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Introduction: The use of artificial intelligence (Al) in cervical cytology has
increased substantially due to the need for automated tools that support the early
detection of precancerous lesions.

Methods: This systematic review examined deep learning models applied to
cervical cytology images, focusing on the architectures used, the datasets
employed, and the performance metrics reported. Articles published between
2022 and 2025 were retrieved from Scopus using PRISMA methodology. After
applying inclusion criteria and full-text screening, 77 studies were included for
RQ1 (models), 75 for RQ2 (datasets), and 71 for RQ3 (metrics).

Results: Hybrid models were the most prevalent (56%), followed by
convolutional neural networks (CNNs) and a growing number of Vision
Transformer (ViT)-based approaches. SIPaKMeD and Herlev were the most
frequently used datasets, although the use of private datasets is increasing.
Accuracy was the most commonly reported metric (mean 87.76%), followed by
precision, recall, and Fl-score. Several hybrid and ViT-based models exceeded
92% accuracy. Identified limitations included limited cross-validation, reduced
clinical representativeness of datasets, and inconsistent diagnostic criteria.
Discussion: This review synthesizes current trends in Al-based cervical cytology,
highlights common methodological limitations, and proposes directions for
future research to enhance clinical applicability and standardization.

KEYWORDS
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1 Introduction

Cervical cancer remains one of the leading causes of death among women worldwide,
particularly in countries with limited access to healthcare services (Torres-Roman et al.,
2021). The Papanicolaou test has, for decades, enabled early detection of cellular
abnormalities in the cervix, helping to prevent their progression to invasive cancer
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(Papanicolaou and Traut, 1941). This review aims to systematically
analyze studies that apply artificial intelligence (AI) in cervical
cytology, focusing on the models and datasets used, as well as the
main performance outcomes.

Computational solutions in medicine have evolved from simple
heuristic systems based on rule sets to more complex deep learning
models, particularly in medical imaging (Cabral et al., 2025; Bolia
and Joshi, 2025). Currently, with reduced computational costs,
there is increasing interest in hybrid architectures that combine
convolutional neural networks (CNNs) with vision transformer
(ViT)-based models, which exhibit superior ability to identify
complex patterns in cellular images and aid in cytopathological
diagnosis (Maurya et al, 2023; Hong et al, 2024). Recent
advances in AI have also demonstrated applications beyond
cytology, such as transcriptomic event inference in cancer cells
and drug response prediction using graph-based models (Eralp
and Sefer, 2024; Sefer, 2025). These developments highlight the
broad potential of AI in oncology and reinforce the relevance
of its application to cervical cytology. Despite these advances,
important limitations remain, such as the flawed assumption
that cell classification alone is sufficient for cancer diagnosis, the
poor quality and representativeness of the datasets used, and the
excessive complexity of some models.

The use of AI in cervical cytology seeks to assist in the
automatic identification of suspicious cytological lesions (Tang
et al., 2023; Shinde et al., 2022), as part of an automated pipeline
for early detection of cellular abnormalities. This involves computer
vision models analyzing microscopic images, classifying cells based
on morphological features, and diagnosing cellular lesion levels,
primarily using supervised learning algorithms (Mohammed et al.,
2022; Wang et al., 2024; Cheng et al., 2021). While this automation
can facilitate clinical workflows, it also poses risks. A poorly
constructed, parametrized, or trained model could produce false
positives or negatives, compromising patient care. Moreover, if
healthcare providers distrust the model’s outputs, they may avoid
using it or use it improperly. Trust depends on how well the
model’s decisions are understood (Martinez, 2005). Thus, good
technical performance alone is insufficient; clinical context and
other considerations must also be addressed.

Recent years have seen a surge in research applying Al to
cytological image analysis (Dhawan et al.,, 2018; Gorantla et al,
2019; Kavitha et al., 2023), with growing interest in CNNs, ViTs,
regression-based models, or their combinations. These studies fall
into two main categories: those that rely on public datasets such as
Herlev, SIPaKMeD, or Mendeley LBC (Ouh et al., 2024; Chowdary
et al., 2023; Chauhan et al, 2023), and those that propose new
architectures tailored to specific tasks like detection, segmentation,
or classification using proprietary datasets (Cheng et al., 2021;
Kanavati et al., 2022). While these contributions demonstrate that
certain tasks traditionally performed by cytopathologists can be
automated with reasonable accuracy, many of them rely on datasets
that do not reflect real clinical contexts. Additionally, a frequent
conceptual error is equating the detection of cytological anomalies
with cancer diagnosis.

The earliest attempts to automate cervical cytology with deep
learning relied heavily on CNN-based architectures applied to
small, well-curated datasets such as Herlev or SIPaKMeD. These
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studies demonstrated that automatic recognition of precancerous
lesions was technically feasible, though often limited by overfitting
and narrow class diversity (Devi et al., 2023). Refinements soon
followed with optimized convolutional pipelines or hybridized
CNN-GRU variants that improved sensitivity to complex
cytological patterns (Rohini and Kavitha, 2024). Others explored
tailored CNN designs for Pap smear images, reporting encouraging
accuracies but mostly within closed datasets that lacked external
validation (Khozaimi and Mahmudy, 2024).

From 2022 onwards, a new wave of studies emphasized
hybrid pipelines that combined deep features with classical
classifiers or optimization heuristics. For example, hybridization
with fuzzy neural networks or ensemble learning improved
robustness against inter-sample variability (Kalbhor et al., 2023b).
In parallel, researchers began to incorporate non-traditional
datasets, including liquid-based cytology and field-of-view tiles
from whole-slide images (Gao et al, 2022). These approaches
sought to move beyond isolated single-cell images, capturing
contextual information closer to real practice, although issues of
transparency and reproducibility persisted.

More recently, the field has witnessed the entrance of
distillation

transformer-inspired backbones and knowledge

frameworks, aiming to capture long-range morphological
dependencies and optimize computational costs (Kang and Li,
2024). Studies have also experimented with graph-based models
and metaheuristic optimizations to enhance precancerous lesion
detection, reporting near-perfect accuracies in benchmark datasets
but with uncertain clinical transferability (Song et al., 2024). Taken
together, these contributions reflect an energetic but fragmented
landscape: while technical metrics frequently surpass 90% accuracy,
the lack of dataset diversity, external validation, and standardized
reporting highlights the persistent gap between benchmark-driven
innovation and real-world clinical needs.

