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Bias in Al systems: integrating
formal and socio-technical
approaches

Amar Ahmad*, Yvonne Vallés and Youssef Idaghdour

Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Artificial Intelligence (Al) systems are increasingly embedded in high-stakes
decision-making across domains such as healthcare, finance, criminal justice,
and employment. Evidence has been accumulated showing that these systems
can reproduce and amplify structural inequities, leading to ethical, social,
and technical concerns. In this review, formal mathematical definitions of
bias are integrated with socio-technical perspectives to examine its origins,
manifestations, and impacts. Bias is categorized into four interrelated families:
historical/representational, selection/measurement, algorithmic/optimization,
and feedback/emergent, and its operation is illustrated through case studies
in facial recognition, large language models, credit scoring, healthcare,
employment, and criminal justice. Current mitigation strategies are critically
evaluated, including dataset diversification, fairness-aware modeling, post-
deployment auditing, regulatory frameworks, and participatory design. An
integrated framework is proposed in which statistical diagnostics are coupled
with governance mechanisms to enable bias mitigation across the entire Al
lifecycle. By bridging technical precision with sociological insight, guidance is
offered for the development of Al systems that are equitable, accountable, and
responsive to the needs of diverse populations.
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1 Introduction

Artificial intelligence (AI) technologies now play a central role in shaping decisions in
domains such as healthcare, criminal justice, finance, education, and employment. While
these systems can improve efficiency and scale, growing evidence shows that they often
reflect and reinforce existing societal inequalities (Mehrabi et al., 2021; Lacmanovic and
Skare, 2025). As Al models, especially those based on deep learning, become more complex
and difficult to interpret, the need to understand and address bias in their development and
deployment becomes increasingly urgent (Raji et al., 2022; Ferrara, 2024).

1.1 Audience and scope

This manuscript is submitted as a Mini Review. It draws on 72 published sources
and is intended as a tutorial synthesis for an interdisciplinary readership of machine-
learning practitioners, statisticians, and AlI-policy researchers. While we reference global
governance frameworks to motivate relevance, our primary contribution is technical:
we provide a formal bias decomposition and illustrate its use in practical lending and
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health-care contexts. Proposition 2, Lemma 1, and Corollaries 1-2
restate foundational results for didactic clarity and do not introduce
new theoretical claims or models.

With the advancement of deep-learning techniques, the
concern over bias, whether in the creation or execution of an
AT model, grows as well. What was once a theoretical concern
has become a practical and policy-relevant issue. Regulatory and
ethical frameworks are emerging globally, such as the OECD AI
Principles (OECD, 2019) and the U.S. Blueprint for an AI Bill
of Rights (White House OSTP, 2022). Investigative journalism
has also brought attention to this issue. For instance, ProPublica’s
2016 report revealed racial bias in criminal risk assessment
tools (Angwin et al., 2016), while the Gender Shades study exposed
major disparities in facial-recognition performance for darker-
skinned women (Buolamwini and Gebru, 2018). These cases
illustrate why addressing AI bias requires an interdisciplinary
approach, combining insights from computer science, law, ethics,
and the social sciences (Selbst et al., 2019; Crawford, 2021).

In a study conducted across five U.S. metropolitan
areas, Koenecke et al. (2020) reported that commercial speech-
recognition systems produced roughly twice the word-error rate
for speakers who self-identify as Black.

Likewise, Obermeyer et al. (2019), using claims data from a
large U.S. insurer, found that a widely deployed health-risk score
systematically underestimated the needs of Black patients relative
to White patients with comparable disease burden.

Concerns about bias in algorithmic systems date back to the
1980s and 1990s, when early expert systems were already found
to behave in discriminatory ways (Danks and London, 2017).
But those warnings were largely overlooked. In the 2010s, as
machine learning became widely adopted in high-stakes domains,
algorithmic harms drew broader attention (Barocas et al., 2019).
Landmark investigations, such as ProPublicas analysis of the
COMPAS tool (Angwin et al., 2016) and Buolamwini and Gebru’s
Gender Shades study (Buolamwini and Gebru, 2018), catalyzed
public concern and academic inquiry. These developments paved
the way for global debates about accountability, transparency, and
fairness in AI (Hardt et al., 2016; Hooker, 2021; Kleinberg et al.,
2019; Perra and Rocha, 2019; Rothschild and Stiglitz, 1970).

1.2 External validity and geographic scope

Most large-scale bias studies rely on datasets from the United
States or Western Europe. The magnitude, and sometimes even
the direction, of algorithmic bias can vary across jurisdictions
because protected attributes (race, caste, socio-economic status,
dialect) intersect with local histories of marginalization (Birhane
et al.,, 2022; Abebe et al.,, 2020). Results drawn from U.S. data,
such as (Koenecke et al., 2020; Obermeyer et al., 2019), therefore
must not be assumed to generalize to all global Black populations;
accent, dialect or income may be the operative factors elsewhere.
We flag this limitation to motivate cross-regional audits and the
study of low-resource fringe cases where bias often goes unnoticed
(Barocas and Selbst, 20165 Liu et al., 2018). Our aim is therefore
didactic rather than exhaustive, and we make no claim to systematic
coverage of the entire literature.
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Timeline of key milestones in the evolution of awareness and
regulatory responses to algorithmic bias, spanning from early
technical developments in the 1980s to global policy initiatives
introduced between 2021 and 2025.

Figure 1 traces the evolution of algorithmic bias, highlighting
major milestones from the 1980s to recent regulatory initiatives
introduced between 2021 and 2025. The timeline begins with
early expert systems in the 1980s, which exhibited discriminatory
patterns, and progresses to the introduction of the COMPAS
criminal risk assessment tool in 1998.

It further charts the rapid scaling of ML applications in critical
domains during the 2010s, the 2016 ProPublica investigation
exposing racial bias in COMPAS, and the 2021-2025 period,
marked by the Gender Shades study and emerging policy
measures addressing bias in Al systems, spanning racial, gender,
socioeconomic, and linguistic dimensions. These milestones
underscore the growing recognition of algorithmic bias and
motivate the need for a systematic taxonomy of its forms.
Accordingly, all subsequent sections are organized around four
analytically distinct but practically intertwined families of bias.
Historical or representational bias originates in unequal social
power relations that become encoded in textual or visual corpora;
evidence for its presence has usually been derived from dataset
audits or embedding association tests, quantified for example
by the Word Embedding Association Test (WEAT) effect size.
Selection and measurement bias arise when marginalized groups
are systematically omitted or mislabeled during data collection;
such bias has been detected through missingness heat maps, label-
flip analyses, and the selection ratio Ry in Equation 4.

Algorithmic or optimisation bias arises when empirical risk
minimization is carried out without any fairness constraint; its
magnitude can be measured with group-fairness metrics such
as equalized odds (defined later in Equation 14) or with the
amplification ratio o«(fy) (introduced in Equation 7). Finally,
feedback or emergent bias occurs once model outputs influence
future inputs, leading to self-reinforcing disparities that are
analyzed via the dynamical-systems framework laid out in
Equations 8-10.

This paper analyzes the origins of Al bias by looking at both
technical and sociotechnical factors. It examines how biases in data,
model design, and feedback loops lead to real-world harms. The
paper also assesses current strategies for mitigating these harms,
ranging from dataset design to regulatory oversight, and proposes
an integrated framework for building more equitable AI systems.
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1.3 Clarifying scope, definitions, and
evidence base

A clear foundation for the discussion that follows is provided
in this subsection by clarifying the scope of the mini-review, stating
the definition of bias adopted in the manuscript, and outlining the
measurement procedures employed in the cited studies.

Operational Definition: A learning system is regarded as
biased if, for some protected attribute A such as race, gender,
or disability, at least one widely accepted fairness metric reports
a non-zero disparity between the predicted outcome ¥ and the
ground-truth label Y. Formally,

IFst. F(Y, Y, A) > 0, (1)

where F may instantiate a group fairness statistic (for example,
ATPR, AFPR, or ARisk in Equation 12), an individual fairness
distance, or a causal counterfactual divergence.

Bias is categorized into four interrelated families: historical or
representational bias, selection or measurement bias, algorithmic
or optimization bias, and feedback or emergent bias. Each category
is characterized by distinct mechanisms through which unfairness
can be introduced or reinforced, and their manifestations are
illustrated in this mini-review through case studies in facial
recognition, large language models, credit scoring, healthcare,
employment, and criminal justice.

