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Adaptive model for rate of
penetration prediction based on
the dynamic correlation of
influencing factors

Yonggang Deng, Xiaojing Zhou*, Zixuan Feng, Xin Li and Hui Li

Research Institute of Safety, Environmental Protection and Quality Supervision and Inspection,
Chuanging Drilling Engineering Co., Ltd., Guanghan, China

Introduction: Accurately predicting the rate of penetration (ROP) is a critical
benchmark for evaluating operational efficiency in drilling operations, and it
is necessary to optimize the drilling parameters and construct an accurate
ROP prediction model. At present, the correlations between drilling operation
parameters and the ROP are commonly evaluated using a static assessment,
which overlooks dynamic changes in parameter correlations during drilling
processes.

Method: An adaptive ROP prediction model that incorporates depth-
varying correlations of influential parameters is constructed. This model can
automatically identify the dynamic correlations of the modeling parameters
at different depths of well sections, and the optimal modeling parameters
for adaptive training are selected based on the ranking of the correlation
coefficients.

Results: An analysis of 33 drilling parameters across 4,837 datasets collected
from 4 wellbores in Sichuan. The comparison analysis revealed that at different
well sections, the dynamic correlation coefficient of each parameter deviates
significantly from the overall correlation coefficient. According to the proposed
model, it can dynamically select key parameters and achieve self-update based
on real-time data streams, avoiding the defect of traditional fixed-parameter
models that ignore the dynamic changes of well sections.

Discussion: Modeling comparison analysis revealed that in multiple rounds of
prediction based on dynamic correlations, the prediction accuracy in 93% of the
prediction rounds exceeded that of the overall correlation, indicating that the
adaptive ROP prediction model with dynamic correlations has high application
value.

KEYWORDS

drilling parameter, correlation, dynamic evolution, rate of penetration prediction,
adaptive model

1 Introduction

Drilling operations play a vital role in oil and gas exploration and development.
The drilling process involves geological formations, drilling materials, equipment, and
drilling tools, the control and optimization of the drilling process are very complex. Given
the increasing depth of resource extraction, conventional drilling practices encounter
significant challenges due to deep formations characterized by geothermal anomalies, high
geostress, and complex geological structures, which are likely to lead to drilling accidents
(Gan, 2019) and greatly affect drilling efficiency. In the evaluation and analysis of drilling
efficiency, the prediction, control and optimization of the rate of penetration (ROP) are
critical in improving drilling efficiency (Barbosa et al., 2019). However, the ROP should
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not be optimized to the maximum value. A reasonable ROP value
is directly related to the smooth progress of a drilling project.
Meanwhile, ROP is also the best choice for the estimation of rock
mechanical parameters (Liu et al., 2021b). Some studies have noted
that when the ROP exceeds the optimal range, it becomes more
difficult to control the wellbore pressure and trajectory (Najjarpour
etal., 2022).

Researchers at home and abroad have focused on ROP
prediction and optimization. Currently, Currently, ROP models are
commonly developed using three primary modeling approaches:
theoretical models, statistical models, and machine learning models
(Barbosa et al,, 2019). The first category of theoretical models
focuses on analyzing and modeling the entire drilling process.
These models aim to identify and clarify the influence patterns
of various parameters on the ROP. However, the main limitation
of this type of model is that there are many factors affecting the
ROP, and establishing an accurate physical model for description
is difficult. To obtain more accurate analytical solutions, when
establishing a theoretical model, it is usually necessary to introduce
more assumptions to simplify the boundary conditions. These
assumptions significantly affect the wide applicability of these
models (Li et al., 2021). Statistical models focus on predicting
the ROP from collected field data and generating a fitting curve
equation. However, their primary limitation lies in numerous
factors influencing the ROP, which vary across different drilling
sites. Additionally, the non-linear impact of each parameter
reduces the accuracy of ROP predictions. The development of
machine learning models has benefited from the development
of artificial intelligence technology in recent years. Through the
introduction of different machine learning technologies, such as
neural networks and support vector machines, and based on the
large amount of data collected in the field, a multiparameter, non-
linear model is established. By incorporating influencing factors
into the ROP prediction models under linear trend conditions,
the accuracy and efficiency of predictions significantly surpass
those of conventional models. Consequently, some researchers have
argued that machine learning models are a viable alternative for
ROP prediction (Brenjkar and Biniaz Delijani, 2022). In addition,
with the continuous increase in field data, several studies have
noted that with increasing data, the accuracy of machine learning
models is much higher than that of conventional statistical or
theoretical models (Soares and Gray, 2019). Therefore, machine
learning models have become widely used in real-world production
scenarios in the current big data era. Zhang proposed an LSTM
model combined with an attention mechanism, which highlights
the parameter influence of key well sections through weight
allocation (Zhang et al., 2022).

