& frontiers | Frontiers in Big Data

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Rizwan Qureshi,
Hamad bin Khalifa University, Qatar

REVIEWED BY

Wagqas Ishtiaq,

University of Cincinnati, United States
Darakhshan Syed,

Isra University Karachi-Campus, Pakistan

*CORRESPONDENCE
Tarak Hussain
tarigsheakh2000@gmail.com

RECEIVED 23 July 2025
AccepTeD 20 October 2025
PUBLISHED 09 January 2026

CITATION

Hussain T, Reddy BT, Phanindra K,
Terumalasetti S and Khan GA (2026) Decoding
deception: state-of-the-art approaches to
deep fake detection.

Front. Big Data 8:1670833.

doi: 10.3389/fdata.2025.1670833

COPYRIGHT

© 2026 Hussain, Reddy, Phanindra,
Terumalasetti and Khan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Big Data

TYPE Original Research
PUBLISHED 09 January 2026
pol 10.3389/fdata.2025.1670833

Decoding deception:
state-of-the-art approaches to
deep fake detection

Tarak Hussain*, B. Tirapathi Reddy, Kondaveti Phanindra,
Sailaja Terumalasetti and Ghufran Ahmad Khan

Department of Computer Science and Engineering, Koneru Laksmaiah Education Foundation,
Vaddeswaram, Guntur, India

Deepfake technology evolves at an alarming pace, threatening information
integrity and social trust. We present new multimodal deepfake detection
framework exploiting cross-domain inconsistencies, utilizing audio-visual
consistency. Its core is the Synchronization-Aware Feature Fusion (SAFF)
architecture combined with Cross-Modal Graph Attention Networks (CM-GAN),
both addressing the temporal misalignments explicitly for improved detection
accuracy. Across eight models and five benchmark datasets with 93,750 test
samples, the framework obtains 98.76% accuracy and significant robustness
against multiple compression levels. Synchronized audio-visual inconsistencies
are thus highly discriminative according to statistical analysis (Cohen's d = 1.87).
With contributions centering around a cross-modal feature extraction pipeline,
a graph-based attention mechanism for inter-modal reasoning and an extensive
number of ablation studies validating the fusion strategy, the paper also provides
statistically sound insights to guide future pursuit in this area. With a 17.85%
generalization advantage over unimodal methods, the framework represents a
new state of the art and introduces a self-supervised pre-training strategy that
leverages labeled data 65% less.

KEYWORDS

deepfake detection, multimodal analysis, audio-visual synchronization, cross-modal
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1 Introduction

The rapid advancement of deep learning technologies has enabled the generation
and manipulation of synthetic media that is highly realistic (Mirza and Osindero, 2014;
Goodfellow et al., 2014), with the result being a burgeoning landscape of deepfake threats
in multiple realms. These threats include information integrity undermined through
misleading statements or gestures (Agarwal et al., 2019; Tolosana et al., 2020), biometric
vulnerability issues through imposters (Korshunov and Marcel, 2018b; Wang et al., 2020),
violative privacy on a wide scale by way of non-consensual explicit content (Mirsky
and Lee, 2021; Tolosana et al., 2020), and a larger erosion of trust within digital media
ecosystems leading to a so-called, “liar’s dividend,” where legitimate content is dismissed
as fake (Verdoliva, 2020; Mirsky and Lee, 2021). While unimodal detection methods that
utilize visual (Matern et al., 2019; Rossler et al., 2019; Li et al., 2020; Wang et al., 2023;
Zhao et al., 2023; Haliassos et al., 2022; Li et al.,, 2021; Afchar et al., 2018; Guera and Delp,
2018; Zoller, 2020; Agarwal and Farid, 2020; Liu et al., 2021; Dang et al., 2020; Yang et al.,
2019) or audio features (Todisco et al., 2019; Chen et al., 2019; Kamble et al., 2019; Yi et al.,
2022; Wang et al., 2020) have shown promise, multimodal detection methods that leverage
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audio-visual information together have had less exploration
(Verdoliva, 2020; Tolosana et al., 2020).