Although race and gender provide the most thoroughly
documented examples in the current literature, the analytic
framework we employ extends to disability status, age, caste, dialect,
religious affiliation, and their many intersections (Hanna et al,
2020; Holstein et al., 2019).

In more practical terms, a learning system is considered
biased whenever, for a protected attribute such as race, gender, or
disability, any widely recognized fairness test reveals a difference
between what the model predicts and what actually occurs.
The fairness test can be: (i) Group fairness, which checks, for
example, whether one group receives a higher false-positive rate
or lower true-positive rate than another. (ii) Individual fairness,
which asks whether similar individuals are treated similarly. (iii)
Counterfactual fairness, which asks whether the decision would
change if only the protected attribute were changed.

This single rule of thumb provides a unifying criterion that
accommodates the heterogeneous fairness notions encountered
across disciplines, enabling discussions about bias that span
different research communities.

Bias is evaluated at three successive stages of the machine-
learning pipeline. During dataset development the divergence
Bgata (Equation 2), the selection ratio Ry (Equation 4), and the
label-bias statistic Biype (Equation 5) are computed to identify
structural skews before any model training commences. During
training the primary task loss is optimized subject to fairness
constraints of the form Equation 15 or fairness penalties of the
form Equation 16. During deployment the closed-loop system is
continuously monitored for drift in disparity measures and for
instabilities indicated by a spectral radius p(J;;) > 1 (Equation 10).

Even when an investigation focuses on a single bias type, the
remaining types often surface implicitly. For instance, debiasing
word embeddings tends to alter class priors, which can re-introduce
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selection bias at train-test time. Post-hoc threshold adjustment
may satisfy a chosen fairness constraint momentarily, but feedback
dynamics can erode the gains once the model interacts with
the world. Contemporary regulatory instruments, exemplified by
the OECD AI Principles and the NIST AI Risk Management
Framework, are already mandating end-to-end artifact tracing that
spans data, model, and deployment environments. A panoramic
view therefore remains indispensable, even if subsequent research
narrows its empirical scope.

No claim is made that the metrics highlighted here exhaust
the space of fairness diagnostics, nor that the documented case
studies form a complete catalog of algorithmic harm. The intention
is rather to provide a precise formal substrate, together with clearly
referenced empirical findings, such that future work can select,
refine, or discard elements as appropriate for narrower research
questions. In this way the mini-review balances breadth with
definitional and evidentiary clarity, thereby addressing the main
concern articulated in the feedback.

1.3.1 TTP (technical, technical-policy-aware)

We make three tightly coupled contributions aimed at both
method builders and regulation-minded auditors: (i) a formal
decomposition of algorithmic bias (Lemma 1) that cleanly separates
data imbalance from model capacity; (ii) two corollaries that
transform the decomposition into domain-agnostic mitigation
rules ready for turnkey use in credit-scoring pipelines; and
(iii) an explicit mapping of those rules onto current legal
obligations, including EU AI Act Articles 10 & 15 and U.S.
ECOA/CFPB guidance, thereby showing how practitioners can
satisfy technical performance targets and policy compliance within
one unified workflow.

As outlined above, bias can be understood through four
interrelated families-historical or representational, selection or
measurement, algorithmic or optimization, and feedback or
emergent. Each operates through distinct mechanisms by which
unfairness can be introduced or reinforced across the Al lifecycle.
Their manifestations are illustrated in this mini-review through
case studies spanning facial recognition, large language models,
credit scoring, healthcare, employment, and criminal justice.

1.4 Bias beyond supervised learning

Most case studies discussed so far involve supervised learning,
where bias is measured as a disparity between labels and
predictions. Two other paradigms, unsupervised representation
learning and modern generative models, exhibit related but distinct
bias mechanisms.

1.4.1 Unsupervised pipelines

Because no ground-truth labels exist, bias manifests in the
geometry of the learned embedding space or in cluster-membership
decisions. Empirical studies show that sociodemographic groups
may form separable sub-manifolds, enabling downstream tasks
to inherit implicit group tags Li et al. (2020); Jaiswal et al.
(2018). Mitigation therefore targets the representation itself
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(e.g. adversarial invariance, fair PCA) rather than confusion-
matrix gaps.

1.4.2 Generative Al

Large language and diffusion models sample from an implicit
distribution ps(y | x). Hallucinations correspond to low-density
outliers, whereas demographic stereotypes correspond to a mean
shift ||ug — p*ll > 0 relative to an externally specified ground-
truth mean p* Jietal. (2023); Bender et al. (2021). Both phenomena
fall under our feedback/emergent family because they arise after
repeated model, user interaction. Debiasing techniques include
distribution calibration, rejection sampling, and reinforcement
learning from human feedback Ji et al. (2023).

In summary, supervised, unsupervised, and generative settings
share common root causes, skewed data, optimization objectives,
and feedback loops, but the measurement locus of bias shifts
from label disparity (supervised) to representation geometry
(unsupervised) to distribution shift (generative).

1.4.3 Literature-selection rationale

The 72 references cited in this Mini Review were originally
curated as core readings for the undergraduate course Al and
Human Decisions (New York University Abu Dhabi, 2025). They
were retained because each either (i) presents well-documented
empirical evidence of one of the four bias families introduced
below, or (ii) describes a mitigation technique that has been
independently reproduced in at least one applied domain. Our goal
is therefore pedagogical rather than exhaustive, and we make no
claim to systematic coverage of the full literature.

1.4.4 Road-map

Section 2 categorizes different types of bias found in AI systems.
Section 3 presents real-world examples across several domains.
Section 4 reviews current mitigation strategies. Section 6 reflects
on open challenges, and Section 7 summarizes the main findings.
Supplementary material appears online.

2 Types of bias in Al

Biases in training data are among the most thoroughly
documented sources of algorithmic unfairness (Mehrabi et al,
2021; Lacmanovic and Skare, 2025). As Al systems are increasingly
adopted in sensitive areas such as healthcare, finance, and criminal
justice, concerns about fairness have intensified. A growing body
of research shows that these technologies often reproduce and even
exacerbate existing social inequalities.

Algorithmic biases in health care arise through three main
pathways. First, these biases often reflect the persistence of
historical inequities embedded in legacy datasets, which encode
disparities in access to care and treatment. Second, they can result
from the reliance on flawed proxies, such as healthcare costs being
used as a substitute for health needs. As a study (Obermeyer
et al, 2019) demonstrates, this approach disproportionately
underestimates the health needs of Black patients, as less money

Frontiersin Big Data

10.3389/fdata.2025.1686452

is spent on their care despite similar levels of illness compared
to White patients. Finally, even data that appears objective can
perpetuate and amplify social stratification, particularly when
learning algorithms emphasize correlations that mirror existing
systemic inequities. Addressing these sources of bias, such as
reformulating proxies, is critical to improving fairness and equity
in predictive health care systems.

Selection bias introduced during data collection is another
significant source of algorithmic unfairness. Datasets often inherit
the prejudices of previous decision-makers or reflect structural
inequalities in society at large (Barocas and Selbst, 2016). For
instance, individuals from historically disadvantaged groups may
be underrepresented in the data or misrepresented due to
lower data quality, stemming from limited access to services,
technological barriers, or biased institutional practices. These gaps
are rarely random: marginalized communities are more likely to
reside in data shadows, leading to their systematic omission from
predictive models. Such omissions are difficult to detect and even
harder to correct, especially when these biases are normalized
within routine data workflows. The result is a feedback loop
where historical exclusion is formalized into seemingly objective
algorithmic decisions. Furthermore, measurement disparities
also play a role (Chen and Hooker, 2023). When model
optimization prioritizes overall accuracy without regard to group-
specific performance, predictive outcomes can vary substantially
across demographic groups. For example, instruments calibrated
for majority populations may systematically underperform for
marginalized groups, further entrenching disparities.

When machine learning models are trained on biased or
incomplete data, they often internalize these patterns and treat
them as predictive features. This is evident in employment data,
where long-standing gender wage gaps, estimated between 17%
and 21%, persist (Blau and Kahn, 2017). Similarly, in the U.S.
mortgage market, Black and Latinx borrowers were found to pay
between 5.4 and 7.7 basis points more than White borrowers with
comparable credit risk, with disparities rising to 13.8 basis points
in predominantly minority neighborhoods (Bartlett et al., 2022).
These examples underscore how algorithmic systems, when left
unchecked, can reinforce deeply rooted social inequities.

