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The management of vast, heterogeneous, and multidisciplinary data presents
a critical challenge across scientific domains, hindering interoperability and
slowing scientific progress. This paper addresses this challenge by presenting
a pragmatic extension to the NeOn iterative ontology engineering framework,
a well-established methodology for collaborative ontology design, which
integrates Large Language Models (LLMs) to accelerate key tasks while retaining
domain expert-in-the-loop validation. The methodology was applied within
the HyWay project, an EU-funded research initiative on hydrogen-materials
interactions, to develop the Hydrogen-Material Interaction Ontology (HMIO), a
domain-specific ontology covering 29 experimental methods and 14 simulation
types for assessing interactions between hydrogen and advanced metallic
materials. A key result is the successful integration of the HMIO into a
Data and Knowledge Management Platform (DKMP), where it drives the
automated generation of data entry forms, ensuring that all captured data is
Findable, Accessible, Interoperable, and Reusable (FAIR) and HMIO compliant by
design. The validation of this approach demonstrates that this hybrid human-
machine workflow for ontology engineering and further integration with the
DKMP is an effective and efficient strategy for creating and operationalising
complex scientific ontologies, thereby providing a scalable solution to advance
data-driven research in materials science and other complex scientific domains.
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1 Introduction

Contemporary research, particularly within complex multidisciplinary engineering
domains (Sudrez-Figueroa et al., 2015), increasingly produces large volumes of data
marked by considerable heterogeneity. This diversity results from varying data formats,
inconsistent terminologies, and limited interoperability across disciplines and tools. As a
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consequence, the resulting data landscape is often fragmented into
isolated silos, where information generated in one experiment or
simulation cannot be readily integrated with that from others. Such
fragmentation poses significant challenges to knowledge discovery,
collaboration, and the reproducibility of scientific results. These
factors collectively highlight the need for advanced knowledge
management methods, such as ontologies and specialized data
platforms, to support the clear representation, effective sharing, and
seamless integration of information.

This challenge is particularly relevant in critical research areas,
such as the development of advanced materials and technologies
for hydrogen, which are integral to supporting the European
Union’s strategic green energy transition and its overarching goal
of achieving climate neutrality by 2050 (European Commission,
2020).

Semantic web technologies, particularly ontologies, offer
a formal and shared conceptual framework that facilitates
semantic interoperability, thereby addressing the challenge of
data integration and supporting the implementation of the
Findable, Accessible, Interoperable, and Reusable (FAIR) principles
(Guizzardi, 2020). However, the development of high-quality,
comprehensive ontologies is a well-recognized bottleneck.
Traditional ontology engineering is a resource-intensive process
that relies on the close collaboration of domain experts and
ontology engineers, requiring both deep subject knowledge
and specialized technical expertise; however, such approaches
often face limitations in accommodating the evolving nature of
scientific domains, as they lack effective support for continuous
modification, maintenance, and reuse, which are essential factors
for keeping ontologies up to date and broadly applicable (Spoladore
and Pessot, 2021).

The emergence of Large Language Models (LLMs) provides
a transformative approach to enduring challenges in ontology
engineering, with the potential to significantly reduce the manual
effort and time required for ontology development. Owing to
their advanced natural language understanding and generation
capabilities, LLMs hold considerable potential for automating and
expediting key tasks in the early stages of ontology development.
These tasks include the generation of competency questions for
requirements specification, the extraction and conceptualization
of ontological structures from source texts and terminologies,
and support for ontology reuse through concept alignment and
taxonomy matching (Garijo Verdejo et al., 2024).

This paper presents and validates a practical methodology
that extends the NeOn iterative framework by integrating LLM-
based automation as a co-pilot within a collaborative, expert-
driven workflow. This socio-technical approach was developed and
implemented within the HyWay project to create the Hydrogen-
Material Interaction Ontology (HMIO) and integrate it into a
Data and Knowledge Management Platform (DKMP). The primary
contribution of this work is a practical, end-to-end demonstration
of how this hybrid human-machine workflow can efficiently
support the development of a complex, domain-specific ontology
and facilitate the production of data that is inherently aligned
with the FAIR principles. The subsequent sections detail this
methodology, its technical implementation, the results achieved,
and a critical discussion of its implications for the future of
scientific data management.
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2 Materials and methods

2.1 State of the art in ontology design and
integration

2.1.1 Methodologies for collaborative ontology
design

Ontology has evolved into an engineering discipline, guided
by established methodologies that provide systematic support
throughout the design process. In complex and multidisciplinary
research environments, especially those involving geographically
distributed teams, it is essential to adopt approaches that promote
both collaboration and flexibility. A variety of methodologies have
been proposed, each emphasizing different phases and aspects of
the ontology engineering lifecycle.