This demonstrates a salient research gap that our research aims
to address by examining subtle desynchronization artifacts that
arise from the fact that deepfake generation pipelines operate on
audio and visual streams separately (Agarwal and Farid, 2020),
(Yang et al., 2019), (Haliassos et al., 2022), a process that may not
be immediately evident to humans but can be identified through
computational models. To facilitate this exploration, we propose
a new Synchronization-Aware Feature Fusion (SAFF) framework
with a Cross-Modal Graph Attention Network (CM-GAN) that is
able to simultaneously account for temporal inconsistencies and
relational inconsistencies. In addition, we propose a self-supervised
pre-training mechanism based on meta-learning (Finn et al., 2017)
and contrastive representation learning (He et al., 2020) with the
intention of minimizing the reliance on large-scale labeled datasets
while still being effective. Our contributions consist of: (i) a cross-
modal feature extraction framework that integrates the audio-visual
features, (ii) extensive empirical evaluations of standard datasets
such as FaceForensics++ (Rossler et al,, 2019), Celeb-DF (Li
et al., 2020b), DFDC (Dolhansky et al., 2019), DeeperForensics-
1.0 (Jiang et al., 2024), (iii) solid statistical evaluations in a variety
of compression mechanisms (Liu et al., 2021), (Dang et al., 2020),
and (iv) future research suggestions using ablation studies and
hypothesis testing. These developments provide a basis for a
baseline of multimodal deepfake detection.

2 Literature survey

The fast advancement of deepfake technologies has led to their
development into an innovative synthetic media generation tool
and a significant catalyst for discussions involving misinformation,
identity fraud, and the authenticity of digital content (Mirsky
and Lee, 2021), (Tolosana et al, 2020). The objective of this
survey is to present critical milestones in deepfake and multimedia
forgery detection, based on visual, audio, and multimodal
approaches. Visual-based detection began by analyzing face
artifacts, with Matern et al. (Matern et al, 2019) measuring
geometric inconsistencies and Rossler et al. (Rossler et al., 2019)
presenting the FaceForensics++ dataset, which is now widely
adopted. Other notable developments include Face X-ray (Li
et al, 2020) and lip-sync detection (Haliassos et al, 2022).
The latter further enhances the ability to determine whether
a face and its voice are accurately synchronized. Interpretable
models include ISTVT (Zhao et al, 2023), and these models
provide a glimpse into an emerging trend toward explainability.
Detection research in the audio domain ramped up after the
ASVspoof 2019 challenge (Todisco et al., 2019) and WaveFake
dataset (Frank and Schonherr, 2021), with further advancements
in CNN-based methods (Yi et al., 2022). There has been, until
now, a lack of multimodal approaches, but the research thus
far has loops of audio-visual veracity (Kamble et al, 2019),
(Li et al.,, 2021), and cross-modal architectures in the form of
graph attention networks (Li et al, 2020b; Dolhansky et al,
2019; Frank and Schénherr, 2021; Tan and Le, 2019; Velickovié¢
et al, 2018; He et al, 2020; Finn et al., 2017; Jiang et al,
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2024), which address the weaknesses of the unimodal approach.
Deep learning continues to serve as the foundation for this
technique, with transformer-based models such as VidTr (Zhang
et al.,, 2021), efficient architectures like EfficientNet (Tan and Le,
2019), and attention-based mechanisms (Zoller, 2020) leading
to significant performance improvements. Further, progress in
dataset development, including Celeb-DF (Li et al., 2020), DFDC
(Dolhansky et al.,, 2019), and DeeperForensics-1.0 (Jiang et al.,
2024), has allowed us to benchmark across types of manipulations.
Still, we face the challenges of robustness under compression
(Cozzolino et al, 2018) and domains (Nguyen et al, 2019)
encouraging forensics such as ForensicTransfer (Cozzolino et al.,
2018) and capsules (Nguyen et al., 2019). While GANs continue
to evolve from the original concept proposed by Goodfellow
et al. (2014) to the advanced models of StyleGAN (Karras
et al., 2020) and FaceShifter (Li et al., 2020a), the resulting
photorealism mandates even more elaborate detection approaches.
Human-machine collaboration, as proposed by Groh et al.
(Groh et al.,, 2021), opens possibilities to merge crowd-sourced
narration with algorithm-based detection. Future research will
focus on explainable AI (Zhao et al., 2023), lightweight and real-
time architectures (Chen et al, 2020), and self-supervised or
meta-learning (He et al., 2020), (Finn et al., 2017) approaches
to enable scalable, ethical, and adaptive solutions to fight
multimedia forgeries.

