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Due to long-term usage, natural disasters and human factors, pipeline leaks
or ruptures may occur, resulting in serious consequences. Therefore, it is of
great significance to monitor and conduct real-time detection of pipeline leaks.
Currently, the mainstream methods for pipeline leak monitoring mostly rely on a
single signal, which have significant limitations such as single temperature being
susceptible to environmental temperature interference leading to misjudgment,
and single vibration signal being affected by pipeline operation noise. Based on
this phenomenon, this research has built a distributed optical fiber system as
an experimental platform for temperature and vibration monitoring, obtaining
3,530 sets of real-time synchronized spatial-temporal temperature and vibration
signals. A dual-parameter fusion residual neural network structure has been
constructed, which can extract characteristic signals from the original spatial-
temporal temperature and vibration signals obtained from the above monitoring
system, thereby achieving a classification accuracy of 92.16% for pipeline leak
status and a leakage location accuracy of 1m. This solves the problem of
insufficient feature extraction and weak anti-interference ability in single signal
monitoring. By fusing the original temperature and vibration signals, more
leakage features can be extracted. Therefore, compared with single signal
monitoring, this study has improved the accuracy of leakage identification and
location, bridging the gap of misjudgment caused by single signal interference,
and providing a basis for pipeline leakage monitoring and real-time warning in
the oil industry.

KEYWORDS

deep learning, safety pre-warning, distributed fiber optic sensing system, leakage
monitoring, oil pipeline

1 Introduction

With the increasing global demand for energy, pipeline as an important channel of
energy transmission, its safe and reliable operation is of great significance to ensure energy
supply and social stability. However, due to various reasons such as long-term use, natural
disasters and human factors, various failure problems will occur in pipelines. Pipeline leaks
or ruptures pose significant hazards, encompassing environmental pollution, substantial
economic losses, and even human casualties. Consequently, the implementation of pipeline
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monitoring and early warning systems is particularly crucial for
enhancing operational safety and ensuring energy supply.

At present, the common technology of pipeline leakage
monitoring can be categorized as hardware detection and software
monitoring according to the main implementation mode (Wu
et al,, 2023). Hardware detection includes acoustic emission
detection, soil detection, ultrasonic detection, cable detection,
and distributed optical fiber detection method (Mostafapour and
Davoudi, 2013; Leinov et al., 2016; Datta and Sarkar, 2016; Zuo
et al, 2020). Software monitoring includes mass (or volume)
balance method, pressure point analysis method, pressure gradient
method, statistical method, and real-time transient modeling
method (Mujtaba et al., 2020; Fukushima et al., 2000; Lu et al.,
2020; Abbaspour and Chapman, 2008; Wang et al., 2019). Most
of the traditional hardware methods need manual participation,
low efficiency, high operating cost, small coverage, easy to be
disturbed by human factors, and can’t be continuously monitored.
As a novel pipeline detection technology proposed in recent
years, the distributed optical fiber detection method can achieve
uninterrupted parameter acquisition along the optical fiber path.
Optical fibers can not only achieve simultaneous sensing and
transmission but also possess an extended detection range, high
measurement precision, strong corrosion resistance, and immunity
to electromagnetic interference. Statistical method and real-time
transient modeling method are the most widely used methods
with the highest accuracy among software monitoring methods.
However, real-time transient modeling needs to collect various
detailed parameters of the monitored pipeline, and modeling can
be carried out based on these data. The detail and accuracy
of parameters will directly affect the accuracy of the model, so
it is crucial to collect multi-dimensional parameters from the
pipeline being inspected (Arifin et al., 2018; Oseni et al., 2023).
The statistical method based on machine learning can analyze the
collected pipeline sensor data by statistical method, and train the
data by machine learning algorithm to obtain the standard mode of
normal operation of the pipeline and identify the abnormal mode
when pipeline leakage occurs.

At present, various machine learning models are often used to
provide standard patterns, so that they have better accuracy and
adaptability. In 2020, Ya et al. (2019); Zhang et al. (2021) used a
distributed optical fiber temperature system to conduct pipeline
leakage detection and localization experiments. For determining
the pipeline’s leakage condition, the correlation coefficient method
and absolute distance method are used to cluster the temperature
detection signal, and the selective average threshold of valid leakage
point is used. Liu et al. (2023) proposed a multi-dimensional spatial
data fusion algorithm based on the acquisition of time-air pipeline
leakage signals by DVS (distributed optical fiber vibration sensing
technology) system. The average value of the obtained non-leakage
fusion signals was used as the alarm threshold to improve the
leakage alarm rate and realize multi-point leakage alarm.