General strategies for conceptual design are typically grouped
into three categories: top down, bottom up, and middle out. The
top down approach begins with high-level abstract concepts and
incrementally refines them into more specific ones. The bottom
up approach derives general categories by analyzing concrete,
domain-specific instances. The middle out approach starts with
key mid-level concepts and extends them in both directions,
capturing higher-level abstractions as well as more detailed,
granular concepts, thereby aiming for a balanced and contextually
relevant ontology structure.

UPON Lite (De Nicola and Missikoff, 2016) is a user-centric
methodology designed to support rapid ontology engineering
by enabling domain experts to lead the development process
with minimal involvement from ontology engineers until the
final formalization stage. The methodology comprises six
structured steps: (1) constructing a domain-specific lexicon, (2)
developing a glossary with definitions, (3) organizing terms into
a hierarchical taxonomy based on subclass relations, (4) defining
conceptual properties, (5) specifying part-whole relationships,
and (6) encoding the resulting model using formal representation
languages, typically OWL. UPON Lite adopts a participatory
approach that promotes collaborative knowledge elicitation
through shared, transparent tools such as online spreadsheets.
Initially developed for enterprise and business applications, the
methodology supports rapid prototyping and emphasizes the active
role of end users to ensure the practical relevance and applicability
of the resulting ontology. UPON Lite has been successfully applied
in diverse domains including safety regulations, data science,
intellectual property, smart building, and social networks, and is
specifically demonstrated by De Lille and Roelens (2021) through a
detailed case study in a public organization for internal audits.

MeLOn (Mockus and Palmirani, 2017) is an interdisciplinary,
goal-oriented, and evaluation-driven methodology for ontology
engineering, structured into ten clearly defined steps. It begins
by establishing the ontology’s objectives, identifying use cases
for empirical testing, and formulating research questions.
Simultaneously, it defines measurable evaluation criteria, including
completeness, correctness, coherence, applicability, effectiveness,
intuitiveness for non-specialists, computational soundness, and
reusability. The methodology places strong emphasis on the
analysis and reuse of existing ontological resources, ensuring that
prior knowledge is integrated effectively. It guides the development
of a domain-specific glossary to create a consistent conceptual
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foundation. Ontology construction is carried out using structured
tabular representations that capture concepts, object and data
properties, and formal constraints. These are then translated into
UML diagrams and subsequently formalized in ontology languages
such as OWL. MeLOn adopts an iterative development process
that includes empirical scenario testing and systematic refinement
based on evaluation outcomes. Domain experts play a central
role in this cycle, which is repeated across multiple iterations and
often supported by web-based interfaces to facilitate collaborative
validation and feedback. The MeLOn methodology has been
notably applied in the legal domain, including the development of
PrOnto by Palmirani et al. (2018)—an ontology for the General
Data Protection Regulation (GDPR) aimed at supporting legal
reasoning and compliance verification.

DILIGENT (Pinto H. S. et al, 2004) is a fine-grained
methodology designed to support the collaborative development
distributed
environments. It was developed in response to the limitations of

and continuous evolution of ontologies in
traditional centralized ontology engineering approaches, which are
often unsuitable for scenarios involving dispersed stakeholders,
substantial involvement of domain experts outside the core
development team, and the need for sustained ontology evolution.
The methodology comprises five key activities: the creation of
an initial ontology, local adaptation by users, submission and
evaluation of change requests by a control board, revision of the
shared ontology, and subsequent updates at the local level. A
defining characteristic of DILIGENT is its argumentation-based
framework for managing consensus-building among contributors.
It organizes exchanged arguments into types such as elaboration,
justification, alternatives, examples, and counterexamples to
facilitate structured discussion and decision-making. Validation
efforts indicate that structured argumentation, when supported by
appropriate collaboration mechanisms and tools, can significantly
improve the efficiency and focus of ontology development in
distributed settings. The DILIGENT methodology was applied
by Pinto S. et al. (2004) in a knowledge sharing scenario among
tourism stakeholders in the Balearic Islands, where organizations
collaboratively developed and evolved a shared ontology to
harmonize decentralized information about sustainability,
technology, and hospitality.

The NeOn Methodology (Sudrez-Figueroa et al, 2015)
is a scenario-based and flexible framework for ontology
engineering, distinguished by its emphasis on reusing and re-
engineering existing knowledge resources and supporting dynamic,
collaborative development. Rather than enforcing a fixed sequence
of steps, NeOn provides a set of nine customisable scenarios that
address diverse development contexts. These include building new
ontologies from scratch, reusing and adapting non-ontological
resources, reusing and merging existing ontologies, localizing
ontologies, aligning multiple ontologies, and employing ontology
design patterns to guide modeling decisions. A core strength of
the NeOn Methodology lies in its support for both a traditional
waterfall lifecycle model and an iterative and incremental lifecycle,
designed for complex, large-scale, and evolving environments
where stakeholder requirements and domain understanding
develop over time. The methodology explicitly integrates activities

for knowledge acquisition, conceptualization, formalization,
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implementation, maintenance, and validation, and emphasizes
stakeholder involvement, quality assessment, and documentation
throughout the ontology lifecycle. It also includes guidance for
collaborative development settings, supporting asynchronous
contributions and team coordination. The methodology has been
validated in diverse application domains. Li et al. (2020) developed
the Materials Design Ontology following several NeOn scenarios
such as reuse of non-ontological resources and restructuring of
ontological resources.

