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Introduction: The exponential growth of heterogeneous, high-velocity
CyberSecurity data generated by modern digital infrastructures presents both
opportunities and challenges for threat detection, especially against increasingly
sophisticated cyber-attacks. Traditional security tools struggle to process such
data effectively, highlighting the need for scalable Big Data Analytics and
advanced Machine Learning (ML) techniques. However, the black-box nature
of many ML models limits interpretability, trust, and regulatory compliance in
high-stakes environments.

Methods: This study proposes an integrated framework that combines Big Data
technologies, ML models, and Explainable Artificial Intelligence (XAl) to enable
accurate, transparent, and real-time phishing attack detection. The framework
leverages distributed computing and stream processing for efficient handling
of large and diverse datasets while incorporating XAl methods to generate
human-understandable model explanations.

Results: Experimental evaluation conducted on four publicly available
CyberSecurity datasets demonstrates improved phishing detection performance,
enhanced interpretability of model decisions, and actionable insights into
malicious URL behavior and patterns.

Discussion: The proposed approach advances interpretable and scalable
CyberSecurity analytics by addressing the gap between predictive accuracy
and decision transparency. By integrating Big Data processing with XAl-driven
ML, the framework offers a trustworthy solution for real-time threat detection,
supporting informed decision-making and regulatory compliance.
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1 Introduction

Advances in Information and Communication Technologies (ICT) and their pervasive
integration into daily life have generated vast, rapidly evolving streams of data from
highly diverse and heterogeneous sources. This exponential growth, driven by the
proliferation of digital technologies and interconnected systems, creates unprecedented
opportunities for innovation while simultaneously heightening the scope and complexity
of CyberSecurity challenges. Modern digital infrastructures produce high-volume, high-
velocity, and high-variety data originating from firewalls, intrusion detection systems
(IDS), antivirus software, network traffic monitors, authentication records, and event
logs—characteristics that strain the capabilities of traditional processing techniques
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(Balta et al., 2025; Neethirajan, 2025). CyberSecurity has
consequently emerged as a core Big Data domain, with
organizations generating terabytes of logs daily, often containing
subtle indicators of malicious activity. Treating CyberSecurity data
as “Big Data” enables the application of scalable analytics—such
as distributed computing and Machine Learning (ML) to uncover
hidden threats, generate actionable intelligence, and improve
situational awareness (Afolabi et al., 2025; Sarker et al., 2020).

Big Data Analytics has become indispensable in modern
CyberSecurity by facilitating the real-time processing and analysis
of vast, heterogeneous datasets generated by digital infrastructures,
including network traffic logs, system events, and external threat
intelligence (Koca and Cift¢i, 2025; Kumar and Kundu, 2024).
Traditional security tools are often inadequate for managing
the scale, velocity, and complexity of such data, whereas Big
Data technologies offer scalable storage solutions and advanced
analytical capabilities for detecting anomalies, forecasting potential
attacks, and identifying complex threat patterns. Analytical
approaches such as ML, statistical modeling, and graph-based
techniques enable security analysts to gain deep insights into
attack vectors, insider threats, and zero-day vulnerabilities. The
integration of these methods into Security Information and Event
Management (SIEM) platforms enhances both the accuracy and
efficiency of automated threat detection and incident response
(Zuech et al., 2015; Igbal et al., 2020).

The complexity
digital ecosystems have amplified both the sophistication

increasing and interconnectivity of
and frequency of cyber threats (Zhang et al., 2022; Charmet
et al, 2022). Concurrently, CyberSecurity systems generate
massive, diverse, and fast-moving datasets that demand advanced
analytical techniques for effective decision-making and timely
countermeasure development. Artificial intelligence (AI) and
ML are increasingly employed for anomaly detection, threat
prediction, and real-time response. However, the opaque, “black
box” nature of many ML models poses significant challenges
for interpretability, accountability, and trust—issues that are
particularly critical in high-stakes CyberSecurity contexts (Pawlicki
et al., 2024). This has driven the adoption of XAI, which seeks to
enhance the transparency of AI decision-making. By integrating
XAI into CyberSecurity frameworks, stakeholders can better
understand model reasoning, increase confidence in automated
threat detection, and ensure compliance with ethical and regulatory
standards (Mohale and Obagbuwa, 2025).

When applied together, ML and XAI enable advanced
capabilities in cyber threat detection, malware classification,
and fraud prevention (Shaukat et al, 2020). ML algorithms,
including deep neural networks and anomaly detection models,
can learn intricate patterns from large-scale CyberSecurity datasets,
facilitating the identification of phishing attacks, malware variants,
and zero-day exploits (Ferrag et al., 2020). XAI complements
these capabilities by providing interpretable outputs that allow
analysts to trace the rationale behind alerts, assess the reliability
of predictions, and iteratively refine models. This interpretability
is vital for compliance in regulated industries and for ensuring
operational trust in mission-critical environments (Arrieta et al.,
20205 de Bruijn et al., 2022). Consequently, XAI strengthens user
confidence, enhances accountability, and improves operational
adoption in sensitive sectors such as finance, healthcare, and law
enforcement.
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Despite the high detection accuracy of ML models, their
black box characteristics hinder their broader deployment in
critical infrastructure environments (Khan 1. A. et al., 2024;
Karim et al.,, 2023; Nauman et al., 2021a,b; da Silveira et al.,
2025). To address this limitation, the present research proposes
a combined approach that integrates Big Data Analytics, ML,
and XAI to enhance phishing attack detection. The methodology
leverages distributed computing and real-time stream processing
to handle large-scale, heterogeneous datasets efficiently, while
XAI techniques are employed to interpret model outputs in
a human-understandable manner. The proposed framework is
validated using four publicly available datasets, with performance
evaluation focusing not only on detection accuracy but also on
interpretability. By elucidating the decision logic of predictive
models, the approach empowers cybersecurity professionals to
identify structural patterns in malicious phishing URLs and to
improve both detection capabilities and model training processes.

The novelty of this research lies in its integrated application of
Big Data technologies, ML, and XAI for interpretable, scalable, and
trustworthy cyber threat detection. Its main contributions are as
follows:

1. Interpretation of black box ML models within a Big Data
framework for cyber-attack detection.

2. Integration of XAI into ML based CyberSecurity systems to
enhance transparency, interpretability, and trust in operational
threat detection.

3. Utilization of cloud computing technologies for data storage and
processing to enable pattern detection and pattern analysis from
large, diverse datasets.

4. Combination of Big Data Analytics and XAI to produce human-
understandable explanations for large-scale threat detection,
empowering analysts to make transparent, evidence-based
security decisions.

The article is organized as follows. Section 2 presents the
Background. Then, Related work is discussed in Section 3.
Afterwards, Section 4 discusses the Materials and Methods, Section
5 presents Discussions and finally, the Conclusion is presented in
Section 6.

2 Background
2.1 Cyber-attacks

Intruders often launch cyber-attacks by creating fake websites
and malicious links that mimic legitimate platforms to steal
sensitive information, such as usernames, passwords, and banking
details (SlashNext, 2022; IRONSCALES, 2025). These fraudulent
URLs are typically delivered through deceptive emails, social
media posts, or malicious advertisements. Attackers exploit weak
password practices—like using default credentials or reusing
passwords across multiple sites—to gain unauthorized access.
Once users enter their data on these deceptive sites, attackers
can hijack financial accounts, corporate systems, and personal
information, often causing identity theft and financial loss
(Agent, 2025). Compromised devices can join botnets used in
Distributed Denial of Service attacks, flooding online services
with excessive traffic and causing severe slowdowns or outages

frontiersin.org


https://doi.org/10.3389/fdata.2025.1688091
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Nauman et al.

leading to financial impact and reputational damage (Securelist,
2023). To defend against these risks, experts recommend
regular updates, strong and unique passwords, multi-factor
authentication, and user awareness training to identify suspicious
URLs and links.

Modern cyber-attacks are becoming more sophisticated, using
Al-generated content to make fake websites and emails appear
even more realistic (Amara and Salama, 2024). Attackers are now
automating large-scale attacks using AI and ML, which makes
traditional defense mechanisms less effective. This highlights the
need for continuous investment in advanced threat detection
systems, proactive monitoring, and regular CyberSecurity audits to
stay ahead of emerging attack strategies.

2.2 Big data

The exponential rise in data generated by digital ecosystems
including Internet of Things (IoT) devices, social media platforms,
sensors, and enterprise systems has led to the emergence of Big
Data as a transformative force in data-driven innovation. Big
Data is typically characterized by the five V’s: Volume, Velocity,
Variety, Veracity, and Value, which collectively define its scale,
complexity, and potential for actionable insights. Traditional
data processing systems fail to cope with the magnitude and
diversity of such datasets, necessitating the development of robust
technologies such as Apache Hadoop (Nandimath et al., 2013),
Apache Spark (Salloum et al., 2016), and NoSQL databases for
efficient distributed storage and processing (Hashem et al., 2015;
Hussain F. et al., 2023; Hameed et al., 2025b).

The strategic integration of Big Data technologies across
various domains, including healthcare, finance, education, and
CyberSecurity, has redefined decision-making frameworks by
enabling predictive analytics, real-time monitoring, and automated
intelligence extraction. In the healthcare sector, for example,
Big Data analytics has significantly enhanced disease prediction,
personalized treatment, and operational efficiency. A prominent
study by Nauman et al. (2025) illustrates how Big Data
is revolutionizing diabetes management by improving clinical
decision-making and patient outcomes through intelligent data
interpretation. As such, Big Data is no longer viewed merely as
a technical or computational challenge, but rather as a strategic
enabler of intelligent systems and evidence-based policies (Mughal
and Hussain, 2025).

2.3 Explainable artificial intelligence

Explainable Artificial Intelligence XAI is a field dedicated
to making the inner workings of ML models transparent and
comprehensible to humans (Khan N. et al., 2024; Calzarossa and
Massari, 2023; Arrieta et al., 2020; Gunning and Aha, 2019; Hameed
et al,, 2025a). As Al systems become increasingly complex and
integrated into critical decision-making processes, the need for
interpretability has become paramount (Khan I. A. et al., 2024).
The XAI techniques aim to provide insights into how models
make decisions, which is essential for validating their reliability
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and fairness. This transparency is crucial in high-stakes domains
such as healthcare, finance, and autonomous systems, where
opaque models can lead to untrustworthy outcomes and ethical
concerns. Key methods in XAI include feature importance analysis,
model distillation, and surrogate models, which collectively help
demystify complex algorithms and build trust with end-users and
stakeholders (Martins et al., 2024).