However, in practical applications, the temperature and
vibration signal fluctuate when the pipeline leaks, so identifying the
leak by setting a fixed threshold can cause false positives and false
negatives, especially for small leakage problems. With the rise of
machine learning, neural networks can perform statistical analysis
on signals and learn the features of global networks. They are
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gradually used in the identification and classification of distributed
fiber signals, and good results have been achieved. Abufana et al.
(2020) denoised and filtered distributed optical fiber acoustic
signals through wavelet denoising and difference time domain
method, used variational mode decomposition to extract features
such as variance, skewness, and kurtosis of signals and finally
classified signals based on linear SVM (support vector machine).
Bao et al. (2020) employed a combined endpoint detection and
variational mode decomposition approach for extracting time-
frequency characteristics from fiber vibration signals, and then
three different intrusion signals were identified by SVM model
with a recognition accuracy of 98%. Wang et al. (2021) integrated
the distributed vibration and temperature system, extracted 6
temperature and 5 vibration characteristic values, and identified the
operating state of the pipeline through the random forest model.

However, artificial feature extraction usually increases the
computing resources of the recognition algorithm, resulting in low
processing efficiency and poor real-time performance. Therefore,
more and more studies consider deep learning models to integrate
feature extraction and classification recognition to improve the
accuracy and real-time performance of the models. In 2023, Li
et al. (2023) adopted the CNN-LSTM structure to analyze the
temporal and spatial features of the signal, and also used the double
cubic reduction to simplify the network structure, and realized
the vibration event recognition of the buried distributed fiber
optic sensing system. Observations from numerous recent studies
indicate that deep learning models typically outperform machine
learning models in both recognition accuracy and computational
speed, and in terms of model computing efficiency, deep learning
also has a faster recognition speed (Lyu et al., 2020; Xie et al., 2022;
Zhu et al., 2023). Shi et al. (2020) acquired spatio-temporal signals
based on the DVS system, converted the signals into grayscale
graphs, extracted signal features, and classified them by 2DCNN-
SVM model, with an accuracy rate of 94.17%. Peng et al. (2020)
used a DAS (distributed optical fiber acoustic sensing technology)
system to monitor acoustic signals from pipelines, and compared
the results of shallow un-convolutional neural networks with the
CNN smodel. The results showed that the CNN model had higher
event type recognition accuracy. Yang et al. (2022) proposed an
integrated IDCNN-VAPSO-SVM model utilizing pipeline acoustic
signals for leakage detection. And the parameter combination in
SVM was optimized by adopting an amplitude-based parameter
adjustment strategy, effectively improve the accuracy of the model.
Zhang et al. (2023) proposed AM-LSTM model to identify
monitoring signals of time series and realize real-time monitoring
and location of pipeline leakage.

Comprehensively considering the research and application
status of deep learning models in the field of distributed fiber
signal recognition, it can be seen that simultaneous feature
extraction and classification recognition of signals through deep
learning models is a feasible method to improve the intelligence
of signal recognition. In addition, considering the space-time
dimension of fiber signals in the model also can effectively
improve the signal characterization ability. However, a deep
learning model that is too complex will also reduce real-time
signal recognition. Therefore, how to optimize the accuracy-real-
time performance trade-off in deep learning models is a problem
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that must be considered to realize intelligent monitoring of
pipeline leakage.

In addition, most studies mainly focus on the vibration, strain,
temperature and acoustic signals of distributed optical fibers, and
few studies mix a variety of signals together to identify pipeline
leakage status. In fact, due to the high temperature and pressure
of oil in the oil pipeline, the leakage of the pipeline will produce
vibration and accompanied by the phenomenon of temperature
rise. But when the leakage is small, the minute temperature
or vibration variations induced by leakage, making their timely
detection challenging using individual signals. In order to solve this
problem, the temperature and vibration signals can be considered
simultaneously, so that the impact of environmental interference
can be reduced, and more information can be extracted to improve
the accuracy of leakage identification (Wang et al., 2021).

Taking the above reasons into consideration, this study
proposes an intelligent oil pipeline leakage monitoring method
based on spatio-temporal signals of the distributed optical fiber
vibration and temperature detection systems. The deep residual
network is used to characterize the features and states of the
vibration and temperature signals of distributed fiber with spatio-
temporal dimensions to obtain the pipeline leakage status. This
model can quickly process the collected original data, realize
intelligent real-time monitoring of pipeline leakage, and accurately
locate the leakage point. The main research questions and
objectives of this study are as follows.

Research Questions (RQs):

RQI1: How to build an experimental system that can stably obtain
high-quality spatial-temporal synchronized temperature-
vibration signals?

RQ2: How to enhance the feature extraction ability and anti-

interference performance of pipeline leakage and solve the

inherent defects of single-signal monitoring?

RQ3: What level of accuracy and localization precision can be

achieved with the proposed dual-parameter fusion method?