This review examines studies applying AI models to
classification and diagnostic tasks in cervical cytology, emphasizing
how models were constructed, what data they used, and what
metrics were reported. In this context, Al refers to algorithms
capable of learning from cytological images to identify cellular
patterns associated with potential abnormalities. This field
integrates computer vision, deep learning, public health, and
cytopathology, aiming to develop practical solutions for the early
identification of atypical cellular patterns. Common challenges
include models that lack generalizability, data that fail to reflect
the complexity of real cytology slides (often composed of isolated,
well-selected cell images), and limited use of clinical variables that
may impact diagnostic decisions (Ssedyabane et al., 2024; Gafeer
etal., 2025).

The number of publications in this area has increased notably,
reflecting strong scientific interest. Within this context, the
present review offers a comprehensive perspective that not only
systematizes deep learning models applied to cervical cytology,
but also compares the most widely used datasets and provides
a cross-sectional analysis of reported performance metrics (Alias
et al.,, 2022; Allahqoli et al., 2022). Although some studies have
recently begun addressing issues such as model explainability
(Hemalatha et al., 2023), this remains in early stages. The wide
variety of approaches and techniques makes it difficult to compare
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TABLE 1 Application of the PICO method.

Criterion Description

Population (P) Cervical cytology images.

Intervention (I) Al models for image classification (CNN, ViT, hybrid

models).

Comparison (C) Comparison across different model architectures,

classical vs. emerging datasets, and metrics.

Outcome (O) Types of models used, datasets applied, reported

performance metrics, and current trends.

results and establish standards. There is still a need for a review
that not only aggregates studies but also critically analyzes their
technical limitations in light of the clinical settings where they
might be applied.

A systematic review was conducted using the PRISMA
methodology to examine AI applications in cervical cytology.
Unlike prior reviews, this study offers a critical perspective,
distinguishing between cellular lesion detection and cancer
diagnosis, and interrogating the conceptual and ethical foundations
of the evaluated models. Articles were retrieved from the Scopus
database using well-defined inclusion and exclusion criteria, and
the data were structured for both qualitative and quantitative
analysis. This review aims to guide future research, enhance existing
models, and promote responsible use of Al in clinical contexts.
Its main contribution lies in a detailed characterization of the
most frequently used architectures, datasets, and performance
metrics, complemented by a cross-analysis linking model types,
data sources, and diagnostic accuracy. Additionally, the review
synthesizes recurring patterns and emerging trends to help guide
future studies toward more efficient and clinically applicable
AT solutions.

2 Methodology

This systematic review aims to identify and analyze studies
that apply artificial intelligence (AI) to the classification of cervical
cytology images, with special attention to the most commonly
used models, the datasets employed, and the performance metrics
reported. The review followed a three-phase process: planning,
execution, and reporting, aligned with PRISMA guidelines and
the PICO strategy. The review process was supported by the use
of Mendeley (version 1.19.8) for reference management, Excel for
tracking study selection, and draw.io (online version, accessed June
13, 2025) for creating the PRISMA flow diagram.

2.1 Review planning

To structure the search strategy and clarify the key terms,
the PICO framework was adapted to the context of this review
(Table 1).

In this phase, a strategy was designed to identify empirical
studies that effectively address the research questions. Table 2
describes the questions guiding this systematic review.
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TABLE 2 Research questions and objectives.

Research question (RQ) Objective

RQ1: What types of Al models (monolithic, To identify the most applied
hybrid, or others) have been used in cervical Al models in cervical cytology
cytology image classification, and what trends | and characterize current

are observed in recent approaches? trends.

To determine the most used
datasets and describe the
characteristics of emerging
datasets.

RQ2: What datasets have been most
frequently used in studies applying AI to
cervical cytology, and what new datasets are
emerging?

RQ3: What performance metrics are most
frequently reported in studies applying Al to
cervical cytology image classification, and
what are the typical values?

To identify the most common
performance metrics and
analyze reported values in
recent studies.

2.2 Search strategy and criteria

The search strategy was defined based on the three research
questions posed in the planning phase, with specific search strings
developed for each (see Table 3). These queries were executed
independently in the Scopus database using the Advanced Search
option. For each question, key terms and relevant synonyms
were defined to maximize retrieval and ensure reproducibility.
Additionally, inclusion and exclusion criteria were established
as follows:

Each query was designed to independently address one of the
review’s research questions (RQ1, RQ2, RQ3), ensuring traceability,
reproducibility, and alignment with the review’s objectives.

2.3 Keywords and relation to research
questions

Table 4 summarizes the keywords used in the search strategy
and their relation to the research questions.

2.4 Relevant fields for data extraction

During the data extraction phase, key metadata fields were
defined to systematize the analysis of selected studies (see Table 5).

As part of the data extraction process, AI models were
categorized according to their structural nature. Monolithic
models were defined as those relying on a single deep learning
architecture, while hybrid models were defined as architectures that
integrate two or more complementary computational strategies
within the same pipeline. Examples of hybrid approaches
include CNNs combined with traditional classifiers (e.g., SVM,
Random Forest, XGBoost), CNNs enhanced with fuzzy logic or
evolutionary algorithms, and CNNs integrated with transformer or
attention modules. This categorization allowed us to systematically
compare single-architecture strategies with more complex, multi-
stage approaches.

2.5 Information sources

The literature search was conducted in the Scopus database,
including only peer-reviewed original research articles. Search
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TABLE 3 Search strings per research question.