One prominent XAI technique is Local Interpretable
Model-agnostic Explanations (LIME) (Hakkoum and Benjdira,
2020), which explains individual predictions of any classifier by
approximating it locally with an interpretable model (Ribeiro
et al.,, 2016). LIME generates perturbed samples around a given
instance and learns a simpler, interpretable model to explain
the predictions of the complex model. This approach has been
widely adopted in various fields, including CyberSecurity, where
it aids in detecting phishing attacks by highlighting the features
that most influence the model’s decision. Another technique,
Shapley Additive exPlanations (SHAP) (Gianfagna and Di Nardo,
2021; Lundberg and Lee, 2017) leverages cooperative game
theory to attribute the contribution of each feature to the model’s
output consistently and fairly (Albini et al., 2022). SHAP values
provide a unified measure of feature importance, which helps
compare and contrast the influence of different features across
models. These XAI techniques enhance model transparency
and empower users to understand, trust, and effectively manage
Al systems.

3 Related work

3.1 ML in cybersecurity threat detection

The integration of Al and ML in CyberSecurity has significantly
advanced threat detection, fraud prevention, and data protection.
Recent studies have highlighted how Al-based solutions improve
security in areas such as cloud computing, the IoT, and financial
systems. For example, Hussain M. et al. (2023) developed a
deep learning model for detecting ransomware that outperforms
traditional signature-based methods. Similarly, Hoang et al. (2024)
demonstrated how dimensionality reduction techniques enhance
the performance of ML models in detecting Industrial IoT attacks at
the network edge, reducing computational costs while maintaining
accuracy. In addition, Imtiaz et al. (2025) proposed a deep
learning framework for IoT intrusion detection based on optical
networks, while Jouini et al. (2024) provided a detailed survey
on ML frameworks that strengthen security in edge computing
environments.

ML has become an essential part of CyberSecurity due to
the increasing complexity and volume of modern cyber threats.
Unlike traditional security methods, ML models can automatically
detect unusual patterns and suspicious behaviors in real-time,
helping to identify malware, unauthorized access, botnet activities,
and other security breaches. These advanced models can analyze
large datasets quickly, providing faster and more accurate threat
detection compared to manual systems (Ali et al., 2023b; Usman
et al., 2025a,b).

Recent studies have introduced various ML techniques to
strengthen CyberSecurity systems. Researchers have successfully
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applied algorithms like XGBoost, CatBoost, and

vector machines to detect cyber threats in networks and IoT

support

environments. These models achieved very high accuracy rates,
often over 99%, on datasets like CIC-IDS2017 and CIC-10T2023
(Usman et al.,, 2025¢; Ahmad et al.,, 2024). The use of XAI has
grown in popularity, helping security teams understand how these
models make decisions, which improves trust and system reliability
(Khan S. et al., 2024; Ali et al., 2023a).

A recent study also introduced a powerful detection system
using a combination of autoencoders and XGBoost to effectively
detect zero-day attacks, which are particularly difficult to
identify (Usman et al., 2024). Overall, ML is now a critical tool
in CyberSecurity, offering faster, smarter, and more adaptable
protection against modern cyber-attacks.

ML also plays a significant role in detecting social engineering
attacks, such as fraudulent websites and fake login portals that are
designed to steal user credentials and sensitive information. By
analyzing website structures, URL patterns, and user interaction
data, ML models can effectively distinguish between legitimate
and malicious websites. This proactive detection helps prevent
users from falling victim to financial fraud, identity theft, and
unauthorized account access (Khan S. et al., 2024).

In CyberSecurity for IoT systems, ML is particularly valuable
due to the limited processing power and security measures in many
connected devices. Modern approaches use lightweight ML models
that can monitor traffic patterns, detect intrusions, and block
suspicious activities without overwhelming the device’s resources.
This is essential for safeguarding smart homes, healthcare systems,
and industrial environments where IoT devices are increasingly
targeted by attackers (Usman et al., 2025a; Ahmad et al., 2024).

3.2 XAl in CyberSecurity

Explainable Artificial Intelligence (XAI) is becoming an
important area of research in CyberSecurity. Researchers are
focusing on XAI to improve the transparency and understanding
of ML models used for CyberSecurity tasks (Tashtoush et al.,
2024; Nwakanma et al., 2023; Zhang et al., 2022; Fan et al,
2024; Aslam et al, 2022). Traditional ML models are often
complex and work like making it difficult for CyberSecurity experts
to trust their decisions. XAI solves this problem by providing
clear explanations of how models make predictions. This helps
security professionals make better decisions and increases trust in
automated CyberSecurity systems.

Tashtoush et al. (2024) developed a method to detect
malicious URLs by using simple statistical features extracted from
hexadecimal representations. This method, supported by ML and
deep learning, also used XAI to select the most useful features,
which reduced the training time and made the system more
efficient. In another study, Fan et al. (2024) employed XAI to
investigate how human behaviors and personal habits influence the
likelihood of becoming a victim of CyberSecurity threats. Their
model provided useful recommendations based on individual risk
profiles and achieved good performance with 78% accuracy.

Aslam et al. (2022) introduced an XAlI-based system to detect
malicious domains using a large dataset. They found that the
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Extreme XGBoost model gave the best results, with an accuracy
of 98.56%. By using XAI methods like SHAP and LIME, they
were able to explain how the model made its decisions, thereby
making the system more reliable and easier to understand. This
approach helps CyberSecurity teams better analyze and improve
their detection strategies.

XAI to CyberSecurity not only improves threat detection but
also helps experts understand which features are most important
in identifying malicious activity. Tools like LIME and SHAP show
which patterns or data points lead to security alerts, making
CyberSecurity systems more transparent and trustworthy. XAT also
helps organizations meet legal and regulatory requirements by
providing clear reasons for automated decisions. Overall, XAI is
becoming an essential part of modern CyberSecurity solutions.

Recent studies show that Big Data plays a key role in improving
the performance of CyberSecurity systems. Technologies like
MapReduce and Apache Spark are commonly used to handle large
datasets quickly and effectively. Combining Big Data Analytics
with deep learning has led to better results in areas such as
fraud detection, intrusion prevention, and system monitoring. This
combination helps create intelligent, flexible CyberSecurity systems
that can adapt to changing threats.

Table 1 summarizes recent studies in ML and explainable AI
for CyberSecurity threat detection. Existing works have focused
on applying Deep Learning and traditional ML classifiers across
diverse security domains such as IoT, industrial control systems,
and network intrusion detection. While these studies achieved
high detection accuracy, most lacked interpretability and scalability
in real-time environments. The present study addresses these
limitations by integrating XAI methods with ML-based detection
to enhance transparency and trust in cyber threat analytics.

4 Materials and methods

The flowchart in Figure 1 illustrates the proposed approach for
Cyber-Attack detection which integrates black box ML techniques
with XAI techniques. The process begins with the collection of
multiple publicly available URL datasets, including ISCX-URLs,
PL-URLs, FishG URLs, and Suspicious URLs, covering both Cyber-
Attack (Malicious) and Non-Cyber Attack (Benign) categories.
The data undergoes pre-processing to remove inconsistencies and
extract meaningful patterns, followed by feature engineering to
transform raw URLs into structured feature sets. The ML models
are then trained to classify URLs as Cyber-Attack or Non-Cyber
Attack. Post-classification, XAI techniques such as LIME and
SHAP are applied to interpret model predictions, highlighting the
most influential features contributing to each decision. Finally,
the interpretability results help to make informed decisions by
providing transparency into the internal decision-making process
of the model.

The proposed method, illustrated in Figure 2, is applied to
detect cyber-attacks and explain crucial features in URLS for
decision-making processes. This study elucidated the significance
of features for internal decision-making processes by applying
LIME. The presented approach encompasses three significant steps:
first, feature engineering from raw URLs; second, training ML
models in Big Data environment; and third, employing LIME
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TABLE 1 Summary of related studies on ML, XAl, and CyberSecurity threat detection.

References Method Description

Imtiaz et al. (2025) Deep learning Proposed a deep learning model for detecting intrusions in optical-network-based IoT systems.
(CNN, LSTM)

Jouini et al. (2024) ML algorithms Surveyed ML frameworks for enhancing security in edge computing environments.
(survey)

Hussain M. et al. (2023) Deep neural Developed a deep learning model that outperformed traditional signature-based ransomware detection techniques.
networks

Hoang et al. (2024) PCA + ML Applied dimensionality reduction techniques to boost detection performance in Industrial IoT environments.
classifiers

Usman et al. (2024) Autoencoder +

XGBoost

Proposed a hybrid model to effectively detect zero-day cyber-attacks.

Usman et al. (2025¢) Least squares

SVM

Achieved high accuracy using LS-SVM on standard CyberSecurity datasets such as CIC-IDS.

Usman et al. (2025a) Lightweight

XGBoost

Introduced a real-time detection system for IoT CyberSecurity using lightweight ML models.

Ahmad et al. (2024) Decision trees,

SVM

Detected intrusions in smart home environments using CIC-I0T2023 dataset.

Tashtoush et al. (2024) SHAP, LIME,

ML/DL

Used statistical features from hexadecimal URLs with XAI to reduce training time and enhance explainability.

Fan et al. (2024) Risk profiling +

XAI

Evaluated how personal behavior impacts CyberSecurity risk; provided user-specific reccommendations.

Extreme XGBoost +
SHAP, LIME

Aslam et al. (2022)

Developed a highly interpretable domain detection system achieving 98.56% accuracy.

Khan S. et al. (2024) Hadoop, spark +

SHAP

Combined Big Data platforms with explainable ML models for scalable intrusion and fraud detection.

Usman et al. (2025b) Systematic review

of ML

Reviewed recent ML approaches for CyberSecurity threat modeling and detection.

techniques to interpret the models and visualize their internal
decision-making processes. All ML models and their corresponding
datasets are publicly accessible via the following link."