Research Objectives (ROs):

ROI: A self-developed distributed optical fiber temperature and
vibration monitoring experimental platform has been built.
A total of 3,530 sets of real-time synchronized spatial
and temporal temperature and vibration signals have been
successfully collected, which ensures that the data cover the
signal characteristics of the pipeline under both normal and
different leakage conditions and meet the data quality and
quantity requirements of the leakage monitoring model.
RO2: The model is used to extract features from the original
vibration signal and temperature signal, respectively.
Through decision-level fusion, the advantages of larger
amplitude changes in DVS during leakage and a 1-meter
accuracy of DTS are combined, thereby breaking the
limitations of a single signal.
RO3: A dual-parameter fusion residual neural network structure
was constructed, which solved the problems of gradient
vanishing and slow convergence during the training process
when traditional CNNs learned more complex deep feature
models. Eventually, a classification accuracy of 92.16% for
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pipeline leakage and a leakage location accuracy of 1m
were achieved.

2 Preliminaries

In this section, the fundamental theories, concepts and
advantages of distributed optical fiber system, convolutional
neural network (CNN), and residual network (ResNet) are
briefly outlined.

2.1 Distributed optical fiber system

A distributed optical fiber sensing technique employs a novel
sensing technology that directly uses the monitoring optical
cables laid in the same trench as pipelines as sensors. It fully
exploits the characteristics of continuous spatial distribution in
fiber, forming the integration of “transmission” and “sensing,
and enabling the acquisition of physical parameter information at
any point along the fiber. It can be used for applications in the
fields of various industries including petroleum, petrochemicals,
electric power, transportation, and bridge construction. Compared
with traditional detection technologies, this technique has the
advantages of long measurement distance, continuous distributed
measurement, accurate positioning, simple installation, high safety
and strong scalability.

There are three types of scattered light that occur when light
is transmitted within the fiber, which are Rayleigh scattering,
Brillouin scattering, and Raman scattering. Based on these
scattering types, the optical fiber can realize the detection of
vibration, temperature and other signals. Figure 1 shows the typical
architecture of a common distributed optical fiber sensing system.

The DVS system is founded on the principles of Rayleigh
scattering and ¢-OTDR (phase-sensitive optical time domain
reflectometry). The optical modulator modulates the continuous
light emitted by the narrow linewidth laser with strong coherence
into pulsed light in this system. The pulsed light continuously
generates coherent back-Rayleigh scattering light modulated by
external vibration signals when propagating in the fiber. When the
fiber is in a stable state, the variation law of Rayleigh scattering
intensity is basically unchanged. But when a certain section of the
fiber vibrates, the refractive index and length of the corresponding
position will change, leading to a change in the phase of the
scattered light from the point of scattering. The change of the
relative phase relation of the scattered light will lead to the
fluctuation of the intensity of the back-Rayleigh scattered light
under the action of light interference, and the change frequency is
highly related to the external vibration frequency. Therefore, the
vibration information can be obtained by calculating the intensity
change of the scattered light, and the optical power can be obtained
by the photodetector to detect sensing signals of DVS.

The DTS system is based on the Raman scattering and ¢-OTDR
principles. The properties of Raman scattering are used to measure
ambient temperature. After Raman scattering, the incident light
can produce two different frequencies of light. The frequency
of Stokes light is lower than incident light and its intensity is
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FIGURE 1
Typical structure of optical fiber sensing system.

independent of temperature, while anti-Stokes light possesses a
greater frequency compared to incident light and its intensity is
affected by temperature. Therefore, the temperature of the region
can be obtained by measuring the intensity proportion of Stokes
light vs. anti-Stokes light. By using OTDR technology, different
temperature change points can be located according to the time
difference between the incident light and the backward Raman
scattering light and the transmission rate of light in the fiber.

2.2 Convolutional neural networks

The Artificial Neural Network (ANN) serves as a crucial
cornerstone within artificial intelligence and machine learning,
mirroring the functionality of biological neural networks. To
simulate the role of neurons and synapses in biological neural
networks, ANN is composed of a large number of nodes, and these
nodes transfer information through connections. Each connection
has a weight that indicates the strength of the signal transmission.
The main goal of ANN is to solve complex problems through
learning and training, such as image recognition, object detection,
pattern recognition, text classification and so on.

The Convolutional Neural Network (CNN), a prominent
deep learning architecture, has emerged as the predominant
artificial neural network for leakage monitoring applications due
to its hierarchical feature extraction capability through successive
convolutional, activation, pooling, and fully-connected layers (Le
Cun et al., 1989; Gu et al., 2018).

The convolutional layer employs trainable kernels that
convolve with input data for hierarchical feature extraction. The
filters slide over the input, calculating the dot product between their
weights and local areas of the input, resulting in a feature map
containing different aspects of the data. The activation function
typically follows each convolutional operation. By using the
activation function, nonlinear operations can be introduced into
the network model, so as to learn more complex features. Pooling
layers perform dimensionality reduction via down-sampling while
preserving salient features, thereby enhancing computational
efficiency, preventing overfitting, and improving model robustness
and generalization. The network architecture terminates with fully
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connected layers that leverage the extracted feature representations
to execute final classification or regression operations.