‘ Key criteria Description

Search string

10.3389/fdata.2025.1678863

RQ1: TITLE-ABS-KEY(“artificial intelligence” OR “machine learning” OR “deep learning” OR
“convolutional neural network” OR CNN OR “vision transformer” OR ViT OR “transformer-based model”)
AND TITLE-ABS-KEY(“cervical cytology” OR “pap smear” OR “cervical cells” OR “cervical cytological
images”) AND TITLE-ABS-KEY(“classification” OR “cell classification” OR “lesion classification” OR
“lesion detection” OR “automatic diagnosis”)

RQ2: TITLE-ABS-KEY(“artificial intelligence” OR “machine learning” OR “deep learning” OR
“convolutional neural network” OR CNN OR “vision transformer” OR ViT OR “transformer-based model”)
AND TITLE-ABS-KEY(“cervical cytology” OR “pap smear” OR “cervical cells” OR “cervical cytological
images”) AND TITLE-ABS-KEY(“dataset” OR “database” OR "image collection” OR “image repository” OR
“public dataset” OR “private dataset” OR “labeled data”)

RQ3: TITLE-ABS-KEY(“artificial intelligence” OR “machine learning” OR “deep learning” OR
“convolutional neural network” OR CNN OR “vision transformer” OR ViT OR “transformer-based model”)
AND TITLE-ABS-KEY(“cervical cytology” OR “pap smear” OR “cervical cells” OR “cervical cytological
images”) AND TITLE-ABS-KEY(“classification” OR “cell classification” OR “lesion classification” OR
“lesion detection” OR "automatic diagnosis”) AND TITLE-ABS-KEY(“performance metric” OR "accuracy”
OR “precision” OR “recall” OR “sensitivity” OR “specificity” OR “F1-score” OR "AUC” OR “ROC curve”)

Intervention

criteria metrics. Publication date between 2019 and 2024

Peer-reviewed journal articles. Full-text available in English or Spanish. Keywords related to Al in cervical cytology, datasets, and performance

Exclusion criteria
without full-text access

Articles published before 2022. Studies not using AI models. Clinical studies without computational models. Reviews without new data. Works

Search mode Applied to title, abstract, and keywords.

TABLE 4 Keywords, synonyms, and related research questions.

TABLE 5 Relevant data extraction fields.

‘ Keyword/term Synonyms/variants Related to ‘ ‘ Field Description
Artificial Machine learning, deep learning, RQ1, RQ2, Reference Article title, authors, and citation.
intelligence 1A, DL RQ3
Publication Type of publication (journal article, conference,
Convolutional CNN, ConvNet RQ1 preprint).
neural network
Year Year of publication.
Vision transformer ViT, transformer RQ1
Dataset Name, type (public/private), size, and
Cervical cytology Pap smear, cervical cells, cervical RQIL, RQ2, characteristics.
cytological images RQ3
Dataset type Public or private.
Dataset Database, image collection, image RQ2
repository Classical dataset Indicates whether the dataset is classical (Y/N).
Dataset quality Public dataset, private dataset, RQ2 Main idea Summary of the core concept of the study.
balanced dataset Main contributions Novel contributions of the article to Al in cervical
Performance Accuracy, precision, recall, RQ3 cytology.
metrics Fl-s?orf, AUG, sensitivity, Gaps or limitations Limitations, problems, or research gaps identified
specificity .
in the study.
Model comparison Archlte‘cture comparison, model RQL Methodology Methods and models used (e.g., neural networks,
evaluation . . . .
training techniques, hybrid architectures).
Classification Cell 'ClaSSl.ﬁCatIOI:l, lesion . RQL RQ3 Results Model performance outcomes (metrics).
classification, lesion detection
Al models List of AT models used (CNN, ViT, hybrid, etc.).
Model type Indicates if the model is monolithic or hybrid.
strategies were independently defined for each research question
. . Datasets List of datasets used in the study.
(RQ1, RQ2, and RQ3) and executed in June 2025. Filters were 24
applied based on publication year, document type (scientific articles Performance Reported metrics and their values (Accuracy,
. tri F1- , AUC, etc.).
only), and access type (Gold Open Access and Hybrid Gold). The metries score cte)

selected records were exported in RIS format for further analysis.
To avoid duplicates, cross-checking was performed between
result sets from each research question. Full-text evaluation
was then conducted to ensure each article met the established
inclusion criteria.

The full-text evaluation results for each research question
were systematically recorded in dedicated spreadsheets. These final
datasets, corresponding to RQI, RQ2, and RQ3, are available
as Supplementary material in the files RQ11.xlsx, RQ21.xlsx, and
RQ31.xlsx, respectively.

Frontiersin Big Data

2.6 Quality appraisal

To evaluate the methodological robustness and potential risk
of bias of the included studies, we implemented a structured quality
appraisal adapted from the QUADAS-2 framework, which is widely
used for diagnostic accuracy research.

In addition, the appraisal was structured as a checklist aligned
with key criteria frequently recommended for AI studies in
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medical imaging: dataset transparency, validation protocol rigor,
and completeness of statistical reporting.

In the context of artificial intelligence applied to cervical
cytology, the appraisal focused on four key aspects: the
of the
employed the extent to which performance metrics were reported

representativeness datasets, the validation strategy
beyond accuracy, and the transparency of model description and
training procedures.

Each article was assessed according to these domains, and
an overall risk of bias was subsequently assigned as low,
high, or unclear, based on predefined decision rules. Studies
were considered low risk when they met most of the criteria
satisfactorily, high risk when multiple domains were judged
inadequate, and unclear when reporting was insufficient to permit
confident assessment.

The

Supplementary Table RQ31.xls,

evaluations are available in
additional

have been included to document the quality appraisal domains and

per-study
where columns

the overall risk of bias.

3 Results

3.1 Selected articles and general
characteristics

Following the search strategies defined for each research
question, 534 records were initially identified for RQl, 456
for RQ2, and 381 for RQ3. Filters were subsequently applied
based on publication year (2022-2025), document type (journal
articles only), and access type (Gold and Hybrid Gold), which
reduced the datasets to 91 articles for RQ1, 94 for RQ2, and 75
for RQ3.

A crosschecking process was then carried out to remove
duplicate records across the three sets. 68 duplicates were found
between RQ1 and RQ2, 57 between RQ1 and RQ3, and 54 between
RQ2 and RQ3. Moreover, 47 articles were common to all three-
search results. After removing duplicates, a consolidated set of 117
unique articles was obtained.

Each article was reviewed in full text to confirm its relevance.
As a result, 14 articles were excluded from RQI, 18 from RQ2,
and 4 from RQ3. The main reasons for exclusion included:
focus on colposcopic images, the use of non-cytological diagnostic
modalities, or lack of relevant information aligned with this
review’s objectives. Table 6 summarizes the distribution of articles
by research question and filtering stage.