4.1 Data collection and pre-processing

To demonstrate the effectiveness of the proposed approach
was applied to four publicly available datasets. Table 2 describes
the datasets used in this study for Cyber-Attack detection,
including their year of release and the number of Cyber-Attack
and Non Cyber-Attack URLs. The ISCX-URLs dataset, available
at  https://www.unb.ca/cic/datasets/url-2016.html, ~ contains
9,964 Cyber-Attack and 35,372 Non Cyber-Attack URLs. It is
a comprehensive and diverse collection that includes spam,
phishing, malware, and benign URLs, making it well-suited for
both training and evaluation. The second dataset, PL-URLs,
available at  https://data.mendeley.com/datasets/j43jtv3zzc/1,
consists of 698 Cyber-Attack and 205 Non Cyber-Attack URLs.
The third dataset, PhishGuard URLs, accessible at https://data.
mendeley.com/datasets/vfszbjob36/1, includes 25,100 Cyber-
Attack and 35,017 Non Cyber-Attack URLs. Its larger size

1 https://drive.google.com/drive/u/0/folders/1CCOn6fpsINGeZIWEVOlw;j
TQ9Q-DBXzV
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and diverse content make it suitable for evaluating model
generalization and robustness. The final dataset, Suspicious-
URLs, published in Frontiers in Computer Science with DOI
doi: 10.3389/fcomp.2024.1308634, consists of 25,000 Cyber-Attack
and 25,070 Non Cyber-Attack URLs. Its balanced distribution
offers a reliable benchmark for assessing model performance
against modern phishing threats.

The datasets utilized in this study exhibited varying degrees
of class imbalance, with Cyber-Attack URL instances being
considerably fewer than Non Cyber-Attack URLs, particularly
within the ISCX and PhishGuard datasets. To mitigate this
imbalance and prevent the models from becoming biased
toward the majority class, the Synthetic Minority Over-
sampling Technique (SMOTE) was employed to generate
synthetic samples of the minority class, resulting in a more
balanced and representative training dataset. SMOTE is a
data augmentation technique that synthesizes new minority
class samples by interpolating between existing instances,
thereby equalizing class distributions. This method was selected
due to its proven effectiveness in addressing class imbalance,
improving model generalization, and reducing bias toward the
dominant class.

These datasets collectively provide a diverse and robust
foundation for evaluating the proposed Cyber-Attack detection
methodology, allowing for a comprehensive assessment of model

frontiersin.org
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FIGURE 2
The proposed approach for cyber-attack detection using ML and XAl integration in big data environment.

performance across varying data distributions, URL types, and
timeframes. Effective data pre-processing is essential to ensure
reliable results; insufficient preparation can introduce biases and
inconsistencies that may lead to inaccurate conclusions. The
pre-processing phase involves several key steps, including data
cleaning, integration, reduction, and discretization. In the context
of phishing detection, the primary goal of pre-processing is to
reduce false positives and false negatives, thereby enhancing model
accuracy and reliability.

During pre-processing, data cleaning and feature scaling were
applied to enhance data quality and ensure model effectiveness.
Feature scaling normalizes all input features to a common
range, preventing any single attribute from dominating the
learning process due to scale differences. This standardization
promotes balanced model training, improves convergence during
optimization, and contributes to more consistent and accurate
performance across datasets.

After pre-processing, all datasets were merged, and stratified
splitting was applied to preserve the class distribution of Cyber-
Attack and Non Cyber-Attack URLs. The final data division
followed an 80%/20% ratio, with 80% used for model training and
20% reserved exclusively for testing. Random seeds were fixed for
all splits to ensure full reproducibility. This partitioning strategy
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provides balanced evaluation and prevents bias introduced by
uneven sampling or temporal overlap.

Effective data pre-processing is essential to ensure reliable
results; insufficient preparation can introduce biases and
that
The pre-processing phase, therefore, encompasses cleaning,

normalization,

inconsistencies may lead to inaccurate conclusions.

integration, reduction, discretization, and
collectively enhancing model stability, improving convergence,
and reducing false positives and false negatives in phishing

URL classification.

4.2 Experimental setup

In an experimental study, we utilized Google Colab (Bisong,
2019) and Google Drive (Quick and Choo, 2014) as our
cloud computing platforms to perform phishing and cyber-
attack detection experiments, leveraging Python for scripting
and Apache Spark for processing large-scale URL datasets.
Specifically, the Big Data Analytics framework was implemented
using Python (Van Rossum et al., 1995) on Google Colaboratory.
PySpark 3.3.0 was employed to build and manage the data pipeline,
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TABLE 2 Summary of datasets utilized in this study, including original and SMOTE-balanced versions.

Dataset Cyber-attack instances Non-cyber attack instances
Original SMOTE Original SMOTE
1 ISCX-URLs 2016 9,964 35,322 35372 35,372
2 P.L-URLs 2024 698 698 205 695
3 PhishGuard URLs 2024 25,100 34,876 35,017 35,008
4 Suspicious-URLs 2023 25,000 - 25,070 -

TABLE 3 Overview of engineered features from the datasets along with their descriptions.

Sr. Feature Description

1 Top-level domains Counts the number of TLDs in the URL, which can reveal compound or redirected domains.

2 Length of URL Measures the total character count of the URL, which may suggest its complexity or intent.

3 Digits in query Counts digits in the URLs query string, potentially indicating tracking or complex data manipulation.

4 No. of dots in URL Counts periods in the URL, which can reflect the structure and potential for obfuscation.

5 No. of delimiters in domain Counts delimiters in the domain, which can indicate attempts to manipulate the domain’s appearance.

6 No. of delimiters in path Counts delimiters in the URL path, suggesting the depth and complexity of the URL structure.

7 Length of longest token in path Measures the longest segment in the URL path, which may house significant or suspicious elements.

8 Domain length Measures the character count of the domain name, which can be indicative of the site’s legitimacy.

9 Domain entropy Assesses the randomness of the domain name, with higher entropy potentially indicating a malicious domain.

demonstrating the seamless integration of cloud resources and Big
Data tools in CyberSecurity driven projects.

4.3 Feature engineering

Feature engineering is an important step in the ML process.
It means creating or changing new features to help the model
perform better. The goal is to turn raw data into a form the
model can understand more easily, which helps it make more
accurate predictions. This can include scaling numbers, converting
categories into numbers, combining features, or adding new
features based on expert knowledge. In short, feature engineering
helps give the model the best possible information to learn from.

4.4 Feature engineering algorithms

In this research, to better analyze the structure and behavior
of URLs, nine features were extracted from the datasets. These
features focus on the basic structure, such as the number of dots,
delimiters, and URL length, and more advanced indicators, like
domain entropy and sensitive words. Table 3 provides an overview
of these features and brief descriptions, highlighting how each can
help identify potentially malicious URLs.

Feature engineering often involves breaking down raw data
into useful components. For instance, in attack detection, a URL
like http://abc.edu/last/ can be tokenized into parts such as [“http,”
“abc) “edu,” “last”]. These tokens help identify patterns that
distinguish malicious URLs from legitimate ones. In the proposed
approach, the first step was to break the URL into smaller parts.
This process is called tokenization. Breaking the URL like this
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Require: URL

Ensure: the Number of token counts in the URL
1: function tokenCount(URL)

2 count <@

3 index < @

4 Tokenized_list <« tokenize(URL)

5: for all token in Tokenized_list do
6 count <-count +1

7 D[index] < count

8 end for

9: end function

Algorithm 1. Count the number of tokens in the URL.

helped in finding useful patterns to check if a URL is safe or
dangerous. These parts (tokens) are then used to make a feature
vector for the ML model. This helps the model detect cyber-
attacking websites better. For instance, in Algorithm 1, the tokenize
function creates a list called tokenized_list that stores all the parts.
The total number of parts is saved in D, and the feature vector keeps
track of each part and its position.

The computational procedures for the nine selected features
are detailed in the following sections to provide a comprehensive
overview of the feature engineering process.

4.4.1 Top-level-domain

In recent observations, attackers have utilized multiple top-
level domains (TLDs) within a single domain name to obfuscate
their true intentions. This tool systematically tracks the number
of TLDs present in a given URL. The extraction of this feature
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Require: URL
Ensure: Number of top-level domains in URL
1: function find_domain(URL)
2 P<«{Py, Py, ..., Pp} > List of known TLDs
3 count < 0

4: index < @

5: d < find_top_level_domain(URL)
6 for all domain in d do

7 if domain e P then

8

count < count +1

9: D[index] <« count
10: end if
11: end for

12: end function

Algorithm 2. Find number of top-level domains in URL.

from URLs is outlined in Algorithm 2. In our methodology, we
monitored a comprehensive list of 920 TLDs, denoted as P =
[Pl,Pz,Pg,, e ,Py].

While a standard URL u is expected to contain a single TLD,

represented as d = [dy,ds,d3,...,d,], there are cases where a
URL may incorporate multiple TLDs. For each segment dj in the
domain, where dj is any potential TLD, it is checked against the
list P. The algorithm proceeds by extracting the TLD from the URL
and determining the frequency of its occurrence. The valid TLDs
identified at each step are stored in the list D. The presence and
count of each TLD are then recorded in dataset D, providing a
measure of TLD multiplicity in the analyzed URLs.
It is observed that attackers often use multiple top-level domains
(TLDs) in a single URL to hide their intent. An algorithm extracts
and counts TLDs from URLs by checking each segment against
920 valid TLDs. The identified TLDs are recorded, helping detect
suspicious patterns in malicious URLs.

4.4.2 Length of URL

Malicious URLs tend to be significantly longer than legitimate
ones, as attackers often incorporate multiple domain names and
extended links to obfuscate the URLs true nature and intentions.
This deliberate manipulation increases the overall length of the
URL, making it more challenging for users and security systems to
detect malicious activity. Algorithm 3 calculates the total length of
the given URL by systematically counting every character within
it. The algorithm counts each character in the URL to determine
its total length, helping to identify unusually long URLs that may
indicate malicious activity.

4.4.3 Digits in query

The Algorithm 4 tokenizes the text and appends a question
mark before searching for numeric values within the query string
of a URL. The notation Q = [q1,92,93, - - -»qn] indicates that the
algorithm may encounter multiple queries associated with a single
URL u. The set X = [x1,x2,%3,. ..

numeric values found within each query in Q.

,xn] represents the sum of all
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Require: URL

Ensure: Length of URL
1: function length(URL)

2 Iength < @

3 index < @

4 for all character in URL do
5: Iength < Iength +1

6 D[index] <« length

7 end for

8: end function

Algorithm 3. Calculate length of URL.

Require: URL

Ensure: the Number of digits in a query string
1: function digits_in_query_string(URL)

2 y <0

3 index < @

4 Q < query_string(URL)

5: if Q is not empty then

6 for all query in Q do

7 X < digits_in_query_string(query)
8: Y <« y+ X

9: end for

10: D[index] <y

11: else

12: D[index] <« —1

13: end if

14: end function

Algorithm 4. Number of digits in query string.

