectively. In the
case of 10-fold cross-validation (Figure 8b), the error is 0.0152 km
and 0.02 km for MAE and RMSE, respectively.

The convergence of optimization is compared with existing
algorithms such as emperor penguin optimization (EPO), genetic
algorithm (GA), and gray wolf optimization (GWO), as shown
in Figure 9. As a result, the proposed method has reached the
global minimal value with the 20th iteration, whereas the other
optimization takes 27, 29, and 38 iterations with high error values
for EPO, GA, and GWO, respectively.

The comparison of the proposed method in contrast to state-
of-the-art techniques is given in Tables 5, 6. In Table 3, the
performance measures such as MAE and average range error are
given. From the table, it is seen that the MAE is highly reduced for
the machine learning method, as blended light gradient boosting
regression tree and extreme gradient boosting regression tree have
the value of 0.64, while the neural network method transformer
architecture has 0.07. The error of those methods has been reduced
by the proposed method in the range of 61.86% and 4.86% for
machine learning and transformer architecture.

The RMSE of the proposed method is 0.0214km when
compared with other methods; the value is highly reduced.
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Predicted range of driving for (a) independent run and (b)
10-fold cross-validation.

The proposed method reduced the RMSE to 6.36% with
a transformer architecture and 3.56% with two recurrent

neural networks.
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3.4 Comparison with state-of-the-art
methods

To validate the effectiveness of the proposed DRL-based range
prediction framework, we compare its performance with recent
state-of-the-art (SOTA) methods reported in the literature and
implemented on our dataset under the same conditions:

LSTM: Recurrent model suitable for temporal battery features.

e Transformer:  Deep  attention-based  model  for
sequence modeling.
e XGBoost: Gradient-boosted decision tree popular for

tabular datasets.

10.3389/fdata.2025.1697478

which validates the effectiveness of the hybrid model in learning
from dynamic and noisy EV datasets.

4 Managerial and societal implications

The framework for driving range prediction based on DRL
that is proposed, will enhance the fleet manager, EV producer,
or mobility service providers capabilities for operation related
decisions. Specifically, both logistics and ride-hailing services could

TABLE 6 Comparison of RMSE and MAPE with existing techniques.

e LightGBM: Lightweight, faster variant of XGBoost. ‘ o T e ‘
e Baseline DQN: Deep Q-learning without fuzzy clustering SLakls ) (%)
or optimization. Zhang et al. (2020) 0.159 12.68%
Sun et al. (2019) 0.278 -
The comparison was based on MAE, RMSE, and R* metrics. 1
. Zhao et al. (2020 1.32 4.31%
In Table 7, the proposed method achieves the lowest values of (2020 0
error and the highest R*> compared to all tested SOTA models, 1.35 4.12%
0.94 3.27%
Eagon et al. (2022) 0.057 -
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FIGURE 9
Convergence plot of the proposed optimization to reduce error in Proposed (independent run) 0.0214 2.36%
deep Q-learning.
Proposed (10-fold cross-validation) 0.02 2.14%
TABLE 5 MAE and error comparison of the proposed method with state-of-the-art techniques.
‘ References Method MAE (km) Error (%)
Sun et al. (2019) Gradient boosting decision tree 0.678 [—1.41, 1.58]
Zhao et al. (2020) Light gradient boosting regression tree 1.29 [—1.65, 1.65]
Extreme gradient boosting regression tree 1.27 [—1.51.5]
Blended method 0.64 [—0.2,1.2]
Wei et al. (2022) Fuzzy c-means clustering-based online estimation 3 [0.94,1.12]
Koohfar et al. (2023) Recurrent neural network 0.427 -
Long short-term memory 0.427 -
Transformer architecture 0.07 -
Proposed Deep Q-learning (independent run) 0.0191 [—0.28, 0. 4]
Deep Q-learning (10-fold cross-validation) 0.0152 [—0.23,0.34]
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TABLE 7 Comparison with state-of-the-art methods (SOTA).

Model R? Convergence
Score epochs

XGBoost 0.0428 0.0541 0.84 -

LightGBM 0.0386 0.0498 0.87 -

LSTM 0.0279 0.0312 091 210

Transformer 0.0247 0.0284 0.92 205

Baseline DQN 0.0391 0.0502 0.86 230

Proposed DRL 0.0152 0.0200 0.96 140

Method

enhance battery utilization and limit unscheduled charging stops,
while extending the overall lifecycle of the vehicle by enhancing
accuracy of the range estimate.

From the perspective of end-users, improved range estimates
take away range anxiety and greatly encourage the adoption
of EVs. Given that electric mobility is expanding rapidly on
a global level, an energy management framework like the one
proposed as part of the study supports energy conservation and
the reduction of environmental impact. When there are good
predictions, they also support smart grid applications such as
efficiently meeting higher demand for charging stations. While
the focus of the study is on range prediction for electric vehicles,
the statistical and learning approaches relied upon, including
fuzzy k-means clustering, DRL, and metaheuristic optimization,
have wider applications to other reliability and decision-making
problems with uncertainty. A similar framework could be
adopted for businesses, for example, studying system degradation,
maintenance optimization, and fault detection in energy storage,
and manufacturing and transportation related systems. As
necessary, adaptive learning combined with probabilistic modeling
falls in quite well with the nature of reliability analysis
that emphasizes uncertainty quantification and performance
prediction. Similar statistical models have been applied to complex
hybrid communication systems (Pani¢ et al., 2023), further
confirming that such methods are transferable across domains and
suitable for multi-component reliability assessments and dynamic
system optimization.

5 Conclusion

This paper proposed a hybrid deep reinforcement learning
framework by incorporating fuzzy k-means clustering and
Pathfinder optimization to improve the accuracy of electric
vehicle range prediction. The proposed model provides not
only strong computational performance but also practical value
in grid-aware charging management, infrastructure design, and
mitigation of driver range anxiety across renewable and fossil-
based power systems. Relatively low prediction errors evidence
the reliability of the model for dynamic operating conditions:
the RMSE is 0.0214 km, while the MAE is 0.0191 km. Despite
these encouraging results, several uncertainties persist. Real-
world applications may face variations in charging energy
sources, ambient temperature, and driving behavior that may
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actually influence prediction accuracy. Furthermore, Q-learning
restricts scalability in continuous and high-dimensional state-
action spaces, while reliance on a proprietary dataset further
constrains full reproducibility.

Limitations in the current work will be overcome by
future endeavors, including grid-level considerations such as
renewable generation variability and emission intensity, scaled-up
coordination at the fleet level, and more advanced reinforcement
learning algorithms such as DDPG, TD3, and PPO for increased
adaptability and generalizability. This, therefore, strengthens
predictive robustness and convergence efficiency within the
developed framework to further contribute toward dependable
range estimation and sustainable mobility planning. Overall, this
work has demonstrated how the most recent developments in
data-driven and AI methodologies can bolster energy efficiency in
transport systems to become aligned with increased innovation and
more sustainable urban development.
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