2.1.2 The role of LLMs in ontology engineering

Large Language Models (LLMs) represent a significant
advancement in ontology engineering by introducing data-driven,
language-oriented artificial intelligence to support and accelerate
tasks traditionally rooted in symbolic and logic-based approaches.

In the area of ontology generation from natural language,
Lippolis et al. (2025) present and evaluate two prompting
strategies, namely Memoryless CQbyCQ and Ontogenia, to
automatically generate OWL ontologies from user stories and
competency questions. Their study demonstrates that LLM-
generated ontologies can match or even exceed the quality of
those produced by novice engineers, especially when leveraging
well-structured prompts and evaluation criteria such as logical
consistency, completeness, and usability.

A second major direction is ontology construction from
structured datasets, as exemplified by the OntoGenix workflow
developed by Val-Calvo et al. (2025). This approach applies LLMs
to derive ontological structures directly from commercial datasets,
including entity definitions and RDF mappings. OntoGenix
supports a configurable, modular pipeline for ontology planning
and entity enhancement, achieving modeling results that closely
approximate expert-crafted ontologies, albeit with some limitations
in complex scenarios.

LLMs have also been investigated for ontology alignment and
enhancement. Though not the central focus of the aforementioned
works, studies by Babaei Giglou et al. (2023) and Fathallah et al.
(2025) explore the use of LLMs to align new concepts with
existing ontologies or to translate controlled natural language into
formal axioms, demonstrating early but promising capabilities in
supporting semantic interoperability and reuse.

While LLMs offer substantial promise for ontology engineering,
their limitations are well documented. LLMs often lack the
depth of knowledge required for accurate modeling in specialized
scientific domains, which can lead to superficial or incorrect
representations. Consequently, current research supports the role
of LLMs as assistive technologies within expert-led workflows,
where rigorous validation by domain specialists is essential to
ensure the correctness and scientific reliability of the resulting
ontologies (Li et al., 2024).

2.1.3 Ontology-based data integration patterns
Ontologies demonstrate their full potential when embedded
within data management platforms, where they support the
structuring, annotation, and interpretation of scientific data.
Ontology-Based Data Integration (OBDI) leverages ontologies to
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facilitate structured, semantically rich, and accessible interaction
with heterogeneous data sources. OBDI addresses challenges such
as fragmented database schemas, data redundancy, and limited
accessibility for users without technical expertise. It achieves
semantic interoperability by introducing an ontology layer that
resides between the conceptual and physical data layers.

Four principal architectural patterns have been identified in
the literature: Single Ontology, Multiple Ontologies, Hybrid, and
Global-as-View (GAV). These approaches differ in how ontologies
are structured and related to data sources and to one another.
Comprehensive reviews of these models are provided by Wache
et al. (2002), Corcho et al. (2020), Ekaputra et al. (2017), and Xiao
et al. (2018).

The Single Ontology approach employs a unified global
ontology to which all data sources are directly mapped. It offers
conceptual simplicity and low implementation effort, particularly
when data sources are semantically aligned. However, this
architecture can be rigid, making it less suitable for integrating
semantically diverse or evolving sources, and maintenance can
become costly when changes occur in the system.

In contrast, the Multiple Ontologies model assigns a local
ontology to each data source. Semantic interoperability is achieved
through mappings between these local ontologies. This model
excels in heterogeneous environments and allows independent
ontology evolution, but it requires significant mapping effort,
especially as the number of ontologies grows.

The Hybrid approach combines elements of both previous
models by aligning local ontologies with a shared upper-level
ontology or vocabulary. This strategy promotes interoperability
while preserving domain-specific detail. It is particularly well-
suited for multidisciplinary domains, where both semantic
alignment and autonomy are necessary (Ekaputra et al., 2017).

The Global-as-View (GAV)
preservation of independently developed local ontologies by

approach allows for the
defining mappings that transform local representations into
instances of a global ontology. This architecture supports high
levels of heterogeneity and complex mappings while retaining the
benefits of both centralized and decentralized models.

These
constructs but have been realized in a variety of operational

architectural models are not only theoretical
platforms designed to manage and integrate research data.
The implementation of OBDI principles in real-world systems
illustrates how semantic technologies can be used to support
(Findable, Accessible, Interoperable, and Reusable (FAIR) data
management.