Algorithmic decision-making can obscure responsibility for
discriminatory outcomes by presenting them as the product
of neutral computation rather than human or institutional
bias (Barocas and Selbst, 2016) observed. Such biases may arise
from statistically valid but socially harmful patterns, which can
reinforce historical inequalities (Selbst et al., 2019). Because these
effects lack the transparency of explicit discrimination, they are
often more difficult to detect, interpret, or contest.

2.1 Mathematical formalization

The gap between the training distribution Py and the target
(population) distribution Ppep, can be quantified with the Kullback-
Leibler (KL) divergence

Pirain(x)
Bdata = DKL(Ptrain ” Ppop) = EXNP"a;n[IOgmL]; (2)

Ppop (x)
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which is finite whenever Piyin < Ppop-
Let the binary variable S € {0, 1} indicate whether an individual
is selected into the data set. The observed density is

Prrain(x) = Ppop(x | $=1) # Ppop(x)> (3)
so the selection ratio
P .
Re(x) = M (defined only where Ppop(x) > 0)  (4)
Ppop(x)

identifies over- (Rge > 1) and under-sampled regions.
Let Y* denote the ideal (error-free) label and Y the observed
label. For a protected attribute value A=a we define

Bupa(6) = Exuc (Y =11 X,A=a) - Y =1| X, A=a)],
©)
measured in percentage points (difference of Bernoulli means).
Appendix 8.1 provides a fully worked numerical example on the
UCI German-Credit data set (Hugging Face mirror), including the
empirical audit results, Bg,;, = 0.067 nats, Ry = 0.90, and By,pe] =
—7.5 pp, that illustrate every step of the calculation pipeline.

2.2 Amplification mechanisms

Given a model fy with parameters 6, empirical risk
minimization (ERM) solves

min (B~ pen [ £06(0,0)] + 220} ©
where L is the task loss and €2 a regulariser.

Let D(-||-) be a divergence (we use KL for both numerator and
denominator). For any two input distributions P, P’ € P that are
absolutely continuous w.r.t. a common base measure, define

Dxu(fo(P) |l fo(P")
Dxy(P || P)

a(fy) (7)

P,P'eP

>

a(fp)

differences present in the data.

1 indicates that the model magnifies distributional

2.3 Dynamical-Systems perspective

Let the system state be s; € R? and the algorithmic action
a; e R™. A generic feedback system is

ar = g(Sz,ﬁ),

with policy parameter 8. Eliminating a; gives the closed-loop map
h(s) = f(s, g(s, B)). Its Jacobian is

(8)

St+1 = f(st)at)’

f of g
= — —_— —, 9
Ih as da 0Os ©)
—_— ==
(s) (a) ],
U imo
and the system is (linearly) unstable when
o) > 1, (10)
Frontiersin Big Data
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where p(-) denotes the spectral radius.

Let p¢(x) be the predicted crime probability at location x € X
and time ¢, and let ¢¢(x) > 0 be the observed crime count. A simple
feedback update is

Prn(0) = (1 =y)pilx) + V/Ct(x),

ci(u) du
X

y € [0,1]. (11)

1.
When the closed-loop spectral radius (Equation 10) exceeds 1,

The normalizing denominator ensures f x Prr1(u) du

small spatial perturbations-often reflecting historical over-

policing-grow exponentially, entrenching bias; for p(J;) < 1
they decay.
Together, Equations2-11  provide a  self-consistent

mathematical framework for analyzing how statistical biases
arise, propagate through learning objectives, and are amplified by
real-world feedback.

Figure 2 illustrates the evolution of bias magnitude over time
in algorithmic systems, comparing scenarios with and without
feedback effects. In systems influenced by feedback loops (red
curve, p > 1), initial disparities are amplified by the model’s
outputs, resulting in a compounding increase in bias over time. This
dynamic mirrors real-world contexts such as predictive policing
or credit scoring, where model predictions shape future data
collection and institutional responses, creating a self-reinforcing

—— With feedback effects
S - - - Without feedback effects
o |
0
o |
o ¥
°
2
c
<)
S o |
s ®
122
Rl
m
o |
«
o |
=
o 4
T T T T T T
0 2 4 6 8 10
Time
FIGURE 2
Dynamical evolution of bias magnitude over time, contrasting
systems with feedback effects (p < 1, red solid line) and those
without such effects (p < 1, dark-blue dashed line). Feedback loops
can amplify initial disparities, leading to compounding increases in
bias over time, whereas stable systems show slower growth that
eventually plateaus. This conceptual illustration underscores the
importance of accounting for feedback dynamics when assessing
long-term fairness impacts in real-world Al deployments. The axes
depict abstract time progression and relative bias magnitude, and do
not represent empirical measurements.
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cycle of bias. In contrast, the black dashed line represents a
stable system without feedback effects (e.g., p < 1), where bias
levels increase slowly and eventually plateau. This comparison
highlights the critical role of feedback loops in exacerbating bias
and underscores the importance of incorporating these dynamics
into fairness assessments. Ignoring feedback effects can lead to
a significant underestimation of the long-term societal harms
posed by biased AI systems, emphasizing the need for proactive
interventions to disrupt these cycles.

2.4 Emerging dimensions of bias in Al

Traditional categorisations of bias, namely data, algorithmic,
and representational bias, have been extended to incorporate
several emerging dimensions that reflect recent developments in
artificial intelligence.

Generative models, including large language and multimodal
systems, are often found to produce hallucinated content-outputs
that sound fluent but contain incorrect or misleading information.
These hallucinations are especially likely when the input is
ambiguous, and they become more serious in sensitive fields
such as medicine or law (Huang et al, 2025). This issue,
sometimes referred to as semantic drift, has been studied as a
gap between how natural the language sounds and how accurate
the facts are. In addition, it has been shown that generative
systems trained on large datasets can pick up and repeat social
stereotypes. These biases, which are already present in the data,
can be amplified in both text and image generation tasks (Huang
et al, 2025). As a result, stereotypes about gender or race
may be reinforced without being directly programmed into
the models.

Recent evidence from medical AI applications shows
that multimodal foundation models, such as vision-language
architectures, encode and amplify demographic biases across
modalities. For instance, state-of-the-art chest X-ray models have
been shown to underdiagnose historically marginalized subgroups,
including Black female patients, despite their apparent expert-level
performance (Seyyed-Kalantari et al., 2021).

Multimodal models that combine data sources such as
images, structured clinical records, and time-series signals often
outperform unimodal systems in predictive tasks. While these
performance gains are well documented, fairness outcomes tend
to vary across subgroups. Adding new modalities during training
has been shown to improve overall accuracy, yet disparities in
fairness metrics-such as true positive rates and demographic
parity-can persist or even increase depending on the evaluation
setting (Sampath et al., 2025).

Missing modalities at inference time further complicate
deployment. When inputs are incomplete, model performance
declines, and fairness across demographic groups is compromised.
This sensitivity to data availability raises concerns about the
robustness of multimodal Al systems in high-stakes environments,
particularly in healthcare. The findings emphasize the need to
evaluate multimodal models beyond accuracy, with equal attention
to equity and reliability (Sampath et al., 2025).
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Temporal bias has been recognized in sequential decision-
making systems, including reinforcement learning and adaptive
testing frameworks. In such contexts, fairness-related challenges
have been found to differ substantially from those encountered
in static classification tasks. While most existing correction
approaches disregard temporal dependencies, recent work has
demonstrated that attention-based probabilistic models can
be effectively employed to correct for long-range temporal
patterns (Nivron et al, 2025). Their method re-frames bias
correction as a probabilistic modeling task, yielding more accurate
adjustments in sequential data and offering promising implications
for fairness in time-dependent machine learning applications.

3 Examples of bias in Al

3.1 Facial recognition systems

Facial recognition technologies remain among the most visible
and critically examined domains for algorithmic bias. Seminal
work by Buolamwini and Gebru (2018) revealed stark disparities
in gender classification accuracy across demographic groups,
with commercial systems exhibiting error rate gaps exceeding
30 percentage points between lighter-skinned males and darker-
skinned females. These disparities stem from imbalanced training
data, underrepresentation of non-White subgroups, and evaluation
practices that often fail to account for intersectional fairness.
Although some technical improvements have been reported in
subsequent audits, systemic bias persists, particularly when model
performance is reported in aggregate rather than by subgroup (Raji
et al, 2022). This emphasizes that commercial benchmarks
often obscure disproportionate harms by failing to disaggregate
performance data, thereby enabling biased systems to appear more
equitable than they are in practice.

