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Integrated analysis for drug
repositioning in migraine using
genetic evidence and claims
database

Shoichiro Inokuchi* and Takumi Tajima

Real World Evidence Division, Pharmaceutical Division, IMDC Inc., Tokyo, Japan

Introduction: Migraine is a prevalent neurological disorder with a substantial
socioeconomic burden, underscoring the need for continued identification of
therapeutic targets. Given the significant role of genetic factors in migraine
pathogenesis, a genetic-based approach is considered effective for identifying
potential therapeutic targets. This study aimed to identify candidate treatments
for migraine by integrating genome-wide association study (GWAS) data,
perturbagen profiles, and a large-scale claims database.

Methods: We used published GWAS data to impute disease-specific gene
expression profiles using a transcriptome-wide association study approach. The
imputed gene signatures were cross-referenced with perturbagen signatures
from the LINCS Connectivity Map to identify candidate compounds capable of
reversing the disease-associated gene expression. A real-world claims database
was subsequently utilized to assess the clinical efficacy of the identified
perturbagens on acute migraine, employing a cohort study design and mixed-
effects log-linear models with the frequency of prescribed acute migraine
medications as the outcome.

Results: Eighteen approved drugs were identified as candidate therapeutics
based on the perturbagen profiles. Real-world analysis using the claims database
demonstrated potential inhibitory effects of metformin (relative risk [RR]: 0.81;
95% confidence interval [Cl]: 0.77-0.86), statins (RR: 0.94; 95% Cl: 0.92-0.96),
thiazolidines (RR: 0.84; 95% Cl: 0.73-0.97), and angiotensin receptor neprilysin
inhibitors (RR: 0.69; 95% Cl: 0.61-0.77) on migraine attacks.

Conclusion:  This multidisciplinary approach highlights a cost-effective
framework for drug repositioning for migraine treatment by integrating genetic,
pharmacological, and real-world clinical database.

KEYWORDS

migraine, drug repositioning, human genetics, routinely collected health data, drug
database

1 Introduction

Migraine is a common neurological disorder that affects approximately 15% of the
global population and is characterized by recurrent headache episodes, often accompanied
by concomitant manifestations, including aura (GBD 2016 Headache Collaborators,
2018). Its prevalence is the highest among women aged 35-39 years. This disorder
imposes a considerable socioeconomic burden, as acute migraine attacks can significantly
disrupt daily activities, including educational and occupational responsibilities. Despite
advancements in treatment strategies, migraine remains the second leading cause of
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disability-adjusted life-years among patients with neurological
conditions, highlighting the profound disability and economic
impact associated with this disease (GBD 2016 Neurology
Collaborators, 2019). These challenges underscore the need
for continued efforts to identify novel therapeutic targets for
migraine management.

In drug discovery, effective screening is essential to successfully
identify potential candidate drugs, and drug discovery and
repositioning based on genetic findings have proven useful
(Nelson et al., 2015; King et al, 2019; Reay and Cairns,
2021). These methodologies include the identification of disease-
associated target genes based on genetic variants, selection
of drug repositioning candidates informed by risk gene sets
and known drug targets (Sakaue and Okada, 2019), approach
based on transcriptome-wide association study (TWAS) (Konuma
et al, 2021; Namba et al, 2022; Wu et al, 2022), and
Mendelian randomization analyses (Hemani et al., 2018), as well
as bioinformatic and deep-learning frameworks for predicting
therapeutic targets and drug responses, including reference-
free transcriptomic and graph neural-network approaches that
highlight the growing role of data-driven methods in drug
discovery (Eralp and Sefer, 2024; Sefer, 2025). Given that migraine
has substantial genetic attributes, with an estimated heritability of
42% (Polderman et al,, 2015), leveraging genetic information may
facilitate the identification of therapeutic targets and support efforts
in drug discovery and repositioning. Additionally, recent studies
have demonstrated the utility of genetic evidence in conjunction
with clinical databases (Wu et al., 2022).

To identify potentially effective treatments for migraine,
we performed an integrative analysis using the results from a
previously published genome-wide association study (GWAS)
meta-analysis (Choquet et al., 2021) and a gene perturbation
database, followed by clinical validation using a routinely collected
claims database. This approach not only enhances the robustness
of the findings by incorporating multiple data sources but also
provides a cost- and time-efficient strategy for drug repositioning.

