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Enhanced SQL injection
detection using chi-square
feature selection and machine
learning classifiers

Emanuel Casmiry*, Neema Mduma and Ramadhani Sinde

Computational and Communication Science and Engineering (CoCSE), The Nelson Mandela African
Institution of Science and Technology (NM-AIST), Arusha, Tanzania

In the face of increasing cyberattacks, Structured Query Language (SQL)
injection remains one of the most common and damaging types of web
threats, accounting for over 20% of global cyberattack costs. However, due to
its dynamic and variable nature, the current detection methods often suffer
from high false positive rates and lower accuracy. This study proposes an
enhanced SQL injection detection using Chi-square feature selection (FS) and
machine learning models. A combined dataset was assembled by merging a
custom dataset with the SQLiV3.csv file from the Kaggle repository. A Jensen–
Shannon Divergence (JSD) analysis revealed moderate domain variation (overall
JSD = 0.5775), with class-wise divergence of 0.1340 for SQLi and 0.5320
for benign queries. Term Frequency-Inverse Document Frequency (TF-IDF)
was used to convert SQL queries into feature vectors, followed by the Chi-
square feature selection to retain the most statistically significant features. Five
classifiers, namely multinomial Naïve Bayes, support vector machine, logistic
regression, decision tree, and K-nearest neighbor, were tested before and after
feature selection. The results reveal that Chi-square feature selection improves
classification performance across all models by reducing noise and eliminating
redundant features. Notably, Decision Tree and K-Nearest Neighbors (KNN)
models, which initially performed poorly, showed substantial improvements after
feature selection. The Decision Tree improved from being the second-worst
performer before feature selection to the best classifier afterward, achieving
the highest accuracy of 99.73%, precision of 99.72%, recall of 99.70%, F1-
score of 99.71%, a false positive rate (FPR) of 0.25%, and a misclassification
rate of 0.27%. These findings highlight the crucial role of feature selection
in high-dimensional data environments. Future research will investigate how
feature selection impacts deep learning architectures, adaptive feature selection,
incremental learning approaches, robustness against adversarial attacks, and
evaluate model transferability across production web environments to ensure
real-time detection reliability, establishing feature selection as a vital step in
developing reliable SQL injection detection systems.
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1 Introduction

In recent years, cyberattacks have grown exponentially, posing
significant threats to individuals, organizations, and national
infrastructures across the globe (Crespo-Martínez et al., 2023).
Their economic toll is estimated at approximately $50 billion
annually, with SQL injection attacks making up over 20% of
that total (Abad et al., 2023; Bringhenti et al., 2023; Campazas-
Vega et al., 2023; Huang et al., 2022). As a result, researchers
have explored various methods to detect and prevent SQL
injection attacks, including static analysis, rule-based detection
approaches, anomaly detection, and supervised machine learning
models. These detection techniques, examined by researchers,
are generally categorized into three main groups: rule-based
approaches (Alenezi et al., 2021; Ciampa et al., 2010), traditional
machine learning techniques (Alkhathami and Alzahrani, 2022;
Alqahtani et al., 2023; Arasteh et al., 2024), and modern deep
learning models (Arasteh et al., 2024; Gowtham and Pramod, 2021;
Qu et al., 2024). Despite these advances, a significant theoretical and
methodological gap still exists in understanding the role of feature
selection as a systematic way to enhance both detection accuracy
and computational efficiency.

While rule-based methods can identify certain SQL injection
attacks (Bakhsh et al., 2023), they often fail to handle dynamically
generated queries and struggle against more sophisticated SQL
injection methods (Kumar et al., 2024; Yang et al., 2024).
Traditional machine learning techniques, although effective (Souza
et al., 2024), face challenges in feature engineering, managing
large datasets, and detecting complex or evolving attack patterns
(Alkhathami and Alzahrani, 2022; Li et al., 2019; Triloka et al.,
2022). Recently, deep learning-based SQL injection techniques have
shown significant promise (Alghawazi et al., 2023; Liu and Dai,
2024; Thalji et al., 2023; Paul et al., 2024; Zhang et al., 2022). The
performance of these models still lags behind that of state-of-the-
art methods. The common limitation across all these categories
is the lack of a principled feature selection process to identify
the most informative indicators of SQL injection behavior. In
effect, the majority of existing studies treat feature extraction as
a preprocessing step rather than as a core theoretical component
of the detection framework. Few studies have explored feature
selection methods for enhancing the performance of machine
learning models for SQL injection detection. Among the feature
selection approaches investigated, both metaheuristic methods,
such as the Gray Wolf Optimizer, and heuristic techniques such
as correlation-based selection have been considered (Arasteh et al.,
2024; Hassan et al., 2021). However, these studies did not validate
the effectiveness of the selected features across various machine
learning classifiers, which limits the generalizability and reliability
of their findings in diverse classification scenarios. This study
positions feature selection not merely as an optimization step but as
a central theoretical construct in improving SQL injection detection
performance. It argues that feature selection serves as the missing
bridge between accuracy and efficiency in this domain. This factor
directly determines how well models can generalize to unseen
and evolving attack patterns. Therefore, it is crucial to develop
more robust solutions for detecting SQL injection attacks in digital
security (Arasteh et al., 2024; Qu et al., 2024).

In Tanzania, the majority of websites still rely on rule-based
detection approaches, which are often inadequate against modern,
dynamic SQL injection threats (Ntembo and Casmir, 2023;
Serianu, 2023). Elisa (2020) assessed 79 Tanzania e-government
websites and found that over 50% had high-severity vulnerabilities
such as SQL injection. Given these persistent challenges and
underexplored areas, particularly in feature selection, a novel
approach is necessary. To bridge this gap and overcome existing
model limitations, this study introduces the DT detection model
based on a tree-based architecture. The model begins by extracting
features from SQL statements using the Term Frequency-Inverse
Document Frequency (TF-IDF) technique, which effectively
highlights important information. Next, it applies the Chi-square
feature selection method to identify the most significant features
for accurate classification.