Because CNN is able to automatically extract and learn features
from inputs, this makes it well suited for applications that require
high accuracy and robustness, including pipeline leak detection,
where the presence or absence of leaks can be discovered by
extracting features and patterns in sensor data.

2.3 Residual network

While conventional deep convolutional neural networks
through
sequential stacking of convolutional and activation layers,

theoretically achieve enhanced feature extraction
practical implementations often encounter optimization challenges
including gradient vanishing and explosion phenomena as network
depth increases. As the networks advance to a fairly deep layers,
model training becomes more difficult. The phenomenon of
gradient disappearance means that during the backpropagation
of gradient information, the gradient gradually becomes smaller,
resulting in the weight update of the earlier layer becomes very
slow, which may cause the network convergence speed to slow
down, and even the training failure. To solve these problems,
researchers have proposed the residual network (ResNet). Based
on the original CNN, the concepts of residual block and skip
connection are introduced, in which residual block is the basic
building block and core architecture of ResNet. K. He believes
that the core idea of the residual network is to directly transfer
information from the previous layer to the subsequent layer
through skip connection (He et al., 2016). Therefore, the input is
added directly to the output through the proposed skip connection,
so that the gradient can be propagated more easily through the
network. The residual block consists of the mapping part and the
residual part, and the mathematical expression is as follows:

X141 = h (x)) + F (x, W) (1)

Where, h(x;) represents the mapping part, which is used
to raise or decrease dimension, usually in the form of direct
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FIGURE 2
Structure of residual block. (a) Structure diagram of residual block;
(b) Specific structure of residual block.

mapping or 1x1 convolution operation, and F (x;, W;) represents
the residual part.

The structure of the residuals block is shown in Figure 2a.
After the introduction of jump joins, the residual function can be
expressed as F (x) = f (x) —x, and when F (x) = 0, an identity map
f (x) = x is formed. When the neural network layer is an identity
mapping, the residual function to be learned is 0, which reduces the
difficulty of model learning, and the identity mapping also alleviates
the problem of model degradation.

The residual architecture facilitates direct feature propagation
from input to weight layer outputs through skip connections,
effectively mitigating signal attenuation in deep networks. This
structural design not only alleviates gradient vanishing during
backpropagation—thereby preventing model degradation—but
also reduces parametric complexity while enabling effective
training of deep neural architectures. As illustrated in Figure 2b,
conventional residual blocks employ this mechanism to achieve
substantial performance improvements through optimized
information flow and gradient propagation pathways.

In the actual network construction, by stacking multiple
residual blocks, the network can train the deep structure more

easily, thus improving the performance of the model.

3 Proposed method

The proposed methodology’s architectural overview is
illustrated in Figure 3.

With the rapid development of deep learning, CNN, RNN,
LSTM, Transformer, and other models have emerged one after
another. Each model excels at specific tasks with its unique
structure and design principles, however, choosing the right neural
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network model remains a challenge when faced with different
application scenarios. The selection of neural network architecture
should be determined based on task requirements, input-output
data characteristics, and empirical training performance. The
appropriate model structure and parameters often have good
accuracy and generalization. The input data of this study are
the vibration signal and temperature signal of the pipeline with
temporal and spatial characteristics. The integrated analysis of
these dual-signal characteristics enables simultaneous pipeline
leakage detection and localization, constituting a dual-task learning
framework classification and regression. Therefore, we may need to
choose a more in-depth and complex model. A residual network is
proposed to establish a pipeline leakage monitoring model.

3.1 Experimental platform construction
(Findings for RQ1)

To ensure model generalization and prevent overfitting,
substantial training datasets are essential for machine learning
algorithms. But the fiber optic system in the actual pipeline
has few signals in this study. Thus, it is necessary to build an
experiment platform with DTS and DVS systems on the pipeline
to simulate the operating state (normal operation and leakage
state) of the actual pipeline. The DTS and DVS systems are
used to collect sufficient temperature and vibration signals of the
pipeline under normal operation and leakage state, and fuse these
two types of signals in the machine learning model, carry out
feature extraction, and complete the classification and regression
tasks to obtain the pipeline operation state. The experimental test
bench enables controlled leakage simulations to generate extensive
datasets, ensuring sufficient training samples for neural network
models while minimizing statistical uncertainties.

The DTS and DVS used in this experimental platform are
based on an Advantech as their mainboards. The finished product
is manufactured by Herch Opto Electronic Technology Co., Ltd.
This research employs dual distributed fiber optic sensing systems:
a Raman scattering-based temperature monitoring system and
a Rayleigh scattering-based vibration detection system, with the
experimental setup illustrated in Figure 4.

The DTS system adopts the temperature calibration algorithm,
the steps of which are shown in Figure 5. This algorithm can
reduce the influence of light scattering and transmission loss,
thereby improving the accuracy of this DTS system. The technical
specifications of DVS and DTS are respectively shown in Tables 1, 2.