In the context of ROP prediction using machine learning
techniques, correlation studies are often conducted in combination
with correlation analysis and ROP prediction models, and the
original data are generally preprocessed to improve the data
reliability. Statistical methods are usually used in preprocessing
to optimize a dataset, eliminate obvious dimensional errors, and
improve accuracy (Tan et al., 2015). Li et al. analyzed 20,000 data
points from 10 wells in China. By using the Pearson correlation
coeflicient method to evaluate ROP-related parameters, he divided
the correlations into low, medium and high levels, providing a
basis for drilling optimization (Li et al., 2021). Huang optimized a
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model by incorporating covariance results derived from correlation
analysis and enhancing the correlation across multiple data types,
leading to a 39% increase in the magnitude of the ROP model
(Huang et al., 2021). Zhang proposed that the application of
differential private feature selection in machine learning methods
can reduce the influence of the internal correlation of parameters
to a certain extent and improve data availability (Zhang et al,
2020). Zhao proposed a multivariate correlation analysis technique
that incorporates the weighted key parameters, effectively reducing
intrinsic data noise and improving data reliability (Zhao et al,
2022). Chen used the XGBoost model to screen the key parameters
affecting ROP (such as drilling pressure and torque), excluded
redundant parameters through feature importance ranking, and
combined the particle swarm optimization algorithm to optimize
drilling parameters (Chen et al., 2021). With respect to the ROP
control process in other countries, machine learning methods
have been used to regulate the parameters in the drilling process.
To address the problems of incomplete and discontinuous data
during the drilling process, Gan et al. applied the improved particle
swarm algorithm and the improved bat optimization algorithm
to establish an ROP prediction model based on a neural network
and support vector machines, providing a new framework for
ROP regulation under complex geological conditions (Gan et al.,
2019a,b,c). Mohammed embedded rock mechanics equations as
constraints into the data-driven model, which can ensure the
rationality of predictions without requiring a large amount of
labeled data (Mohammed et al., 2024).

In this study, on the basis of real-world data from four
wellbores in a certain area of Sichuan, the concept of dynamic
correlation was introduced, and calculations revealed that the
overall correlation of relevant parameters significantly differed
from the dynamic correlations at specific locations. Based on
this finding, dynamic correlation was established as the core
principle for selecting essential modeling parameters, replacing
the conventional approach of fixed-parameter modeling with a
dynamic modeling framework. Comparative analysis validated the
advantages of this method.

2 Raw data pre-processing

2.1 Data sources

This study used a dataset comprising 4,837 entries with 33
parameter types collected from the production of 4 wells in a
specific region of China. Although this number of data entries
does not meet the requirements of conventional machine learning
big data, statistics from relevant researchers show that the dataset
size used by 51.7% of researchers in the field of ROP prediction
modeling is in the range of [103, 10%], and the median of this
interval is 3,250 entries (Li et al., 2024). Accordingly, the amount of
data used in this analysis is sufficient to achieve effective modeling
results. The collected data can be divided into three types according
to their type: inclinometer data, drilling engineering parameters
and formation evaluation data. During the data integration process,
measuring point depth and standard well depth were combined
into a single parameter: well depth. Stratigraphic information
was simplified to a stratigraphic number, with the subsection
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TABLE 1 Stratigraphic coding.