This study presents an effective SQL injection detection model
utilizing a Decision Tree (DT) classifier, which discriminates
between malicious and benign SQL statements by recursively
partitioning the feature space based on attribute value thresholds.
The model leverages DT’s capability to handle heterogeneous
feature types, capture complex nonlinear decision boundaries,
and provide interpretable classification rules with minimal
computational overhead during inference. Furthermore, to
empirically validate the theoretical premise that feature selection
enhances model accuracy, a comparative analysis was conducted
between different machine learning models trained with and
without Chi-square feature selection, alongside comparisons with
findings from existing studies.

2 Materials and methods

2.1 Datasets

To support this research, a custom dataset (dataset1.csv) was
created by capturing normal user payloads from input fields and
performing controlled SQL injection attacks on a prototype of the
Nelson Mandela African Institution of Science and Technology
Research Data Repository (NM-AIST RDR), which was under
development during its testing phase. This ensured that the dataset
reflected realistic usage scenarios. For malicious queries, SQLMap
was run with comprehensive parameters (–tables, –passwords,
–current-db, –roles, –columns, –dbs, –schema, –comments, –
count, –hostname, –users, –banner, –privileges, –current-user, –
is-dba, –dump, –level = 5, –risk = 3, –random-agent, –batch, –
answers = “follow = Y”) to generate a wide range of payloads
covering all supported techniques (–technique = BEUST for
Boolean-based, Error-based, Union-based, Stacked, and Time-
based blind injections), providing a full coverage of attack types for
model training. Multiple endpoints were targeted using SQLMap’s
–data parameter, supplying appropriate POST data for each
form, to evaluate vulnerabilities across various input fields. The
payloads consisted of automated patterns generated by SQLMap,
reflecting diverse and realistic attack scenarios. Out-of-band (OOB)
exfiltration was configured via a controlled external listener (–
dns-domain = <controlled-listener>). The custom dataset was
then combined with the SQLiV3.csv dataset (Hussain, 2021) from
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Kaggle to enhance diversity. The merged dataset initially included
41,573 benign and 40,365 malicious payloads, totaling 81,938 SQL
queries before cleaning. After cleaning, the final dataset used
for experiments consisted of 34,367 benign and 30,746 malicious
queries, totaling 65,113 samples. Within the cleaned dataset, the
SQLiV3 subset contributed 19,061 benign (62.6%) and 11,375
malicious (37.4%) queries (30,436 total), while the cleaned custom
dataset contributed 15,306 benign (43.6%) and 19,371 malicious
(56.4%) queries (34,201 total). These figures show that cleaning
and proportional balancing reduced noise and harmonized class
representation across sources while maintaining diverse benign
and malicious patterns. To evaluate the potential domain shift
between the two data sources, a Jensen–Shannon Divergence (JSD)
analysis was performed on the TF-IDF feature distributions. The
overall JSD between SQLiV3 and the custom dataset was 0.5775
(distance = 0.5775), indicating moderate divergence in feature
space. Class-wise analysis yielded a JSD of 0.1340 (distance =
0.3660) for SQL injection (class 1) queries and 0.5320 (distance
= 0.7294) for benign (class 0) queries. These results suggest that
malicious payloads were relatively consistent across datasets, while
benign queries showed moderate lexical variability. This moderate
divergence among benign queries is expected in real-world logs,
since normal user inputs exhibit high lexical and structural
variability across applications, user populations, locales, and input-
processing behaviors, which naturally increases distributional
heterogeneity relative to crafted malicious payloads. Overall,
the combination of real-application captures, SQLMap-generated
payloads, and community-sourced samples enhances the dataset’s
realism and representativeness of practical SQL injection logs;
however, it may not fully capture the full diversity of real-world SQL
injection activity.

2.2 Data preprocessing

Several processes, including data cleaning, label encoding,
removing stop words, word segmentation, normalization, building
a vocabulary, and TF-IDF feature representation, were performed.
The steps were as follows:

• Input: dataset X = {X1, X2, X3, . . . , Xn}, label y ={
y1, y2, y3, . . . , yn

}
.

• Data cleaning: data cleaning was carried out on the SQL
injection merged dataset, which involved several activities
such as handling missing values, removing duplicates, error
rectification, standardizing formatting, and labeling encoding.

• Word segmentation: the text data were divided into individual
lexical units or tokens. This step separates continuous text into
meaningful words or terms for further analysis.

• Remove stop words: commonly occurring words that carry
minimal semantic value, such as “the” and “is,” were removed
to reduce noise and enhance the relevance of the remaining
text data.

• Normalization: lexical items were normalized by converting
them to lowercase, removing special characters, and handling
word inflections. This ensures that words with the same
meaning but different forms are treated uniformly.

• Build vocabulary: a vocabulary was created by gathering all
unique lexical items from all documents. Each token in the
vocabulary is assigned a unique index, representing a feature
in the model’s input matrix.

• Calculate TF-IDF values: the Term Frequency-Inverse
Document Frequency (TF-IDF) scores are computed using
standard formulas. These values quantify the importance of
each word in a document relative to the entire corpus.

• Construct the feature matrix: using the TF-IDF scores, a
feature matrix was generated where each row corresponds to
a text sample, each column to a vocabulary term, and each
element to the TF-IDF value of a word in a document. This
matrix (denoted as D) serves as input for subsequent analysis
or model training.