The experimental setup consists of a 20-meter-long steel
pipeline with 60mm diameter (Figure 6), featuring multiple
artificially created leakage orifices of 2mm and 3mm diameters
sealed by threaded fasteners along the pipe wall at varying intervals.
By changing the diameter and spacing of leakage holes, the
influence of pipeline leakage on the monitoring results can be
reduced, and the resolution of leakage location of the model can
be easily determined. The distributed temperature fiber and the
vibration fiber are fixed to the pipeline through cable ties. A water
pump is connected to the inlet of the pipeline, and a valve and
pressure gauge are installed at the outlet. The water flow pressure
in the pipe can be adjusted through the valve to the maximum of
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FIGURE 3
The research frame diagram.

FIGURE 4
Physical demonstration of distributed optical fiber system.
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TABLE 1 Technical specifications of DVS system.

Parameters Specification

Model number HQ-DVS-0010
StOkeS curve Working wavelength 1,550 nm
Monitoring distance 1-10 km
Spatial resolution +5m
Frequency range 0.1-2kHz
Calculate effective waveform Sampling frequency 400 times/min
Response time <2s

TABLE 2 Technical specifications of DTS system.

Parameters Specification

'

Wear and tear correction

'

Temperature calibration

FIGURE 5
Distributed optical fiber temperature calibration algorithm.

1MPa. During the experiment, the non-leakage state of the pipeline
was simulated by sealing the nut at the leak hole, and the leakage
of different diameters could be simulated by unscrewing the nut
of the leak hole. In addition, in order to enable the model to
monitor multiple leaks, a series of experiments with two sets of leak
holes were also conducted. Taking into account the temperature
variation, the duration of each set of experiments was 120 s.

Although the sampling frequency of distributed fiber is
1KHz, due to the need for filtering and preprocessing of optical
fiber signals, as well as temperature calibration of optical fiber
temperature signals, these operations lead to a decrease in the signal
output speed of the distributed optical fiber system. Finally, during
the experiment, the time length of vibration signal obtained from
the distributed fiber vibration system for each sample is 800, and
the time length of temperature signal read from the distributed fiber
temperature system is 54.

Frontiersin Big Data

Obtain characteristic waveform Model number HQ-DTS-0010
Monitoring distance 0-30 km
l Temperature measurement accuracy +1°C
Temperature measurement resolution 0.1°C
Scattering is eliminated using Spatial resolution tm
interpolation algorithm Sampling frequency 27 times/min
Response time 2s

Figure 7 shows the temperature signal and vibration signal of
a sampling time point read through the distributed fiber system.
The results show simultaneous temperature increase and vibration
amplification at the leak location. However, since leakage is a long-
time process, the introduction of time dimension enables the model
to extract more characteristic quantities of leakage signals and judge
the pipeline state more accurately. Interference events caused by
changes in temperature and vibration signals caused by human and
environmental factors can be better identified from the perspective
of data samples. Figure 8 presents the distribution characteristics
of different leakage holes along the pipeline length through two
dimensions of amplitude and temperature. Different color layers
correspond to different combinations of leakage holes (such as
single-hole leakage, multiple-hole simultaneous leakage), and can
be used to analyze the influence patterns of leakage on the vibration
and temperature field of the pipeline. In the vibration amplitude
distribution under different leakage hole conditions, the higher
the peak value, the stronger the vibration caused by the leakage
at that position. The temperature change triggered by the leakage
will lead to an abnormal increase in local temperature. For multi-
pore leakage, the range and intensity of amplitude and temperature
enhancement can be increased.

As ROl stated, this study collected a total of 3,530 sets
of usable signal samples. Table 3 lists the number of signal
samples and related parameters. This study collected 1,813 sets
of normal operating data and 1,717 sets of leakage operation
data. Under the leakage condition, two different diameters of
leakage holes were set up, and each leakage hole was equipped
with a mechanical nut. The mechanical nut could adjust the size
of the leakage volume, and different leakage situations ranging

frontiersin.org
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Physical diagram of the experimental platform for monitoring pipeline leakage using distributed optical fiber sensing system.
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TABLE 3 The relevant parameters of the collected signal samples.

Signal samples Number

10.3389/fdata.2025.1667284

TABLE 4 Distribution of the dataset.

Data set Number

Normal 1,813 Training set 1,994
Leakage 1,717 Validation set 768

Time 120's Test set 768

Length of vibration signal 800 Total 3,530
Length of temperature signal 54

from slight leakage to heavy leakage were collected. This enables
a more comprehensive assessment of the model’s identification
and classification capabilities. Additionally, datasets of single-hole
leakage and simultaneous multi-hole leakage were also collected.
By locating the leakage holes, the positioning accuracy of the model
can be further tested.