A PRISMA 2020 flow diagram was generated to illustrate the
study identification, screening, and inclusion process (Figure 1).

Table 7 shows the distribution of the selected articles by year
of publication. The year 2024 accounts for the highest number
of articles across all three research questions, reflecting growing
scientific interest in the application of Al to cervical cytology in
recent years.

This annual distribution also reveals a rising trend in scientific
output from 2022 to 2024 in the areas related to lesion classification,
specialized dataset usage, and the evaluation of AI model
performance metrics in cervical cytology imaging.
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3.2 RQ1: artificial intelligence models
applied to cervical cytology

The analysis of the 77 articles selected for RQI revealed a wide
range of approaches for applying artificial intelligence (AI) models
to the classification of cervical cytology images. Most studies
implemented models based on convolutional neural networks
(CNNgs), followed by more recent architectures such as Vision
Transformers (ViTs) and, to a lesser extent, transfer learning
techniques with pretrained models. There is also growing interest
in hybrid models that combine multiple techniques or stages,
such as feature fusion via CNNs with traditional classifiers (e.g.,
SVM, XGBoost), or the integration of sequential models with
attention modules.

Table 8 summarizes the frequency with which different types of
models were reported in the analyzed studies. While CNNs remain
prevalent, there has been a significant increase in the use of hybrid
architectures over the past 3 years, suggesting a trend toward more
complex and adaptive solutions.

To complement the quantitative distribution shown in Table 8,
Figure 2 illustrates a taxonomy of the AI models reported in
the reviewed studies. This schematic representation highlights
the hierarchical organization of the main categories—CNN-
Hybrid models,
Trees—together with their most frequently used sub-
architectures (e.g., ResNet, DenseNet, EfficientNet for CNNG,
and CNN+SVM, CNN+XGBoost, CNN+Fuzzy for Hybrids).
The figure provides a conceptual overview that facilitates
of how different
have been applied to cervical cytology, and emphasizes the

based models, Ensembles, and Decision

understanding computational strategies
predominance of hybrid approaches, which accounted for 61% of
all included studies.

Additionally, the models were categorized based on their
structural nature into two groups: monolithic, referring to
those using a single deep learning architecture; and hybrid,
defined in this review as architectures that integrate two or
strategies within the
same pipeline. Hybrid approaches included, for example,
CNNs combined with traditional (e.g, SVM,
Random Forest, XGBoost), CNNs enhanced with fuzzy
logic or evolutionary algorithms, and CNNs integrated with

more complementary computational

classifiers

transformer or attention modules. Hybrid models accounted
for 61% of the reviewed articles, surpassing monolithic
approaches (44%). This finding reflects a growing preference
for composite strategies, which better address variability in
cytological images, combine multiple feature sources, and improve
classification accuracy.

In terms of temporal trends, a clear shift was observed
from traditional CNN-based models to more sophisticated hybrid
architectures. Between 2022 and 2024, there was an increase in
the incorporation of attention modules, transformer layers, and
ensemble strategies, highlighting the influence of recent advances
in computer vision.

Several studies also emphasized the specific advantages of
hybrid models, such as greater robustness to intercellular variability
and improvements in performance metrics when combining
classifiers. However, they also acknowledged limitations, including
increased computational complexity, reduced reproducibility, and
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TABLE 6 Distribution of articles by research question.

10.3389/fdata.2025.1678863

Research question Identified (unfiltered) From 2022 Journal articles Gold + hybrid gold
RQ1 534 370 217 91
RQ2 456 333 208 94
RQ3 381 271 175 75

The column “Journal Articles” refers to documents that meet the required publication type (peer-reviewed journals), and the “Gold + Hybrid Gold” column shows the final set selected

for analysis.

[ Identification of studies via Scopus ]

Records excluded**
(RQI =164 RQ2 =123 RQ3 =110)

Reports excluded
(RQ1 =153 RQ2 =125 RQ3 =961)

—
= Records identified from Scopus:
£ Registers (
b5} RQl =534
g RQ2 =456
s RQ3 =381
= )
I
—
Records since 2022
(RQ1 =370 RQ2=333RQ3=271) |——>
Records only “articles”
) (RQ1 =217; RQ2 =208; RQ3 =175) >
=
8
: I
7]
Reports ony “Gold y Hybrid Gold”
(RQ1=91; RQ2 =94; RQ3 =75) >
—
P A4
E Studies included in review
3 RQI NRQ2 N RQ3
S =
E (=117
—
FIGURE 1
PRISMA 2020 flow diagram for study selection.

Duplicated eliminated: :
RQL N RQ2 (n=68) Exc};’geld(ﬁuﬂ ﬁx)t'
RQ2 N RQ3 (n=54) —> RQ2 (n=18)
RQ3 NRQI (n=57) RQ3 (n=4)
RQI NRQ2 NRQ3 (n=57)

the need for larger annotated datasets to effectively train the

additional modules.

3.3 RQ2: datasets used in the studies

A detailed review of the selected articles revealed 74 records
in which the datasets used were explicitly stated. The findings
indicate a strong reliance on classic datasets, particularly Herlev
and SIPaKMeD, which were used in 16 and 15 studies,
respectively. Additionally, 10 studies combined both datasets,
likely to increase class diversity or improve training performance.
This dominance can be attributed to their public availability,
well-structured annotations, and broad dissemination within the
scientific community.
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TABLE 7 Distribution of selected articles by year and research question
(2022-2025).

Year RQ1 ey RQ3
2022 22 16 22
2023 23 24 19
2024 29 29 27
2025 4 6 3
Total 77 75 71

In contrast, there is a growing trend toward the use of
emerging or proprietary datasets. Eight studies reported the use of
private datasets generated by the authors themselves, highlighting
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TABLE 8 Frequency of Al models used in cervical cytology studies.