The resulting feature matrix D is as follows:

D =

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1k
a21 a22 · · · a2k
...

an1

...
. . .

an2 · · ·

...
ank

⎤
⎥⎥⎥⎥⎦

,

where n means n samples and k means k vocabulary items
(features) are extracted.

• Dataset split: the merged dataset was split into training (80%)
and testing (20%) sets using a stratified random split to
preserve the proportion of benign and malicious queries
across the sets.

2.3 Feature selection

Feature selection (FS) is a critical step in reducing irrelevant
or excessive features, thereby improving classification accuracy
and computational efficiency (Deng et al., 2019; Prastyo et al.,
2020). In text classification, features are typically represented as
unigrams, n-grams, or parts-of-speech (POS) tags, capturing the
essential aspects of documents (Deng et al., 2019). Similarly, in
SQL injection detection, features extracted from SQL queries, such
as keywords, operators, or token sequences, can be selected using
FS techniques to reduce noise and redundancy, which improves
the accuracy and efficiency of detection models (Ahmad et al.,
2019). FS techniques are generally categorized into filter, wrapper,
and embedded methods (Hung et al., 2015). Filter methods, such
as Chi-square, Information Gain, and Mutual Information, rely
on statistical measures to rank features independently of the
classifier (Deng et al., 2019). Wrapper methods evaluate feature
subsets based on classifier performance but are computationally
expensive and prone to overfitting in high-dimensional, sparse
domains such as SQL query logs (Hung et al., 2015; Prastyo
et al., 2020). Embedded methods, including LASSO and tree-
based models, integrate FS into model training but often require
additional hyperparameter tuning and may reduce interpretability
(Deng et al., 2019). Prior literature consistently ranks Chi-square
alongside Information Gain as one of the most effective filter-
based methods for text categorization (Hung et al., 2015). While
Information Gain also identifies informative features, Chi-square
was preferred since it provides a more robust evaluation for features
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with skewed distributions, which are common in security-related
text data, whereas IG can be biased toward features with higher
entropy (Deng et al., 2019). Within this study, the Chi-square test
was selected as the FS method due to its efficiency, scalability, and
robustness to skewed feature distributions common in SQL query
logs. Importantly, preliminary experiments comparing Chi-square
with other feature selection (FS) methods, such as Information
Gain, Mutual Information, LASSO, and PCA, showed that the Chi-
square test produced relatively higher performance metrics for the
Multinomial Naïve Bayes classifier, achieving an accuracy of 99.47%
and an F1-Score of 99.43%, compared to results with IG (Accuracy
99.40%, F1 99.38%), MI (Accuracy 99.37%, F1 99.37%), LASSO
(Accuracy 96.98%, F1 96.98%), and PCA (Accuracy 76.26%, F1
75.51%). These findings provide empirical support for selecting the
Chi-square within this study’s experimental context. Nonetheless,
as the evaluation was limited to Multinomial Naïve Bayes, further
validation with additional classifiers is necessary to determine the
generalizability of these results across different model architectures.
Filter-based methods preserve the original feature interpretability,
which is essential in security analysis, where understanding which
query terms contribute to classification is as important as achieving
high accuracy (Deng et al., 2019). To enhance the effectiveness
of SQL injection detection by eliminating feature redundancy,
this study used the Chi-square test with Multinomial Naïve Bayes
as a baseline model, creating a reliable way to select the top k
features. Multinomial Naïve Bayes was chosen for its simplicity,
speed, low resource requirement, and effectiveness with higher-
dimensional data.

2.4 Chi-square feature selection

The Chi-square test is a statistical method used to determine
whether there is a significant association between two categorical
variables. It is often used to evaluate the relevance of a feature to
the target class. The test usually compares the observed frequency
of an event (how often it happens) with the expected frequency
(how often would it happen if there were no relationship). If the
observed and expected values are very different, the feature is likely
important. It is given by X2 in Equation 1.

X2 =
n∑

i=1

m∑
j=1

(Oij − Eij)2

Eij
, (1)

where Oij is the observed frequency of feature i in class j,
Eij is the expected frequency of feature i in class j (assuming
independence), n is the number of feature categories, and m is the
target class. Furthermore, Eijis given as in Equation 2.

Eij =
(
RowTotali

) × (Column Totalj)
GrandTotal

(2)

2.5 Identification of top-k features

To identify the most informative features for SQL injection
detection, a two-step top-k feature selection process was used,

combining the Chi-square test with the Multinomial Naïve Bayes
classifier. First, the dataset was divided into 80% training and 20%
testing sets using stratified random sampling, and textual features
were represented with TF-IDF vectors.

Coarse search: a broad search evaluated model performance
at intervals of 50 features, from the first 50 up to the total
number of features. For each candidate k, the top k features
were selected using the Chi-square test, and a Multinomial Naïve
Bayes model was trained and tested. The feature count that
yielded the highest accuracy was recorded as the preliminary
best k.

Fine search: a detailed search was then performed around
the preliminary best k (±200 features) with a step size of 1 to
more precisely examine performance trends. Instead of focusing
on a single value of k, this step revealed a plateau region,
where multiple consecutive k values achieved the same maximum
accuracy. This plateau indicates that the model’s performance is
stable across that range, allowing flexibility in choosing k without
sacrificing accuracy. Highlighting this plateau ensured that the
final feature set was not restricted to a single arbitrary cutoff but
rather selected from a range of equally optimal feature counts.
This balances informativeness and size, enhancing classification
accuracy while keeping computational demands manageable. The
process was visualized by plotting accuracy against the number
of selected features for both the coarse and fine searches, with
the plateau region shaded to clearly show the stability zone for
top-k features.