3.2 Construction of neural network model

The experimental dataset was constructed by extracting all
3,530 synchronized temperature and vibration signal pairs from the
distributed optical fiber system’s TDMS output files, which were
subsequently normalized to consistent dimensions and integrated
into a unified JSON format suitable for deep neural network
training. Following standard machine learning protocols, the
compiled dataset underwent randomized partitioning into three
distinct subsets (training, validation, and test sets) as detailed in
Table 4, where the training set facilitates model parameter learning,
the validation set enables hyperparameter optimization and interim
performance assessment, while the held-out test set provides an
unbiased evaluation of the model’s generalization capability on
previously unseen data. This systematic data preparation and
partitioning approach ensures rigorous model development and
reliable performance estimation.

In this study, the model construction is based on the Pytorch
platform. Due to the temporal and spatial characteristics of fiber
optic data, the ResNet model architecture consisting of two-
dimensional convolution layer is used to extract the features of
the data and complete the task of pipeline status identification
and location.

Because the signals collected in this study include vibration
signal and temperature signal, and the sampling frequency and
sampling point interval between the two signals are different,
the decision-level fusion is selected for the fusion level when
constructing the residual block of the residual neural network, so
as to analyze and monitor the two groups of signals in real time and
reduce the extra computing resources as much as possible. Finally,
the specific model structure is shown in Figure 9.

Numerous hyperparameters and algorithmic components are
fine-tuned throughout model architecture design and training to
enhance predictive performance.

Batch normalization layers can not only accelerate the training
process, but also reduce overfitting by adjusting the inputs for each
layer to keep the mean stays close to 0 and the variance stays close
to 1.
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In addition, regularization can also control model complexity
to prevent overfitting. Both L1 and L2 regularization operate
by incorporating parameter magnitude (either absolute values or
squared terms) into the loss function as penalty terms, effectively
constraining model weights to control complexity. In this study, the
L2 regularization method, also known as weight decay, was chosen,
and the penalty term adopted in this method is the square of the
parameter, which is able to make the weight of the model gradually
approach 0, as shown in Equation 2.

JO) =L©O) +a ) w’ )

i=1

Where, J(0) is the loss function with regularization, L(6) is the
original loss function, « is the regularization intensity, and w; is the
weight of the model.

The loss function plays a critical role in neural networks by
measuring the discrepancy between model predictions and actual
target values. Selecting an appropriate loss function significantly
enhances both training effectiveness and model performance. For
classification problems, cross-entropy loss is widely adopted due
to its effectiveness in quantifying inter-class prediction errors and
facilitating efficient parameter optimization. The cross-entropy loss
is defined as follows:

k
L(y.p) == _ yilog(p) (3)

Where, L(y, p) represents the cross-entropy loss, and p; is the
probability that the model prediction output belongs to category i.

The evaluation metrics of the regression model are different
from those of classification tasks. Regression analysis deals with
continuous numerical predictions, and traditional accuracy metrics
are not applicable in this case. The standard evaluation criteria
for regression performance include mean squared error (MSE),
mean absolute error (MAE), and coefficient of determination (R?).
In this study, MAE is adopted as the main loss function, which
calculates the arithmetic mean of the absolute differences between
the predicted values and the actual values. Its mathematical formula
is as follows:

1 n
MAE = ;Z!yi—%l (4)
i=1

The choice of optimization method significantly impacts

parameter adjustment efficiency and convergence speed
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FIGURE 9
Specific structure of fusion model.
during model training. Among various optimizers like momentum-based  gradient  descent  with = RMSprop’s

stochastic gradient descent (SGD), RMSprop, and AdaGrad,
this research employs the Adam algorithm. Adam integrates
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(momentum term) and second-order (RMSprop term) gradient
moment estimations.

The parameter update method of Adam algorithm is as follows
(Kingma and Ba, 2014; Zaheer et al., 2018):

(1) Calculate the first moment estimation n1; and second moment
estimation (RMSprop term) v; corresponding to gradient g;.

©)
(6)

=pr-m1+A—-pB1)-8g
=fr- i1+ (=B g

(2) Correct the deviation between the first and second

moment estimates:

My = ——— (7)
1- 8
N Vi
V= — (®)
1-85
(3) Update parameters
Orr1 = 0 — )

n ~
—
Virte

Where, 0 is the model parameter, 7 is the learning rate, and € is
a constant that usually takes the value of 1e—8.

4 Results and discussion
4.1 Model results

Model optimization is achieved through iterative training.
The learning process essentially minimizes the objective function
through an iterative process. Training begins with parameter
initialization, followed by alternating forward and backward
calculation cycles. In the forward calculation process, the input
data propagates through the network layers to generate prediction
results. Subsequently, the backward calculation computes the
gradients of the loss with respect to all parameters, enabling
the adjustment of weights, gradually reducing errors and
improving model performance. The complete training algorithm is
as follows.

(1) Initialize weights and biases. The weights and biases of nodes
in the model need to be initialized before the training begins.

(2) Forward propagation. Forward calculations are performed

based on the model structure and parameters to obtain the

output of the model.