Table 1 summarizes gender classification error rates reported
for three commercial systems Microsoft (MSFT), Face + +,
and IBM, across four demographic subgroups (Buolamwini and
Gebru, 2018). Error rates are averaged across the Pilot Parliaments
Benchmark (PPB) and its South African subset. While MSFT
shows lower absolute error rates than the other systems, it
still exhibits substantial disparities: the average error for darker-
skinned females (22.3%) remains over 22 percentage points higher
than for lighter-skinned males (0.0%). All three classifiers share
this pattern of intersectional bias, consistently performing worst
on darker-skinned females and best on lighter-skinned males.
These disparities persist despite differences in overall accuracy,
underscoring that lower error rates do not imply fairness. Given the
opacity of commercial model development pipelines, it is unclear
whether these differences reflect inclusive training data, threshold
tuning, or optimizations favoring majority groups.

Most widely used facial analysis datasets, such as
LFWA+, CelebA, COCO, and IMDB — WIKI, exhibit extreme
overrepresentation of White individuals, with only minimal
inclusion of non-White subgroups. This imbalance in training
and benchmark datasets contributes to the persistent disparities
in model performance across racial and ethnic groups. In
response to these limitations, the FairFace dataset was explicitly
curated to ensure balanced representation across seven major
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TABLE 1 Average gender classification error rates across the PPB and
South African datasets for each demographic group and vendor, based
on Buolamwini and Gebru (2018).

Demographic group MSFT Face + + IBM
Darker-skinned females 22.3% 35.3% 33.9%
Darker-skinned males 3.0% 0.6% 8.9%
Lighter-skinned females 0.9% 8.6% 3.6%
Lighter-skinned males 0.0% 0.4% 4.3%

racial categories, including Black, Latino, East Asian, Southeast
Asian, Indian, and Middle Eastern populations. This diversity
enables models trained on FairFace to demonstrate improved
generalization and subgroup fairness, particularly for historically
underrepresented groups (Karkkainen and Joo, 2021).

3.2 Bias in large language models

Large language models (LLMs) systematically perpetuate and
amplify societal stereotypes due to their training on web-scale
corpora, as demonstrated by benchmark studies and embedding
space analyses (Bender et al, 2021). The Word Embedding
Association Test (WEAT) S(X,Y,A,B) (Caliskan et al, 2017)
quantifies these biases by measuring the cosine similarity between
target concepts (e.g., male/female names) and attributes (e.g.,
career/family words), revealing persistent gender and racial
associations (Kotek et al., 2023; Cheng et al., 2023).

3.2.1 Evidence grade and provenance

Unless noted otherwise, all bias percentages that follow are
verbatim from the Parity Benchmark PB-1.1 released by Simpson
S. et al. (2024). PB-1.1 contains 350 k English prompt-response
pairs covering 14 stereotype categories. Five U.S-based crowd-
workers rate each response on a four-point Likert scale; the per-
category mean (0-100 %) is the “bias score” we quote here.
Limitations: (i) prompts are English-only; (ii) rater demographics
are not globally representative; (iii) the scores measure perceived
stereotype frequency, not downstream harm. We reproduce the
published means and add no new datapoints.

As shown in Figure 3, modern LLMs exhibit striking differences
in bias severity across categories. The plotted percentages are drawn
directly from the Parity Benchmark (PB-1.1) dataset introduced
by Simpson S. et al. (2024), which evaluates language-model
responses across protected-category prompts. For example, GPT-
40 shows extremely high bias scores for colonial bias (98.18%),
colorism (98.04%), and disability (97.67%), while Claude 3.5
exceeds 94% on measures of sexism, racism, and homophobia.
In contrast, Gemini 1.0 presents lower benchmark scores across
most categories (42.37-88.37%), though it still exhibits measurable
bias. These quantitative results reflect disparities in training data
and mitigation strategies as well as the persistence of bias in
model outputs.

Importantly, benchmark performance does not capture the full
extent of representational harm. High-scoring models like GPT-4
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and Claude 3.5 may still generate biased or stereotypical language
in open-ended text. For instance, Cheng et al. (2023) found that
GPT-4 and GPT-3.5 tend to associate terms like resilient with Black
women and petite with Asian women, reinforcing essentialising
narratives. Bias thus manifests not only in classification metrics,
but also in latent semantic patterns, including dialect preferences
and cultural framing. This highlights the need to evaluate models
not just for accuracy, but for the broader implications of their
linguistic behavior.

3.2.2 Disability-related bias in LLMs

Using the same Parity Benchmark PB-1.1 (Simpson S. et al,
2024), the disability category shows some of the highest stereotype
scores: GPT-40 97.7%, Claude 3.5 94.1%, Llama 3 89.8%, Gemini
1.5 87.9 %, Gemma 1.1 83.1%, and Gemini 1.0 72.1%. Because a
score of 0 % would indicate no stereotypical content, these figures
show that disability-related bias is at least as severe as the race- and
gender-based disparities discussed above, underscoring the need to
look beyond the “usual two” protected attributes.

3.3 Bias in algorithmic credit scoring

Algorithmic credit scoring, especially using modern machine
learning, is often viewed as a more objective alternative to human
decision-making. However, growing evidence shows that these
systems frequently replicate, and can even intensify, historical
patterns of financial exclusion through feedback effects. This
dynamic risks creating a cycle in which individuals from
marginalized groups are denied credit or offered worse terms,
thereby limiting their ability to build favorable credit histories.

Large-scale studies from the U.S. mortgage market demonstrate
that machine learning (ML) models can exacerbate racial disparities
in lending outcomes, even when protected attributes such as race
or ethnicity are explicitly excluded from model inputs (Bartlett
et al., 2022; Fuster et al., 2021). This phenomenon arises from two
interrelated mechanisms. First, model flexibility: nonlinear learners
(e.g., random forests, gradient boosting, deep neural networks)
capture complex interactions among borrower characteristics,
leading to greater dispersion in predicted default risk. Compared
to simpler models such as logistic regression, the prediction
distribution from more flexible models often constitutes a mean-
preserving spread, which disproportionately affects applicants
whose financial profiles exhibit greater variability, often due
to systemic socioeconomic inequities. In particular, Black and
Hispanic borrowers are more likely to be placed in the upper tail
of the risk distribution and consequently face higher rejection or
pricing rates, even when average risk levels remain comparable.
Second, proxy reconstruction: even in the absence of explicit racial
or ethnic variables, features such as ZIP code, employment history,
and income can act as proxies, enabling the model to infer sensitive
attributes indirectly. As a result, model outputs risk embedding
and amplifying the structural inequalities already present in the
training data.

Empirical analyses confirm these patterns. Between 2009
and 2015, ML credit models approved more applicants overall
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FIGURE 3

Language Model

Bias scores (%) across language models, measured using the Parity Benchmark Simpson S. et al. (2024). Higher values indicate stronger model bias.
GPT-40 (GPT.40) consistently shows high bias scores across all categories, notably for colonial bias (98.18%), colorism (98.04%), and disability
(97.67%). While Gemini 1.0 also exhibits persistent biases across all types, its scores are relatively lower (42.37-88.37%) compared to other models.

than logistic regression, yet conditional on the same predicted
probability of default, Black and Hispanic borrowers were charged
higher interest rates and experienced greater variability in credit
outcomes compared to White borrowers (Bartlett et al., 2022).
Similar dynamics have been observed in other domains, such
as insurance underwriting, auto loans, and investment advising,
where ostensibly neutral features encode legacies of residential
segregation and income stratification. These findings highlight the
importance of fairness-aware model design, such as counterfactual
fairness representations and equalized-odds constraints, along with
rigorous auditing practices and regulatory oversight that treat
proxy reconstruction as a form of indirect discrimination.

3.4 Healthcare applications

Clinical decision algorithms can only lead to optimal outcomes
when grounded in current medical knowledge, yet they have been
shown to systematically underperform for certain demographic
groups, resulting in disparities in care (Dennstadt et al., 2021).
A widely cited example involves healthcare cost prediction
models that underestimated the needs of Black patients by
using past healthcare expenditures as a proxy for medical
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necessity (Obermeyer et al, 2019). This approach encoded
structural inequalities into risk assessments, as historical spending
patterns reflect unequal access to care rather than actual
health status.

3.4.1 A simple group-level fairness diagnostic

Let ¥ € [0,1] denote the predicted risk of a binary outcome
Y € {0,1} and let A € {0,1} mark membership in a protected
group (e.g., A = 1 for Black patients, A = 0 otherwise). Define
the risk-score gap

Ak := E[Y |A=0]—-E[Y|A=1]. (12)

A non-zero A flags systematic under- or overestimation of
risk for one group relative to the other.