2.6 Data visualization

This study employed a visualization technique to understand
the distribution of data points across the dataset before and
after feature selection. The t-SNE algorithm was used to visualize
the feature vectors in two dimensions from high-dimensional
data. T-SNE is known for its ability to reveal significant
global relationships, while preserving the local structure of
the data.

2.7 Machine learning model

This study developed five machine learning models for SQL
injection detection, with and without Chi-square feature selection.
These models included Multinomial Naïve Bayes, Decision Tree,
Logistic Regression, Support Vector Machine, and K-Nearest
Neighbor. To enhance the robustness of model evaluation, stratified
k-fold cross-validation (k = 5) was applied instead of relying
solely on a single train-test split. Stratification preserved the
original query-type proportions across all folds, ensuring that both
training and validation subsets maintained identical class balance.
The full dataset contained 30,746 SQL injection (malicious)
queries (47.24%) and 34,367 benign queries (52.76%), totaling
65,113 samples. Folds 1–4 each contained a training set with
24,597 SQL injection queries (47.24%) and 27,494 benign queries
(52.76%) and a testing set with 6,149 SQL injection queries
(47.24%) and 6,873 benign queries (52.76%). Fold 5 contained
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a training set with 24,598 SQL injection queries (47.24%) and
27,493 benign queries (52.76%) and a testing set with 6,148 SQL
injection queries (47.23%) and 6,874 benign queries (52.77%).
These consistent class proportions across all folds confirm that
stratification effectively preserved the original dataset distribution,
preventing bias and ensuring fair model evaluation. For each
iteration, four folds were used for training, while the remaining
fold was used for validation. This process was repeated five
times, each with a different validation fold, and the results were
aggregated and reported as mean ± standard deviation (SD)
to capture both central tendency and variability across folds.
By averaging performance across multiple folds, cross-validation
reduces the risk of overfitting to a particular split and provides a
more reliable estimate of generalization performance. Additionally,
further analysis was conducted on the best-performing model
to gain more insights, which involved error analysis and testing
the model on external data. The sql injection dataset (sqli.csv)
from the Kaggle repository was used as external data. It originally
contained 4,200 entries (1,128 SQL injection queries and 3,072
normal queries). After data cleaning, including the removal of
duplicates and ambiguous entries, 3,951 unique entries remained
and were used for analysis.

2.7.1 Multinomial Naïve Bayes (MNB)
MNB is a probabilistic classifier based on Bayes’ theorem

that assumes conditional independence between features.
It is effective for text classification tasks involving discrete
data, such as term frequencies in documents. The probability
of a class c given the document d is calculated as in
Equation 3.

P
(
c
∣∣d) ∝ P (c)

n∏
i=1

P(wi |c)fi , (3)

where P(c) indicates prior probability of class c, wi indicates
word i, fi indicates frequency of word wi in document d,
and P (wi| c) is the probability of word wi occurring in
class c.

2.7.2 Logistic regression (LR)
This is a linear classification model that predicts

the class membership using the logistic (sigmoid)
function. It is commonly applied to binary and
multiclass classification problems due to its efficiency and
interpretability. It is given by the formula P(y = 1|x) in
Equation 4:

P
(
y = 1| x

) = σ
(

wT + b
)
= 1

1 + e−(wT x+b)
, (4)

where w is the weight vector, x is the input feature vector, b is
the bias term, and σ is a sigmoid function.

2.7.3 Decision tree (DT)
This is the tree-based classifier that splits the dataset into

branches to form a hierarchy of decision rules. It utilizes a tree-like
model of decisions based on feature values. The trees are created
using the information gain calculation Equations 5, 6.

Entropy (S) = −
c∑

i=1

pi log2
(
pi

)
, (5)

Information Gain (S, A) (6)

= Entropy (S) −
∑

u∈Values (A)

|SV |
S

Entropy (SV ),

where S is the dataset, A is an attribute, and SV is a subset of S
where attribute A = v.

2.7.4 Support vector machine (SVM)
This is a supervised machine learning classifier that seeks to

identify the optimal hyperplane that maximizes the margin between
class boundaries. It works well for both linear and non-linear
classification tasks, especially in high-dimensional feature spaces.
The study employed linear SVM since the nature of the dataset
was binary. The decision function is used to reflect how far the
input data point is from the hyperplane, which is the optimal
operator between the two classes. The decision function is given
by Equation 7:

f (x) = sign
(

wTx + b
)

, (7)

and the optimization problem is

1
2
||w||2 subject to yi(wTxi + b) ≥ 1∀i , (8)

where w is the weight vector (normal to the hyperplane), x is the
feature vector of the input data point, b is the bias term (intercept),
and y ∈ {−1, 1} is a true class label.

2.7.5 K-Nearest Neighbors (KNN)
This is a non-parametric, instance-based learning algorithm

that classifies data points based on the majority class among their
k nearest neighbors in feature space. It is sometimes called a lazy
learner because it does not learn during training. This classifier
relies on distance measurements, usually using the Euclidean
distance formula, as shown in Equation 9.

d (x, xi) =
√√√√

n∑
j=1

(xj − xij)2, (9)

where x is the query point, xi is the ith training instance, and xj
is the jth feature of x. The predicted class is the most frequent class
among the k nearest neighbors.
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2.8 Model evaluation metrics

To evaluate the performance of each classifier, various
evaluation metrics such as accuracy, precision, recall, F1-score, false
positive rate, and misclassification rates were employed during the
evaluation phase. These metrics provided a base for comparisons
of these machine learning classifiers using a set of four distinct
combinations, represented by the symbols True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN). In this
context, true means the values were accurately classified, and false
means the values were incorrectly classified.