Model type Frequency

Decision trees 2

Percentage

3%

References

Devi et al., 2023; Kalbhor et al., 2022

CNN 24

31%

Khozaimi and Mahmudy, 2024; Mazroa et al., 2023; Rasheed et al., 2023; Wong et al., 2023;
Resmi et al., 2024; Attallah, 2023; Tan et al., 2024; Skerrett et al., 2022; Ahmed et al., 2024; Xu
et al., 2022; Utomo et al., 2025; Shandilya et al., 2024; Priya and Bai, 2024; Zammataro, 2024;
Shiny and Parasuraman, 2023; Akash et al., 2024; Wubineh et al., 2024a; Alohali et al., 2024;
Zhang et al.,, 2025; Rodriguez et al., 2024; Tian et al., 2024; Anandavally and Bai, 2024; Kurita
et al., 2023; Fang et al., 2022

Hybrid 47

61%

Tang et al., 2023; Shinde et al., 2022; Wang et al., 2024; Rohini and Kavitha, 2024; Gao et al.,
2022; Song et al., 2024; Kalbhor et al., 2023¢; Alquran et al., 2022a; Pang et al., 2025; Ahishakiye
and Kanobe, 2024; AlMohimeed et al., 2024; Jain et al., 2024; Maurya et al., 2024; Alsalatie et al.,
2022; Lilhore et al., 2022; Gangrade et al., 2025; Chauhan et al., 2023; Wang et al., 2025;
Anupama et al., 2022; Mansouri and Ragab, 2023; Bora et al., 2022; Battula and Sai Chandana,
2023; Kalbhor et al., 2023a; Fekri-Ershad and Alsaffar, 2023; Battula and Chandana, 2022;
AbuKhalil et al., 2022; Joynab et al., 2024; Du et al., 2023; Alquran et al., 2022b; Diniz et al., 2022;
Yi et al., 2024; Chowdary et al., 2023; Chen et al., 2022; Stegmiiller et al., 2024; Alsalatie et al.,
2023; Benhari and Hossseini, 2022; Mahmoud et al., 2022; Ji et al., 2022; Bera et al., 2024; Ando
et al,, 2024; Sahoo et al., 2023; Waly et al., 2022; Akbar et al., 2024; Fahad et al., 2024;
Mathivanan et al., 2024; Nour et al., 2024; Fang et al., 2024

Ensembles 3

4%

Karamti et al., 2023; Khanarsa and Kitsiranuwat, 2024; Kurniawati and Prabowo, 2022

Total 77

100%
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Hierarchical taxonomy of Al models reported in cervical cytology studies.

efforts to develop data contextualized to specific clinical cases
or newer acquisition technologies (e.g., whole slide imaging or
liquid-based cytology). Other datasets such as Mendeley LBC,
ComparisonDetector, ISBI-2014/2015, and CRIC are also gaining
attention for their variety of cell types and complex annotations.

Table 9 summarizes the frequency of dataset usage, with less
frequently used datasets grouped under “Others.”

To complement the descriptive distribution presented in
Table 9, Figure 3 illustrates a hierarchical taxonomy of datasets
applied in cervical cytology studies. The classification begins
by distinguishing between public and private datasets, then
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specifies the individual datasets most frequently reported
(e.g., Herlev, SIPaKMeD, Mendeley LBC, ISBI-2014/2015,
and others), and finally maps the type of image analyzed
in each case (individual cells, partial microscope fields,
highlights
the dominance of public datasets, particularly Herlev and

or combined approaches). This visualization
SIPaKMeD, but also reveals an emerging contribution of
private institutional collections that integrate partial fields or
whole-slide derivatives. Such a taxonomy not only clarifies
also underscores the

the methodological landscape but

heterogeneity in data sources and image modalities, which
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TABLE 9 Distribution of datasets used in Al studies for cervical cytology.

10.3389/fdata.2025.1678863

Individual Partial A+ B  Frequency References
Cells (A) Microscope
Fields (B)

Herlev 16 0 0 16 Song et al., 2024; Resmi et al., 2024; Attallah, 2023; Tan et al., 2024;
Priya and Bai, 2024; Akash et al., 2024; Anandavally and Bai, 2024; Jain
etal, 2024; Anupama et al., 2022; Ando et al., 2024; Waly et al., 2022;
Nour et al., 2024; Kurniawati and Prabowo, 2022; Janani and
Christopher, 2023; Lotfi and Momenzadeh, 2022; Qin et al., 2022

SIPaKMeD 6 1 8 15 Tang et al., 2023; Wang et al., 2024; Chauhan et al., 2023; Khozaimi and
Mahmudy, 2024; Gao et al., 2022; Utomo et al., 2025; Shandilya et al.,
2024; Wubineh et al., 2024a; Alohali et al., 2024; Kurita et al., 2023;
Maurya et al., 2024; Gangrade et al., 2025; Fekri-Ershad and Alsaffar,
2023; Ontor et al., 2023; Mathivanan et al., 2024

SIPaKMeD + 0 2 8 10 Shinde et al., 2022; Kalbhor et al., 2023b; Zhang et al., 2025; Fang et al.,

Herlev 2022; AlMohimeed et al., 2024; Chowdary et al., 2023; Benhari and
Hossseini, 2022; Chen et al., 2022; Zhao et al., 2023; Fahad et al., 2024

Private 2 1 5 8 Bora et al., 2022; Joynab et al., 2024; Yi et al., 2024; Stegmiiller et al.,
2024; Liu et al., 2022; Riana et al., 2023; Yin et al., 2024; An et al., 2023

Mendeley LBC 3 0 2 5 Wong et al., 2023; Shiny and Parasuraman, 2023; Rodriguez et al.,
2024; Battula and Chandana, 2022; Sahoo et al., 2023

ISBI-2014/2015 2 1 2 5 Zhang et al., 2024a; Mahyari and Dansereau, 2022; Zhang et al., 2024b;
Kalbhor et al., 2023a; Rasheed et al., 2023

Comparison 0 1 2 3 Pang et al., 2025; Cheng et al., 2025; Li et al., 2025

Detector

SIPaKMeD + CRIC 0 0 2 2 Battula and Sai Chandana, 2023; Fang et al., 2024

Others (11 datasets) 3 2 5 10 Kang and Li, 2024; Xu et al., 2022; Kalbhor et al., 2023¢; Yang et al.,
2022; Galande et al., 2024; Albuquerque et al., 2023; Ji et al., 2023;
Nazir et al., 2023; Luo et al., 2022; Wu et al., 2023a

Total 13 6 45 74
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FIGURE 3

Dataset taxonomy in cervical cytology Al research: source type, dataset name, and image modality.

directly affects the comparability and generalizability of AT models
in cervical cytology.