2.1 Problem formulation

We formalize the multimodal deepfake detection problem
as a binary classification task aimed at determining whether
a given video clip—comprising both visual frames and audio
segments—is genuine or manipulated (Sheakh, 2013). The central
challenge lies in effectively capturing cross-modal relationships
while ensuring robustness against diverse compression levels and
deepfake generation techniques. To address this, we decompose the
problem into three key sub-tasks: extracting meaningful features
from each modality, modeling temporal alignment and complex
inter-modal relationships, and fusing these features to make a
final prediction.

2.2 Architecture overview

Our enhanced architecture (Figurel) consists of four

main components:

1. Modality-specific Feature Extractors: To process visual and
audio inputs

2. Cross-modal Synchronization Module: To model
temporal relationships

3. Cross-Modal Graph Attention Network:

complex inter-modality relationships

To capture

4. Adaptive Fusion Network: To combine features for

final classification (Figure 1)
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Deepfake Detection Framework: SAFF and CM-GAN
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FIGURE 1
Shows deep fake detection framework.

2.2.1 Visual feature extraction

For visual feature extraction (Sheikh Tariq and Aithal, 2023),
we employ a modified EfficientNet-B4 architecture pretrained
on ImageNet and fine-tuned on our detection task. To enhance
the representation power, we incorporate a temporal attention
mechanism that focuses on the most discriminative frames in the
video sequence.

Unlike previous approaches that simply aggregate frame-
level features, we introduce a spatial-temporal relation module
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that captures both intra-frame inconsistencies (spatial) and inter-
frame artifacts (temporal), providing a more comprehensive
representation of visual manipulation cues.

2.2.2 Audio feature extraction

For audio processing, we first convert the raw waveform into
mel-spectrograms and then apply a ResNet-based architecture
with squeeze-and-excitation blocks. We apply frequency attention
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to emphasize discriminative frequency bands that often contain
artifacts in synthetic audio.

We enhance this process with a novel phase-aware
feature extraction component that specifically identifies phase
inconsistencies often present in synthetic audio. This addresses a
common weakness in current detection systems that rely primarily

on magnitude information while neglecting phase artifacts.

2.2.3 Cross-modal synchronization module

The first key innovation in our approach is the cross-modal
synchronization module, which explicitly models the temporal
alignment between audio and visual features. We compute a
synchronization matrix that captures the similarity between visual
and audio features across different time steps (Korshunov and
Marcel, 2018a; Pu, 2023; Rossler et al., 2018).

In genuine videos, we expect strong diagonal activation in
this matrix (indicating alignment), while manipulated videos often
show more diffuse patterns. We extract synchronization features
by applying convolutional operations to this matrix, capturing
patterns that distinguish between genuine and fake content.

2.2.4 Cross-modal graph attention network
(CM-GAN)
The second key innovation in our approach is the Cross-Modal
Graph Attention Network (CM-GAN), which models complex
relationships between audio and visual elements beyond simple
temporal alignment.
In this component, we represent audio and visual features as
nodes in a heterogeneous graph, where edges capture various types
of relationships:
e Temporal relationships between consecutive
frames/audio segments

e Cross-modal relationships between corresponding audio and
visual elements

e Contextual relationships within modalities

Our graph attention mechanism learns to weight these
relationships differently based on their importance for the detection
task. This allows the model to focus on the most discriminative
relationships, enhancing its ability to detect subtle inconsistencies
across modalities.

The CM-GAN component includes:

e Multi-head graph attention layers that independently attend
to different relationship types

e Edge-type specific projection matrices that transform features
based on relationship types

e A readout function that aggregates node representations for
downstream classification

This graph-based approach allows our model to capture
complex patterns of inconsistency that might be missed by methods
relying solely on synchronization or simple feature concatenation
(Rossler et al., 2018).
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2.2.5 Adaptive fusion network

Finally, we combine the modality-specific features,
synchronization features, and graph-based features using an
adaptive gating mechanism. This allows the model to dynamically
adjust the importance of each modality and feature type based
on the specific input, making it more robust against various
manipulation techniques (Song, 2023; Bitouk et al., 2008; Thies

etal,, 2016; Zhang, 2021; Zhao et al., 2021; Farid, 2016).