The function responsible for counting digits within these
queries calculates the total number of digits across all elements of Q.
For a given URL u, let Y denote the total number of characters. The
sum xj. for each query k is determined by summing the digits found
in that specific query. This relationship can be mathematically
defined as follows:

r=> 1)

where n is an arbitrary number.

4.4.4 Number of dots in URL

The number of dots in a URL can be an important indicator
of its authenticity. Malicious websites are observed to often use
more dots to create the illusion of legitimacy, deceiving users
into believing that they are visiting a genuine site. For example, a
legitimate URL like “http://www.abc.com” could be manipulated
to appear as “http://www.ab.c.com,” misleading users. Recognizing
and being cautious of URLs with unusual dot patterns is key to
avoiding phishing scams.
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Require: URL
Ensure: Length of the longest token in the URL path

1: function longest_path(URL)

2 index < @

3 G « find_paths(URL)

4 if G is not empty then

5: Initialize empty list F
6 for all path in G do

7 fix < find_length(path)
8 Append fy, to F

9: end for

10: H <« max(F)

11: D[m7][index] < H

12: else

13: D[m7][index] « —1

14: end if

15: end function

Algorithm 5. Length of the longest token in the path.

4.4.5 Number of delimiters in domain
Attackers sometimes employ special characters, such as “-

»

or
“4.” to make a malicious URL appear legitimate. For example, while
the legitimate URL might be “http://www.abc.com/,” a malicious
variant could be crafted as “http://www.ab+c.com” to deceive
users into thinking it is authentic. Recognizing these patterns and
understanding the role of such delimiters is crucial in identifying
and avoiding malicious attempts.

@» o wW»  w[»  «»
> > > >

In this method, six characters—specifically
and “+”—are used as separators to identify and parse different
URL segments. The find-available-domain method determines the
number of domains within a phishing URL by comparing these
characters to the set V. The delimiter-count method increases the
count D each time a match is found between the characters in the
URL and the set V.

4.4.6 Number of delimiters in path

When comparing URLs, it was observed that malicious URLs
often contain twice as many spaces between words compared
to legitimate URLs. Malicious URLs are observed to frequently
include potentially harmful files, such as “.png” or “js;” which
follow delimiters, facilitating malicious activities. In the proposed
Algorithm 6, the “find-available-path” method identifies the total
number of path segments in a URL, while the marker count
function tracks the locations where these breaks occur within the
path. This analysis is critical for detecting the subtle differences in
URL structure that indicate phishing attempts.

4.4.7 Length of the longest token in path

Algorithm 5 outlines the procedure for identifying the longest
path within a given URL. In general, Attackers often conceal
malicious content within long and complex URL codes, making
it significantly more time-consuming to access phishing URLs—
approximately three times longer than accessing legitimate URLs.
The find-paths function in Algorithm 6 identifies multiple paths
within the URL list G, while the find-length function calculates
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Require: URL
Ensure: The Number of delimiters in the path and the

domain
1: function DelimiterCount(input)
2 Ve, '/, ="
3 count < 0
4 for all character in input do
5: if character €V then
6 count < count +1
7 end if
8 end for
9: return count

10: end function

11: function NumberOfDelimiter (URL)
12 Ci <0, Cr<«0

13: pathIndex <— @, domainIndex < 0
14: G < findAvailablePath(URL)
15: R < findAvailableDomain(URL)

16: if G is not empty then

17: for all path in G do

18: count < DelimiterCount(path)
19: Ci1 < Cq +count

20: D[mg][pathIndex] <« Cq

21: end for

22: else

23: D[me][pathIndex] < —1

24 : end if

25: if R is not empty then

26: for all domain in R do

27: count < DelimiterCount(domain)
28: Cy < Cy + count

29: D[ms][domainIndex] < Co

30: end for

31: else

32: D[ms][domainIndex] < —1

33: end if
34: end function

Algorithm 6. Number of delimiters in path and domain.

the length of each path, storing the longest path length in H. For
URLs that do not contain a valid path, a value of “-1” is recorded in
dataset D. This approach helps detect URLs with suspiciously long
and convoluted structures, often indicative of phishing attempts.

4.4.8 Domain length

Attackers often use elongated domains to create the appearance
of a legitimate URL, while genuine URLs typically feature shorter,
more concise domains. This feature compares the domain lengths
of authentic and fake URLs. By determining the domain length
of each URL and storing these values in a collection, we can
analyze the differences between complete and fraudulent URLs.
This comparison helps identify potentially deceptive domains
artificially lengthened to mislead users.

For instance, attackers often extend domain names to disguise
phishing URLs as legitimate. This method compares the length
of domains in genuine and suspicious URLs, helping to identify
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Require: URL
Ensure: Entropy value of the domain string

1: function Calculate_Entropy(URL)

2 domain < extract_domain(URL)

3 if domain is not empty then

4 Initialize empty dictionary frequency
5: for all character ¢ in domain do

6 Increment frequency[c] by 1

7 end for

8 entropy < ©

9: total_chars < length of domain

10: for all freq in frequency.values() do
11: prob < freq/total_chars

12: entropy <« entropy —prob x log, (prob)
13: end for

14: return entropy

15: else

16: return 0

17: end if

18: end function

Algorithm 7. Character-level domain entropy.

fraudulent ones. The algorithm counts delimiters in the domain
and path to detect unusual patterns.

4.4.9 Domain of entropy

Domain Entropy quantifies the unpredictability or randomness
of characters within a single domain string extracted from a URL.
Unlike the previous version, which computed entropy across a
list of domains, this revised approach calculates entropy based
on the character frequency distribution of each domain. High
entropy values indicate greater randomness—often associated
with obfuscated or algorithmically generated phishing domains—
while lower entropy values are typical of legitimate, human-
readable domains. The entropy H is calculated using the standard
information-theoretic formula:

H=-— ZP’ lng(pi) (2)

i=1

where p; is the probability of occurrence of the i character in the
domain string.

The updated computation process is illustrated in Algorithm 7.

Entropy evaluates the randomness of domain names in a URL
by analyzing their frequency distribution. For example, domains
are extracted from the URL, their occurrences are counted,
and probabilities are calculated. Based on these probabilities,
the entropy is determined, with higher values indicating more
unpredictability. This measure helps identify patterns that are
useful for detecting malicious URLSs.

Domain Length Density evaluates the average length of
domains in a URL. Unusually long domains may indicate phishing.
The algorithm sums the lengths of all domains and divides them by
the number of domains to calculate the average. If no domains are
found, it returns -1.
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4.5 Hyper-parameter configuration

To ensure fairness and reproducibility, all models were trained
and optimized under uniform experimental conditions. The dataset
was divided using an 80:20 stratified split, maintaining the ratio
of Cyber-Attack and Non Cyber-Attack URLs across all subsets.
All experiments were executed on Google Colab connected with
Google Drive, using Python 3.0 and PySpark 3.3.0 as the primary
data processing and ML framework.

Hyperparameter tuning was performed using PySpark’s
CrossValidator with five-fold cross-validation and a defined
parameter grid. For the Random Forest model, the grid included
numTrees € {10,20,30} and maxDepth € {5,10,15}. The
best-performing configuration was selected based on validation
accuracy. This approach ensured a transparent, data-driven
model selection process while preventing overfitting. All random
seeds were fixed, and pre-processing and pipeline scripts were
documented for reproducibility. Table 4 summarizes the final
hyperparameter settings used in this study.

4.6 Performance metrics

The ML models were applied to categorize URL instances either
classified as “Cyber-Attack” or “Non Cyber-Attack.” The “Cyber-
Attack” label represents malicious URLSs that pose potential threats
to users, while “Non Cyber-Attack” refers to safe URLs suitable
for browsing. To evaluate the performance of the classification
models, a confusion matrix was computed, as shown in Table 5.
A confusion matrix provides a summary of prediction results,
consisting of four components: True Positives (TP), False Positives
(FP), False Negatives (FN), and True Negatives (TN). TP represents
correctly identified Cyber-Attack instances, FP refers to Non
Cyber-Attack instances incorrectly classified as Cyber-Attack, FN
occurs when Cyber-Attack are missed, and TN corresponds to
correctly identified Non Cyber-Attack instances.

Several key parameters were selected to evaluate and compare
the classification model’s precision. These include the number of
TP, TN, FP, and FN. Metrics such as Accuracy (ACC), Precision
(P), Recall (R), Sensitivity (TPR), Specificity (TNR), and the Area
Under the ROC Curve (AUC) were used as designated quantitative
measures. The total number of instances is denoted as N, and these
metrics are computed accordingly to provide a comprehensive
assessment of the model’s performance. The value N can be
calculated as:

The value N can be calculated as:

N=TP+ TN + FP + FN 3)

True positive rate (TPR) or sensitivity: also known a Recall (R),
refers to the proportion of true positives correctly identified out
of all actual positives. It indicates how well the model identifies
positive cases.

TP
TPR= ———— (4)
TP + FN

False positive rate (FPR): also known as the fall-out, measures
the proportion of actual negatives that are incorrectly identified as
positives and is defined as:
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TABLE 4 Summary of optimized hyper-parameters for each learning algorithm.

Sr. Model Key hyper-parameters and settings

1 GBM Learning rate (0 . 05); Number of estimators (300); Max depth (5); Subsample (0 . 8); Loss function ("deviance”).

2 Random Forest Number of trees ([ 10, 20, 30]); Maxdepth ([5, 10, 15]); Criterion ("gini”); Evaluated using 5-fold cross-validation
with PySpark’s CrossValidator.

3 MLP Hidden layers ([ 64, 32]); Activation (ReLU); Learning rate (0 . 801); Optimizer (Adam); Batch size (64); Epochs (100).

4 Naive Bayes Smoothing parameter (var_smoothing = 1e-9).

5 SVM Kernel (RBF); Regularization (C = 1.0); Gamma (scale).

6 LIME explainer Number of perturbations (5, 000); Kernel width (0 . 75); Distance metric (Euclidean).

7 SHAP explainer Background sample size (1, 000); Explainer type (TreeExplainer); Maximum samples (5, 000).

PP
" FP+TN

False negative rate (FNR): also known as the miss rate, measures

FPR (5)

the proportion of actual positives that are incorrectly identified as
negatives and is defined as:

_EN
" EN+TP

Precision (P): precision tells you how accurate the model’s

FNR (6)

positive predictions are. It is the proportion of true positives among
all positive predictions.