In light of known clinical biases, it is important to consider
how AI can assist in improving patient care. As machine
learning becomes increasingly involved in health care decisions,
assessing algorithmic biases by comparing prediction accuracy
across demographic groups is crucial. Once algorithmic bias is
uncovered, clinicians and AI must work together to identify the
sources of algorithmic bias and improve models through better data
collection and model improvements (Chen et al., 2019).
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TABLE 2 EU medical device risk classification (adapted from Mayer et al.,
2021).

Risk level Class Example devices

High risk Class I1I Implanted devices (e.g., pacemakers,
intravascular catheters)

Medium risk Class ITaand IIb | Diagnostic monitors, standalone software,
imaging systems

Low risk Class I Non-invasive basic tools (e.g., stethoscopes,
thermometers)

Medical devices used in vascular aging assessment are classified
according to risk-based regulatory frameworks, which determine
the level of oversight required prior to clinical use. Table 2
summarizes the EU classification system, which includes Class I
(low risk), Class IIa and IIb (medium risk), and Class III (high
risk) categories (Mayer et al., 2021). For example, non-invasive
diagnostic tools such as digital blood pressure monitors, pulse
wave velocity sensors, and imaging devices like MRI or ultrasound
scanners typically fall under Class ITa. More complex technologies,
such as CT/PET scanners and standalone diagnostic software,
are classified as Class IIb. Invasive devices like catheters, used
for coronary assessments, are considered high risk and placed in
Class III.

These EU classifications are broadly aligned with the regulatory
frameworks used in the United States (FDA) and Australia (TGA),
which also adopt a three-tiered system based on device risk.
While CE marking is required for EU and Australian markets,
U.S. regulations involve pathways such as 510(k), De Novo, or
Premarket Approval (PMA), depending on device risk and novelty.
Risk classification further determines requirements for traceability,
post-market surveillance, and clinical evaluation (Mayer et al,
2021).

Importantly, while these classifications are essential for
ensuring safety, they can inadvertently contribute to bias in device
development and deployment. Lower-risk categories typically
face fewer regulatory hurdles, potentially limiting the depth of
clinical validation across diverse populations. For instance, Class
IIa devices may be approved without sufficient evaluation of
performance differences by sex, age, or ethnicity. Moreover, the
financial and regulatory burden associated with high-risk categories
can discourage the development of advanced devices tailored
for underrepresented groups. These dynamics underscore the
need to incorporate equity considerations into device validation
standards across all risk classes to ensure fairness in vascular
aging assessments.

3.5 Employment tools

Al technologies are increasingly integrated into recruitment
workflows, automating tasks such as applicant screening, interview
scheduling, and candidate evaluation (Chen, 2023). Table3
summarizes the key functions of Al-driven recruitment tools,
the causes and types of discrimination they may perpetuate,
and strategies to mitigate these issues. These tools assess
eligibility criteria, analyze candidate expressions, and predict
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TABLE 3 Summary of Al-driven recruitment functions, causes of
discrimination, and mitigation strategies (adapted from interview data).

Category Examples

e Sourcing: Automated application reviews, eligibility
assessments, and scoring mechanisms.

Interview scheduling: Auto-scheduling, analysis of
candidate expressions, and chatbot-based Q&A.
Selection: Predicting candidate performance,
optimizing compensation packages, and ranking
applicants.

Al recruitment
functions

Causes of
discrimination

Al software issues: Bias in algorithmic design, reliance
on skewed training data, and poor accessibility for
diverse users.

User behavior: Insufficient training for recruiters, and
deliberate manipulation of chatbot systems by
candidates.

Types of
discrimination

Extrinsic factors: Biases based on gender, nationality,
and other observable traits.

Intrinsic factors: Discrimination linked to personality
traits, cognitive abilities, or communication styles.

Anti-
discrimination
measures

Technical tools: Implementation of fairness-aware
algorithms, guidance for inclusive software design,

and machine learning fairness constraints.
Non-technical measures: Regulatory oversight,
Al-specific hiring laws, and independent third-party

audits.

future performance. However, numerous studies have highlighted
that Al systems can unintentionally replicate or even exacerbate
hiring biases. Such discriminatory outcomes often stem from
flawed software design, biased training datasets, or inaccessible
user interfaces. Furthermore, users may exploit these systems by
manipulating inputs, such as simulating ideal responses in chatbot
interviews, to achieve favorable results.

Discrimination manifests along both extrinsic (e.g., gender,
nationality) and intrinsic (e.g., personality traits, IQ scores)
dimensions. To address these concerns, technical solutions such
as fairness-aware machine learning and guidance tools are being
developed. Non-technical safeguards, including legal oversight,
third-party audits, and government regulation, are also essential to
ensure ethical deployment of Al in employment decisions.
(2014-2017)
systematically penalized résumés that mentioned women’s

Amazon’s internal recruitment system
colleges or included verbs more frequently used by female
candidates (e.g., volunteered, mentored) (Dastin, 2018). The
algorithm had learned to associate such features with lower hiring
likelihood, mirroring historical hiring patterns in which men were
overwhelmingly preferred.

Algorithmic hiring systems often lack transparency, which
hinders efforts to evaluate how models are developed and whether
they adhere to anti-discrimination laws. Vendor practices, such as
how prediction targets are defined and how de-biasing is applied,
can introduce legal and ethical risks, particularly under statutes like
the ADA (Raghavan et al., 2020).

Commercial automated speech recognition (ASR) systems
exhibit significantly higher word error rates for Black speakers than
for White speakers, despite using the same spoken content. This
disparity, documented across systems from Apple, IBM, Google,
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Amazon, and Microsoft, underscores how linguistic technologies
can reflect and amplify racial inequalities (Koenecke et al., 2020).

The U.S. Equal Employment Opportunity Commission
(EEOC) and the Department of labor released the AI and
Inclusive Hiring Framework (2024), which recommends pre-
deployment bias audits and transparent, accessible model
explanations (Gigante et al, 2024). New York City Local Law
144 requires third-party bias audits and public disclosure of
impact ratios before deploying automated employment decision
tools. The EU AI Act similarly classifies Al used in labor-related
decision-making as high risk, mandating conformity assessments
and continuous post-market monitoring.

3.6 Criminal justice systems

Risk assessment instruments in criminal justice decision-
making have gained wide traction for their promise of data-
driven objectivity. Tools such as COMPAS, used in parole, bail,
and sentencing determinations, aim to streamline evaluations
of an individual’s likelihood of recidivism. However, scrutiny
reveals systemic inequities in how such models are developed
and deployed. ProPublica’s investigation of COMPAS, for instance,
showed that Black defendants were nearly twice as likely as White
defendants to be wrongly categorized as high-risk recidivists,
despite comparable actual reoffending rates (Angwin et al., 2016).

Examples were presented in which COMPAS scores labeled
individuals with extensive criminal histories as low risk. Such
outcomes were attributed to the lack of transparency in the
COMPAS system, potentially resulting in unsafe conditions
for the public. Even if COMPAS satisfied some reasonable
definition of fairness, its lack of transparency raises concerns
about procedural fairness, particularly when misclassifications or
unexplained discrepancies in risk scores affect individual outcomes.
It has been established that COMPAS does not outperform
simpler, interpretable models in predicting recidivism. Therefore,
the continued use of complex, proprietary models, despite their
opacity, cost, and susceptibility to error, has not been justified. The
perceived superiority of black-box models has been questioned, as
proprietary status does not inherently indicate predictive advantage
over publicly available alternatives (Rudin et al., 2020).

This discrepancy reflects unequal false positive rates (FPRs)
across protected groups. The following proposition formalizes the
corresponding fairness criterion:

Proposition 1. A binary classifier satisfies false-positive-rate
parity iff

P(Y=1/Y=0a=0)=P(Y=1|Y=0a=1).

Proof. By definition, the false positive rate is the probability of a
positive prediction given a true negative label, conditional on group
membership. The stated equality directly formalizes parity of false
positive rates across groups.

In a systematic review of external validation studies on 11
commonly used risk assessment tools, it was found that most
investigations reported only the area under the curve (AUC)
to describe model performance, without including other critical
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measures such as false positive and false negative rates or
calibration (Fazel et al., 2022). As a result, it has been recommended
that researchers prioritize addressing the key methodological
limitations identified in prior studies. For jurisdictions considering
the adoption of such instruments, independent validation studies
should be conducted as part of the implementation process.
Predictive performance is to be considered alongside factors such
as scalability, transparency, and ethical implications.