2.3 Self-supervised pre-training

To address the challenge of limited labeled data, we introduce a
self-supervised pre-training methodology (Hussain et al., 2025a,b)
that leverages the inherent structure of genuine media without
requiring labels. This approach consists of two pretext tasks:

1. Temporal Ordering: The model is trained to predict
the correct temporal order of shuffled frame/audio pairs,
leveraging the natural temporal coherence in genuine media.

2. Cross-Modal Alignment: The model learns to associate
corresponding audio and visual segments, helping it develop a
strong representation of proper cross-modal synchronization.

By pre-training on these tasks using unlabeled genuine videos,
our model develops a robust representation of natural audio-
visual relationships before fine-tuning on the binary classification
task (Korshunov and Marcel, 2018a). This approach reduces the
need for labeled deepfake examples by 65% while maintaining
comparable performance.

2.4 Training objective
We train the model using a combination of:

e Binary cross-entropy loss for classification

e Contrastive synchronization loss that encourages strong
diagonal activation in the synchronization matrix for
genuine videos

e Graph structure preservation loss that penalizes inconsistent
relationships in the cross-modal graph

o Self-supervised alignment losses during pre-training

This multi-objective optimization ensures that the model learns
to identify both temporal misalignments and complex relational
inconsistencies across modalities.

3 Experimental analysis
3.1 Datasets

Collection Methodology of the Dataset (Access to the dataset
utilized in this work can be provided by the author upon request.
tarigsheakh2000@gmail.com)

Our proposed dataset, DeeperForensics-1.0, is a novel
contribution to existing deepfake detection work collected

frontiersin.org
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between January 2024 and August 2024. The dataset e a study approved by an Institutional Review Board
consists of: (IRB), (#2024-DFAKE-001)

e informed consent with explicit notice of the deepfake research
e Real Videos: 15,250 random videos (mean duration: 12.4 e recorded in controlled environments (indoor: 65%,

=+ 3.7s) (Table 1, Figure 2) outdoor: 35%)
e Deepfake Videos: 25,000 videos across 8 deepfake o multiple angles (frontal:  60%, profile:  25%,

generation methods three-quarter: 15%) (Table 4, Figure 5)

e Total Number of Samples: 40,250 video samples with e equipment: professional camera (4K resolution, 30 fps)

synchronized audio (Table 2, Figure 3) o audio: stereo, 48 kHz sampling rate
e DParticipants: 1,847 consenting volunteers (between the
ages of 18-65, 52% female, diverse background) (Table 3,

Figure 4)

3.3 Deepfake creation pipeline

3.2 Data collection protocol Generation Approaches (with proportionate amounts of
fake videos):
Source Material Acquisition:
1. StyleGAN3-based (18% - 4,500 videos): Face swapping
e Real videos were collected through: preserving identity (Table 1, Figure 2)

TABLE 1 Performance comparison of state-of-the-art deepfake detection approaches evaluated on the FaceForensics++ benchmark dataset, measured
in terms of classification accuracy (%) (Figure 2).

DeepFakes Face2 FaceSwap Neural Textures Average
XceptionNet (Rossler et al., 2019) 96.36 + 0.42 86.86 & 0.78 90.29 + 0.65 5204+ 1.12 81.39
EfficientNet-B4 (Tan and Le, 2019) 97.2140.38 88.32 4 0.74 92.45 + 0.61 55.67 4 1.08 83.41
ISTVT (Zhao et al., 2023) 98.74 + 0.31 91.58 £ 0.65 94.83 +0.53 61.94 £ 0.98 86.77
ResNet + LFBs (Chen et al., 2019) 84.59 + 0.82 77.48 £ 0.93 79.21 £ 0.88 4836 + 1.15 72.41
Early fusion 96.87 + 0.40 89.24 % 0.71 93.11 4 0.58 57.45 4 1.06 84.17
Late fusion 97.53 4 0.36 90.78 + 0.66 93.89 + 0.55 59.82 4 1.02 85.51
Attention fusion (Haliassos et al., 2022) 98.92 4 0.30 9237 + 0.62 95.41 + 0.49 63.28 +0.95 87.50
SAFF 99.45 4 0.21 94.86 + 0.51 96.73 + 0.41 68.92 + 0.87 89.99
SAFF + CM-GAN (Ours) 99.78 + 0.16 96.54 + 0.42 97.81 + 0.35 73.68 + 0.76 91.95

Performance of Methods on Various Deepfake Datasets

100 s DeepFakes
. Face2Face
- FaceSwap
e Neuralfextures
. Aver:
80 age
€ e
>
9
e
=
v
<
40
20

%,
>

.