TP
P=——+ (7)
TP + FP

Area under the ROC curve (AUC): the ROC curve graphically
displays the predictive model’s performance by plotting the actual
positive rate against the false positive rate for various threshold
settings. AUC represents the likelihood that the model will rank a
randomly chosen positive instance higher than a randomly chosen
negative one. The perfect prediction value for AUC is 1.0, and 0.5
corresponds to the diagonal on the ROC curve. F-measure (F1
score): the harmonic mean of Precision and Recall. It balances the
two metrics, especially when there is an uneven class distribution.

2 x (P) x (R)
F1 Score = ——— (8)
(P) + (R)
Accuracy (ACC): the number of correct predictions a
classification algorithm makes is called its accuracy. To find it,
divide the number of correct predictions by the total number of

data points.

Accuracy = (IP) + (TN) 9)
Y= TP) + (TN) + (FP) + (EN)

These parts impact important metrics. Accuracy shows how

often the model is right overall. Precision measures how many of
the positive predictions are correct. Recall shows how many actual
positive cases the model identifies. The F1-score balances precision
and recall, especially with imbalanced data. Specificity measures
how well the model avoids false alarms. These insights help improve
the model’s performance.
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TABLE 5 Confusion matrix.

Predicted class

Cyber- Non cyber-
attack attack
Actual class Cyber-attack TP FN
Non FP ™N
cyber-attack
4.7 Results

The results presented in Tables 6, 7 highlight the comparative
performance of the evaluated ML algorithms across four
benchmark datasets ISCX-URLs, PL-URLSs, PhishGuard URLs, and
Suspicious-URLs. The proposed approach demonstrated strong
and consistent results, with the Gradient Boosting Machine and
Random Forest models outperforming other classifiers in most
performance metrics.

As shown in Table 6, which summarizes the TPR, TNR,
FPR, and FNR, the GBM algorithm achieved the most balanced
performance across all datasets. For instance, in the Suspicious-
URLs dataset, GBM attained a TPR 0f 97.41% and a TNR of 98.51%,
indicating high detection accuracy and minimal false predictions.
Similarly, in the PL-URLSs dataset, GBM achieved a TNR of 97.83%
with a very low FPR of 2.17%, confirming its robustness and
reliability in identifying phishing URLs.

The Random Forest model also delivered competitive results,
achieving perfect TNR (100%) in the PL-URLs dataset and
maintaining high accuracy across other datasets. However, its
TPR of 64.78% on Suspicious-URLs suggests a trade-off between
detection sensitivity and specificity in more complex environments.
The MLP recorded high TPRs but exhibited slightly higher false
positives, particularly an FPR of 13.04% in the PL-URLs dataset.
In contrast, Naive Bayes and SVM produced moderate results,
performing adequately on simpler datasets such as ISCX and
PL-URLs but showing reduced accuracy and higher FNR values
on more challenging datasets like PhishGuard and Suspicious-
URLs. Table 7 provides an overview based on AUC, F1-Score, and
Accuracy. GBM consistently demonstrated superior performance,
achieving an AUC of 98.70%, F1-Score of 98.38%, and Accuracy
of 99.28% in the ISCX-URLs dataset, while sustaining high
performance in others, including AUC = 90% and F1-Score
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TABLE 6 Performance comparison of TPR, TNR, FPR, and FNR across datasets used in the study.

ISCX-URLs PL-URLs PhishGuard URLs Suspicious-URLs
TNR FPR TNR FPR TNR TNR

GBM 97.65 99.75 0.25 235 98.52 97.83 2.17 1.48 86.99 93.98 6.02 13.01 97.41 98.51 1.49 2.59
Random 96.91 99.87 0.13 3.09 99.51 100.00 0 0.49 87.50 95.39 4.61 12.50 64.78 98.73 1.27 3522
Forest

MLP 90.65 99.01 0.99 9.35 99.51 86.96 13.04 0.49 80.49 88.15 11.85 19.51 69.56 97.12 2.88 30.44
Naive 82.66 97.94 2.06 17.34 96.06 100 0 3.94 4671 87.67 12.33 53.29 69.41 92.45 7.55 30.59
Bayes

SVM 75.18 99.89 0.11 24.82 98.52 100 0 1.48 85.00 81.07 18.93 15.00 55.82 96.43 357 44.18

TABLE 7 Performance comparison of AUC, F-score, and accuracy.

ISCX-URLs PL-URLs PhishGuard URLs Suspicious-URLs

F1-score Accuracy Fl-score  Accuracy Fl-score  Accuracy AUC Fl1-score  Accuracy
GBM 99.10 98.92 99.46 98 99.01 98.39 93.20 91.56 93.87 98 97.93 97.96
Random 98.89 98.65 99.33 100 99.75 99.60 94.10 92.47 94.25 82 78.02 81.75
Forest
MLP 95.87 94.11 97.52 93 98.30 97.19 88.15 84.39 86.74 83 80.66 83.47
Naive Bayes 91.28 88.02 95.10 98 97.99 96.79 74.62 62.14 74.33 81 78.45 80.93
SVM 88.44 86.20 94.76 99 99.26 98.80 86.34 82.19 84.98 76 70.01 7631
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= 89.07% on PhishGuard URLs. Random Forest also achieved
remarkable results, particularly in the PL-URLSs dataset with AUC =
100%, F1-Score = 99.75%, and Accuracy = 99.60%, demonstrating
excellent precision. Although MLP achieved good performance
overall, its lower AUC in complex datasets indicated sensitivity to
data irregularities. Naive Bayes and SVM performed consistently
well in simpler datasets but exhibited performance degradation
under complex or imbalanced data conditions.

The GBM algorithm emerged as the most effective and
reliable model, consistently achieving high accuracy, precision,
and balanced classification across all datasets. The integration of
LIME for model interpretation further enhanced transparency by
identifying critical features influencing model decisions, thereby
improving explainability and trustworthiness. Random Forest
ranked as a strong alternative with robust generalization, while
MLP, Naive Bayes, and SVM offered moderate yet dataset-
dependent performance suitable for lightweight or resource-
constrained scenarios.

The comparative analysis in Figure 3 demonstrates that
ensemble-based models, particularly GBM and Random Forest,
deliver superior and more reliable accuracy across diverse phishing
URL datasets. GBM consistently outperforms all other approaches,
showing notable robustness on challenging datasets such as
Suspicious-URLs, while Random Forest achieves peak performance
on PL-URLs. In contrast, conventional classifiers such as SVM,
MLP, and especially Naive Bayes exhibit comparatively lower
and less stable results, underscoring the effectiveness of ensemble
learning methods in capturing complex patterns inherent in cyber-
attack detection tasks.

4.7.1 Interpretations using LIME and SHAP

This section presents an in-depth explanation of cyber-attack
classification decisions using the LIME technique, applied to
instances from various large-scale datasets. It provided feature-level
interpretations that make the ML model’s behavior transparent
and interpretable for CyberSecurity professionals. Each instance
is interpreted with respect to its explanation, domain insight, and
importance, offering comprehensive insight into model reasoning
and thought processes.

It should be noted from Figure 4a that the selected instance
was classified as a cyber-attack with a predicted probability of
0.97. The LIME technique identified strong attack indicators,
including the number of delimiters in the domain (2) and path
(3), alongside a high longest token length of 223 characters. Two
occurrences of low domain length density (0.08 and 0.07)
contributed marginally toward a benign classification. Intuitively,
URLs exhibiting structural complexity, such as an increased count
of delimiters and extended tokens, are often associated with
obfuscation strategies employed by attackers. A longest token
length of 223 strongly implies manipulation to deceive users by
mimicking legitimate domain patterns. On the contrary, features
such as domain delimiters and token length were highly influential,
with the domain delimiter alone contributing a weight of +0.66
toward the phishing class. In contrast, the benign-leaning DLD
values, though present, were insufficient in magnitude to offset the
phishing indicators, thereby justifying the classifier’s decision.
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demonstrates that the instance
was classified as a cyber-attack with full confidence
[P(Class cyber-attack) = 1.00]. The LIME technique revealed
that features such as URL length (30) and domain length (22)

positively influenced the classification decision. On the other

Similarly, Figure 4b

hand, non-cyber attack indicators included the absence of digits
in the query, a low dot count in the URL (1), and a moderate
longest token length (25). Although fewer dots and the absence
of numeric characters typically correlate with legitimate URLs,
a domain length greater than 20, coupled with a moderate URL
length, suggests potential risk. The URL length feature provided a
significant weight of 40.28 toward the cyber-attack class. Despite
benign contributions from structural simplicity, the collective
weight of attack indicators surpassed the benign cues, leading to a
confident cyber-attack classification.

It should be noted from Figure 5a that the instance was
classified as a cyber-attack with a confidence score of 0.80.
The LIME technique attributed this decision to features such
as delimiters in the domain (2, 40.38), delimiters in the path
(1, 40.29), and dots in the URL (2, 4+0.12). A higher domain
length density (0.87, 40.05) further contributed to this class.
A single benign feature—absence of digits in the query (0)—had
a negative weight of —0.19 toward the non-cyber attack class.
In general, malicious URLs often integrate numerous delimiters
and high-density structures to emulate legitimate domains while
embedding malicious elements. A domain length density close to
1 indicates that the domain portion of the URL is abnormally
lengthy compared to the full URL, signaling obfuscation. Although
this signal contributed slightly, the attack-oriented structural
patterns held dominant influence. The balance of feature weights
highlights the classifier’s sensitivity to hierarchical and syntactic
URL components in assessing legitimacy.

Similarly, Figure 5b demonstrates that the selected instance
from the Suspicious-URLs dataset was labeled cyber-attack with
a probability of 1.00. Influential features included the number of
delimiters in the path (2, +0.53), domain entropy (2 . 52, 4-0.19),
and an anomalous top-level domain (0.00, +0.13). Minor benign
signals were observed in domain length density (0.08, —0.28)
and longest token length (67, —0.07). In general, entropy-based
patterns are especially effective in capturing randomness within
domain structures. Malicious URLs often maximize entropy to
bypass domain-based filtering systems. Additionally, non-standard
or null TLDs are recognized as indicators of suspicious domain
registration practices. Hence, the path delimiter and entropy
scores were the most influential indicators of cyber-attack. Despite
the presence of benign-like patterns in domain structure, their
relative weights were insufficient to counteract the strength of
high-entropy signals and structural anomalies. On the contrary,
Figure 6 visualizes SHAP summary plots for four cyber-attack
detection datasets: ISCX-URLs, PL-URLs, PhishGuard URLs, and
Suspicious-URLs. In each plot, features are ranked vertically by
their mean absolute SHAP value, indicating their relative influence
on the model’s predictions. The horizontal axis represents SHAP
values, where positive values shift the prediction toward the cyber-
attack class, and negative values favor the benign class. Feature
values are color-coded, with red denoting higher values and blue
indicating lower values.
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Comparative analysis of classification accuracy among ML algorithms
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Comparative analysis of the experimental results of the proposed approach.
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FIGURE 4
LIME local explanations for GBM predictions on (a) ISCX-URLs and (b) PL-URLs.