2 Materials and methods

2.1 Data source

This study used publicly available data from a previously
published GWAS meta-analysis (Choquet et al., 2021). This meta-
analysis incorporated data from multiple ancestries, encompassing
a total of 554,569 individuals (including 28,852 migraine cases)
from the Genetic Epidemiology Research in Adult Health
and Aging (GERA) cohort and UK Biobank (UKB) cohorts.
Only aggregated data were used, and no individual-level data
were analyzed.

For perturbagen profiles, the Library of Integrated Network-
based Cellular Signatures (LINCS) Connectivity Map (CMap)
L1000 dataset was employed (Konuma et al, 2021; Wu et al,
2022). Level 5 data (moderated Z-scores) were downloaded from
the Gene Expression Omnibus (GEO) database (accession numbers
GSE92742 and GSE70138).

To evaluate the potential effectiveness of candidate drugs
for migraine, as suggested by genetic evidence and perturbagen
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profiles, we analyzed data from the JMDC Claims Database (Nagai
et al., 2021), which is derived from routine clinical practice. This
anonymized database contains insurance claims data from health
insurance societies and includes information from approximately
20 million individuals. The dataset encompasses diagnostic codes,
prescription records, clinical procedures, and health checkup
results. Importantly, the health insurance societies represented in
this database do not include elderly individuals; thus, data from
individuals aged 75 years or older were not included.

As the study used anonymized secondary data, ethical approval
was not required in accordance with the local regulations. This
study was conducted in accordance with the principles of the
Declaration of Helsinki.

2.2 Imputation of disease specific gene
signature

To estimate tissue-specific gene expression signatures
associated with migraine using GWAS summary statistics, we
conducted a TWAS using the FOCUS method (Mancuso et al,
2019; Lu et al., 2022). FOCUS employs a Bayesian approach that
integrates GWAS summary statistics and gene expression weights
derived from expression quantitative trait loci (eQTL) data to
infer disease-specific gene expression profiles. eQTL reference
data were obtained from the Genotype-Tissue Expression (GTEx)
project (version 8) (Gamazon et al., 2015; Barbeira et al., 2018,
2021). In FOCUS, the TWAS z-score is estimated using the

following formula:

wTx

ZTwAs = —F————
wTvw

Where W is the eQTL weight matrix, X is the vector of GWAS
z-scores, and V is the SNP reference linkage disequilibrium (LD)
matrix. Tissues used for estimating disease-specific signatures were
selected based on tissue-specific enrichment analysis using the deTS
algorithm (Pei et al., 2019), which relies on disease-associated genes
identified via the Multi-marker Analysis of GenoMic Annotation
(MAGMA) method (de Leeuw et al., 2015) (p < 0.05). Additionally,
considering the neurological involvement in migraine, the top three
nervous system tissues were included, along with whole blood, to
account for the potential contribution of neuroinflammation.

2.3 ldentification of candidate
perturbagens

We integrated tissue-specific TWAS data derived from FOCUS
with gene expression profiles from the LINCS CMap L1000
library to identify perturbagens capable of normalizing disease-
associated gene expression signatures. To this end, we examined the
inverse correlations between disease-specific tissue gene expression
signatures and perturbagen-induced gene expression profiles, using
the LINCS L1000 dataset. From each tissue selected through tissue-
specific enrichment analysis, we extracted the top 10% of the
genes with the highest absolute TWAS z-scores. Spearman’s rank
correlation coeflicients were calculated for these genes to assess the
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negative relationship between TWAS-derived expression profiles
and LINCS L1000 perturbagen-induced profiles (Konuma et al,
2021; Wu et al., 2022).

cov (R (Zrwas) » R(ZLincs))

Spearman’s p =
OR(ZTwas) OR(ZLINCS)

Zrincs represents the z-score of the change in gene expression
induced by the perturbagen, R(.) denotes the rank, and o
indicates the standard deviations of the rank variable. This
generated a correlation coefficient for each tissue perturbagen pair.
Perturbagen with a one-sided p-value <1 x 10~* were considered
candidate therapeutics. This approach is hereafter referred to as the
“Spearman-based method.”