Regarding dataset type, the analysis reveals that 69% of
the studies relied on public datasets, while 31% used private
or self-generated datasets. This distribution underscores the
importance of open data in scientific reproducibility, while also
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emphasizing the need to expand the diversity—both demographic
and technological—of training sets.

In terms of image types, three major approaches were identified:
Individual Cell Images (A) - most common. Partial Microscopy
Fields (B) - derived from WSI (whole slide images), capturing
spatial and contextual features. Combined A + B - integrating both
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approaches. Although the use of tiles from WSIs remains emerging,
it is seen as a growing trend, especially with the advent of models
that are more sophisticated and the need for clinical scalability.
While public datasets enhance comparability across studies,
they also present risks of overfitting, limited class diversity and
poor representativeness of morphological variants from different
populations. On the other hand, private datasets face challenges
in access and validation but offer opportunities for personalized
diagnostic solutions tailored to real-world clinical settings.

3.4 RQ3: performance metrics and results
obtained

Although most studies reported high accuracy values, the
quality assessment revealed frequent methodological limitations.
The main issues included overreliance on classical public datasets,
lack of external validation, incomplete reporting of class-level
metrics, and insuflicient description of training procedures. These
patterns suggest that the reported performance must be interpreted
with caution. Detailed assessments for each study are provided
in the Supplementary material (see Supplementary Table RQ31.xls,
with extended fields for quality appraisal).

The analysis of the studies included in this systematic review
reveals a predominant use of traditional classification metrics to
evaluate the performance of artificial intelligence (AI) models
applied to cervical cytology images. The most frequently reported
metrics were accuracy, precision, recall, F1-score, specificity, and
area under the ROC curve (AUC). This selection reflects a focus not
only on overall classification accuracy but also on the models’ ability
to detect minority classes, which is critical in clinical contexts.

Among the 71 reviewed articles, 93.9% reported accuracy as
their primary metric, both in binary and multiclass classification
schemes. Accuracy values ranged from 63.08 to 100%, with the
highest performances associated with Vision Transformer (ViT)-
based models and hybrid architectures. Quantitative analysis
yielded a mean accuracy of 87.76%, making it the recurrent metric
across the 121 recorded performance entries.

Precision and recall were reported in approximately 65% of the
studies, highlighting growing attention to class-level performance
and the trade-off between true positives and false negatives. The
mean precision was 87.01%, while recall averaged 78.06%, with
wide variation across models, suggesting differences in how class
imbalance was handled. The F1-score, used in 54% of the studies,
had an average of 64.65%, but reached values close to 99% in well-
optimized multiclass models, especially those evaluated on datasets
such as SIPaKMeD.

Table 10 presents a statistical summary of the most frequently
reported performance metrics, including frequency, mean, and
observed minimum and maximum values, along with references to
the studies that used them as primary metrics.

Specificity was reported less frequently (15%), typically in
models that incorporated probabilistic outputs or clinical attention
modules. It was more common in studies designed to simulate
real-world medical validation. Metrics such as balanced accuracy,
Matthews’s correlation coefficient, and AUC were less common, but
their appearance has increased in studies published since 2023—an
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indication of evolving practices toward more clinically meaningful
and balanced evaluations.

From a comparative perspective, hybrid models (e.g., CNN-
ViT combinations or architectures with attention mechanisms)
achieved the highest average accuracy (96.63%), followed by CNN-
based models (e.g., ResNet, DenseNet) with an average of 94.91%.
In contrast, ensemble and classical models as if Random Forest
exhibited lower performance, with average accuracy around 63-
83%, depending on the dataset used (Table 11).

In summary, the metrics reported reveal a favorable outlook
for Al-based models in cervical cytology, with performance
levels that match or even exceed human-level diagnosis in
specific tasks. Nonetheless, common limitations persist, including
inconsistent result reporting, lack of external cross-validation,
and limited discussion of the statistical significance of differences
between models. These aspects must be addressed in future
research to ensure reliable, clinically robust, and ethically sound
Al implementations.

3.5 Cross-analysis: relationships between
models, datasets, and metrics

The cross-analysis of model types, datasets used, and reported
performance metrics reveals emerging patterns and significant
associations that characterize the current development of Al-based
models in cervical cytology.

A predominance of convolutional neural networks (CNNs) and
hybrid architectures (e.g., CNN + Transformer, CNN + RNN,
or attention-enhanced models) was observed. These models were
most frequently applied to classic datasets such as SIPaKMeD and
Herlev. CNNs trained on SIPaKMeD achieved an average accuracy
of 99.12%, while on Herlev the average dropped to 87.44%. This
suggests a higher affinity between CNN architectures and the visual
characteristics of SIPaKMeD, possibly due to its well-defined class
structure and standardized preprocessing.

Hybrid models also achieved high average performance-
—97.31% on SIPaKMeD and 95.30% on Mendeley LBC—
surpassing pure CNNs and demonstrating their ability to
capture complex morphological relationships. Notably, in more
heterogeneous datasets like Cervix93, which include greater
variability and less uniformity in the samples, hybrid models
still maintained high accuracy levels (up to 99.01%), highlighting
their robustness.

In contrast, decision tree models and those based on traditional
machine learning techniques showed lower average performance
(83.00% in mixed datasets) and appeared less frequently in recent
studies, likely due to their limitations when dealing with complex,
multiclass cytological images.

There is a clear tendency to report better metrics when using
classic datasets like SIPaKMeD and Herlev. These datasets are
not only widely used, but also offer more consistency in terms of
resolution, annotation, and class balance—factors that favor the
training and evaluation of deep learning models. However, this
dependency on classic datasets poses a significant limitation for
clinical generalization, as they do not capture the full variability of
real-world cytological environments.
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TABLE 10 Frequency and statistical values of performance metrics reported in the reviewed studies.