Stratigraphic Eonothem NEES Formation M Sub- Lithology
symbol member

1 100 ] Mesozoic Jurassic Lower Ziliuwell Zhenzhuchong - Mudstone (shale)
and quartz fine
sandstone

2 200 T3x Mesozoic Triassic Upper Xujiahe - - Quartz sandstone

3 311 T2l Mesozoic Triassic Middle Leikoupo Lei 1 Lei-1a Dolomites

4 411 T1j Mesozoic Triassic Lower Jialingjiang Jia-5 Jia-5b Dolomite and
salt-soluble breccia

5 412 T1j Mesozoic Triassic Lower Jialingjiang Jia-5 Jia-5a Dolomite and
salt-soluble breccia

6 421 T1j Mesozoic Triassic Lower Jialingjiang Jia-4 Jia-4d Dolomite and
salt-soluble breccia

7 422 T1j Mesozoic Triassic Lower Jialingjiang Jia-4 Jia-4c Dolomite and
salt-soluble breccia

8 423 T1j Mesozoic Triassic Lower Jialingjiang Jia-4 Jia-4b Dolomite and
salt-soluble breccia

9 424 T1j Mesozoic Triassic Lower Jialingjiang Jia-4 Jia-4a Dolomite and
salt-soluble breccia

10 431 T1j Mesozoic Triassic Lower Jialingjiang Jia-3 - Thick limestone

11 441 T1j Mesozoic Triassic Lower Jialingjiang Jia-2 Jia-2¢ Dolomites

12 442 Tlj Mesozoic Triassic Lower Jialingjiang Jia-2 Jia-2b Dolomites

13 443 T1j Mesozoic Triassic Lower Jialingjiang Jia-2 Jia-2a Dolomites

14 451 T1j Mesozoic Triassic Lower Jialingjiang Jia-1 - Limestone

TABLE 2 Parameter types collected in the field.

‘ Type Name (parameter number) ‘

Recorded data while drilling Drilling time (ROP, critical target parameter), standard well depth (1), large hook load (2), drilling pressure (3), torque (4), rotational
speed (5), riser pressure (6), inlet flow (7), outlet flow (8), inlet temperature (9), outlet temperature (10), inlet conductivity (11), outlet

conductivity (12), inlet density (13), outlet density (14)

Stratigraphic Stratigraphic number (15)

Inclinometer data Inclination angle (16), azimuth angle (17), true vertical depth (18), N coordinate (19), E coordinate (20), closed direction (21), closed

distance (22), dogleg severity (23)

representing the smallest layer, and the corresponding number code  estimation method based on the exponentially weighted loss

was assigned as detailed in Table 1. As a result, the original data  function, which is used to solve the problem of time asynchrony
model was streamlined to 23 distinct data points, with the names  among multiple drilling parameters caused by different sampling
and numbers of each parameter outlined in Table 2. frequencies of various sensors, so as to ensure data consistency (Liu
et al,, 2021a). Considering the demand for modeling data volume,

in the present study, the drilling-time record was chosen as the

2.2 Raw data integration

The raw data collected for the study was not standardized,
and there were obvious formatting errors. For example, data were
collected while drilling at the standard interval of 1m, whereas
inclinometer data were collected at an interval between 0 and
30 m because of the use of different inclinometer equipment. The
inclination accuracy was 13.45m, the stratum information was
a single piece of data per subinterval, and a complete wellbore
had only 14 pieces of data at most. To facilitate data modeling
and analysis, the above three types of data need to be integrated
into a complete data matrix. Liu proposed the local linear kernel
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reference framework, and the inclination data and formation data
were stretched and reconstructed, respectively. Interpolation was
performed to integrate the raw data (Figure 1).

The formation dataset was treated as a continuously
distributed
structural discontinuities. Uniform values were inserted where

sequence across submembers, without abrupt
data gaps existed. For deviation survey data, where drilling time
entries occurred at the same depth, intersurvey intervals were
aligned using Lagrange interpolation with corrections applied to
the mean angle. Well inclination and azimuth angle were the two
key variables interpolated using the Lagrange method, and the

basic formula is shown in Equation 1. The inclination data from
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‘Well Deviation Dataset Drilling Dataset Formation Dataset
Deviation sample 1 }*Match—% Drilling sample 1 F*Match—{ Formation sample 1
P)eviation interpolation 1.1 ‘ Drilling sample 2 ‘ Formation sample 1
P)eviation interpolation 1.2 ‘ Drilling sample 3 ‘ Formation sample 1
{ Deviation sample 2 ]*Match—ﬁ Drilling sample n }<7Matc]1—{ Formation sample 2}
{ Deviation sample p }*Match—{Drilling sample m %—Match—{ Formation sample ql
Initial data D Interpolation data Filling data
FIGURE 1
Schematic diagram of data stretching and interpolation.
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FIGURE 2
Comparison before and after interpolation using the inclination
angle of Well No. 1 as an example.