Table 4 and the boxed credit-scoring walk-through illustrate
how a mathematical audit signal propagates to a concrete
governance action and documentation trace.

4 Strategies to address bias

Table 4
in Sections

links the
2-3 to concrete

formal fairness metrics developed

socio-technical controls and
documentation artifacts required for continuous governance.
Improving training data remains a foundational strategy
This
dataset diversity, balancing demographic representation, and

for mitigating algorithmic bias. includes expanding
developing targeted supplementary datasets for underrepresented
groups. Techniques such as stratified data collection, synthetic
augmentation, and oversampling can help close representational
gaps, though synthetic methods must be carefully designed and
validated to avoid reproducing existing biases. A framework for
algorithmic auditing has been proposed using a case study of
pymetrics, a company that applies machine learning to match
job candidates with potential employers (Wilson et al., 2021).
The company’s approach to fairness has been analyzed in light of
ethical guidelines, regulatory obligations, and client requirements.
The implementation of adverse impact testing within pymetrics’
software has also been examined. Furthermore, the outcomes of
an independent audit of the candidate screening tool have been
reported. The paper concludes with recommendations on how
audits can be designed to remain practical, independent, and
constructive, in order to promote greater industry participation
in third-party evaluations and to better equip oversight groups in
investigating algorithmic systems.

The Datasheets for Datasets framework (Gebru et al., 2021)
enhances transparency and accountability in machine learning
by providing structured documentation of datasets, including
their origins, intended uses, and limitations. This supports
informed use, mitigates bias, and promotes reproducibility.
Structured dataset documentation supports informed selection
and early identification of biases, aligning with emerging
research that prioritizes equity-focused data quality assessments to
address representational harms upstream in the machine learning
pipeline (Gebru et al., 2021; Barocas et al., 2019). Emerging research
advocates for proactive, equity-focused data quality assessments
early in dataset development to identify and address biases upfront,
reducing reliance on complex downstream mitigation efforts.

Figure 4 provides a hypothetical example demonstrating
how demographic groups can be substantially over- or
underrepresented in a typical training dataset. In this example,
Group A constitutes 60% of the dataset, whereas Groups C and
D represent only 12% and 8%, respectively-significantly diverging
from the balanced reference level of 25%. While these values
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TABLE 4 End-to-end audit map: from bias family to governance cadence.

10.3389/fdata.2025.1686452

Bias family Primary metric(s) Audit artifact Governance lever Cadence
Historical / representational | WEAT, embedding bias Dataset datasheet ISO 42001 procurement checklist Once per corpus
Selection / measurement ATPR, missing-rate heat map | Sampling protocol log Data-collection Standard Operating Procedure | Quarterly
Algorithmic / optimization EO, DP, calibration gap Model card Regulator filing (e.g. CFPB) Each retrain
Feedback / emergent Spectral radius p(J;), drift test Live dashboard Internal risk-committee minutes Monthly
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FIGURE 4
This figure illustrates disparities in demographic representation
within a hypothetical training dataset, relative to a balanced
benchmark (25% per group). While not a direct measure of bias, it
conceptually highlights how imbalanced data can propagate
unfairness during model development. Such visualizations support
the need for dataset documentation practices as emphasized by
Gebru et al. (2021).

are illustrative and not based on empirical data, they underscore
the kinds of disparities that can arise during dataset creation.
Equity-focused documentation practices, such as datasheets
for datasets (Gebru et al., 2021), are intended to highlight and
mitigate such imbalances, promoting fairness and transparency in
Al development.

4.1 Challenges of fairness in machine
learning models

The technical fairness literature proposes various mathematical
definitions equity including
demographic parity, equalized odds, and individual fairness.

for in model development,
However, implementing these metrics is challenging because
multiple fairness criteria are often incompatible and cannot be

satisfied simultaneously.
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4.1.1 Demographic parity

Ensures similar prediction rates across groups:

A

p(Y

P(Y 1|A=0b) Va,be Groups

where ¥ is the predicted outcome, and A represents the sensitive
attribute (e.g., race, gender).

4.1.2 Equalized odds

Equalized odds requires that a classifier has equal true positive
and false positive rates across protected groups:

PY=1|Y=yA=a)=P¥ =1|Y=y3A=0b) Vye{01}

This criterion addresses disparities in error rates and is a central
form of group fairness.

4.1.3 Individual fairness
Individual fairness requires that similar individuals receive
similar outcomes:

AV, 1) < d(Xi X)) Vi

where d(-, -) is a task-relevant distance metric.

Formal results show that these fairness criteria often conflict,
meaning they cannot all hold simultaneously in the same model,
especially when the base rates (prevalence of the outcome) across
groups differ (Caton and Haas, 2024).

4.2 Technical fairness interventions across
the ML pipeline

Debiasing techniques, such as adversarial learning, fairness
constraints, and preprocessing interventions, offer structured
approaches to improve fairness metrics in machine-learning
systems. However, their careful
consideration of both legal requirements and practical limitations,

implementation requires
including potential trade-offs with predictive accuracy and model
interpretability. These techniques are typically categorized by the
stage at which they intervene in the machine-learning pipeline.
Pre-processing methods operate on the input data prior
to model training and include strategies such as reweighting,
resampling, or transforming features to reduce bias. In-processing
techniques embed fairness objectives directly into the model
training phase, employing mechanisms such as fairness-aware loss
functions or adversarial debiasing. While adversarial approaches
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can effectively reduce disparities across groups, they may also
suppress informative features or degrade model performance,
potentially leading to outputs that appear fair but are poorly
calibrated or unstable over time. Post-processing methods adjust
model predictions after training and include procedures like
threshold shifting, output recalibration, or group-specific decision
rules (Caton and Haas, 2024; Feldman et al,, 2015; Zhang et al,,
2018).

While pre- and post-processing methods tend to be more
flexible and model-agnostic, in-processing techniques offer tighter
integration with the learning process and can yield stronger
fairness-performance trade-offs when carefully applied.

Fairness-aware optimization and adversarial learning have
already proved useful in practice. For example, adversarial training
reduced demographic bias in toxicity-classification tasks on the
CIVIL COMMENTS dataset (Zhang et al, 2018). Likewise,
fairness-aware credit-scoring models have delivered more equitable
outcomes across demographic groups while maintaining accuracy.
Table 5 summarizes how these mitigation strategies align with
specific bias types.

Mathematically, common group-fairness criteria include
Demographic Parity (DP) and Equalized Odds (EO):!

Demographic parity:

Equalized odds: Pr

Yy e {0,1}. (14)

A typical learning objective incorporates these criteria either as
constraints or as penalties:

nbin E(f/g, Y) st Fairness(Yy, A) < ¢, (15)

min LYy, Y) + A Fairness(¥y, A), A > 0. (16)

Figure 5 conceptually illustrates the well-documented
tension in machine learning between predictive accuracy and
fairness. Models optimized solely for accuracy may achieve high
performance at the expense of equitable outcomes. In the extreme
case, represented by the top-left corner of the figure (fairness
= 0, accuracy = 1), a model attains maximal accuracy only by
entirely neglecting fairness constraints, effectively favoring the
majority group or those with greater data representation. This
idealized scenario mirrors real-world patterns, where optimizing
exclusively for accuracy can yield highly performant yet inequitable
models. The figure, synthetically generated using demographic
parity as the fairness metric, serves as a conceptual visualization
and does not represent empirical results. These considerations
underscore the ethical and regulatory imperative to balance model
performance with fairness across demographic groups, especially

in high-stakes applications.

1 DP requires equal positive prediction rates across groups, while EO

additionally conditions on the true outcome label.
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TABLE 5 How different mitigation strategies address specific types of bias
(adapted from Caton and Haas, 2024).

Bias type Effective mitigation strategies

Historical / representational | Dataset diversification; participatory data

collection

Selection / measurement Pre-processing (re-weighting, re-labeling);

fairness-aware sampling

Algorithmic / optimization In-processing (adversarial training; fairness

constraints)
Feedback loop Post-processing; dynamic audits; continuous
monitoring
e
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FIGURE 5
Conceptual illustration of the Pareto frontier showing the tradeoff
between fairness and accuracy. The curve is synthetically generated
to reflect the general inverse relationship between fairness
(measured by demographic parity) and predictive accuracy, and
does not represent empirical results.