In parallel, we used the LINCS SigCom platform to identify the
candidate compounds. SigCom is a web-based platform designed to
identify mimicker or reverser perturbagens based on upregulated
and downregulated gene inputs and to associate gene signatures
with similar cell types or diseases (Evangelista et al., 2022). We
submitted the top 150 upregulated and bottom 150 downregulated
genes derived from the tissue-specific TWAS results to SigCom.
The top 200 reverser perturbagens were identified using the Mann-
Whitney U test. This approach is hereafter referred to as the
“SigCom-based method.”

2.4 Validation using a claims database:
study population

To validate the suggested drugs for migraine treatment
identified through GWAS data and perturbagen profiles, a cohort
study was conducted using the JMDC Claims database. The
database includes claims records for diagnoses, prescriptions, and
medical procedures from routine clinical practice. Eligible patients
were included based on the following criteria: (1) diagnosis of
migraine (International Statistical Classification of Diseases and
Related Health Problems 10th Revision [ICD-10]: G43) between
September 2018 and August 2023; (2) at least one prescription
for migraine-specific medications (Supplementary Table 1); (3)
continuous enrollment for >180 days; (4) no history of ischemic
heart disease (ICD-10: 120-125), stroke (ICD-10: 160-169), or
transient ischemic attack (ICD-10: G45); and (5) a follow-up period
of at least 1 d. The first diagnosis date was designated as the index
date (Day 0). The follow-up continued until death, emigration of
the database, or occurrence of heart failure, stroke, or transient
ischemic attack, whichever came first.

2.5 Validation using a claims database:
variables

As migraine attacks could not be directly obtained from the
database, the number of acute migraine drugs, including triptans,
ergotamine, and ditans (Supplementary Table 1), were used as
surrogate outcomes. We did not consider paracetamol, non-
steroidal anti-inflammatory drugs, antipsychotics, or antiemetics
because these medications can be prescribed for any other
condition, thereby exhibiting low specificity.
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Drugs suggested by both methods (i.e., Pspearman N Psigeoms
where  Pspearmans Psigeom denotes perturbagens identified by
Spearman- and SigCom-based methods, respectively) were
considered as exposure. The exposures were treated as time-varying
variables. Covariates were selected based on the treatment strategy
for migraine and potential risk factors of acute migraine (Amiri
et al,, 2021). Potential confounders for each specific drug exposure
were also considered to adjust for patient characteristics associated
with the use of each drug of interest (Supplementary Table 2).
Exposure status and covariates were defined based on the presence
or absence of each diagnosis or medication within the covariate
assessment window at each time point.

2.6 Validation using a claims database:
statistical analysis

To evaluate the treatment effect on migraine attacks, the
number of prescribed acute migraine medications was used as an
outcome measure. A rolling 1-year time window was applied to
account for time-varying variables, and the effect of each candidate
drug identified through genetic analysis was evaluated using a
mixed-effect log-linear model. The model is specified as follows.

C
In(Yj+1)=Bo+at+ Y BiXes + vi+Intime; + e
k=1

where Bs are the fixed effects, Yij denotes the number of prescribed
acute migraine medications for patient i at time window j, f is
a binary indicator of exposure drug, C represents the number
of covariates, inj is the value of the k-th covariate for patient
i at time window j, y; is the random effect for patient i, time;;
denotes the duration of the outcome evaluation window (i.e.,
included as an offset term), and ¢;; is the random error term. The
exponential coefficient exp () was interpreted as the multiplicative
effect of the exposure drug on the frequency of prescribed acute
migraine medications. The analysis using the claims database
was informed by RECORD checklist (Benchimol et al., 2015)
(Supplementary materials).

Data preprocessing was performed using Python version 3.12.2,
and statistical analyses were performed using R version 4.3.3.

3 Results

3.1 Ildentification of candidate
perturbagens that normalize
migraine-specific gene expression

The overall scheme is illustrated in Figure 1. We used publicly
available data from the GWAS meta-analysis study (Choquet
et al, 2021). First, we performed tissue-specific enrichment
analysis using the deTS algorithm (Pei et al,, 2019) based on
disease-associated genes identified using the MAGMA method (de
Leeuw et al,, 2015). Based on tissue-specific enrichment analysis,
tissues with p < 0.05, along with whole blood and the three
most relevant neuronal tissues, were selected for the subsequent
TWAS analysis using FOCUS (Figure 2A). FOCUS is a Bayesian
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GWAS summary statistics for migraine
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FIGURE 1

Schema of the study. Disease-associated gene signatures were imputed using GWAS summary statistics and FOCUS, which is a Bayesian TWAS
framework. The imputed gene signatures were cross-evaluated with gene perturbation data from LINCS CMap L1000 using two approaches:
Spearman’s rank correlation test and SigCom platform. Common perturbagens identified using both methods were extracted and validated using a

claims database.