Well No. 1 were selected as an example, and the maps before
and after interpolation were produced (Figure 2). This method
provides a more accurate representation of the overall trend in
data variation.

¥ =Y ([ =—2) (1)
k=1 =1 kKT
j#k

For other deviation survey data, the interpolation followed the
regulations set by the Standardization Committee of China. The
mean angle was used for correction. Let the depth of the specified
position change be AD, the horizontal displacement be AS, and the
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N and E coordinates be ; then, the basic calculation is shown in
Equation 2.

AD = (l — Aa?/24 ) AL cos o,
AS = (1— Aa?/24) ALsina,
AN = (1 - (Aa2 + A¢2)/24 ) AL sin a¢ cos o
AE = (1 — (Aa® + A¢?)/24 ) ALsina,sina,

)

3 Screening of critical factors based
on the dynamic correlation

3.1 Overall correlation analysis

During the drilling process, both linear and non-linear
relationships may exist between parameters and the ROP.
Therefore, in the correlation analysis, four different correlation
algorithms (as listed in Table 3) were used here. The target
parameter is denoted A, and the drilling speed is ROP. The
correlation between this parameter and the ROP can be calculated
as Cy, as shown in Equation 3.

Ca =
|corp(A, ROP)| + |cors(A, ROP)| +corp(A, ROP) + corc(A, ROP)
4

where corp(A, ROP)/cors(A, ROP)/coryi(A, ROP)/corc(A,
ROP) is the Pearson/Spearman/Mutual information/Chatterjee
correlation coeflicient for parameter A with the ROP.

For comparison and analysis, first, the overall correlation
between each parameter in the current dataset and the ROP
was calculated, as shown in Figure 3. Based on this evaluation
(Li et al, 2021), nine parameters exhibited strong correlations
(correlation coefficient >0.6). These parameters, ranked from
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TABLE 3 Selected correlation algorithms.

10.3389/fdata.2025.1676054

Types Calculation method Remark

Pearson corp = cov(X,Y)/oxoy cov(X, Y) is the covariance for X and Y; ox /oy is standard deviation for X and Y
Spearman corg=1— (61, d?)/n(n* — 1) d;is the difference in the rank value of the i-th data pair; 7 is the sample number;
Mutual information cory = 2MI(X, Y)/(H(X) + H( Y)) MI(X,Y) is the mutual information for X and Y; H(X)/H(Y)is the entropy for X and Y
Chatterjee core = (Z::ll [R (y(i + 1)) = R (y(i)) |)/(n2 —-1) R (y(i)) is the order of Y after sorting by X; n is the sample number;

strongest to weakest are as follows: torque, rotation speed,
azimuth angle, outlet temperature, closure azimuth, dogleg
severity, E coordinate, inlet temperature and inclination angle.
Other parameters demonstrated moderate correlations (correlation
coefficient of 0.3-0.6), indicating less pronounced but still
relevant relationships.

3.2 Dynamic correlation analysis

With the introduction of real-time data streams during the
drilling process, modeling and analysis datasets are constantly
changing. Thus, overall analysis methods must also change
constantly. However, as the amount of data increases, the previous
data may have an unknown influence on the current data, reduces
modeling accuracy. This study introduces the use of dynamic
correlation analysis to remove the influence of previous data. The
basic principle of dynamic correlation analysis is shown in Figure 4.
First, the size of the dynamic analysis dataset is defined. As real-
time data are continuously incorporated, earlier data, particularly
those furthest from the latest entries, are gradually removed from
the data. This approach ensures that the model and analysis remain
responsive and sensitive to the most current data in real time.

Building on the dynamic analysis principle (Figure 4), the size
of the dynamic analysis dataset has a significant impact on the
outcomes of the analysis. Since the primary aim of the dynamic
correlation analysis in this study is to establish an ROP prediction
equation, the size of the dataset capable of supporting accurate
ROP prediction is used to define the dynamic analysis dataset.
According to relevant surveys, at present, 82.7% of researchers
divide ROP prediction datasets into three sizes: 1,000-10,000, 100-
1,000 and <100, representing 51.7%, 20.7% and 10.3% of the
total, respectively. The median sizes of these respective datasets are
3,250, 315 and 78 entries, respectively (Li et al., 2024). Considering
that this study uses 4,837 records for 4 wells, the median of
smallest group, 78 records, was selected as the size of the dynamic
analysis dataset.