4.3 Transparency, governance, and
regulatory oversight

Transparent ML practices help stakeholders detect and address
bias through interpretable models (e.g., decision trees) or post-hoc
explanation tools (e.g., LIME, SHAP). Explainable-AI frameworks
reveal feature importance and decision boundaries; however, Kaur
et al. (2020) warn that poorly designed explanations can foster
unwarranted confidence.

Documentation standards such as Model Cards (Mitchell et al.,
2019) and Datasheets for Datasets (Gebru et al., 2021) formalize
reporting of model purpose, subgroup performance, and known
limitations, enabling practitioners to judge fitness for use.

Regulatory and standardization efforts are increasingly
institutionalizing fairness in artificial intelligence systems.
The NIST AI Risk Management Framework 1.0 (2023) offers
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structured guidance for identifying and mitigating Al-related
risks, including algorithmic bias, by promoting best practices for
trustworthy Al development and deployment (National Institute of
Standards and Technology, 2023). Complementing this, ISO/IEC
42001:2023 establishes global requirements for AI management
systems, with a focus on lifecycle governance, accountability, and
transparency (International Organization for Standardization,
2023a). This is complemented by the AI Governance Alliance:
Global Standards for Responsible Al initiative launched by the
World Economic Forum in 2025 (World Economic Forum
& Accenture, 2025), which emphasizes cross-sector alignment,
transparency, and accountability via a multistakeholder governance
framework. At the municipal level, New York City Local Law 144
mandates independent third-party bias audits for automated
employment decision tools, introducing a legally enforceable
mechanism for assessing algorithmic fairness prior to deployment
(New York City Council, 2021).

Industry consortia (IEEE, ISO) translate ethical commitments
into actionable technical guidelines (Koene et al, 2018;
International Organization for Standardization, 2023b). Effective
bias mitigation also demands interdisciplinary collaboration that
engages social scientists, legal scholars, ethicists, and crucially-
affected communities, whose perspectives help ensure that Al
systems serve those most vulnerable to harm.

5 Application domains and
cross-cutting themes

5.1 Landscape of high-stakes decision
domains

Al-driven decision tools have proliferated most rapidly in five
high-stakes arenas, healthcare, criminal justice, finance, education
and employment, largely because each offers (i) abundant digital
traces, (ii) high expected value per decision, and (iii) strong
political pressure for auditability (European Union, 2024). Table 6
summarizes the characteristic data modalities, typical performance
targets, and known fairness failure modes for each domain.

5.1.1 Healthcare

Clinical risk scoring and diagnostic support systems must
balance individual-level accuracy with equitable population-level
outcomes. Racial bias commonly emerges from training on billing-
code proxies for disease burden (Obermeyer et al., 2019).

5.1.2 Criminaljustice

Recidivism prediction instruments such as COMPAS illustrate
the tension between predictive parity and equalized odds. Disparate
error rates along racial lines have triggered landmark policy debates
(Angwin et al., 2016).

5.1.3 Finance
Credit-scoring models increasingly rely on non-traditional
features (e.g. social-network signals), complicating compliance
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TABLE 6 Key characteristics and representative fairness challenges across
high-stakes domains.

Typical Representative
fairness

challenge

data types

Healthcare EHRs, billing Risk Racial bias in

codes, imaging prediction, comorbidity
diagnosis proxies
Criminal Arrest records, Recidivism Unequal
justice court filings prediction FNR/FPR across
racial groups

Finance Credit bureau Credit scoring Proxy
files, bank discrimination via
transactions location features

Education LMS Dropout Amplification of
clickstreams, forecasting achievement gaps
grades

Employment | Resumés, video Candidate Gender bias from
interviews ranking historical hires

with fair-lending regulation, where seminal work highlights proxy-
based discrimination even after legally protected attributes are
removed (Bartlett et al., 2022).

5.1.4 Education

Learning analytics platforms increasingly inform interventions
such as tutoring, grading support, and course recommendations.
While these systems can personalize learning, bias in training
data and modeling choices can inadvertently widen existing
achievement gaps (Holstein et al., 2019).

5.1.5 Employment

Resume-screening and interview-ranking systems have been
shown to inherit gender and age biases from historical hiring
data (Raghavan et al, 2020; Wilson et al., 2021). Transparency
and auditability mandates, such as New York City’s Local
Law 144, now provide natural test-beds for governance-focused
interventions (New York City Council, 2021).

These domain snapshots motivate the need for a unifying
analytical scaffold-provided in this mini-review by the four-family
taxonomy introduced in Section 2.

5.2 Mapping the four families to
domain-specific challenges

outlined the illustrate

each fairness

Having landscape, we now
(Data,

Governance) addresses the concrete failure modes surfaced in

how family Algorithm, Interface,

Section 5.1.

5.2.1 Family 1-Data-centric interventions
Healthcare: In healthcare, reweighting electronic claims data
using causal adjustment has been shown to reduce racial bias
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in risk scores by approximately 23% Chen et al. (2019). In
employment contexts, synthetic minority oversampling can narrow
gender disparities in résumé ranking without compromising overall
predictive precision De-Arteaga et al. (2019).

5.2.2 Family 2—Algorithm-level constraints

Criminal justice: imposing fairness constraints such as
predictive equality (equalizing error rates across groups) on learned
risk scores can substantially reduce disparity with only modest
utility loss (Corbett-Davies et al., 2017; Pleiss et al., 2017).

Finance: adversarial and constrained-optimization approaches
achieve regulatory parity targets in credit scoring while maintaining
strong ranking performance, as measured by the Area Under
the ROC Curve (AUC) and the Kolmogorov-Smirnov statistic
(KS) (Zhang et al., 2018; Agarwal et al., 2018; Kozodoi et al., 2022;
Madras et al., 2018).

5.2.3 Family 3—Interface-level mediation

Education: explanation and interface tooling (e.g., dashboards,
counterfactual-style widgets) can help practitioners interpret
predictions and adopt systems more appropriately Holstein et al.
(2019). Healthcare: clinician-facing decision aids require careful
trust calibration; interfaces should surface uncertainty and model
limits to avoid over-reliance and the propagation of underlying
biases Obermeyer et al. (2019); Chen et al. (2019).

5.2.4 Family 4—Governance frameworks

Finance & Employment: transparency and auditability
mandates, such as New York City’s Local Law 144, have
institutionalized algorithmic impact assessments (AIAs) and
periodic bias audits as part of model governance (New York City
Council, 2021; Wilson et al., 2021). Criminal justice: frameworks
for accountability increasingly emphasize independent oversight
and documentation, including bias evaluation protocols aligned
with international standards such as ISO/IEC 42001 and the NIST
AT Risk Management Framework International Organization for
Standardization (2023a).

Table 7 provides a concise alignment matrix of families x
domains, highlighting empirically demonstrated performance and
equity improvements. As shown in Table 5, pre-processing, in-
processing, and post-processing techniques target different kinds
of group-level disparities.

The matrix reveals complementarities: data-level fixes often
enable more effective algorithmic constraints, while governance

TABLE 7 Family-level mitigation levers aligned to each domain.

10.3389/fdata.2025.1686452

structures create the long-term incentives necessary to maintain
interface and modeling choices that favor equity.

5.3 Al-for-social-good as a cross-cutting
lens

The The Al-for-Social-Good (AI4SG) agenda seeks to
marshal AI techniques toward public-interest goals such as
the U.N. Sustainable Development Goals, grounded in ethical
principles of a “good AI society” as articulated in the AI4People
framework (Floridi et al., 2018). Because such projects often
operate in high-stakes, resource-constrained settings, fairness
becomes inseparable from safety, accountability, and long-term
sustainability, challenges which AlI4People frames through
principles like justice and explicability. The four-family taxonomy
(Data / Algorithm / Interface / Governance) thus offers a structured
lens for diagnosing failures and guiding design in AI4SG initiatives.

5.3.1 Family 1-Data-centric interventions

Many AI4SG deployments begin with skewed or incomplete
datasets that mirror existing structural inequities and propagate
“data cascades” in high-stakes settings (Buolamwini and Gebru,
2018; Karkkainen and Joo, 2021). Empirical work shows
that under-representation of demographic groups produces
systematic performance gaps, especially in vision and language
tasks (Buolamwini and Gebru, 2018; Karkkainen and Joo, 2021).
Family 1 remedies therefore emphasize pre-deployment data work:
targeted sampling and augmentation, dataset documentation
(Datasheets) and transparent model reporting (Model Cards),
which improve coverage and help surface residual risks before
deployment (Gebru et al.,, 2021; Mitchell et al., 2019).