For example, Coscine is a research data management (RDM)
platform designed to support FAIR data principles by introducing
a semantic interoperability layer over existing storage services
(Lang et al., 2024). Its architecture is grounded in Semantic Web
standards, including RDF, OWL, and SHACL, which are used to
define flexible, schema-driven metadata application profiles. Each
resource in Coscine is assigned a Persistent Identifier (PID), and all
associated metadata is structured using standardized vocabularies
and ontologies, thereby enhancing data findability and cross-
project interoperability. The platform supports both the reuse
and creation of domain-specific terminologies through integrated
vocabulary services, and these metadata schemas can be created
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or extended by individual research projects according to their
specific needs. This architectural design aligns with the Hybrid
OBDI paradigm, wherein discipline-specific application profiles
serve as local ontologies built upon a shared semantic foundation
based on W3C standards. Rather than enforcing a single, rigid
global schema, Coscine allows for heterogeneity and extensibility
while preserving semantic compatibility across projects through
adherence to a common metadata model.

openBIS is an extensible research data management platform
that serves as a central hub for managing metadata, experimental
data, and data provenance across diverse scientific workflows
(Lang et al, 2024). It provides a configurable data model
that links experimental outputs to biological samples, materials,
and protocols through a hierarchical structure encompassing
entities such as Data Spaces, Projects, Experiments, Samples,
and Datasets. While its conceptual architecture relies on a
central metadata schema, openBIS is designed to accommodate
heterogeneous and evolving data types across domains by
supporting user-defined types and annotations through its
reflective metadata model. The system exposes comprehensive
Application Programming Interfaces (APIs) and supports plugin-
based extensibility, facilitating seamless integration with domain-
specific analytical tools and enabling automation across the
research data lifecycle. Provenance tracking is a core design
feature, ensuring traceability of experimental processes and data
transformations. Although openBIS employs a shared core schema,
its capacity to flexibly represent heterogeneous data and integrate
with external systems indicates that it aligns more closely with
hybrid ontology-based data integration principles rather than a
rigid single-ontology approach. Specifically, it maintains a shared
semantic core while allowing local extensions and system-specific
metadata configurations, thereby supporting both interoperability
and domain-specific detail.

The NOMAD platform provides infrastructure for managing
and sharing materials science data, initially focusing on
computational simulations and more recently extending to
experimental datasets (Scheidgen et al., 2023). It adopts a schema-
driven architecture in which modular, code-specific parsers
extract structured metadata from a wide range of simulation and
instrument file formats. At its core is the NOMAD Metainfo
(Ghiringhelli et al., 2023), a hierarchical and extensible metadata
schema designed to capture both shared concepts across domains
and specialized, tool-specific information. This flexibility supports
semantic interoperability without enforcing a rigid global model,
aligning with the hybrid ontology-based data integration approach.
To facilitate metadata harmonization in experimental materials
science, NOMAD integrates the NeXus ontology (Konnecke
et al, 2015), a community-developed schema and data format
built upon HDF5. NeXus provides a formal structure for
describing experimental configurations, instrument settings, and
measurement data, supporting machine readability and enabling
data reuse across various facilities. The ontology component of
NeXus, expressed in OWL, enhances compatibility with semantic
web frameworks and extends its role as a standard reference model.

While all four OBDI patterns have distinct strengths, the hybrid
approach is most frequently adopted in scientific data platforms.
Its widespread use reflects a balance between semantic coherence,

frontiersin.org


https://doi.org/10.3389/fdata.2025.1676477
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Kampars et al.

achieved through shared vocabularies or upper-level ontologies,
and the flexibility needed to support heterogeneous data sources,
evolving standards, and diverse project-specific needs.

2.2 The HyWay collaborative ontology
design methodology

The Hyway methodology constitutes a practical, LLM
augmented implementation of the NeOn ontology engineering life
cycle. It adapts NeOn’s scenario-based, iterative, and incremental
framework by incorporating automation through large language
models (LLMs), while customizing the initial knowledge
acquisition strategy to reflect the specific context and needs
of the project.

A foundational consideration in any ontology engineering
project is the selection of appropriate knowledge sources. While
large language models have demonstrated strong capabilities in
ontology learning, particularly in extracting relevant concepts
and relationships from unstructured textual sources such as
scientific articles or technical documentation, this approach was
not considered suitable for the HyWay project. The central
limitation was the absence of a consolidated body of literature
that accurately represented the domain-specific experimental and
simulation workflows employed by the participating research
partners. Building an ontology from generic literature risked
misrepresenting the distinctive, practical aspects of these processes.
To ensure fidelity to actual practice, the project adopted a direct
expert-driven approach, surveying domain specialists to elicit
relevant terminology, relationships, and parameterisations. This
process produced a high-quality, expert-validated non-ontological
resource that served as the foundation for subsequent stages.

The Python application that supports this methodology is
openly available (Kampars, 2025). As shown in Figure 1, the
HyWay methodology proceeds through the following six stages:

1. Initial information gathering.

The process begins with the structured collection of domain-
specific information from research partners. This is facilitated
through a survey distributed as a Microsoft Excel template,
which prompts users to document their experimental and
simulation workflows. Respondents are asked to provide detailed
information on process steps, parameters, input and output entities,
cardinalities, and associated units of measurement. This stage
establishes the foundational knowledge base upon which the
ontology will be built.