Relevant survey findings indicate that most ROP prediction
models involve 6-10 modeling parameters, with a median of 7
parameters (Li et al., 2024). Therefore, in the present study, we
analyze only the first seven parameters based on the correlation
ranking. Figure 5 present the results for Well No. 1. In this
Figure, the horizontal axis of each Figure represents the top
seven parameters ranked by correlation for each analysis, and
the vertical axis represents different analysis rounds along the
well depth direction. Across different analysis rounds, the first
seven parameters with highest correlation rankings, especially the
3rd to 7th parameters, change significantly. From a correlation
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perspective, the correlation parameters in different rounds change
significantly; for parameters at the same position, the correlation
values fluctuate by approximately 0.3 in different rounds of analysis.

Twelve to fourteen rounds of dynamic correlation analysis
were performed for each of the 4 wells. The distributions of
the first seven relevant parameters across all rounds and their
respective correlation coefficients are listed in the box plot shown
in the Figure 6. From the distribution of relevant parameters,
as the correlation decreased (from the first to the seventh), the
types of relevant parameters varied more extensively and, the
distribution becomes wider (Figure 6 left). From the perspective
of the correlation coeflicient, the first seven parameters identified
through the overall correlation analysis can be divided into two
groups. In the first group, the first- and second-best parameters had
correlations of 0.79 and 0.74, respectively; in the second group, the
remaining five parameters were evenly distributed, with correlation
coefficients ranging between 0.53 and 0.55. For the dynamic
correlation analysis, there were significant differences in the results
across various wellbores, different evaluation rounds, and the
overall correlation. The medians of the correlation coefficients of
the top 2 influencing factors were concentrated at approximately
0.72 and 0.58, but in some rounds, the highest correlations reached
0.94 and 0.93, respectively, whereas the correlation distributions of
the latter five relevant parameters were significantly lower than that
from the overall analysis.

4 Dynamic correlation-based adaptive
ROP prediction model

4.1 Adaptive model architecture process

The principle of adaptive model architecture is shown in
Figure 7. Based on the acquisition process of the real-time data
stream, the core steps of the model are outlined as follows:

[Dletermine whether the current real-time data collection
has reached the minimum number of entries to initiate dynamic
correlation analysis. In this study, the size of the dataset is limited to
78 entries owing to data limitations. However, the size of the dataset
can be increased depending on the size of the real-time data stream
in the actual process. If there is a sufficient amount of data, the data
collection process continues. When the size of the dataset meets the
standard, the modeling process begins;

[The first step in the modeling process is data integration.
During this step, data with different acquisition intervals and
precisions are integrated into a unified analysis matrix. After
the integration, the ROP data are separated from other data for
future use.
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FIGURE 3
Overall correlation analysis of the current dataset.
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FIGURE 4
Comparison of the principles of dynamic correlation analysis (Left) and overall analysis (Right).

[CAfter the data are integrated, the correlation between each
data point and the ROP is computed. The parameters are then
ranked according to their correlation strength.

[After the data are screened, the selected influencing factors
are used as input parameters, and the ROP is used as the output
parameter. A selected machine learning algorithm is applied for
training. After training, if the model accuracy does not meet the
standard, the influencing factors are rescreened and the model is
retrained or a more appropriate machine learning algorithm is
selected. Once the accuracy of the model meets the standard, the
model is used for prediction, and the data collection process begins
for the next round of analysis.

4.2 Comparison of modeling effects of the
adaptive ROP prediction model

On the basis of the test data, the algorithm of multilayer
perceptron (MLP) was chosen to construct and analyze
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the adaptive ROP prediction model. The main reason for
choosing the MLP algorithm is its widespread applicability.
According to relevant research, 52.4% of studies using machine
learning to predict drilling rate over the past decade have used
artificial neural network (ANN) algorithms, and 61.1% of these
applications have employed the MLP algorithm (Gan et al,
2019¢). Therefore, using the MLP algorithm to verify dynamic
correlations demonstrates the adaptability of this study to a
significant extent.