It is evident from Figure 6a that the number of dots in the URL
and the number of delimiters in the path emerge as the strongest
attack indicators. Low Domain Length Density also contributes
toward attack predictions, while higher DLD values lean toward

Frontiersin Big Data

benign classification. URL length and the longest token length in
the path exert a moderate positive influence on attack likelihood.
On the other hand, Figure 6b visualizes that domain entropy and
low DLD are the most influential features. Longer domain lengths
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and an increased number of path delimiters also push predictions
toward attack. Benign tendencies are associated with low dot counts
and fewer delimiters in the domain. Similarly, Figure 6¢ illustrates
that the number of domain delimiters and long URLs dominate
cyber-attack classification. Elevated domain entropy and long path
tokens further reinforce attack predictions, whereas higher DLD
values and fewer dots in the URL provide a weaker, benign
influence. In addition, Figure 6d demonstrates that dot count in
the URL and path delimiters are the most impactful cyber-attack
predictors. URL length, low DLD, and long path tokens contribute
additional phishing evidence, while benign-leaning signals such as
higher DLD and lower domain entropy remain relatively minor.

The LIME technique is a post-hoc explainability approach that
interprets individual predictions made by ML models, as outlined
in Algorithm 8. Rather than explaining the model globally, LIME
focuses on generating local surrogate models that approximate
the decision boundary near a specific instance. For each selected
URL sample, a set of 5,000 perturbed observations was generated
around the instance using Gaussian sampling. These samples were
evaluated by the trained classifier, and a TabularExplainer was used
to train a local linear surrogate model with a kernel width of
0.75 and auto feature selection. The process was repeated three
times using a fixed random seed (42) to ensure reproducibility.
This configuration allowed consistent local interpretations across
all models, providing insight into which URL-based features most
influenced classification decisions.

On the other hand, the SHAP framework provides a
complementary, theoretically grounded explainability method
based on cooperative game theory, as described in Algorithm 9.
SHAP computes the contribution of each feature to a model’s
prediction by treating each feature as a player in a cooperative
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game, where the overall prediction is the payout. In this
study, TreeExplainer was applied for tree-based models, while
KernelExplainer was used for non-tree models. A background
dataset of 100 randomly selected training instances was used to
estimate expected values.

Both LIME and SHAP were executed under identical pre-
processing and feature-scaling conditions across all datasets.
The combination of LIME’s local linear approximations and
SHAP’s globally consistent feature attribution provides both micro-
and macro-level interpretability for phishing-detection models,
enhancing the transparency and accountability of cyber-threat
intelligence systems.

4.7.2 Decision-making of LIME and SHAP

The LIME and SHAP techniques are complementary
techniques for understanding how ML models make predictions.
both methods
enhance interpretability by identifying the features that most

In the context of cyber-attack detection,

significantly influence classification decisions. LIME provides
instance-level explanations, highlighting how specific features
affect the prediction for an individual URL, while SHAP
offers a unified, game-theoretic approach to quantify feature
contributions across both local and global contexts. Together, they
transform opaque “black box” models into transparent systems,
enabling CyberSecurity analysts to interpret and validate results
more effectively.

In this study, LIME and SHAP were applied to predictions
generated by the ML classifiers across multiple URL datasets.
Both methods consistently identified features such as domain
length, number of delimiters in the domain, and domain entropy
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dataset.

as critical for accurate classification. For malicious URLs, these
features generally exhibited strong positive contributions, while
for legitimate URLs, they showed a negative influence. SHAP
further reinforced these findings by providing consistent feature
attributions across the entire dataset, confirming the robustness
and reliability of these key indicators.

The combined use of LIME and SHAP significantly improved
model interpretability and increased trust in predictions. LIME’s
real-time, instance-level insights help analysts investigate
individual decisions, while SHAP’s global perspective ensures
consistency and stability in feature importance rankings. This
dual-layer interpretability is particularly valuable in CyberSecurity,
where decision-making must be both precise and explainable.
By integrating these methods, analysts can detect potential
misclassifications, understand model behavior at multiple
levels, and deploy cyber-attack detection systems confidently in

high-stakes operational environments.
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Require: Trained model f, Instance x’, Dataset D,
Feature set F, Number of perturbations N, =5, 000,
Kernel width k=0.75, Random seed r =42

Ensure: Local feature importance explanation for
instance x’

1: function LIME_Explain(f, x’, D, F, Np, k, r)

Set random seed <« r

3: Z <« Generate_Neighborhood(x’, D, N,, Gaussian
sampling)

4: W < Compute_Weights(Z, x/, k)

5: g < Train_Linear_Surrogate(Z, W, F)

6: E < Extract_Top_Features(g, top = 15)

7: return £ > Top local feature contributions
for x/

8: end function

Algorithm 8. LIME explanation for URL classification.
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Require: Trained model f, Instance x, Background
dataset Z (size = 100), Link function = identity,
Random seed r =42

Ensure: Vector of SHAP values ¢ for each feature

1: function SHAP_Explain(f, x, Z, r)

2 Set random seed <« r

3 Initialize ¢ <« empty vector

4 for all feature j in x do

5: ¢ <0

6 for all sample z, in Z do

7 o) < b5+ (F(2) 7))~ F(z0))

8

: end for
9: 5 < ¢5/1Z]
10: Append ¢; to ¢
11: end for
12: ¢ < Sort_Features(¢, top = 15)
13: return ¢ > Feature-level SHAP values for

instance x
14: end function

Algorithm 9. SHAP explanation for URL classification.

5 Discussion

Despite the little use of ML for cyber-attack detections in
literature, its application to analyzing URL patterns has proven
highly effective (Karim et al,, 2023). ML equips CyberSecurity
professionals with enhanced decision-making capabilities through
accurate predictions, classifications, and visualizations of critical
URL features. However, many high-performance ML algorithms
operate as black boxes, making it difficult to interpret their
internal decision-making processes. This lack of transparency
presents a significant challenge, particularly in safety-critical
domains like CyberSecurity, where trust and explainability
are essential.

To address the cyber-attack detection challenge in the Big
Data environment, we applied five black box ML algorithms,
including GBM, RE, MLP, NB, and SVM, accompanied by XAI
techniques to generate interpretable insights into the cyber-
attack detection process. The findings confirm that LIME and
SHAP are valuable tools for visualizing and understanding
black box ML models in URL
achieving precision exceeding 99% in
URL detections.

More recently, Karim et al. (2023) proposed an ML-based

behavior classification,

levels cyber-attack

phishing detection approach using URLs, introducing a hybrid
model combining Logistic Regression, Support Vector Machine,
and Decision Tree (LR+SVC+DT) through both soft and hard
voting mechanisms, achieving approximately 95% accuracy. In
contrast, our approach achieved accuracy levels up to 99%,
while incorporating LIME to provide interpretable, instance-
level explanations of model decisions. Similarly, Imtiaz et al.
(2025) enhanced classifier performance through genetic algorithms
and particle swarm optimization, reporting that a Multinomial
Naive Bayes model paired with a genetic algorithm yielded
the best results. Our findings also confirm the effectiveness
of Naive Bayes, but we further enhanced model transparency
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via LIME and benchmarked it against other widely used
ML algorithms.

In another study, Jouini et al. (2024) extracted key features
from phishing websites across seven email datasets, where
Random Forest Max Vote Classifier and Decision Tree models
achieved 97.73% accuracy. Likewise, our research identified
Nine essential features and achieved an overall accuracy of 98%,
with GBM delivering the highest performance. In addition,
emphasized URL structure, domain age, SSL certificate, page
length, and JavaScript presence as key indicators for cyber-attack
detection, finding Random Forest most effective. Similarly,
proposed a Random Forest-based approach was proposed
that achieved an F1 score of 97%, accuracy of 97%, and
recall of 99%, with notable efficiency and low computational
cost. In line with these studies, our work used Nine critical
features and demonstrated that GBM consistently outperformed
other models.

This research underscores the strong potential of ML in
cyber threat detection, particularly in Big Data environments
where scalability and real-time analysis are crucial. Leveraging
URL pattern analysis in such frameworks enables efficient
identification of cyber threats, while integrating LIME significantly
improves decision transparency by providing clear, instance-
level insights into classification outcomes. Comparative analysis
across prior studies confirms that features such as Domain
Length and Number of Delimiters in Domain consistently
play a decisive role in distinguishing between malicious and
legitimate URLs.

ML and XAI are transformative in CyberSecurity, enhancing
the ability to detect, interpret, and mitigate sophisticated threats.
The models used in this study—including GBM, RE SVM,
MLP, and NB are well-suited for processing large, heterogeneous,
and high-velocity datasets typical of CyberSecurity applications.
While these models automate detection and improve classification
accuracy, the black box nature of many ML models limits their
applicability in high-stakes environments where accountability
and explainability are critical. XAI addresses this limitation by
making model predictions more transparent and interpretable.
By clarifying the reasoning behind predictions, XAI enables
CyberSecurity analysts to validate outputs, improve trust in
automated systems, and ensure compliance with regulatory and
ethical standards. The ability to trace and justify automated
decisions strengthens the responsible adoption of Al in security-
critical domains.

Our findings are based on four publicly available datasets,
which may constrain generalizability. Future research should
incorporate more diverse and multilingual datasets to improve
adaptability against evolving phishing tactics. Developing
real-time cyber-attack detection systems that sustain high
accuracy with minimal latency is vital for resource-constrained
environments such as mobile devices and IoT platforms.
Enhancing explainability remains a priority, requiring XAI
tools capable of delivering real-time, intuitive explanations
that analysts can interpret effectively. Extending cyber-attack
detection to social media and messaging platforms, while ensuring
robustness against adversarial manipulation, will be essential
for maintaining the trustworthiness and resilience of ML-driven
CyberSecurity systems.
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6 Conclusion

The rapid expansion of internet usage and the evolution of
digital technologies have simultaneously created new opportunities
and intensified CyberSecurity risks. Among these, phishing
remains a pervasive and adaptive threat, exploiting unsuspecting
users through deceptive domains and malicious links that
target sensitive information. As the volume and sophistication
of fraudulent websites increase, distinguishing legitimate from
malicious domains has become a formidable challenge requiring
scalable, accurate, and transparent detection mechanisms.