To support and guide the initial schema design, the application
profiles developed by the SFB 1394 Research Project (2023) were
programmatically analyzed. These profiles describe experimental
metadata schemas and were used to extract existing terms, which
were subsequently integrated into the survey for review and
completion by domain experts. However, it is important to note
that not all experiments represented in HyWay align precisely
with the schemas defined in SFB1394, and additional tailoring
was required.

A list of metadata for the Diisseldorf Advanced Material
Simulation Kit (DAMASK), one of the modeling suites used
within the HyWay project, was prepared by systematically parsing
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the example input files provided in the package. The extracted
parameters were categorized based on their association with
DAMASK model variants plus those that are shared across models.
Currently, five major model variants: DAMASK_phenopowerlaw,
DAMASK _isotropic, DAMASK_dislotwin, DAMASK_dislotungsten,
DAMASK _nonlocal are identified. The parameters common to
all models were grouped under the label DAMASK_Generic. To
support ontology generation, the parameters within each model
variant were classified as input and/or output, based on their role
in the simulation workflow. Additionally, the parameters were
mapped to human-readable descriptions, their associated units of
measurement, and cardinalities.

2. Automated ingestion and pre-processing. The completed
Excel files are processed using a custom Python script that
extracts the structured content and converts it into standardized,
machine-readable formats: CSV files for vocabularies of terms,
and JSON files for the structural representation of experiments
and simulations. Where needed, experts provide additional
description for experiment and simulation attributes that will
be used for ontology generation. These outputs serve as
the basis for subsequent automated steps, including semantic
mapping and ontology generation. At this stage, the data remain
ontology-agnostic and do not include any references to external
ontological resources.

3. LLM-assisted semantic mapping. In this automated stage,
the methodology builds upon NeOn Scenario 3, which emphasizes
the reuse of existing ontological resources, by incorporating
large language model (LLM) capabilities into a custom Python
workflow. A dedicated Python script ingests project-specific CSV
files from the previous step containing attribute terms, associated
experiments or simulations, and reported measurement units. The
script then proceeds in two phases. First, deterministic lookups
are performed against curated dictionaries: HMIO derived units
are checked, while standard units are matched against the QUDT
ontology by symbol or unit name. Second, when no direct match is
found, the script invokes the OpenAI GPT-3.5 model through the
openai.ChatCompletion API. The model is prompted to (i) propose
a canonical form of the reported unit (e.g. normalizing “microns” or
“um” to “micrometer”), and (ii) select the most appropriate QUDT
code from a shortlist of candidates generated by the dictionary
search. This two-step use of the LLM ensures robust handling of
noisy or heterogeneous input while constraining the output to valid
ontology codes. Finally, identified QUDT units are cross-referenced
against a mapping table to the EMMO. The result of this stage is
an enriched set of CSV files in which each attribute is linked to
HMIO, QUDT, and EMMO units. These enriched files constitute
a draft vocabulary, providing both preliminary mappings and
standardized definitions to be refined in the subsequent ontology
engineering phase.

4. Tterative expert validation. The enriched CSV files are
circulated to the domain experts in Excel format for systematic
review. Experts evaluate the correctness of the proposed ontology
alignments, revise term descriptions, and resolve any semantic
ambiguities. Revisions are made directly within the structured
CSV files to maintain traceability and ensure consistency with
the automated pipeline. This human-in-the-loop process enables
efficient refinement while ensuring that the resulting ontology
accurately reflects domain-specific knowledge and usage. The
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FIGURE 1
Steps of the HyWay methodology

validation cycle may be repeated multiple times, consistent with the
iterative principles of the NeOn methodology.

5. Formal ontology generation and refinement. Following
expert validation, the finalized CSV and JSON files serve as
structured, non-ontological resources that are transformed into
a formal ontology. This step corresponds to NeOn Scenario 8,
which involves restructuring domain knowledge into a coherent
and reusable ontological model. A Python script automates this
process by generating an OWL ontology (in Turtle syntax),
incorporating class hierarchies, object and data properties,
and logical constraints. The ontology explicitly represents
experimental and simulation processes using EMMO-aligned
concepts such as Simulation, Experiment, hasInput,
and hasOutput, ensuring semantic clarity and consistency
across workflows.

6. Publication and dissemination. The final ontology is
published through a persistent URL (purl.org), ensuring it is both
findable and citable by the broader scientific community (HyWay
Consortium, 2025). This step supports long-term accessibility and
facilitates reuse in other projects or domains.

2.3 Integration architecture of the Data
and Knowledge Management Platform
(DKMP)

This section outlines the architectural design for integrating the
Hydrogen-Material Interaction Ontology (HMIO) into the Digital
Knowledge Management Platform (DKMP). The focus is on the
modular, ontology-driven architecture that enables semantically
structured and interoperable data management. Within this
architecture, HMIO plays a central role in ensuring that all data
entered, stored, and retrieved is aligned with FAIR data principles
from the point of creation.