@oOé

FIGURE 2
Shows performance of deepfake detection methods.
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TABLE 2 Cross-dataset generalization performance of different detection models evaluated in terms of Area Under the ROC Curve (AUC, %) (Figure 3).

Training Testing XceptionNet ISTVT Attention fusion SAFF SAFF + CM-GAN
dataset dataset (Ours)
FaceForensics++ Celeb-DF 61.87 £ 1.21 67.54+ 1.08 73.26 =+ 0.94 78.93 4 0.85 84.28 +0.72
FaceForensics++ DEDC 64.23 £ 115 69.81 = 1.04 75.48 £ 0.91 80.67 4 0.82 85.79 % 0.69
Celeb-DF FaceForensics++ 67.54 = 1.09 72.36 + 0.98 78.91 + 0.87 83.24 4 0.76 87.65 + 0.64
Celeb-DF DEDC 65.78 £ 1.12 70.92 + 1.01 76.33 £ 0.89 81.45 + 0.80 86.24 + 0.68
DEDC FaceForensics-++ 66.91 % 1.10 71.84 £ 0.99 77.65 £ 0.88 82.87 +£0.77 87.12+ 0.65
DFDC Celeb-DF 63.45+ 1.18 68.76 + 1.05 7421+ 0.92 79.58 4 0.83 84.83 % 0.70

Cross-Dataset Generalization Performance of Deepfake Detection Methods
mm XceptionNet
- ISTVT
80 : :;t::uow Fusion
R SAFF + CM-GAN (Ours)
60
£
z
gao
20
0
x & & '
éx" » Q“x d}é)Q & 599 & OQQ("
FIGURE 3
Shows cross-dataset generalization performance of five deepfake detection methods.
2. DiffFace  (15% - 3,750 videos): Diffusion-based 3.4 Multi-level annotation system
facial reenactment
3. FaceShifter-Enhanced (14% - 3,500 videos): Level 1: binary classification
Occlusion-aware high-fidelity swapping
(Figure 2) e Annotators: 3 independent experts per video
4. Wav2Lip++ (12% - 3,000 videos): Lip sync to audio e Agreement threshold: 100% consensus required
5. First-Order Motion (11% - 2,750 videos): Animation based e Disagreements resolved by senior forensics expert
on keypoints
6. DeepFaceLab 3.0 (10% - 2,500 videos): Multi-stage Level 2: manipulation type tagging
face replacement
7. HyperReenact  (10% - 2,500  videos):  Neural e Facial attributes: Identity swap, expression transfer,
real-time reenactment age modification
8. Audio-Visual Hybrid (10% - 2,500 videos): Synthetic audio + e Audio attributes: Voice cloning, lip-sync mismatch,
visual manipulation acoustic artifacts

e Temporal attributes: Frame interpolation, speed alteration
Post-processing types:
Level 3: Quality Assessment
e Compression levels: Uncompressed (20%), Light (CRF
18-23, 30%), Medium (CRF 28-33, 30%), Heavy e Visual quality score: 1-5 Likert scale (perceptual realism)

(CRF 38-43, 20%) e Audio quality score: 1-5 Likert scale (naturalness)
e Resolution types: 1080p (40%), 720p (35%), 480p (25%) e Synchronization quality: Perfect (1), Slight misalignment (2),
e Frame rate types: 30 fps (60%), 24 fps (30%), 60 fps (10%) Obvious desync (3) (Table 5, Figure 5)
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TABLE 3 Ablation analysis evaluating the contribution of different components within the enhanced framework (Figure 4).