This study addressed these challenges by integrating black
box ML models with XAI techniques in a Big Data-driven
CyberSecurity framework. Experimental findings revealed that
GBM consistently outperformed RE, MLP, NB, and SVM across
multiple URL datasets. To mitigate the interpretability limitations
of black box models, two complementary XAI approaches,
LIME and SHAP, were applied, providing both local and global
explanations of GBM predictions. These methods consistently
highlighted domain length, number of delimiters, and domain
entropy as the most influential features in cyber-attack detection,
thereby uncovering structural patterns of malicious URLs. Such
interpretability not only enhances trust in automated systems but
also supports expert validation and informed decision-making in
operational CyberSecurity contexts.

In conclusion, the integration of high-performing black box
ML algorithms with robust explainability techniques significantly
improves both the accuracy and transparency of cyber-attack
detection systems. This dual emphasis ensures that detection
models remain not only effective in identifying threats but
also trustworthy, interpretable, and compliant with operational
and regulatory requirements. Future research should extend
validation to larger and more heterogeneous datasets, while
also exploring real-time detection frameworks optimized for
resource-constrained environments, including mobile and IoT
platforms. Expanding detection capabilities to encompass social
media, messaging services, and emerging communication channels
will further enhance the robustness and adaptability of cyber
defense mechanisms.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

References

Afolabi, R., Abbas, R., Vayyala, R., Oyebode, D. F., Ogunsanya, V. A., Adesokan,
A, et al. (2025). Harnessing big data analytics for advanced detection of deepfakes
and cybersecurity threats across industries. Int. J. Sci. Manag. Res. 6, 84-101.
doi: 10.37502/IJSMR.2025.8208

Agent, 1. (2025). 2025 Global Threat Intelligence Report. Defense Analytics.
Retrieved from  https://www.cyberdefenseanalytics.org/global- threat- intelligence-
report-2025

Frontiersin Big Data

10.3389/fdata.2025.1688091

Author contributions

MN: Writing - review & editing, Methodology, Supervision,
Writing - original draft. HU: Writing - original draft, Formal
analysis, Writing - review & editing, Supervision. HG: Writing
- review & editing, Supervision, Conceptualization, Formal
analysis, Writing - original draft. MH: Writing - review &
editing, Methodology, Data curation. MF: Writing - original
draft, Supervision, Funding acquisition, Writing - review &
editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the Any product that
be evaluated in this article, or claim that may be made

reviewers. may

by its manufacturer,
the publisher.

is not guaranteed or endorsed by

Ahmad, A., Khan, S., and Usman, M. (2024). Intrusion detection in IOT using
xgboost and catboost: a comparative study. IEEE Access 12, 5001-5015.

Albini, E., Long, J., Dervovic, D., and Magazzeni, D. (2022). “Counterfactual
Shapley Additive Explanations,” in Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency (FAccT 22) (New York, NY:
Association for Computing Machinery), 1054-1070. doi: 10.1145/3531146.35
33168

frontiersin.org


https://doi.org/10.3389/fdata.2025.1688091
https://doi.org/10.37502/IJSMR.2025.8208
https://www.cyberdefenseanalytics.org/global-threat-intelligence-report-2025
https://www.cyberdefenseanalytics.org/global-threat-intelligence-report-2025
https://doi.org/10.1145/3531146.3533168
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Nauman et al.

Ali, T., Hussain, M., and Khan, S. (2023a). Explainable AI for cybersecurity:
opportunities and challenges. IEEE Trans. Dependable Secure Comput. 20, 1800-1815.

Ali, T., Hussain, M., and Khan, S. (2023b). State-of-the-art machine learning
techniques in cybersecurity: a review. Comput. Secur. 124:102973.

Amara, J., and Salama, R. (2024). AI-powered cyber attacks: emerging trends and
defense strategies. J. Cybersecur. Res. 12, 45-58.

Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, J., Bennetot, A., Tabik, S,
Barbado, A., et al. (2020). Explainable artificial intelligence (XAI): concepts,
taxonomies, opportunities and challenges toward responsible AL Inf. Fus. 58, 82-115.
doi: 10.1016/j.inffus.2019.12.012

Aslam, N., Khan, I. U, Mirza, S,, AlOwayed, A., Anis, F. M., Aljuaid, R.
M., et al. (2022). Interpretable machine learning models for malicious domains
detection using explainable artificial intelligence (XAI). Sustainability 14:7375.
doi: 10.3390/su14127375

Balta, D. D., Kag, S. B., Balta, M., Ogur, N. B., and Eken, S. (2025). Cybersecurity-
aware log management system for critical water infrastructures. Appl. Soft Comput.
169:112613. doi: 10.1016/j.as0¢.2024.112613

Bisong, E. (2019). “Google colaboratory,” in Building Machine Learning and Deep
Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners
(Cham: Springer), 59-64. doi: 10.1007/978-1-4842-4470-8_7

Calzarossa, M., and Massari, L. (2023). Explainable AlI: state of the art and
challenges. ACM Comput. Surv. 55, 1-38. doi: 10.1145/3527448

Charmet, J.-M., Gama, J., and Fernandes, P. (2022). Explainable artificial
intelligence for cybersecurity: a comprehensive survey. arXiv [preprint].
arXiv:2202.10573. doi: 10.48550/arXiv.2202.10573

da Silveira, A. C., Sobrinho, A., Dias da Silva, L., Santos, D. F., Nauman, M., and
Perkusich, A. (2025). Harnessing coloured petri nets to enhance machine learning:a
simulation-based method for healthcare and beyond. Simul. Model Pract. Theory
140:103080. doi: 10.1016/j.simpat.2025.103080

de Bruijn, H., Warnier, M., and Janssen, M. (2022). The perils and pitfalls of
explainable Al: strategies for explaining algorithmic decision-making. Gov. Inf. Q.
39:101666. doi: 10.1016/j.giq.2021.101666

Fan, C, Li, Y., and Wang, X. (2024). Investigation of human-centric cybersecurity
risk factors using explainable AI. Comput. Secur. 133:103315.

Ferrag, M. A., Maglaras, L., Janicke, H., Jiang, J., and Smith, R. (2020). Deep learning
techniques for cybersecurity intrusion detection: a systematic review. IEEE Access 8,
209517-209538. doi: 10.14236/ewic/icscsr19.16

Gianfagna, L., and Di Nardo, M. (2021). Explainable artificial intelligence (XAI): a
bibliometric review. IEEE Access 9, 126327-126347.

Gunning, D., and Aha, D. (2019). Darpa’s explainable artificial intelligence (XAI)
program. AI Mag. 40, 44-58. doi: 10.1609/aimag.v40i2.2850

Hakkoum, H., and Benjdira, B. (2020). “Artificial intelligence and cybersecurity:
the application of lime to detect phishing attacks,” in 2020 International Conference
on Intelligent Systems and Computer Vision (ISCV) (Fez), 1-8.

Hameed, S., Nauman, M., Akhtar, N., Fayyaz, M. A., and Nawaz, R. (2025a).
Explainable AI-driven depression detection from social media using natural language
processing and black box machine learning models. Front. Artif. Intell. 8:1627078.
doi: 10.3389/frai.2025.1627078

Hameed, S., Nauman, M., Hasnain, M., Akhtar, N., Hussain, F., Afzal, Z., et al.
(2025b). An explainable deep learning framework for automated classification of
ocular diseases in a big data environment. VFAST Trans. Softw. Eng. 13, 258-278.
doi: 10.21015/vtse.v13i3.2228

Hashem, I., Yaqoob, L., Anuar, N., Mokhtar, S., Gani, A., Khan, S., et al. (2015). The
rise of big data on cloud computing: review and open research issues. Inf. Syst. 47,
98-115. doi: 10.1016/}.i5.2014.07.006

Hoang, D., Le, T., and Nguyen, M. (2024). Dimensionality reduction for
industrial iot attack detection using machine learning. IEEE Internet Things J. 11,
4500-4512.

Hussain, F., Nauman, M., Alghuried, A., Alhudhaif, A., and Akhtar, N. (2023).
Leveraging big data analytics for enhanced clinical decision-making in healthcare. IEEE
Access 11, 127817-127836. doi: 10.1109/ACCESS.2023.3332030

Hussain, M., Khan, S., and Ali, T. (2023). Deep learning-based ransomware
detection: a comparative study. IEEE Access 11, 33000-33010.

Imtiaz, N., Wahid, A., Ul Abideen, S. Z., Muhammad Kamal, M., Sehito, N.,
Khan, S., et al. (2025). A deep learning-based approach for the detection of various
internet of things intrusion attacks through optical networks. Photonics 12: 35
doi: 10.3390/photonics12010035

Igbal, M. W., Chang, V., Bashir, M. K., Hassan, R. A., Gani, A., Kim, J. H,, et al.
(2020). Big data analytics in cybersecurity: a survey. J. Comput. Sci. Technol. 35, 1-37.

IRONSCALES (2025). IRONSCALES: A Complete Email Security Solution
(Whitepaper). Retrieved from https://ironscales.com/hubfs/Site%20Assets/Resources/
Whitepapers/Whitepaper- GWS%2BIRONSCALES.pdf

Jouini, O., Sethom, K., Namoun, A., Aljohani, N., Alanazi, M. H., and Alanazi,
M. N. (2024). A survey of machine learning in edge computing: techniques,

Frontiersin Big Data

10.3389/fdata.2025.1688091

frameworks, applications, issues, and research directions. Technologies 12:81.
doi: 10.3390/technologies12060081

Karim, A., Shahroz, M., Mustofa, K., Belhaouari, S. B., and Joga, S. R. K. (2023).
Phishing detection system through hybrid machine learning based on URL. IEEE
Access 11, 36805-36822. doi: 10.1109/ACCESS.2023.3252366

Khan, 1. A., Habib, H., Qamar, F., Ahmad, F., Alenezi, M., Muhammad, K., et al.
(2024). Guaranteeing explainability in machine learning-based cybersecurity systems:
a survey and future directions. IEEE Access 12, 48678-48699.