In this dynamic modeling approach, different correlation
parameters were used across different rounds for different
wells (Figure 8 left). In contrast, in the overall modeling
approach, the top identified from the
overall correlation analysis are selected as input parameters
(Figure 8, right). To evaluate the performance of the prediction
model, the coefficient of determination (R?>) was applied,
shown in Equation4. This metric measures the degree
of fit between the predicted and actual values. The R?
value ranges between 0 and 1, and the closer to 1 it is,

seven parameters
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FIGURE 5

Dynamic correlation optimization parameters (Left) and corresponding correlation coefficients (Right) for Well No. 1.
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Distribution of dynamic correlation optimization parameters (Left) and respective correlation coefficients (Right) in different rounds.

the better the degree of fit of the regression model to the
observed values.

R=1-Y(=5) 13 0= 3’ @

To make a better comparison, using the overall analysis to
select the MLP structure parameters, which the dynamic analysis
using the same parameters. Three structure parameters for MLP
were selected here including the activation function, the number of
network layers and the number of neurons for each layer. As shown
in Figure 9, the testing result indicated that using the activation
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function of Sigmoid, 3 hidden layers and 250 neurons for each layer
will achieve the best performance.

For the modeling data grouping, the predictive modeling
utilized a basic 7:3 static grouping approach, where 70% (3,386
entries) of all original data were randomly selected as the training
dataset, and 30% (1,451 entries) were used as the test dataset. For
dynamic analysis and modeling, 78 data points were used in each
analysis; therefore, 55 data points were used for training, and 23
data points were randomly selected.

The modeling analysis results are shown in Figure 10. The
prediction accuracy of the fixed parameters, based on the overall
correlation analysis, was 0.71. This was followed by the prediction
accuracy of the dynamic correlation and the overall correlation in
the base comparison. In different rounds of dynamic correlation

frontiersin.org


https://doi.org/10.3389/fdata.2025.1676054
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Deng et al. 10.3389/fdata.2025.1676054

No

eaching
specified
round

Dynamic

. No
analysis

In-time dat: S
n lme. ata Filtering factors
collecting

Output Input Selecting machine No
parameter parameters learning algorithm :
| l |
v

[ Trainning ROP prediction model

!

Applying ROP prediction model

eaching
required
aceuracy

—_l

FIGURE 7
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4.3 Performance comparison of different
ML algorithms with dynamic correlation
analysis

prediction, the accuracy of 93% achieved by the dynamic analysis
model was higher than that for the overall analysis, and the
prediction accuracy of 65% (36 times) exceeded 0.8, meeting
the standard required for daily application. The final dynamic
analysis model was used to predict the ROP for the four wells To further validate the universality and effectiveness of
selected in this study. The predicted data were compared with
the actual data (Figure 11). The prediction model established

on the basis of the dynamic correlation analysis in this study

the dynamic correlation analysis in ROP prediction, this study
compared the prediction accuracy of several mainstream machine
learning algorithms under the same dynamic modeling framework.

generated data with a high degree of agreement with the
actual data.

Frontiersin Big Data

The selected algorithms included Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), and Long Short-Term Memory
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(LSTM) networks, and were compared against the Multilayer
Perceptron (MLP) used in the original analysis. All models adopted
the same dynamic correlation parameter screening mechanism,
i.e., selecting the top 7 most relevant parameters in each analysis
window as input features. The specific configurations for each
algorithm were as follows: Random Forest was set with 100 trees
and a maximum depth of 10; XGBoost used a learning rate of 0.1,
a maximum depth of 6, and 100 trees; the LSTM model consisted
of a single layer with 50 hidden units, followed by a fully connected
layer and utilized the Adam optimizer. All models were trained and
evaluated using the same 70:30 training-testing split within each
dynamic analysis window.

The prediction accuracy, evaluated using the coefficient
of determination (R?), is summarized in Table 4. Among
the compared algorithms, XGBoost demonstrated the best
performance, achieving the highest average R? (0.87) and the
highest proportion of prediction rounds (72%) where accuracy
exceeded 0.8, highlighting its strong capability for feature selection
and non-linear fitting. MLP also showed competitive results, closely
following XGBoost, which further validates the robustness of the
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dynamic correlation framework. Random Forest provided stable
and reliable performance, particularly advantageous in scenarios
with limited data. While LSTM possesses inherent strengths for
temporal modeling, its performance in this specific dynamic
window analysis was slightly lower, potentially due to uneven data
sampling intervals or less pronounced long-term dependencies in
the dataset. In conclusion, the dynamic correlation analysis method
significantly enhances the prediction accuracy not only for MLP
but also for other powerful algorithms like XGBoost and Random
Forest, demonstrating strong adaptability and substantial practical
value for drilling optimization.