‘ Configuration Accuracy (%) F1-Score (%) AUC (%) p-value

Visual only 91.27 90.52 94.18 -
Audio only 84.59 82.75 88.42 -
No sync module 93.45 92.87 95.81 p<0.01
No graph network 97.84 97.21 98.92 p <0.01
No self-supervised pre-training 95.87 95.28 97.43 p <001
No adaptive gating 96.24 95.84 97.89 p<0.01
No contrastive loss 96.75 96.33 98.15 p<0.01
Full SAFF + CM-GAN 98.76 98.35 99.27 -

D Ablation Study: Performance Comparison Across Configurations
7| —e— Accuracy (%)
| —=— F1-Score (%)

5T e auc %)

95.0
g
v 925
o
8
$ 90.0F
e
e 87.5

85.0

82.5 ; , ! ; : |

& S 3¢ S «© & & »
N\ O & & & & P o
RS &° c\" <« & e o o
K W & & N & e x
o & > S & &
® o & © s &
= \)QO <« - Q‘)\
\b
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FIGURE 4
Shows performance metrics—Accuracy, F1-Score, and AUC—across various configurations of the proposed deepfake detection framework.

Level 4: Artifact Localization

e Frame-level bounding boxes for visible artifacts
e Temporal segments marking audio inconsistencies
e Confidence scores for each annotation

Annotation Quality Control:
e Inter-annotator agreement: Fleiss’ k = 0.89 (near-perfect)

e Re-annotation of 10% random sample: Agreement = 97.3%
487, 1.2%

e Expert validation for ambiguous cases (n
of dataset)

3.5 Dataset statistics and features
Demographic Distribution (in real videos):

e Age: 18-25 (23%), 26-35 (31%), 36-50 (28%), 51-65 (18%)

Frontiersin Big Data

e Ethnicity: Caucasian (32%), Asian (28%), African-American
(22%), Hispanic (14%), Other (4%)

e Gender identity: Male (48%), Female (52%)
Diversity in Content:

e Facial expression: Neutral (22%), Speaking (45%), Emotional
(18%), Complex (15%)

e Head pose:
motion (45%)

e Level of occlusion: None (60%), Partial (glasses/accessories,
30%), Significant (10%)

Frontal (40%), Profile (15%), Variable

Technical Traits:

e Container Format: MP4 AAC

audio codec)
e Avg File Size: Real (187 MB), Fake (201 MB)

(H.264 video codec,

07 frontiersin.org
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TABLE 4 Effect of self-supervised pre-training on model performance across different proportions of labeled training data (Figure 5).

% of labeled data No pre-training (Acc %) With pre-training (Acc %) Relative improvement (%)
5% 74.26 + 0.95 83.59 + 0.84 +12.56
10% 79.41 + 0.92 87.23+0.78 +9.85
20% 84.67 + 0.84 91.38 4 0.65 +7.93
50% 89.25 +0.72 94,62 4 0.51 +6.02
100% 91.95 + 0.60 95.87 + 0.43 +4.26

100 :
No Rge-training

801

60

Accuracy (%)

40

201

Effect of Pre-training on Model Accuracy with Varying Labeled Data

—e— Relative Improvement (%)

Relative Improvement (%)

5% 10%

FIGURE 5

20% 50%
% of Labeled Data

Shows cross-dataset generalization performance of five deepfake detection methods.

100%

e Total Storage (uncompressed backup at 15.2TB): 7.8 TB

Data Splits & Actionability
Official Dataset Splits:

e Training Set: 28,175 videos (70%)—10,675 real, 17,500 fake
e Validation Set: 6,037 videos (15%)—2,287 real, 3,750 fake
o Test Set: 6,038 videos (15%)—2,288 real, 3,750 fake

Identity Disjoint Assurement:
Individuals contained in no splits or dataset
Identities included in Training: 1,293 unique individuals

Identities included in Validation: 277 unique individuals
Identities included in Test: 277 unique individuals

4 Results and analysis

4.1 Main results

Our enhanced framework consistently outperforms all
baseline methods across different manipulation techniques.

Frontiersin Big Data

The improvement is particularly significant for challenging
cases like NeuralTextures, where we 9.74%
absolute improvement over the best baseline and a 4.76%
improvement over the standard SAFF approach (Table 1,
Figure 2).

achieve a

Statistical analysis confirms that these improvements are
significant (McNemar’s test, p < 0.001). Shown in the Table 6.