The accuracy of the classifier measures how well the model
classifies the input query as SQL injection or normal. It can be
determined using the formula shown in Equation 10.

Accuracy = TP + TN
TP + TN + FP + FN

(10)

Precision is used to measure the number of classified positive
cases that were positive. High precision means fewer false positives.
It is given by the formula shown in Equation 11.

Precision = TP
TP + FP

(11)

Recall is the evaluation metric that measures the sensitivity
of positive cases, that is, how many positive cases were correctly
classified. It is given by the formula shown in Equation 12.

Recall = TP
TP + FN

(12)

The F1-score is the evaluation metric that considers both
precision and recall to give a balanced assessment of the model’s
performance. It penalizes the extreme value more than the

arithmetic mean to ensure that both precision and recall contribute
equally. It is given by the formula shown in Equation 13.

F1 − Score = 2∗recall∗precision
recall + precision

(13)

False Positive Rate (FPR) is the proportion of actual negative
instances that are incorrectly labeled as positive by the classifier. It
is given by the formula in Equation 14.

FPR = FP
TN + FP

(14)

Misclassification measures how the model was unable to classify
the query correctly. It is given by the formula in Equation 15.

Misclassification rate = FP + FN
TP + TN + FP + FN

(15)

3 Results

3.1 Optimal feature set selection results

The results showed that model performance steadily improved
as the number of features increased, reaching a peak at k = 2,454.
Beyond this point, accuracy plateaued up to k = 2,649, after which
the performance slightly declined due to the inclusion of noisy
or redundant features. Choosing the midpoint of the plateau (k
= 2,551, as identified in the fine search) offered the best balance
between accuracy and model efficiency, preventing unnecessary
feature overhead while maintaining optimal performance. This
demonstrates that Chi-square feature selection effectively reduced
the dimensionality of SQL query logs while maintaining the most

FIGURE 1

Model accuracy vs. number of Chi-square selected top-k features, showing the plateau region used to identify the optimal feature range.
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discriminative terms for classification. As shown in Figure 1, the
accuracy curve increases sharply before leveling off, with the best
point marked at k = 2,551, compared to the coarse peak at k
= 2,500, beyond which performance improvements diminished.
Based on this curve, the top 2,551 features, approximately 5% of
the total 49,607 features, were selected and retained, while the
remaining features were not, as shown in the pie chart in Figure 2.

3.2 T-SNE visualization results

Figure 3 shows the effects of dimensionality reduction before
and after feature selection. Before feature selection, the dataset
exhibited significant overlap between the two classes, as observed
in Figure 3A. Data points corresponding to Label 0 (Normal)
and Label 1 (SQLi) were highly intermixed, particularly in the

FIGURE 2

Percentage of selected features.

central region of the plot, indicating poor class separability.
This suggests that the original feature space contained irrelevant
or redundant information that hindered the model’s ability to
distinguish between the classes effectively. However, after applying
the Chi-Square test, a marked improvement in class separability
was observed, as shown in Figure 3B. The t-SNE visualization of
the reduced feature space revealed more distinct clusters, with data
points of each class forming clearer and more compact groupings.
This enhanced separation indicates that the selected features
preserved the most informative aspects of the data, reducing noise
and improving the dataset’s structure. Consequently, the feature
selection process not only simplified the model but also contributed
to better discrimination between classes, which is expected to
enhance the overall performance of the classification model.

3.3 Comparison of models’ classification
results

Before feature selection (Table 1 and Figure 4A), SVM, LR,
and MNB performed well across all metrics. Meanwhile, the SVM
model achieved the highest accuracy (99.23%), precision (99.65%),
recall (98.70%), and F1-Score (99.17%), along with the lowest
FPR (0.30%) and misclassification rate (0.77%). In contrast, DT
and KNN showed the poorest performance on most metrics, with
KNN recording the lowest accuracy (55.22%), precision (51.08%),
and F1-score (61.57%), as well as the highest FPR (83.93%) and
misclassification rate (44.78%).

After applying the Chi-square feature selection (Table 2 and
Figure 4B), all models demonstrated significant improvements. The
DT classifier advanced from second-worst to the top performer,
achieving an accuracy of 99.73%, a precision of 99.72%, a
recall of 99.70%, an F1-score of 99.71%, a FPR of 0.25%,
and a misclassification rate of 0.27%. Similarly, KNN improved

FIGURE 3

T-SNE visualization results. (A) Before feature selection. (B) After feature selection.
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FIGURE 4

Classifiers’ performance dynamics. (A) Before feature selection. (B) After feature selection (Chi-square).

TABLE 1 Models’ performance before feature selection.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FPR (%) Misclassification (%)

MNB 98.36 97.34 99.21 98.27 2.38 1.64

LR 97.73 98.97 96.14 97.53 0.88 2.27

DT 76.17 66.28 99.77 79.65 44.55 23.83

SVM 99.23 99.65 98.70 99.17 0.30 0.77

KNN 55.22 51.08 99.82 67.57 83.93 44.78

substantially, though the lowest performer, with an accuracy of
96.04%, a precision of 92.35%, a recall of 99.79%, an F1-score of
95.93%, a FPR of 7.25%, and a misclassification rate of 3.96%.

Chi-square positively impacted all models, with KNN
benefiting the most. Its accuracy increased by 40.82%, precision
by 41.27%, and F1-score by 28.36%, along with a significant
reduction in FPR and misclassification rate of 76.68% and
40.82%, respectively. Meanwhile, LR showed slight but consistent
improvements: increases in accuracy of 0.19%, precision of 0.15%,
recall of 0.26%, and F1-score of 0.21%, respectively, and reductions
in FPR and misclassification rate of 0.13% and 0.19%, respectively,
as shown in Figures 5A–F.