The platform is implemented using a modular, service-
oriented architecture. Central to this architecture is the Ontology
Subsystem (see Figure 2), comprising a Python-based service layer
and a dedicated Apache Jena Fuseki SPARQL endpoint. The
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subsystem manages HMIO alongside external ontologies such
as the Elementary Multiperspective Material Ontology (EMMO)
and the Quantities, Units, Dimensions, and Data Types (QUDT)
ontology. These ontologies are represented in RDF and exposed
via SPARQL queries, allowing other platform components to
access ontological definitions, semantic constraints, and unit
specifications dynamically.

A key integration point is the Drupal (an open source
content management framework) based front-end, which interacts
with the Ontology Subsystem to enable ontology-driven user
experiences. When a user initiates the creation or editing of
an entity-such as an experiment or simulation, the front end
queries HMIO to retrieve the relevant ontological class and
its associated properties, cardinality constraints and expected
data types, quantity and unit information are derived from
QUDT. The retrieved information is used to dynamically
build user interfaces, such as data entry forms that enforce
correct input types, semantic relationships, and unit consistency.
Additionally, the platform features a unit conversion widget
that allows users to input measurements, switch between
compatible units, and automatically converts values using QUDT
conversion coefficients.

This tight integration of ontology services ensures that all
data captured through the front end is semantically valid at the
point of entry, conforming immediately to the HMIO schema.
As a result, the platform avoids the need for post-hoc metadata
alignment or semantic cleaning-common challenges in traditional
data management systems-and guarantees compliance with FAIR
principles throughout the data lifecycle.

The architecture also incorporates a Metadata parsing
subsystem (see Figure 3), which processes incoming datasets
from modeling workflows and experiments. This subsystem
extracts metadata from the provided files, aligns it with the HMIO
using specialized wrappers and the Ontology Subsystem, and
ensures semantic consistency before ingestion into the platform’s
knowledge base. In case the necessary data cannot be extracted
from the provided input files, the user needs to provide it manually.

DKMP is integrated with Modularised Multiscale and
Multiphysics Materials Modeling Platform (ModularMMM),
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which enables the semantic integration of various simulation tools
and techniques used in the HyWay project. ModularMMM (see
Figure 4) coordinates data exchange between models operating
at different scales-from atomistic simulations (e.g., Density
Functional Theory, Molecular Dynamics) to continuum-level
finite element models (e.g., ABAQUS). Each modeling tool and its
modeling technique is encapsulated by a semantic wrapper that
transforms native inputs and outputs into a representation aligned
with HMIO. This approach supports automatic interoperability
between tools, ensuring that simulation results remain semantically
consistent across workflows. These data are automatically
annotated and converted by ModularMMM’s wrappers, enabling
efficient reuse in downstream simulations without manual data
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translation. This architecture ensures semantic traceability of
parameters across modeling stages.

3 Results

The application of the described methodology and technical
architecture yielded several key results, which serve as a
validation of the approach. These include the development of a
comprehensive domain ontology, the successful implementation of
an ontology-driven data management platform, and an evaluation
of the overall system.
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FIGURE 4
Integration between modeling suites and techniques.

3.1 The hydrogen-material interaction
ontology (HMIO)

One of the principal scientific outputs of this work is HMIO,
a domain-specific ontology developed as a result of applying the
collaborative, LLM-supported methodology introduced in this
study. HMIO serves as the semantic backbone of the HyWay
project and plays a central role in enabling ontology-driven
data management within the DKMP. Together, the development
methodology, the resulting ontology, and its architectural
integration form a comprehensive approach to achieving FAIR-
compliant, interoperable workflows across experimental and
simulation domains.

The application of the methodology has resulted in an ontology
with substantial initial domain coverage. The current version of
HMIO formally models metadata structures for 29 experimental
methodologies and 14 simulation model types relevant to the study
of hydrogen-material interactions, ranging from atomistic-scale
simulations to macroscopic experimental techniques. As part of
an iterative development approach, HMIO will continue to be
expanded and refined throughout the project to accommodate
additional workflows, concepts, and domain requirements as
they emerge.

HMIO is designed with a modular architecture to promote
clarity, maintainability, and extensibility. The ontology consists
of several interlinked modules, each focused on a specific aspect
of the hydrogen-materials domain. The central file, hmio. ttl,
serves as the entry point, providing the namespace declaration and
importing all domain-relevant components. Experimental concepts
and workflows are defined in experiment_terms.ttl
experiments.ttl,
definitions are specified in simulation_terms.ttl and
simulations.ttl. In addition, units.ttl extends the
QUDT ontology with domain-specific derived units to enable

and while simulation-related

consistent and interoperable representation of physical quantities,
including composite units suchasmillinewton per second.