Metric Min (%)

58.00

Frequency  Avg (%)

Accuracy 64 94.95

Max (%)

100.0

References

Tang et al., 2023; Rohini and Kavitha, 2024; Khozaimi and Mahmudy,
2024; Gao et al., 2022; Song et al., 2024; Kalbhor et al., 2022; Wong

et al., 2023; Attallah, 2023; Tan et al., 2024; Ahmed et al., 2024;
Shandilya et al., 2024; Priya and Bai, 2024; Zammataro, 2024; Shiny
and Parasuraman, 2023; Akash et al., 2024; Wubineh et al., 2024a;
Zhang et al., 2025; Rodriguez et al., 2024; Tian et al., 2024; Anandavally
and Bai, 2024; Kurita et al., 2023; Kalbhor et al., 2023¢; Alquran et al.,
2022a; Pang et al., 2025; Ahishakiye and Kanobe, 2024; AIMohimeed
et al,, 2024; Jain et al., 2024; Maurya et al., 2024; Alsalatie et al., 2022;
Gangrade et al., 2025; Chauhan et al., 2023; Wang et al., 2025; Bora

et al., 2022; Battula and Sai Chandana, 2023; Kalbhor et al., 2023a;
Fekri-Ershad and Alsaffar, 2023; Battula and Chandana, 2022;
AbuKhalil et al., 2022; Joynab et al., 2024; Alquran et al., 2022b; Diniz
et al., 2022; Yi et al., 2024; Alsalatie et al., 2023; Benhari and Hossseini,
2022; Sahoo et al., 2023; Waly et al., 2022; Akbar et al., 2024; Karamti
et al., 2023; Khanarsa and Kitsiranuwat, 2024; Kurniawati and
Prabowo, 2022; Lotfi and Momenzadeh, 2022; Mathivanan et al., 2024;
Chen et al., 2022; Fahad et al., 2024; Alohali et al., 2024; Sudhakar et al.,
2023; Petrov and Sokolov, 2023; Lilhore et al., 2022; Yang et al., 2024;
Harsono et al., 2022; Haridas and Jayamalar, 2023; Wubineh et al.,
2024b; Shinde et al., 2022

Precision 25 92.61 60.78

100.0

Tang et al., 2023; Chowdary et al., 2023; Wong et al., 2023; Priya and
Bai, 2024; Shiny and Parasuraman, 2023; Tian et al., 2024; Anandavally
and Bai, 2024; Fang et al., 2022; Ahishakiye and Kanobe, 2024;
AlMohimeed et al., 2024; Battula and Sai Chandana, 2023; AbuKhalil
et al,, 2022; Diniz et al., 2022; Mahmoud et al., 2022; Waly et al., 2022;
Karamti et al., 2023; Kurniawati and Prabowo, 2022; Chen et al., 2022;
Kalbhor et al., 2023a; Luo et al., 2022; Alohali et al., 2024; Sudhakar

et al., 2023; Harsono et al., 2022; Haridas and Jayamalar, 2023; Shinde
etal., 2022

Recall 35 93.46 66.10

100.0

Tang et al., 2023; Chowdary et al., 2023; Gao et al., 2022; Song et al.,
2024; Attallah, 2023; Xu et al., 2022; Priya and Bai, 2024; Shiny and
Parasuraman, 2023; Rodriguez et al., 2024; Tian et al., 2024;
Anandavally and Bai, 2024; Fang et al., 2022; Ahishakiye and Kanobe,
2024; AlMohimeed et al., 2024; Maurya et al., 2024; Battula and Sai
Chandana, 2023; Battula and Chandana, 2022; AbuKhalil et al., 2022;
Diniz et al., 2022; Benhari and Hossseini, 2022; Mahmoud et al., 2022;
Sahoo et al., 2023; Waly et al., 2022; Karamti et al., 2023; Kurniawati
and Prabowo, 2022; Chen et al., 2022; Kalbhor et al., 2023a; Luo et al.,
2022; Alohali et al., 2024; Sudhakar et al., 2023; Petrov and Sokolov,
2023; Lilhore et al., 2022; Harsono et al., 2022; Haridas and Jayamalar,
2023; Shinde et al., 2022

Specificity 14 89.40 48.80

99.09

Chowdary et al., 2023; Gao et al., 2022; Song et al., 2024; Rodriguez
et al,, 2024; Maurya et al., 2024; Battula and Chandana, 2022; Benhari
and Hossseini, 2022; Ando et al., 2024; Chen et al., 2022; Sudhakar

et al., 2023; Petrov and Sokolov, 2023; Harsono et al., 2022; Haridas
and Jayamalar, 2023; Wubineh et al., 2024b

Fl-score 23 94.14 62.82

100.0

Tang et al., 2023; Song et al., 2024; Attallah, 2023; Priya and Bai, 2024;
Shiny and Parasuraman, 2023; Tian et al., 2024; Anandavally and Bai,
2024; Fang et al., 2022; Ahishakiye and Kanobe, 2024; AlMohimeed
et al., 2024; Maurya et al., 2024; Battula and Sai Chandana, 2023;
AbuKhalil et al., 2022; Diniz et al., 2022; Mahmoud et al., 2022; Sahoo
etal,, 2023; Waly et al., 2022; Karamti et al., 2023; Kurniawati and
Prabowo, 2022; Kalbhor et al., 2023a; Lilhore et al., 2022; Haridas and
Jayamalar, 2023; Shinde et al., 2022

On the other hand, models trained on private or non-
traditional datasets have shown competitive metrics, but the lack
of public availability and inconsistent annotation standards hinder
direct comparison and limit the reproducibility of results.

This analysis indicates that although hybrid architectures offer
superior performance in controlled scenarios, there remains an
overreliance on a small set of classic datasets. Future research
must prioritize evaluating these models in real clinical settings,
incorporating whole-slide images (WSI) and multisource data.

Frontiersin Big Data

Additionally, there is a need to develop standardized multiclass and
multimodal benchmarks, and to encourage the open publication of
expert-annotated datasets.

Furthermore, the research community should move toward the
systematic use of complementary metrics (e.g., balanced accuracy,
negative predictive value, Kappa coefficient) and ensure external
cross-validation and the reporting of confidence intervals. These
practices are essential to promote transparency, reproducibility,
and clinical applicability of the proposed Al models.
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TABLE 11 Comparison of metrics by architecture type.