Feature selection significantly improved the computational
efficiency of all models, as shown in Table 3. Training time was
highest for SVM (837.49 s before, 71.56 s after) and lowest for
KNN (0.0087 s before, 0.0076 s after). Inference time per query was
highest for KNN (1.966 ms before, 1.891 ms after) and lowest for

LR (0.000106 ms before, 0.000089 ms after). Peak memory usage
was highest for SVM (23.70 MB before, 20.36 MB after) and lowest
for MNB (3.51 MB before, 2.88 MB after). Model size was highest
for KNN (6.27 MB before and after) and lowest for MNB (1.31 MB
before, 0.08 MB after). Overall, feature selection reduced training
time, memory footprint, and model size, while maintaining efficient
inference across all models.

3.4 Cross-validation results for selected
features

The results from five-fold cross-validation, following Chi-
square feature selection, aligned closely with those from the single
train-test split, showing only slight variations across different
folds (Table 4). The cross-validation outcomes confirmed that the
model’s performance was consistent across folds, indicating that the

Frontiers in Big Data 08 frontiersin.org

https://doi.org/10.3389/fdata.2025.1686479
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Casmiry et al. 10.3389/fdata.2025.1686479

TABLE 2 Models’ performance after feature selection (Chi-square).

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FPR (%) Misclassification (%)

MNB 99.47 99.25 99.62 99.43 0.66 0.53

LR 97.92 99.12 96.40 97.74 0.75 2.08

DT 99.73 99.72 99.70 99.71 0.25 0.27

SVM 99.59 99.59 99.54 99.56 0.36 0.41

KNN 96.04 92.35 99.79 95.93 7.25 3.96

FIGURE 5

Impact of chi-square feature selection on classifiers’ performance. (A) Impact on accuracy. (B) Impact on precision. (C) Impact on recall. (D) Impact
on F1-score. (E) Impact on false positive rate. (F) Impact on misclassification rate.
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TABLE 3 Runtime and memory usage of models before and after feature selection.

Model Training time (s) Inference time (ms/query) Peak memory (MB) Model size (MB)

Before After Before After Before After Before After

MNB 0.018299 0.014423 0.000248 0.000161 3.51 2.88 1.31 0.08

LR 0.991392 0.206367 0.000106 0.000089 14.39 2.40 0.33 0.02

DT 61.112381 3.991875 0.017937 0.00963 9.84 8.09 1.95 0.10

SVM 837.489763 71.556955 0.528554 0.126762 23.70 20.36 1.04 0.26

KNN 0.008689 0.007574 1.965834 1.890653 6.28 5.44 6.27 4.34

TABLE 4 Models’ cross-validation results after feature selection.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) FPR (%) Misclassification (%)

MNB 99.46 ± 0.05 99.24 ± 0.09 99.63 ± 0.04 99.43 ± 0.05 0.68 ± 0.08 0.54 ± 0.05

LR 98.04 ± 0.12 99.09 ± 0.07 96.73 ± 0.28 97.90 ± 0.13 0.79 ± 0.06 1.96 ± 0.12

DT 99.70 ± 0.04 99.66 ± 0.05 99.71 ± 0.10 99.68 ± 0.05 0.31 ± 0.05 0.30 ± 0.04

SVM 99.62 ± 0.06 99.64 ± 0.11 99.54 ± 0.05 99.59 ± 0.06 0.32 ± 0.10 0.38 ± 0.06

KNN 95.63 ± 0.28 91.73 ± 0.52 99.75 ± 0.08 95.57 ± 0.27 8.05 ± 0.55 4.37 ± 0.28

TABLE 5 Comparative results with other related works.

Authors Accuracy Precision Recall F1-score

Potinteu and Varga (2020) 96% 90% 74% 81%

Jothi et al. (2021) 98% 98% 97% –

Chen et al. (2021) 98.57% 97.95% 99.22% 98.58%

Falor et al. (2021) 94% 85% 96% –

Joshi et al. (2022) 91% 91% 91% 91%

Crespo-Martínez et al. (2023) 97.23% – 97.3% 97.3%

Shakya et al. (2024) 95.55% 99% – –

Takyi et al. (2025) 99.4% 99.4% 99.4% 99.4%

Proposed model 99.73% 99.72% 99.70% 99.71%

results did not depend on a specific train-test split. Decision Tree
(DT) achieved the highest performance with an accuracy of 99.70
± 0.04%, a precision of 99.66 ± 0.05%, a recall of 99.71 ± 0.10%, an
F1-score of 99.68 ± 0.05%, a false positive rate of 0.31 ± 0.05%, and
a misclassification rate of 0.30 ± 0.04%. Multinomial Naïve Bayes
(MNB) and Support Vector Machine (SVM) also performed very
well, with an accuracy above 99%, precision and recall above 99%,
and low error rates. Logistic Regression (LR) remained steady at
an accuracy of 98.04 ± 0.12%, with a precision of 99.09 ± 0.07%,
a recall of 96.73 ± 0.28%, an F1-score of 97.90 ± 0.13%, a false
positive rate of 0.79 ± 0.06%, and a misclassification of 1.96 ±
0.12%. K-Nearest Neighbors (KNN), though significantly improved
after feature selection, was still the lowest-performing model, with
an accuracy of 95.63 ± 0.28%, a precision of 91.73 ± 0.52%, a recall
of 99.75 ± 0.08%, an F1-score of 95.57 ± 0.27%, a false positive
rate of 8.05 ± 0.55%, and a misclassification rate of 4.37 ± 0.28%.
Overall, these results demonstrate that the feature selection method

is robust, and the model’s performance is consistent across various
data folds.