To ensure semantic interoperability beyond the scope of the
project, HMIO is formally aligned with well-established reference
ontologies. Core concepts in materials science are mapped to the
EMMO, while all quantities, units, dimensions, and data types are
standardized using the QUDT ontology. This alignment guarantees
that data annotated with HMIO remains compatible with broader
scientific semantic infrastructures and enables cross-domain reuse.
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3.2 Realization of ontology-driven data
management in DKMP

This section presents the implemented functionality of the
DKMP, demonstrating how the HMIO is utilized to support
ontology-driven data entry and validation. Building on the
modular architecture described in Section 2.3, the platform
showcases practical integration of semantic technologies for
the structured and interoperable collection of experimental and
simulation metadata.

The system enables the automatic generation of Drupal
content types and web forms based directly on schema definitions
contained in HMIO. A Python-based Ontology subsystem
processes the OWL ontology files hosted in a version-controlled
GitLab repository, resolves imported dependencies-including
QUDT and EMMO-and loads the ontology data into an Apache
Jena Fuseki triple store. The ontologies are then queried using
SPARQL to extract classes, properties, and associated metadata
that describe experiments and simulations (see example query in
Figure 5).

A custom Drupal module connects it with the Ontology
subsystem and consumes this semantic information to dynamically
construct content types and their input forms in accordance
with the ontology (see Figure 6). Each form field corresponds to
an ontological property, ensuring that constraints on data type,
cardinality, and semantic relationships are preserved. As a result,
data captured via the user interface is immediately aligned with
the underlying ontology, reducing the need for manual schema
configuration and eliminating post-hoc data cleaning.

The platform also provides a custom unit entry widget
(see Figure7) using the references established between HMIO
and QUDT ontology. During data entry, users are provided
with an appropriate unit selection that reflects allowed values
from the ontology, and the system performs automatic unit
conversions between compatible units using QUDT’s conversion
factors. This ensures consistency in the representation of
physical quantities and supports semantic interoperability across
experiments and simulations.

The realization of this ontology-based infrastructure confirms
the feasibility of deploying semantic data management workflows
platforms. The implementation enables
FAIR-compliant through
an intuitive interface, backed by semantic validation and

within  scientific

researchers to capture metadata

ontology-driven logic.

3.3 Validation and evaluation of the
approach

The proposed methodology and architectural ontology
integration pattern were validated through the development
of prototypes and iterative evaluation by domain experts. A
key quantitative outcome is the scope and coverage of the
HMIO, which formally represents metadata for 29 experimental
methodologies and 14 simulation model types relevant to
hydrogen-material interaction studies. This level of coverage
demonstrates the methodology’s capability to support complex
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scientific workflows. The combined use of LLMs and expert-
driven validation proved highly effective in accelerating ontology
development without compromising semantic accuracy. Project
partners involved in expert review cycles confirmed that the
methodology  supported structured knowledge elicitation
and reduced the manual effort traditionally associated with
ontology engineering.

Furthermore, core components of the DKMP were successfully
implemented. In addition to the ontology integration services,
the platform includes authentication and authorization via
Keycloak and support for resumable uploads of large files
using S3-compatible horizontally scalable object storage. These
components were deployed and tested to validate the technical
feasibility of the proposed architecture. The web-based data
entry interface for experiments and simulations demonstrates
full end-to-end integration and serves as a proof of concept
for the platform’s ability to semantically generate user interfaces.
This ensures that input data conform to ontology-defined
constraints at the point of capture, realizing a FAIR-by-design data

management approach.
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4 Discussion

The presented results demonstrate the feasibility and
effectiveness of the proposed methodology for collaborative
LLM supported ontology development and its integration into a
semantic data management platform. This section discusses the
implications of the findings, compares the work with previous
research, and critically evaluates the strengths and limitations of
the approach, as well as future directions.

The success of the HyWay methodology is attributed to its
combination of large language model (LLM) assisted automation
and expert-driven validation. This hybrid approach addresses long-
standing challenges in ontology engineering, including the labor-
intensive nature of manual modeling and the complexity of eliciting
structured knowledge from domain experts. LLMs accelerated the
development process by mapping domain-specific terms, extracted
from structured Excel surveys, to established ontologies such as
EMMO and QUDT. This automation significantly reduced the
effort required from experts, enabling them to focus on the
semantic quality and coherence of the ontology.
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FIGURE 7
QUDT-based unit entry widget

At the same time, the iterative expert validation process
was essential. While the large language models demonstrated
a reasonable grasp of general experimental methodologies, they
exhibited limitations when interpreting the specific modeling
techniques used in domain-specialized tools such as DAMASK.
Experts played a critical role in identifying and correcting
these mismatches, resolving semantic ambiguities, and refining
conceptual definitions. This collaborative process not only
improved the accuracy and domain alignment of the ontology but
also clarified and formalized expert knowledge through structured
discussion. The integration of rapid, machine-assisted mapping
with rigorous human validation proved to be a reliable and
efficient strategy for developing a semantically rich and technically
sound ontology.