Metric Accuracy Precision

A\Y/s| Max Avg
CNN 72.80 94.91 100.00 80.00 92.06 99.00 77.40 93.36 100.00 82.50 92.98 100.00
Ensemble 63.08 63.08 63.08 60.78 60.78 60.78 66.10 66.10 66.10 62.82 62.82 62.82
Hybrid 81.11 96.63 100.00 68.00 95.15 100.00 70.00 95.46 100.00 89.00 96.61 100.00
VIT 99.11 99.11 99.11 99.12 99.12 99.12 99.11 99.11 99.11 99.11 99.11 99.11

The encouraging results of AI models in cervical cytology
should be considered in light of their methodological limitations.
Our quality appraisal revealed frequent risks of bias, including
reliance on small or homogeneous datasets, absence of external
validation, and incomplete reporting of clinically relevant metrics.
These issues may inflate reported performance values and limit
generalizability. Future research should prioritize representative
datasets, standardized
validation to ensure robust and clinically reliable evidence.

reporting frameworks, and external

4 Discussion

4.1 Al Models: from CNN predominance to
hybrid strategies

The most striking finding of this review is the shift from
CNN dominance toward hybrid architectures and, more recently,
Vision Transformers (AlMohimeed et al., 2024; Yamagishi and
Hanaoka, 2025; Muksimova et al., 2024). This is not a trivial
transition: CNNs have demonstrated robustness but also clear
limitations in capturing global dependencies within cytology
images, as also noted by Muksimova et al. (2025) and Mustafa
et al. (2025). The fact that more than 60% of recent studies
rely on hybrid combinations shows how the field is trying
to address morphological variability (Table 8). However, this
increasing sophistication comes with trade-offs: while hybrid
models can boost metrics, they often do so at the cost of
reproducibility, transparency, and computational feasibility in low-
resource settings. The tension between technical precision and
clinical applicability remains unresolved in the literature.

4.2 Datasets: the paradox of public versus
private

Regarding datasets, the field still depends heavily on SIPaKMeD
and Herlev. These collections are valuable as benchmarks, but
their overuse introduces an evident bias: they fail to represent
the population diversity and preparation variability encountered in
real-world practice (Ybaseta-Medina et al., 2025). It is telling that
even the most sophisticated models can reach near-perfect accuracy
on these “clean” datasets, while performance drops when evaluated
on more heterogeneous data (Pang et al., 2025; Joynab et al., 2024;
Wu et al.,, 2023a; Khan et al., 2023; Wu et al., 2023b). Attempts
to develop private or institutional datasets are commendable
because they move closer to clinical contexts, but their lack of
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public availability prevents replication and fair comparison. This
gap seriously undermines the community’s ability to establish
robust standards.

4.3 Metrics and evaluation practices:
beyond accuracy

Although accuracy remains the most frequently reported
metric (Table 10), this emphasis is problematic. Global accuracy
can inflate perceptions of success while masking poor performance
in minority but clinically critical classes, such as HSIL or SCC
(Ando et al,, 2024; Cheng et al,, 2025; Suksmono et al., 2021).
The fact that fewer than 20% of studies reported metrics such as
specificity, negative predictive value, or balanced accuracy reflects
insufficient maturity in evaluation design. This shortfall is not
merely technical: it has direct consequences for patient safety, as a
model that maximizes accuracy at the expense of sensitivity in HSIL
cannot be trusted in clinical decision-making. Future research must
therefore standardize validation protocols, incorporate external
validation, and adopt metrics that capture the real clinical cost
of misclassification.

4.4 Cross-analysis: patterns and warnings

The cross-analysis of models, datasets, and metrics uncovers
a paradox that cannot be overlooked: the best results cluster
around classical datasets with relatively simple structures, while
more realistic scenarios — whole-slide images and heterogeneous
institutional collections — remain underexplored, as also noted
in the review by Jiang et al. (2023). This reveals a persistent
gap between academic research and clinical application. Moving
forward, the field must prioritize multicenter benchmarks with
diverse data and more rigorous evaluation criteria. Only then, can
Al in cervical cytology move beyond being a promising academic
exercise and evolve into a clinically reliable and ethically sound tool.

5 Conclusions

This systematic review provides an integrative perspective
on the application of artificial intelligence in cervical cytology,
focusing on deep learning models, datasets, and performance
outcomes. Through the analysis of 77 peer-reviewed articles
published between 2022 and 2025, we identified a clear
predominance of convolutional neural networks and hybrid
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those CNNs  with
attention mechanisms or transformer-based models—as the

architectures—particularly combining
core computational strategies for lesion classification.

In terms of data usage, the review revealed a significant
dependency on a small number of publicly available datasets,
particularly SIPaKMeD and Herlev. While these datasets offer
consistency and facilitate benchmarking across studies, their
limited clinical variability poses a challenge for real-world
generalizability. The emergence of private or custom datasets
represents an important effort to diversify data sources, although
lack of accessibility and annotation standards hinders replication
and external validation.

Regarding model performance, most studies reported high
levels of accuracy, precision, and recall, especially those employing
hybrid models trained on curated datasets. However, inconsistent
reporting practices, limited use of external cross-validation, and
underutilization of clinically meaningful metrics such as specificity,
balanced accuracy, and AUC indicate the need for more robust
evaluation protocols.

To our knowledge, this is the first systematic review to conduct
a cross-sectional analysis that jointly examines the relationships
between deep learning architectures, dataset types, and diagnostic
metrics in the context of cervical cytology. This integrative
approach offers a broader understanding of current practices
and challenges in the field, contributing valuable insights that
may inform the development of more reliable, interpretable, and
clinically aligned AT systems for early detection of cervical lesions.

In summary, the most relevant outcomes of this review are
threefold: (i) the predominance of hybrid architectures, particularly
CNNs combined with transformer or attention modules, as the
emerging computational trend; (ii) the continued dependence on
a small set of classical datasets (SIPaKMeD and Herlev), despite
increasing interest in private and heterogeneous collections; and
(iii) the overall performance patterns, with accuracies typically
ranging between 87 and 95% and Fl-scores between 64 and
96%, which underscore both the potential and the methodological
limitations of current models. These findings provide a concrete
reference point for future research and development of clinically
applicable Al systems in cervical cytology.
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