Perturbagens raised from LINCS
Sigcom web platform

Perturbagens assessed using routinely
collected health data from claims
database

estimation algorithm that is used to impute disease-specific tissue
signatures based on GWAS summary statistics and eQTL weights.
Next, we evaluated the imputed disease-specific signature against
perturbagen profiles from LINCS CMap L1000 library data (Wu
et al., 2022). Perturbagens that demonstrate inverse associations
with disease signatures are considered as potential therapeutic
candidates. Additionally, we used the SigCom framework, a web-
based platform that identifies signatures that mimic or reverse
perturbagens based on input gene lists (Evangelista et al., 2022). The
top 150 upregulated and downregulated genes identified by TWAS
analysis were used as inputs, and 200 reversers were considered as
candidate perturbagens capable of normalizing migraine-specific
gene expression profiles. Among the 84 perturbagens identified
from both approaches, 18 approved drugs were considered
potential drugs that normalized migraine-specific gene expression
(Figure 2B; Supplementary Table 3).
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3.2 Clinical validation of identified drugs
using a routinely collected claims database

For claims data analysis, we used the JMDC Claims Database
(Nagai et al, 2021), which comprises anonymized insurance
claims data for approximately 20 million individuals in Japan.
This analysis included 214,843 patients diagnosed with migraine
between September 2018 and August 2023 (Figure 3A). The median
age was 38 years (interquartile range [IQR]: 26.0-47.0), and 71.1%
of the included patients were female. The median duration since
the initial diagnosis of migraine in the database was 0 years
(IQR: 0.0 to 1.6), and the median follow-up period was 965 days
(IQR: 522.0-1,603.0) (Supplementary Table 4). Prescriptions for
acute migraine medications were relatively higher in the first year
(median 5, IQR 0-40) compared with the overall period (median
2, IQR 0-29). To evaluate the treatment efficacy for migraine
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FIGURE 2

therapeutic potential identified using the SigCom platform.

A

Result of tissue-specific enrichment analysis

GTEx Tissue name P-value
Artery - Coronary <0.001
Artery - Tibial 0.001
Colon - Sigmoid 0.002
Prostate 0.011
Ovary 0.026
Uterus 0.033
Artery - Aorta 0.043
Muscle - Skeletal 0.054
Adipose - Subcutaneous 0.068
Brain - Nucleus accumbens (basal ganglia) 0.068
Adrenal Gland 0.085
Esophagus - Gastroesophageal Junction 0.085
Brain - Anterior cingulate cortex (BA24) 0.104
Esophagus - Muscularis 0.104
Brain - Frontal Cortex (BA9) 0.127
Whole Blood 0.127
Brain - Spinal cord (cervical c-1) 0.182

Identification of potential therapeutic medications for migraine. (A) Results of tissue-specific enrichment analysis of migraine. (B) Volcano plot for the
Spearman’s rank correlation test, which evaluated the inverse correlation between disease-specific gene signatures and gene perturbation data
obtained from LINCS CMap L1000. Each dot represents a perturbagen-cell pair with a one-sided p-value. Red dots indicate perturbagens with
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attacks, the frequency of prescribed acute migraine medications
was used as a measure of outcome. A rolling 1-year time window
was applied to account for time-varying medications (Figure 3B),
and the effects of 18 candidate drugs were evaluated using a
multivariable mixed-effect log-linear model. The results suggested
a potential inhibitory effect of metformin (relative risk [RR]: 0.81
[95% confidence interval {CI}, 0.77-0.86]), statins (RR: 0.94 [95%
CI: 0.92-0.96]), thiazolidines (RR: 0.84 [95% CI: 0.73-0.97]), and
the angiotensin receptor neprilysin inhibitor (ARNI, RR 0.69 [95%
CI: 0.61-0.77]) (Figure 3C). Several agents, including nintedanib
and hypoxia-inducible factor prolyl hydroxylase inhibitors (HIE-
PHi), also showed a trend toward protective effects (RR: 0.59, [95%
CI: 0.32-1.09] and RR: 0.67, [95% CI: 0.34-1.29], respectively).