Compared with prior research, the HyWay methodology
represents a pragmatic evolution of existing ontology development
frameworks. It builds on the NeOn methodology, particularly
Scenario 3, which focuses on reusing existing ontological resources.
Unlike approaches such as UPON Lite or MeLOn, which emphasize
collaborative workflows, HyWay incorporates automation directly
into the knowledge acquisition and alignment stages. It differs
from typical LLM-based ontology learning, which often relies on
unstructured text corpora, by instead leveraging structured input
from domain experts. The role of the LLM is limited to semantic
suggestion and mapping, rather than full ontology generation. This
enables a balanced system where LLMs support, but do not replace,
human reasoning.

The approach is tightly coupled with the architecture of the
DKMP. The automatic generation of ontology-driven data entry
forms illustrates the platform’s ability to ensure semantic validity
at the point of data collection. This capability helps to enforce FAIR
principles by design, preventing issues related to data quality and
interoperability from arising later in the data lifecycle.

Key strengths of the methodology include its scalability,
alignment with semantic data management principles, and its
capacity to meaningfully engage experts in a validation-oriented
role. However, several limitations must be acknowledged. The
effectiveness of the semantic mapping is dependent on the clarity
and completeness of the initial survey inputs. Poorly structured
or ambiguous data increases the burden on the validation phase.
Additionally, the internal mechanisms of LLMs remain opaque,
necessitating critical human oversight to mitigate hallucinations
and unintended biases.

One of the significant challenges for future work is managing
the evolution of the HMIO. As the ontology expands and evolves,
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maintaining compatibility with previously recorded metadata
instances becomes increasingly difficult. Addressing this issue will
require structured versioning, automated data migration scripts,
and mechanisms for version-aware querying within DKMP.

Further research should explore the fine-tuning of domain-
specific language models trained on curated materials science
datasets, with the goal of improving semantic precision and
reducing reliance on generic models. Enhancing the interactivity
and usability of validation interfaces would also support more
effective expert feedback. Lastly, the methodology could be
adapted to other complex scientific domains, such as life sciences
or environmental science, to validate its generalisability and
broader applicability.

5 Conclusion

This paper has presented the design, implementation, and
validation of a novel methodology that extends established
ontology engineering principles through the incorporation of LLM-
driven automation. By combining the efficiency of LLM-assisted
semantic mapping with the rigor of an iterative, expert-in-the-
loop validation framework grounded in the NeOn methodology,
the approach effectively addresses key limitations of traditional
ontology development. The resulting ontology, and its integration
into the DKMP, demonstrate the viability of this methodology
and the proposed architectural integration pattern in a complex,
real-world scientific domain. The platform’s dynamic use of the
ontology to drive interface generation ensures semantic consistency
and high-quality data capture. Taken together, these contributions
offer a practical and scalable blueprint for the development of
ontology-driven data infrastructures in materials science and
related fields.

This paper has presented the design, implementation, and
validation of a novel methodology that extends established
ontology engineering principles through the incorporation of
LLM-driven automation. Specifically, the OpenAlI GPT-3.5
model was integrated into a Python-based workflow to support
semantic mapping of experimental and simulation attributes
against reference ontologies, particularly QUDT and EMMO. By
combining deterministic dictionary lookups with LLM-assisted
canonicalisation and code selection, the approach achieved
robust alignment of heterogeneous input data with standardized
ontology terms.

Building on the NeOn methodology, particularly Scenario
3 for reuse of existing ontological resources, the workflow
demonstrated how LLMs can accelerate knowledge acquisition
while domain experts ensure semantic accuracy through iterative
validation. The resulting Hydrogen-Material Interaction Ontology
(HMIO) formalizes metadata structures for 29 experimental
methods and 14 simulation types, providing broad coverage of
hydrogen-materials interaction studies. These results provide both
a validated methodology and a working technical implementation
that illustrate the feasibility and scalability of LLM-supported
collaborative ontology engineering.

A key result is the successful integration of HMIO into
the Data and Knowledge Management Platform (DKMP). Here,
the ontology is dynamically queried to generate ontology-driven
user interfaces, such as data entry forms that enforce correct
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cardinalities, input types, and unit consistency. Thus, what was
previously described as “the platform’s dynamic use of the
ontology” refers concretely to the automatic construction of FAIR-
by-design data management workflows, where semantic validation
occurs directly at the point of data entry.

Looking ahead, several challenges remain open. These
include ensuring version management of HMIO as it evolves,
improving interoperability with external datasets, and mitigating
the limitations of general-purpose LLMs through fine-tuning on
domain-specific corpora. A particular challenge is the definition
of derived units of measure, which are frequently required
in scientific workflows but are not always present in existing
ontologies such as QUDT. Here, LLMs provide an opportunity to
automatically generate and normalize such derived units, ensuring
consistency with both expert-curated HMIO extensions and
reference ontologies. Future work will also explore extending the
methodology to additional scientific domains, as well as developing
user-friendly interfaces for expert validation.
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