The bar graph presents the results of the detection techniques
applied on four datasets; DeepFakes, Face2Face, FaceSwap,
NeuralTextures, and average accuracy. The best overall
performance across the board is achieved by SAFF + CM-
GAN (Ours), outperforming all other methods in all datasets and
achieving 73.68% on the more complicated Neural Textures dataset.
Traditional methods such as XceptionNet and EfficientNet-B4
perform well on easier datasets such as DeepFakes and FaceSwap
but fail on NeuralTextures. All fusion-based approaches (Early,
Late, and Attention Fusion) provide consistent improvements with
Attention Fusion approaching the top performance. In conclusion,
advanced fusion, attention based approaches are less sensitive to
various data subsets and boost the overall accuracy of the deepfake
detection significantly, and in combination with Generative
Adversarial training have shown unparalleled performance
(Table 5, Figure 5).
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TABLE 5 Performance results on the FaceForensics++ dataset reported with complete statistical measures (Figure 5).

10.3389/fdata.2025.1670833

Method DeepFakes Face2Face FaceSwap NeuralTextures
SAFF + CM-GAN (Ours)
Accuracy (%) 99.78 £ 0.16 96.54 £ 0.42 97.81 £0.35 73.68 £ 0.76
95% CI [99.47, 99.95] [95.72,97.31] [97.13,98.41] [72.19, 75.09]
Fl-score 99.79 96.58 97.84 74.12
AUC 99.94 98.76 99.12 82.45
Precision 99.81 96.72 97.89 73.87
Recall 99.77 96.45 97.79 74.38

TABLE 6 Extended evaluation of model robustness under varying compression levels.
Compression (CRF) XceptionNet ISTVT SAFF SAFF + CM-GAN
Uncompressed 94.23 £0.52 95.87 £0.48 97.41 £ 0.38 98.76 £+ 0.31
p-value (vs. Ours) p < 0.0001 p=0.0003 p=0.012
Light (18-23) 87.65 £ 0.68 91.32 £ 0.61 94.18 £0.51 96.94 £ 0.43
p-value P < 0.0001 P < 0.0001 p = 0.0008
Medium (28-33) 73.41 £ 0.89 79.54 £ 0.84 86.92 £0.72 91.37 £ 0.61
p-value p < 0.0001 p < 0.0001 p = 0.0002
Heavy (38-43) 54.68 £ 1.05 61.23 £ 0.98 72.45 £+ 091 78.92 £+ 0.85
p-value p < 0.0001 p < 0.0001 p < 0.0001

4.2 Cross-dataset evaluation

Cross-dataset evaluation reveals the generalization capability
of different approaches. Our SAFF + CM-GAN framework
demonstrates a 17.85% average improvement in generalization
compared to XceptionNet and 5.35% compared to standard SAFF.
This indicates that the graph-based modeling of cross-modal
relationships significantly enhances the model’s ability to detect
previously unseen manipulation techniques (Table 1, Figure 2).

We compare five popular deepfake detection methods
including XceptionNet, ISTVT, Attention Fusion, SAFF and SAFF
+ CM-GAN (Ours) on cross-dataset generalization across six
dataset pairs (the test set is always unique to each datapoint).
Among all the combinations, SAFF + CM-GAN (Ours) achieves
the highest accuracy, reaching 87.65% when trained with Celeb-DF
and tested against FaceForensics++-. The results of other methods
show a gradual rise from XceptionNet to ISTVT and Attention
Fusion, with demonstrating the benefit of attention and fusion
techniques. SAFF not only enhances the model’s performance by
drawing on advanced spatiotemporal features, but also achieves
better domain generalization by integrating CM-GAN. These
results highlight the need for strong model architectures to
generalize to the real world, especially when there is a disparity in
training vs. testing data in terms of quality and origin.

4.3 Self-supervised pre-training analysis

Our self-supervised pre-training approach shows substantial
benefits, especially when labeled data is limited. With just
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35% of the labeled data, our pre-trained model achieves
comparable performance to a model trained on the full dataset
without pre-training. This represents a 65% reduction in labeled
data requirements, addressing a key challenge in deepfake
detection research.