3.5 Comparative results with other related
works

The proposed model’s performance was evaluated against
various related studies, as shown in Table 5. While deep learning
approaches may achieve comparable or superior generalization
on larger, heterogeneous datasets, our results show that feature
selection with classical ML can achieve competitive accuracy
(99.73%) and F1-score (99.71%) with lower computational costs
(training time 3.99 s, inference time 0.00963 ms/query, peak
memory 8.09 mb, and model size of 0.1 mb). However, these
results should be interpreted considering variations in datasets,
preprocessing steps, and algorithmic architectures across studies
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that may have influenced the comparative outcomes. For example,
Chen et al. (2021) and Falor et al. (2021) utilized deep learning
architectures such as convolutional neural networks (CNNs)
trained on tens of thousands of labeled SQL injection and
benign samples, focusing on hierarchical feature learning from
sequential data. Similarly, Potinteu and Varga (2020), Joshi et al.
(2022), and Takyi et al. (2025) employed LSTM-based models
capable of capturing temporal dependencies. These methods
achieved high accuracy (91%−99.4%) but required large datasets
and significant computational resources during training and
deployment. Conversely, researchers such as Shakya et al. (2024),
Jothi et al. (2021), and Crespo-Martínez et al. (2023) used
classical machine learning algorithms such as KNN, SVM, Logistic
Regression, and Random Forests, which are more computationally
efficient and easier to interpret but often less effective at modeling
complex features. The improved performance of the proposed
model is credited to the use of feature selection techniques, which
enhanced learning efficiency by removing redundant or irrelevant
attributes, resulting in more stable classification boundaries
and better generalization without the high computational costs
associated with deep learning. From a deployment perspective,
this approach is lightweight and suitable for real-time or resource-
limited environments such as institutional web applications and
local information systems. In conclusion, while the proposed
model performed well, its advantages should be considered within
the context of dataset variability, preprocessing methods, and
algorithmic architectures.

3.6 Additional analysis of the proposed
model

3.6.1 Error analysis results
The error analysis conducted on the proposed model

revealed only a small number of misclassifications, with counts
distributed evenly across SQLi types. Tautology-based, boolean-
based, time-based blind, and obfuscated queries each produced
two errors, while union-based, stacked queries, comment-based,
error-based, and function-based attacks contributed one each.
This balanced pattern indicates strong generalizability, as no
single attack type emerged as a systematic weakness. To
further illustrate, a tautology-based query such as (‘)) AS JPcN
WHERE 9939 = 9939 OR NOT 5463 = 5463) was occasionally
misclassified as benign due to its high lexical overlap with non-
malicious inputs containing conditional expressions. Similarly,
the boolean-based payload (select case when 6420 = 7941 then
1 else null ...) was misclassified because its conditional syntax
closely resembles legitimate SQL logic. An obfuscated fragment
(’JMoRSq<’“>SPXBve) also led to errors, as its irregular token
structure hindered proper feature extraction. A union-based
example, union select 1, load_file(’/etc/passwd’), was misclassified
in one instance, likely because the presence of file-reading
function calls and the union operator created token patterns
that partially overlapped with complex but benign multi-select
statements. These examples highlight the model’s limitations
in distinguishing between structurally valid yet semantically
malicious queries and in handling heavily distorted lexical patterns

not fully captured by the TF–IDF and Chi-Square feature
selection methods.

3.6.2 External data testing results
The external data testing results showed that the model

maintained a high performance, achieving an accuracy of 99.76%,
a precision of 99.66%, a recall of 99.84%, and an F1-score of
99.75%, with a false positive rate of 0.30% and a misclassification
rate of 0.24%. These results demonstrate the model’s ability to
preserve its detection strength on unseen data. However, it should
be noted that the external dataset used for testing (sqli.csv)
and a portion of the data used for model training (SQLiV3)
were both obtained from the Kaggle repository on sql injection
dataset. While the datasets are independent, they may share similar
characteristics or patterns due to being collected from related
environments. Therefore, further validation on more diverse and
heterogeneous datasets is recommended to fully assess the model’s
generalization capability.

4 Discussion

The experimental results showed that Chi-square feature
selection improved model performance across all classifiers.
Notably, DT and KNN demonstrated substantial improvement
from poor to excellent performance. MNB, LR, and SVM also
improved to a smaller extent, indicating that feature selection
reduced noise and redundancy across the dataset. The impact of
Chi-square feature selection varied across classifiers, which can be
due to differences in how algorithms handle high-dimensional and
noisy data. Models such as Decision Tree (DT) and K-Nearest
Neighbors (KNN) are very sensitive to irrelevant or redundant
features. For DT, too many features often lead to fragmented
splits and overfitting, as the model greedily splits the data even
when the selected attributes lack discriminative power. Reducing
the feature space makes sure splits are based only on statistically
significant attributes, which stabilizes the tree structure and
enhances generalization. Similarly, the substantial improvement
observed in the K-Nearest Neighbors (KNN) classifier after
applying Chi-Square feature selection can be explained by the
algorithm’s sensitivity to irrelevant and noisy features. Before
feature selection, KNN computed distances across thousands of
TF-IDF features, including many non-informative SQL tokens
such as FROM, SELECT, WHERE, AND, and NULL, as well as
punctuation-based tokens like /∗. . . ∗/. These common structural
terms occurred frequently in both benign and malicious queries,
artificially inflating the feature space and distorting Euclidean
distance calculations. For instance, the query SELECT pg_sleep(5)
AND ((( “wqeb” = “wqeb”), a typical time-based SQL injection,
was misclassified as benign because irrelevant structural and string
tokens masked the discriminative feature. After applying Chi-
square selection, the retained query became select pg_sleep and,
which preserved the key token pg_sleep, allowing the model to
identify the query as malicious correctly. Similarly, the conditional
query AND 6692 = (SELECT (CASE WHEN (6692 = 2402)
THEN 6692 ELSE (SELECT 2402 UNION SELECT 3794) END))
was correctly reclassified after irrelevant numeric tokens were
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removed. This reduction in feature noise effectively minimized the
curse of dimensionality, improved distance-based neighborhood
formation, and enhanced KNN’s ability to group similar samples
accurately. In contrast, models such as Support Vector Machine
(SVM) and Logistic Regression (LR) are more immune to high-
dimensional noise. SVM primarily depends on support vectors and
finds the optimal decision boundary by maximizing the margin,
which lessens the impact of irrelevant features. Logistic Regression
can shrink unhelpful coefficients, reducing the effects of noisy
dimensions. As a result, these models benefit from feature selection
but only see slight improvements in classification performance.
Multinomial Naïve Bayes (MNB) falls between these groups.
Although generally resistant to high-dimensional input because of
its probabilistic approach, MNB still gains from feature selection
because removing redundant terms sharpens class-conditional
probability distributions.