5.3.2 Family 2—Algorithm-level fairness
constraints

Fairness-aware optimization techniques directly embed ethical
constraints into model training. In high-stakes domains such as
healthcare and finance, imposing fairness metrics like equalized
odds or predictive equality has been shown to narrow disparities in
error rates across demographic groups with minimal performance
loss Corbett-Davies et al. (2017); Pleiss et al. (2017); Obermeyer
et al. (2019); Bartlett et al. (2022). Such algorithm-level constraints
translate normative fairness principles into operational learning

Domain Data Algorithm Interface Governance
Healthcare Re-weight claims; augment cohorts | Equalized-odds risk models Clinician dashboards FDA post-market monitoring
Criminal justice Audit and repair arrest data Parity-constrained trees Plain-text risk notes Community oversight boards
Finance Debias credit files Adversarial scoring / regularization | Loan-officer explainers Fair-lending audits
Education Balance cohorts / clickstreams Fair dropout models Student-facing recommenders | Impact reviews

Employment Diverse resumé corpora Bias-mitigated ranking Accessible applicant chatbots NYC Local Law 144 audits
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objectives, ensuring that improvements in predictive accuracy do
not exacerbate inequity.

5.3.3 Family 3—Human-facing interface
adaptations

Human-AlI interaction is itself a locus of bias. Well-designed
interfaces can calibrate user trust and improve equitable use
of model outputs. In education and healthcare, explanation
dashboards and clinician-facing visual aids help users interpret
model recommendations, reduce over-reliance, and foster
accountability (Holstein et al., 2019; Chen et al., 2019; Obermeyer
et al., 2019). Conversely, poorly designed explanation tools can
mislead end-users or amplify confirmation bias (Kaur et al,
2020). Family 3 interventions therefore focus on transparency and
interpretability artifacts that promote fairness through informed

human judgment.

5.3.4 Family 4—Governance and oversight
mechanisms

Long-term fairness depends on institutional accountability.
Regulatory frameworks such as the NIST AI Risk Management
Framework and ISO/IEC 42001 establish governance structures
for continuous auditing and documentation (National Institute
of Standards and Technology, 2023). Municipal policies like
New York City’s Local Law 144 require independent bias audits
before deploying automated employment tools (New York City
Council, 2021), while cross-sector standards and participatory
oversight boards (Wilson et al, 2021; Koene et al., 2018)
institutionalize fairness as an ongoing governance obligation rather
than a one-off technical correction.

5.3.5 Synthesis

Across the Al-for-Social-Good landscape, fairness manifests
through interconnected layers: (1) data-centric remedies improve
representational equity; (2) algorithmic constraints formalize ethical
criteria within learning objectives; (3) interface adaptations enhance
interpretability and trust; and (4) governance mechanisms sustain
accountability through audits and standards (Floridi et al., 2018;
Barocas et al., 2019). Together, these layers form a virtuous socio-
technical cycle in which improvements at one level reinforce
progress at others.

6 Discussion and future directions

Addressing Al bias requires navigating complex trade-offs
between competing values. Optimizing one fairness metric often
undermines others, and interventions can reduce predictive
accuracy or increase computational costs. These challenges demand
explicit value judgments to determine acceptable compromises
within specific contexts. The tension between group-based and
individual fairness metrics reflects deeper philosophical debates
about equity versus equality, necessitating transparent deliberation
and contextual understanding.
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Purely technical solutions often fall short by abstracting away
the structural and institutional factors underlying algorithmic
harms. Such approaches risk perpetuating the status quo
instead of challenging and transforming it (Abebe et al., 2020).
Sociotechnical frameworks provide a more comprehensive
response by recognizing the interplay between algorithms,
social systems, and institutional practices. Recent advancements
include causal fairness models, distributive justice principles, and
contestability mechanisms that aim to shift power dynamics and
actively involve affected individuals in the design, oversight, and
evaluation of systems.

To complement technical and data-centric interventions, we
propose an integrated socio-technical framework that embeds
fairness considerations throughout the entire AI lifecycle. This
framework underscores the importance of assembling diverse
teams, fostering community engagement, implementing iterative
feedback mechanisms, and conducting continuous auditing from
the design phase to final deployment.

Figure 6 illustrates the key stages, processes, and feedback loops
essential for developing responsible Al systems. It highlights the
integration of socio-technical considerations, such as stakeholder
engagement, fairness-aware design, and iterative refinement.

Participatory and intersectional approaches are increasingly
adopted to address how intersecting identity dimensions (e.g.,
race, gender, class) influence algorithmic harms. Longitudinal
studies further illuminate the societal impacts of Al systems over
time. Frameworks such as those proposed by Selbst et al. (2019)
highlight the importance of sociotechnical context, institutional
structures, and evolving power dynamics in the evaluation of
algorithmic interventions.

Effective bias mitigation must align technical solutions
with legal non-discrimination standards. Policy frameworks
are increasingly requiring algorithmic impact assessments for
high-risk deployments, although standardized methodologies

. Community
Diverse Team Stakeholder
DESIGN Formation
Engagement
I
. Problem
Data Collection :
; Formulation &
& Curation . ;
Fairness Aims
R I
DEV. Feedback Testing &
' Mechanisms Evaluation
DEV. Monitoring & Iterative
Auditing Improvement
— —
FIGURE 6
Integrated socio-technical framework for responsible Al
development. The framework outlines key stages across the Al
lifecycle, including design, development, and deployment (Dev.)
phases, spanning problem formulation, data collection, testing,
monitoring, and iterative improvement, while emphasizing
community engagement, stakeholder inclusion, and fairness
considerations.
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are still evolving. Additionally, procurement policies and
industry standards, such as ISO 42001, incentivise responsible
Al development practices (Koene et al, 2018; International
Organization for Standardization, 2023a). These alignments
between technical, legal, and institutional efforts are essential for
creating equitable and accountable Al systems.

7 Conclusion

The challenge of mitigating bias in AI systems represents
a critical frontier in both computer science and social science
research, demanding solutions that bridge technical innovation
with ethical governance. This letter demonstrates that algorithmic
bias manifests through three primary channels: structural
mechanisms revealed through causal inference frameworks,
measurement artifacts embedded in data collection protocols,
and dynamical amplification via sociotechnical feedback loops.
These insights fundamentally reshape conventional approaches
to fairness by moving beyond static correlational analyses
toward models that capture the temporal and systemic nature of
discrimination in automated systems.

Operationalizing fairness in real-world systems exposes
structural tensions that cannot be resolved through technical
solutions alone. The impossibility of simultaneously satisfying
competing fairness criteria, coupled with context-dependent trade-
offs between individual and group equity, necessitates governance
frameworks capable of adaptive regulation. Such frameworks
must integrate continuous auditing protocols with participatory
design methodologies, recognizing that, as highlighted in Figure 6,
bias mitigation is an ongoing process requiring feedback loops,
community oversight, and sustained institutional accountability.
The development of institutional review boards for production AI
systems, modeled after biomedical research oversight but adapted
for computational contexts, emerges as a promising direction for
ensuring accountability.

At stake is the equitable distribution of access to society’s
most consequential resources, a concern that elevates algorithmic
fairness from academic exercise to urgent civil rights imperative.
labor markets increasingly rely on hiring algorithms and
productivity monitoring systems, while essential services from
mortgage approvals to healthcare triage deploy predictive
These
institutionalizing historical inequities through three compounding

tools with life-altering consequences. systems  risk
pathways. Statistical discrimination can proxy protected attributes,
measurement bias may distort the characteristics of marginalized
groups, and feedback loops can amplify initial disparities over time.
Documented cases in facial recognition, criminal risk assessment,
and targeted advertising demonstrate how technical systems can
silently harden societal divisions.

Progress requires parallel advances across four interconnected
domains. First, temporal fairness metrics must account for how
biases evolve in deployed systems, moving beyond snapshot
evaluations. Second, participatory design practices should center
affected communities in system development, resisting the
tendency toward purely technical solutionism. Third, improved
bias propagation models must quantify how errors compound
across interconnected decision points. Fourth, institutional
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governance mechanisms need development to provide ongoing
oversight of production systems. These directions collectively point
toward a reconceptualization of AI development as an explicitly
values-driven process that embraces both mathematical precision
and sociological insight.

Ultimately, fair Al is neither a purely mathematical pursuit
nor a purely political mandate; it is a continuous, interdisciplinary
with
participatory governance and by viewing deployment as the

commitment. By coupling rigorous causal analysis
start-not the end-of accountability, we can transform algorithmic
systems from vectors of inequity into instruments of shared

social progress.
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