Khan, N., Nauman, M., Almadhor, A. S, Akhtar, N, Alghuried, A,
Alhudhaif, A., et al. (2024). Guaranteeing correctness in black-box machine
learning: a fusion of explainable AI and formal methods for healthcare
decision-making. IEEE Access 12, 90299-90316. doi: 10.1109/ACCESS.2024.34
20415

Khan, S., Imtiaz, F., and Usman, M. (2024). Big data analytics and explainable
Al for scalable cybersecurity systems. Future Gener. Comput. Syst. 145,
621-635.

Koca, M., and Ciftgi, S. (2025). A comprehensive bibliometric analysis of big
data and cyber security: intellectual structure, trends, and global collaborations:
M. koca, s. giftgi. Knowl. Inf. Syst. 67, 10245-10270. doi: 10.1007/s10115-025-
02531-1

Kumar, N., and Kundu, A. (2024). Securevision: advanced cybersecurity deepfake
detection with big data analytics. Sensors 24:6300. doi: 10.3390/s24196300

Lundberg, S., and Lee, S. (2017). “A unified approach to interpreting model
predictions,” in Advance in Neural Information Processing System 30 (Long Beach, CA).

Martins, T., de Almeida, A. M., Cardoso, E., and Nunes, L. (2024). Explainable
artificial intelligence (XAI): a systematic literature review on taxonomies and
applications in finance. IEEE Access 12, 618-629. doi: 10.1109/ACCESS.2023.3347028

Mohale, V. Z., and Obagbuwa, I. C. (2025). A systematic review on the integration
of explainable artificial intelligence in intrusion detection systems to enhancing
transparency and interpretability in cybersecurity. Front. Artif. Intell. 8:1526221.
doi: 10.3389/frai.2025.1526221

Mughal, M., and Hussain, A. (2025). Examining big data analytics for strategic
decision-making: a cross-sectoral perspective. Big Data Soc. 12, 1-15.

Nandimath, J., Banerjee, E., Patil, A., Kakade, P., Vaidya, S., Chaturvedi, D., et
al. (2013). “Big data analysis using apache hadoop,” in 2013 IEEE 14th International
Conference on Information Reuse Integration (IRI) (San Francisco, CA: IEEE), 700-703.
doi: 10.1109/IR1.2013.6642536

Nauman, A., Tariq, M., and Hussain, I. (2025). The role of big data in transforming
diabetes management: a predictive analytics approach. J. Med. Syst. 49, 200-212.
doi: 10.1109/ACCESS.2025.3526456

Nauman, M., Akhtar, N., Alhazmi, O. H., Hameed, M., Ullah, H., Khan,
N., et al. (2021a). Improving the correctness of medical diagnostics based
on machine learning with coloured petri nets. IEEE Access 9, 143434-143447.
doi: 10.1109/ACCESS.2021.3121092

Nauman, M., Akhtar, N., Alhudhaif, A., and Alothaim, A. (2021b). Guaranteeing
correctness of machine learning based decision making at higher educational
institutions. IEEE Access 9, 92864-92880. doi: 10.1109/ACCESS.2021.30
88901

Neethirajan, S. (2025). Safeguarding digital livestock farming-a comprehensive
cybersecurity roadmap for dairy and poultry industries. Front Big Data 8:1556157.
doi: 10.3389/fdata.2025.1556157

Nwakanma, C. L, Ahakonye, L. A. C,, Njoku, J. N., Odirichukwu, J. C., Okolie,
S. A, Uzondu, C, et al. (2023). Explainable artificial intelligence (XAI) for intrusion
detection and mitigation in intelligent connected vehicles: a review. Appl. Sci. 13:1252.
doi: 10.3390/app13031252

Pawlicki, T., Nowak, A., and Krawczyk, B. (2024). Advanced explainable AI
techniques for real-time cybersecurity threat detection. IEEE Trans. Dependable Secure
Comput.

Quick, D., and Choo, K.-K. R. (2014). Google drive: forensic analysis of data
remnants. J. Netw. Comput. Appl. 40, 179-193. doi: 10.1016/j.jnca.2013.09.016

Ribeiro, M., Singh, S., and Guestrin, C. (2016). ““Why should i trust you?”:
explaining the predictions of any classifier;” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (New York, NY:
ACM), 1135-1144. doi: 10.1145/2939672.2939778

Salloum, S., Dautov, R, Chen, X., Peng, P. X, and Huang, J. Z. (2016).
Big data analytics on apache spark. Int. J. Data Sci. Anal. 1, 145-164.
doi: 10.1007/541060-016-0027-9

Sarker, I. K., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., and Ng, A.

(2020). Cybersecurity data science: an overview from machine learning perspective.
J. Big Data 7, 1-29. doi: 10.1186/s40537-020-00318-5

Securelist (2023). Financial Threat Report 2023: Phishing, PC and Mobile Malware.
Available online at: https://securelist.com/financial- threat- report-2023/112526

Shaukat, K., Luo, B., Varadharajan, V., Hameed, I, Chen, S., Alazab, M., et al. (2020).
A survey on machine learning techniques for cybersecurity intrusion detection. IEEE
Access 8, 173579-173607. doi: 10.1109/ACCESS.2020.3041951

frontiersin.org


https://doi.org/10.3389/fdata.2025.1688091
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.3390/su14127375
https://doi.org/10.1016/j.asoc.2024.112613
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1145/3527448
https://doi.org/10.48550/arXiv.2202.10573
https://doi.org/10.1016/j.simpat.2025.103080
https://doi.org/10.1016/j.giq.2021.101666
https://doi.org/10.14236/ewic/icscsr19.16
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.3389/frai.2025.1627078
https://doi.org/10.21015/vtse.v13i3.2228
https://doi.org/10.1016/j.is.2014.07.006
https://doi.org/10.1109/ACCESS.2023.3332030
https://doi.org/10.3390/photonics12010035
https://ironscales.com/hubfs/Site%20Assets/Resources/Whitepapers/Whitepaper-GWS%2BIRONSCALES.pdf
https://ironscales.com/hubfs/Site%20Assets/Resources/Whitepapers/Whitepaper-GWS%2BIRONSCALES.pdf
https://doi.org/10.3390/technologies12060081
https://doi.org/10.1109/ACCESS.2023.3252366
https://doi.org/10.1109/ACCESS.2024.3420415
https://doi.org/10.1007/s10115-025-02531-1
https://doi.org/10.3390/s24196300
https://doi.org/10.1109/ACCESS.2023.3347028
https://doi.org/10.3389/frai.2025.1526221
https://doi.org/10.1109/IRI.2013.6642536
https://doi.org/10.1109/ACCESS.2025.3526456
https://doi.org/10.1109/ACCESS.2021.3121092
https://doi.org/10.1109/ACCESS.2021.3088901
https://doi.org/10.3389/fdata.2025.1556157
https://doi.org/10.3390/app13031252
https://doi.org/10.1016/j.jnca.2013.09.016
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1186/s40537-020-00318-5
https://securelist.com/financial-threat-report-2023/112526
https://doi.org/10.1109/ACCESS.2020.3041951
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Nauman et al.

SlashNext (2022). The State of Phishing Report 2022. Available online at: https://
www.slashnext.com/wp- content/uploads/2022/10/SlashNext- The- State- of- Phishing-
2022.pdf

Tashtoush, B., Alshawabkeh, M., and Mahmoud, Q. H. (2024). Exploring
explainable AI with hexadecimal features for malicious url detection. IEEE Access 12,
40150-40160.

Usman, M., Imtiaz, F., and Khan, S. (2024). Zero-day attack detection using xgboost
and autoencoder: a hybrid approach. IEEE Trans Inf. Forensics Secur. 19, 1200-
1210.

Usman, M., Imtiaz, F., and Khan, S. (2025a). Lightweight xgboost-based intrusion
detection system for iot networks. IEEE Internet Things J. 13, 3201-3212.

Frontiersin Big Data

20

10.3389/fdata.2025.1688091

Usman, M., Imtiaz, F., and Khan, S. (2025b). A systematic review of machine
learning approaches in cybersecurity: Focus on phishing and social engineering. IEEE
Access 13, 45500-45515.

Usman, M., Khan, S., and Imtiaz, F. (2025c). Machine learning models for
cybersecurity: LS-SVM and beyond. Comput. Secur. 130:103242.

Van Rossum, G., Drake, F. L, et al. (1995). Python Reference Manual, Volume 111.
Amsterdam: Centrum voor Wiskunde en Informatica Amsterdam.

Zhang, C., Song, G., and Zhao, Y. (2022). Explainable machine learning for
intrusion detection: a comprehensive review. IEEE Access 10, 68070-68090.

Zuech, R., Khoshgoftaar, T. M., and Wald, R. (2015). Intrusion detection and big
heterogeneous data: a survey. J. Big Data 2, 1-41. doi: 10.1186/s40537-015-0013-4

frontiersin.org


https://doi.org/10.3389/fdata.2025.1688091
https://www.slashnext.com/wp-content/uploads/2022/10/SlashNext-The-State-of-Phishing-2022.pdf
https://www.slashnext.com/wp-content/uploads/2022/10/SlashNext-The-State-of-Phishing-2022.pdf
https://www.slashnext.com/wp-content/uploads/2022/10/SlashNext-The-State-of-Phishing-2022.pdf
https://doi.org/10.1186/s40537-015-0013-4
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Transparent and trustworthy CyberSecurity: an XAI-integrated big data framework for phishing attack detection
	1 Introduction
	2 Background
	2.1 Cyber-attacks
	2.2 Big data
	2.3 Explainable artificial intelligence

	3 Related work
	3.1 ML in cybersecurity threat detection
	3.2 XAI in CyberSecurity

	4 Materials and methods
	4.1 Data collection and pre-processing
	4.2 Experimental setup
	4.3 Feature engineering
	4.4 Feature engineering algorithms
	4.4.1 Top-level-domain
	4.4.2 Length of URL
	4.4.3 Digits in query
	4.4.4 Number of dots in URL
	4.4.5 Number of delimiters in domain
	4.4.6 Number of delimiters in path
	4.4.7 Length of the longest token in path
	4.4.8 Domain length
	4.4.9 Domain of entropy

	4.5 Hyper-parameter configuration
	4.6 Performance metrics
	4.7 Results
	4.7.1 Interpretations using LIME and SHAP
	4.7.2 Decision-making of LIME and SHAP


	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