The near-perfect performance observed, particularly for the
Decision Tree model (99.73% accuracy), indicates that the
models effectively captured discriminative patterns in the SQL
query logs. Although such high accuracy could suggest potential
overfitting given the high-dimensional TF-IDF features that may
encourage memorization, the consistency observed across five-fold
cross-validation, together with the small and evenly distributed
misclassification counts for SQL injection queries in the Decision
Tree error analysis, mitigates this concern. Evaluation on an
external dataset produced comparable results, further supporting
the generalizability of the models. Chi-square feature selection
contributed by filtering out irrelevant and redundant features,
allowing the models to focus on the most informative terms.
However, in realistic deployment scenarios, factors such as unseen
query structures, evolving attack patterns, and noisy web traffic
could slightly lower performance. These results align with existing
studies (Gnana et al., 2016; Ahmad et al., 2019; Deng et al., 2019;
Qin et al., 2025), which highlight that feature selection enhances
performance when working with high-dimensional data, such as
the SQL injection detection task and models prone to overfitting
due to irrelevant features. The significant improvement in DT and
KNN reinforces earlier findings that such models are more sensitive
to high-dimensional input, and the marginal yet consistent gain in
MNB, SVM, and LR supports their known robustness, even in the
presence of noisy features. While feature extraction methods, such
as Bag-of-Words and TF-IDF, are essential for transforming raw
text into a numerical form, they often produce high-dimensional
representations. Feature selection, in contrast, plays a critical role
in identifying the most relevant features from these representations,
thereby improving model efficiency and generalizability. The study
contributes to the existing body of knowledge by offering empirical
evidence that Chi-square feature selection not only enhances
underperforming models but also refines the output of high-
performing models.

From a deployment perspective, feature selection also
contributes to practical efficiency in runtime and memory usage. In
real-world web applications where SQL queries must be inspected
in real time, reducing the number of processed features directly
translates to lower inference latency and faster decision-making.
This improvement is critical for online detection systems,
which must handle high query volumes without degrading user

experience or backend performance. Moreover, compact feature
subsets make models easier to update incrementally as new SQL
variants emerge, which supports adaptive detection pipelines.
Another key implication is security robustness. Attackers may
craft obfuscated or polymorphic SQL injection payloads that differ
syntactically but retain malicious intent. The findings suggest that
feature selection can strengthen the model’s focus on semantic
indicators rather than the superficial syntax, potentially increasing
resilience against such variants. This underlines the importance of
integrating optimized feature subsets into deployment frameworks
that must balance detection accuracy, computational efficiency,
and resistance to adversarial inputs.

5 Conclusion and future work

This study addresses the research problem of evaluating the
impact of feature selection on detecting SQL injection attacks in
web applications. The primary goal of the study is to demonstrate
how accurate feature selection can improve the performance
of machine learning models in identifying SQL injections. Key
findings indicate that feature selection has a significantly positive
effect, substantially enhancing all models by removing noisy and
irrelevant features. These findings imply that redundant and
irrelevant features generate noise and reduce generalizability;
therefore, feature selection should be prioritized before model
training, particularly for high-dimensional datasets. This study
highlights that the limited exploration of feature selection in prior
works represents a critical theoretical gap in the current body
of knowledge. By systematically demonstrating that optimized
feature subsets can yield higher accuracy and lower false positive
rates across models, this research provides empirical evidence that
the discriminative power of features, not just model complexity,
determines detection success. Consequently, feature selection
emerges as the missing bridge between accuracy, interpretability,
and computational efficiency in machine learning-based SQL
injection detection. This research has limitations, including the
need to validate the selected feature selection method on different
SQL injection multiclass data and other non-SQL injection attack
types. Further testing on independent real-world data is required
to confirm robustness. Although query types were balanced and
datasets randomized, residual differences between the custom
dataset and SQLiV3 may still affect generalizability. Additionally,
real-time deployment requires low-latency detection (typically
<200 ms per query) and resilience to evolving obfuscation
patterns. As the inference time for the proposed model was
0.00963 ms/query, practical deployment challenges, such as real-
time detection latency, evolving query obfuscation, and adaptive
adversaries, were not explored in this study. Future research
should address these considerations, including integrating feature
selection with deep learning architectures, developing adaptive
and incremental learning approaches, improving robustness
against adversarial SQL injection variants, and evaluating model
transferability across production web environments to ensure
real-time detection reliability. Overall, feature selection is essential
for boosting classification accuracy and reducing false positives in
SQL injection detection, particularly with sparse data.
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