4 Discussion

In this study, we used an integrative approach to identify
potential therapeutic agents for migraine by leveraging genetic,
perturbagen, and real-world claims databases. Using TWAS based
on a large-scale GWAS, we imputed migraine-specific gene
expression signatures and screened for perturbagens capable
of reversing disease signatures using data from the LINCS
Connectivity Map. Eighteen approved drugs were identified as
candidate agents, including metformin, statins, thiazolidines,
and ARNI, which demonstrated significant associations with
reduced acute migraine attacks in an analysis using a real-
world claims database. The use of routinely collected prescribed
data is known to be subject to confounding by indication
(Acton et al, 2023). Although residual confounding cannot
be ruled out, potential confounding variables were carefully
selected, including common confounders such as age, sex, diabetes,
and dyslipidemia, as well as exposure-specific confounders (e.g.,
chronic kidney disease and dialysis for HIF-PHi; rheumatoid
arthritis and other rheumatic diseases for folate), to mitigate
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this bias. These findings support the feasibility and utility
of integrating genomic data with pharmacologic perturbation
and routinely collected health databases to accelerate drug
repositioning efforts for complex neurological diseases such
as migraine.

The analysis of GWAS statistics and perturbagen data identified
the mammalian target of rapamycin (mTOR) as a potential
target for migraine. Among the approved drugs, metformin
was selected as a potent mTOR inhibitor (Howell et al., 2017).
Metformin, an anti-diabetic agent, has been shown to attenuate
neuroinflammation in a mouse model of migraine (Fan et al,
2024), supporting the findings of the study. Despite the lack of
significant benefits observed in a previous randomized clinical
trial (ClinicalTrials.gov ID: NCT02593097), which was limited
by the small sample size, the findings of the present study
related to large-scale claims data analysis suggest that metformin
may be a promising therapeutic option for migraine, warranting
further investigation.

Statins, which are inhibitors of 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMGCR) and are widely used as lipid-
lowering agents, may also influence migraine. Evidence suggests
an association between HMGCR expression and the risk of
migraine; hence, the use of statins has been proposed to reduce
both the development and frequency of attack of migraine
(Makhlouf et al., 2025). Although the precise mechanisms by which
statins affect migraine pathology are not fully understood, their
anti-inflammatory properties, potential to improve endothelial
function, and ability to ameliorate metabolic disturbances may
contribute to their therapeutic effects. Although the overall use
of statins showed a protective association with migraine attacks,
simvastatin did not exhibit this effect. Given the previous evidence
supporting the efficacy of simvastatin combined with vitamin D
(Buettner et al., 2015), examining the differential effects of various
statins may provide valuable insights into their potential roles in
migraine management.

frontiersin.org


https://doi.org/10.3389/fdata.2025.1677167
http://ClinicalTrials.gov
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Inokuchi and Tajima

10.3389/fdata.2025.1677167

A
[JMDC Claims Database]
1
Patients with a migraine diagnosis (September 2018 — August 2023)
n=536,643
|
Patients prescribed migraine-specific medication
n=274,014
|
[ Continuous enrollment 2180 days ]
n=231,627
Exclusion
. - History of ischemic heart disease (n=6,738)
- History of stroke/transient ischemic attack (n=10,018)
Study population - No follow-up (n=28)
n=214,843
B C
Time N Drug
window Metformin 0.81(0.77, 0.86) .
Year 0 HIF-PHi 0.59 (0.32, 1.09) +—=—
Folate 0.97 (0.91, 1.03) L]
—- - Rasagiline 0.74 (0.46, 1.18) ——
MAOi 0.79 (0.54, 1.15) ——
Year 1 Sulfonylurea 0.92 (0.83, 1.03) -
Simvastatin 1.10 (0.96, 1.27) HH
= = Statins 0.94 (0.92, 0.96) .
Year 2 Nintedanib 0.67 (0.34, 1.29) +——=—
Cimetidine 0.97 (0.93, 1.03) L]
- - H2-blockers 1.02 (1.01, 1.03) (]
Lamotrigine 0.96 (0.91, 1.02) L]
Day 0 Chlorzoxazone 1.20 (1.18, 1.21) L]
(First migraine diagnosis: Thiazolidines 0.84 (0.73, 0.97) HH
September 2018 — August 2024) Apremilast 1.03 (0.82,1.29) -
LTRA 0.99 (0.98, 1.00) L]
. Exposure and covariate assessment window M3R antagonist 1.10 (1.04, 1.17) =
ARNI 0.69 (0.61, 0.77) -
Outcome assessment window Omm
(number of the acute migraine medications) R —
acute migraine drugs
FIGURE 3