=g (@@ + by) (10)

Where, a; denotes the output of the Iy, layer, w; refers to
the weight of the Iy, layer, b; refers to the bias of the Iy, layer,
and g () is the activation function. The common activation
functions are Tanh, Sigmod, and ReLu functions.
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(3) Calculate the loss. The loss function is calculated based on the
forward calculation result of the model and the actual label.

%Zm (yo) ym)

Where, m represents the number of samples, L (-) refers to

J (11)

the loss function, y® and @ represents the actual label and
predicted result of the iy, sample, respectively.

(4) Backward propagation. The gradient of the model parameters
can be calculated from the loss function through the
following formulas.

dwy m i=1 dwy

aJ m L (y®, y(l))

R 13
by Z b, (13)

(5) Parameter update. The optimization algorithm is adopted to
update the model parameters, so that the parameters are
optimized along the direction of decreasing the loss function.

During model training, steps (2)-(5) are executed cyclically
until either loss convergence or predefined termination conditions
are satisfied. This iterative optimization process systematically
improves the model’s ability to learn from training data.

This study evaluated various neural network architectures, with
their respective accuracies presented in Table 5. As can be seen
from Table 5, when the fused signal is the dataset, the classification
accuracy of ResNet is the highest. When the single-source signal is
the dataset, the classification accuracy of the same model with the
fused signal is slightly higher. It can be concluded that the input
of the fused signal into the ResNet model is the optimal model
for this study. The comparative analysis reveals that the ResNet-
based fusion model achieved superior performance, reaching a peak
classification accuracy of 92.16%.

Model optimization effectiveness and computational efficiency
are highly dependent on the selected training algorithm. To
select the most appropriate optimizer, this study compared the
performance of different optimizers during the training of the same
model for 100 epochs, as shown in Figure 10.

Comparative results in Table 6 demonstrate that the Adam
optimizer achieves superior performance in both accuracy and

TABLE 5 Training results of different model structures.

Model Signal Accuracy
RBF-SVM Fusion signal 82.44%
Random Forest Fusion signal 85.04%
2DCNN Fusion signal 89.36%
IDCNN+LSTM Fusion signal 91.12%
ResNet Temperature signal 78.24%
Vibration signal 84.61%
Fusion signal 92.16%
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FIGURE 10
Graph of training loss for each optimizer.

Epochs

TABLE 6 The accuracy and training time of each optimization algorithm.

Optimize algorithm Accuracy Training time
Adam 92.16% 22,858.4 5
AdaGrad 90.27% 29,545.1's
AdaDelta 91.45% 23,6789
SGD 90.42% 32,541.8's
RMSProp 91.22% 27,154.2 s

computational efficiency for the ResNet fusion model among
various optimization algorithms tested.

Through validation set evaluation, the fusion model’s optimal
architecture and parameters were determined, with results
presented in Table 7.

The performance of the optimized model is illustrated in
Figure 11a, which displays both classification accuracy and loss for
leak type identification, while Figure 11b depicts the regression loss
results. In the classification task, as the number of training rounds
increases, the classification loss drops rapidly, then fluctuates
slightly at a lower level, the prediction error keeps decreasing, and
eventually stabilizes, indicating that the model gradually converges
in the classification task. The classification accuracy rose rapidly
in the early stage of training and then gradually stabilized. As the
number of training rounds increases, the regression loss drops
rapidly and then fluctuates within a lower range. This indicates
that the model’s prediction accuracy in the regression task keeps
improving, gradually optimizing from the initial large deviation,
and stabilizing later, suggesting that the model also converges in
the regression task.

The regression loss stabilizes near 1 after sufficient training
iterations. Given that MAE measures the absolute difference
between predictions and true values, this result suggests a mean
positioning error of 1 meter, demonstrating the model’s capability
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TABLE 7 The fusion model structure and parameters.

Model Value

Structure Conv2d 1x800x86/1x54x43
Residual block1 16x800x86/16x54x43
Residual block2 32x400x43/32%27 %21
Residual block3 64x200%22/64x13x10
AvgPool2d 64x200%22/64x13x10
FC 64
Classification FC 2
Regression FC 5

Parameter Ir 0.001
Epoch 100
Batchsize 64
Dropout 0.5

for meter-level leak detection. Implementing a helical fiber
arrangement could enhance this accuracy even more.

We conducted a statistical test on the classification accuracy
using the McNemar test. We sorted MAE results from 5-fold cross-
validation and took the 2.5% and 97.5% percentiles as the 95%
confidence interval. The specific results are as follows.