5 Discussion
5.1 Key findings
Our analysis indicates that the overall correlation coefficients

between drilling parameters and ROP, commonly used in
traditional models, do not adequately capture the localized
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Comparison of the prediction results for Wells 1-4. (Upper left) Well 1; (Upper right) Well 2; (Lower left) Well 3; and (Lower right) Well 4.

TABLE 4 Performance comparison of different machine learning
algorithms.

Algorithm  Average Maximum Percentage of

R R? rounds with R? > 0.8
Random forest 0.83 0.92 58%
XGBoost 0.87 0.98 72%
LSTM 0.80 0.87 54%
MLP 0.84 0.97 65%

and depth-variant effects of these parameters. For example,
while parameters such as torque, rotational speed, and azimuth
exhibit strong overall correlations with ROP, their impacts vary
significantly across depth intervals. This variability highlights the
need for dynamic modeling approaches that can adapt to changing
downhole conditions.
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Dynamic correlation analysis further revealed that the most
significant influencing parameters identified in each analysis cycle
varied not only in type but also in the magnitude of their
correlations with ROP. This suggests that fixed-parameter models
may overlook key parameters that are only important under specific
geological or operational conditions. The adaptive model’s ability
to selectively incorporate these parameters in real time enhances its
superior predictive performance, as confirmed by the comparative
analysis of multiple ML algorithms in Section 4.3.

The adaptive ROP prediction model proposed in this study
has important practical implications for drilling optimization. By
accurately predicting ROP with different parameters in different
depths, the model can help drillers adjust operational parameters
in real time, maximizing efficiency while minimizing risks such as
tool wear, wellbore instability, and non-productive time. The model
also performs well with relatively small datasets (78 data points per
analysis), making it suitable for oilfields with limited historical data.
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5.2 Limitations and future work

While this study achieved encouraging results, several
limitations remain. First, the model was trained and tested based
on data from only four wells in a single geological region. Its
generalizability to other formations or drilling environments
remains to be verified. Second, the dynamic analysis window size
(78 data points) was selected based on the survey median; however,
the optimal window size may vary depending on data quality
and drilling complexity. Third, the performance of LSTM might
be further explored with optimized hyperparameters or different
architectures more suited to the specific data characteristics.

Future work should focus on validating the model in diverse
geological settings and incorporating more advanced machine
learning algorithms, such as recurrent neural networks (RNNs) or
Transformers, which are better suited for processing time series
data. Furthermore, combining physical models with data-driven
approaches could further enhance the model’s interpretability
and robustness.

6 Conclusions

Through dynamic correlation modeling analysis of four
wells from the Sichuan field, this study yields the following
key conclusions:

(1) Based on the integration of field data and the overall
correlation analysis of all the data, the data from the four
wells collected in this study generally exhibited medium to
high correlations. Among the 33 parameters related to the ROP
(correlation coefficient > 0.6), 9 parameters demonstrated strong
linear relationships with the ROP. The remaining parameters were
all moderately correlated parameters, with correlation coeflicients
between 0.3 and 0.6.

(2) Based on the dynamic correlation analysis, the dynamic
correlation and overall correlation of each parameter significantly
differed across different well sections. Using the statistical median
of 78 data points from the ROP prediction modeling dataset as
the dynamic analysis scale, the top seven parameters ranked by
correlation were compared in each round of analysis. Over time,
numerical fluctuations in both parameter type and correlation
coeflicient became increasingly pronounced.

(3) The first seven parameters were screened via overall
correlation and dynamic correlation for modeling analysis. The
modeling prediction accuracy based on dynamic correlation was
significantly higher than that of the ROP prediction model
established by overall correlation. The prediction accuracy in the
dynamic correlation modeling rounds was higher than that in the
overall correlation modeling prediction.

(4) Experimental results indicate that even when modeling with
only 78 data points, its accuracy is still higher than that of the
overall correlation model based on 4,837 data points, and this
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characteristic makes it particularly suitable for drilling scenarios
with limited historical data.
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