Clinical validation of identified candidate drugs using a large claims database. (A) Flow diagram illustrating the clinical validation using the claims
database. (B) Study design for clinical validation using a claims database. *Patients were followed up until the earliest exit from the database, death, or
the onset of ischemic heart disease, stroke, or transient ischemic attack. (C) Forest plot of clinical validation. A separate mixed-effects log-linear
model estimating the annual frequency of acute migraine drugs (triptans, ergotamine, and ditans) was developed for each exposure drug. The
exponential coefficient of the exposure term is shown, representing the multiplicative effect on the frequency of prescribed acute migraine
medications. MAOI, Monoamine oxidase inhibitor; LTRA, Leukotriene receptor antagonist; M3R, M3 muscarinic acetylcholine receptor; ARNI,

Angiotensin receptor neprilysin inhibitor.

The current study provides the first evidence suggesting
the potential utility of thiazolidines and ARNI as therapeutic
interventions for migraine. Thiazolidines, a class of pharmaceutical
agents primarily used for the treatment of type 2 diabetes mellitus,
exert their effects through the agonistic activity of peroxisome
proliferator-activated receptor gamma (PPARy) (Gamo et al,
2014). PPARy, a member of the nuclear hormone receptor
superfamily, is implicated not only in the pathophysiology of
glucose and lipid metabolic dysregulation but has also been
reported to exhibit anti-inflammatory and neuroprotective
properties (Kapadia et al., 2008). ARNI is a recently approved
antihypertensive agent that comprises an angiotensin II receptor
blocker (ARB) and neprilysin. The observed effect of ARNI
likely reflects mechanisms beyond those mediated by ARB
alone, which was already accounted for in the clinical validation
model using the claims database. Pro-brain natriuretic peptide
has been reported to be associated with migraine, potentially
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implicating a link between heart failure and migraine (Uzar
et al, 2011). This association might suggest that improving
heart failure by ARNI could result in the amelioration
of migraine pathology. However, to date, the relationship
between thiazolidine or ARNI and migraine has not yet been
fully explored, necessitating further research to elucidate this
potential association.

This study had several limitations. First, although migraine is a
genetically significant disorder, this study is based solely on genetic
evidence as it does not account for environmental factors that also
play a critical role in the pathophysiology of migraine. Second, the
perturbagen profiles are primarily derived from cancer cell lines
rather than primary cells. This may result in inaccurate estimation
of perturbagen effects in disease-relevant tissues, potentially leading
to the omission of therapeutically relevant compounds. To address
this limitation, incorporating datasets generated from primary cells
or organoid systems may enhance the accuracy and applicability
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of the method used in the study. Third, for clinical validation,
we used routinely collected health data, which lacked detailed
migraine-specific clinical information such as migraine subtype
and severity. This limitation introduces a potential for residual
confounding. Additionally, it necessitated the use of acute migraine
medication prescriptions as a surrogate measure of migraine
burden. Prescribing patterns may be influenced by both patient
behaviors, physician practice, and comorbidity profiles. Although
baseline variables including comorbidities were adjusted for in the
study, residual confounding may remain, potentially introducing
bias into the estimates. Fourth, clinical validation was conducted
using an East Asian population, whereas genetic evidence was
derived from a multi-ancestral GWAS. This ethnic mismatch
may limit the generalizability of our findings and potentially
lead to an underestimation of drug effects in populations outside
East Asia.

In conclusion, we identified several approved agents as
potential treatments for migraine, demonstrating the utility of
an integrated approach for drug repositioning. This study also
provides insights into the potential mechanisms of action that
may be targeted for migraine therapy. By combining GWAS
summary statistics, perturbagen data, and real-world claims
database, this framework offers time- and cost-efficient strategies
for drug repositioning.
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