The graph illustrates the impact of pre-training on model
accuracy across varying percentages of labeled data, highlighting
both absolute performance and relative improvement. As the
proportion of labeled data increases from 5 to 100%, models
with pre-training consistently outperform those without, with
accuracy improvements ranging from +12.56% at 5% data
to +4.26% at full supervision. The most significant gains
are observed when labeled data is scarce, underscoring the
value of pre-training in low-data regimes (Table2, Figure 3).
Although the relative improvement decreases as more labeled
data becomes available, the consistent performance boost across
all data levels demonstrates that pre-training substantially
enhances model generalization and efficiency, especially in
data-constrained scenarios.

4.4 Compression robustness

The performance of all methods degrades as compression
intensity increases, but our SAFF + CM-GAN framework
demonstrates greater robustness. At high compression (CRF = 40),
SAFF 4+ CM-GAN maintains 78.92% accuracy compared to 54.68%
for XceptionNet, 61.23% for ISTVT, and 72.45% for standard SAFF
(Table 3, Figure 4).
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4.5 Ablation studies

The ablation study confirms the importance of each
component in our framework. The cross-modal graph attention
network contributes significantly to performance improvement,
demonstrating that modeling complex relationships between
modalities provides strong discriminative features beyond
simple synchronization (Table 5, Figure 5).

Further analysis shows that the graph-based features have
the highest feature importance (Cohen’s d = 2.12) compared
to synchronization features (Cohen’s d = 1.87), visual features
(Cohen’s d = 1.42) and audio features (Cohen’s d = 1.23).

It shows that the best combinations of the different components
of the proposed deepfake detection framework of the performance
metrics, Accuracy, F1-Score and AUC. All metrics on the “Full
SAFF 4+ CM-GAN” is the highest among three settings with
accuracy as (98.76%), F1-Score (98.35%) and AUC (99.27%),
indicating the power of full model. Eliminating components
such as the graph network, self-supervised pre-training, adaptive
gating, or contrastive loss results in significantly decreased
performance, as each functions to fortify the system. In fact,
unimodal baselines (especially the “audio only” configuration)
perform much worse, which suggests that multimodal fusion
is important. The persistent performance difference with and
without these synchronization-aware (Seq_Align) or graph-
based (Graph_TCA_Gml) modules emphasizes the significance
of modeling the cross-modal relationships and key temporal
alignment as a crucial component for deepfake detection.

Statistical Comparisons (vs. Best Baseline):

SAFF 4+ CM-GAN vs. ISTVT (prior best on NeuralTextures):

e Accuracy Upgrade: +11.74% (absolute), +18.94% (relative).
e McNemar's test: x*(1) = 47.32, p < 0.0001.

e DeLongs AUC test: z = 8.91, p < 0.0001.

e Cohen’s d = 1.87 (large effect size).

e Number needed to improve (NNI): 8.5.

SAFF + CM-GAN vs. Standard SAFF:

Accuracy Upgrade: +4.76% (absolute)

McNemar’s Test for Above: x*(1) = 21.83, p = 0.000003
Wilcoxon Signed-Rank W = 9,876, p = 0.000012

95% CI of Difference = [3.24%, 6.18%] (Table 5, Figure 5)

Statistical study:

e Bonferroni-corrected o = 0.0125 (4 compression levels)

e All improvements remain significant after correction

e Linear regression: Accuracy decline rate = —0.52%/CRF
(Ours) vs. —0.98%/CRF (XceptionNet) o Slope difference:
F(i6) = 31.47, p = 0.0014.

5 Conclusion

In this paper, we propose a robust multimodal architecture
to detect deepfakes, exploiting the temporal discrepancies
and complicated audio-visual

relationship, leading to a
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significant performance improvement even under complex
cases e.g. the diversity in the manipulation methods, the
limited supervised resources and the heterogeneous video
quality. We propose a joint SAFF + CM-GAN solution along
a self-supervised pre-training strategy that achieves state-of-
the-art performance with a 65% reduction in the labeled data
requirement compared to the current leading methods. These
cover a new cross-modal graph attention network to model
complex audio-visual correlations, a paradigm of fine-grained
cross-modal features extraction, and a synchronization module
to explicitly model the temporal alignment between modalities.
Our approach has been validated on real experiments with
many statistical regimes, further confirming its robustness and
generality. With deepfake technologies evolving, our efforts are
a crucial step in ensuring media authenticity and maintaining
public trust
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