2
2_(-9

= —— =10.0037
b+c

(14)

Based on the experimental data and through the McNemar
test, the p-value is less than 0.05, indicating a significant difference
between the two models. The MAE confidence interval of Resnet is
[0.9107, 0.9526], while that of IDCNN -+ LSTM is [1.0024, 1.1195].
Since the intervals do not overlap, it can be directly concluded that
Resnet has better performance.
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4.2 Dual-signal feature extraction and
fusion (Findings for RQ2)

The single temperature signal has low sensitivity to minor leaks
and is easily affected by environmental temperature variations,
leading to incorrect judgments; the single vibration signal is
susceptible to pipeline operation noise and difficult to distinguish
between leakage vibrations and normal operating vibrations.
Moreover, both single signal methods cannot fully extract the
spatiotemporal correlation features of the leakage event, resulting
in low accuracy of leakage identification. As RO2 pointed out, the
core of integrating temperature signals with vibration signals lies
in making these signals complement each other and work together
to optimize. Through feature collaboration, leakage conditions can
be identified, errors in individual signals can be avoided, and the
integrity of feature extraction can be fundamentally improved.

In this study, residual networks were used to extract features
from the original vibration signals and temperature signals
separately, effectively learning and extracting the important
features of the signals. The output of the residual network can yield
two types of features: classification features and regression features.
The classification features are used to classify the input signals, that
is, to determine whether the signal belongs to the leakage category;
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while the regression features are used to locate the abnormal
leakage points in the input signal, that is, to find the location where
the leakage occurs. Through the decision-level fusion of the model,
the classification features and regression features are concatenated
to form a fused feature vector. The feature vector is classified
through the fully connected layer to determine the state category of
the signal. The fused feature vector is regressed through the linear
layer to predict the final regression value, which is used for signal
positioning. Through this deep learning model, this study can
achieve intelligent state classification and positioning of the input
signals without manual feature selection. However, the regression
task usually does not use accuracy as an evaluation metric because
the regression problem is the prediction of continuous numerical
values and there is no concept of “correct” or “wrong” prediction.
Therefore, the metric used to evaluate the performance of the
regression model in this study is the mean absolute error. The
output result of the regression task is the distance from the leakage
location to the starting point of the pipeline. Figure 12 is the
fitting graph for pipeline leakage location, which enables a clear
visualization of the data distribution and the deviation between
the model prediction and the actual values. In this study, the R?
value is 0.9857, indicating that the model positioning accuracy is
quite good.
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The positioning accuracy of the model.

4.3 Potential applications

The above model provides a foundation for the construction
of the monitoring system, enabling real-time monitoring and
early warning of pipeline leaks. Moreover, by further integrating
blockchain technology (Ressi et al., 2024), it can achieve automated
alerts and maintenance workflows, avoiding the aggravation of
pipeline corrosion, medium loss and environmental pollution
caused by leakage, extending the effective lifespan of the pipeline,
and also predicting potential pipeline failures (Doshmanziari
et al., 2020), achieving the upgrade from “repair after failure” to
“prevention before failure.” Through the closed loop of “physical
entity—digital model—data interaction—decision feedback,” the
full state digital mapping of the physical pipeline is realized
(Grieves, 2005; Zhou et al., 2024; Huang et al., 2023).

5 Conclusions and prospect (Findings
for RQ3)

In this study, temperature and vibration signals of distributed
fiber optic systems under normal and leakage conditions were
collected by the pipeline leakage experiment platform. In order
to obtain more characteristic information about the pipeline
operation time, as RO3 stated, this study proposes a residual
network structure that integrates two parameters. This structure
can simultaneously input the corresponding original optical
fiber temperature and vibration signals. The two-dimensional
convolution layer in the network model can extract and identify
the temporal and spatial features of the signal, reduce manual
participation, and realize the intelligent leakage monitoring of the
oil pipeline. The training result shows that the ResNet model
based on Adam optimization algorithm can achieve 92.16% leak
identification accuracy, and the leak location accuracy reaches 1
meter. Based on this model, the comprehensive and real-time
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leakage identification and early warning of oil pipelines can be
realized timely and accurately.

During our data collection process, due to the limitations
of the experimental platform, it was not possible to simulate
more complex service environments. In the future, we will further
enrich our dataset in terms of pipeline length, pipe diameter,
environmental interference, and the comparison of signals in
straight and curved pipes. The research on vibration wave
feature recognition methods will further expand the application
boundaries and improve the structure and processing logic of
the model, thereby enhancing the accuracy and reliability of the
leakage assessment mechanism. In addition, because the viscosity
of crude oil is much higher than that of water, it may cause
significant differences in the flow velocity distribution and leakage
volume within the pipeline. The experiment collected data without
considering soil and weather conditions. The high moisture
content of clay would enhance the attenuation of electromagnetic
signals, resulting in errors in pipeline leakage location. Heavy rain
weather would cause a sudden increase in soil moisture content,
leading to baseline drift of the sensors. Low temperatures would
freeze the outer walls of the pipelines, affecting the accuracy of
temperature sensor data. The existing model training data covers
a relatively short pipeline length, and an increase in pipeline
length may lead to signal transmission attenuation. Verifying the
generalization performance of the model in different scenarios of
fluids, soil, weather, and pipeline lengths is necessary. Determining
the applicable boundaries of the model can provide a basis for
subsequent optimization. The specific verification plan can be
found in Appendix A.

In the next 5 to 10 vyears, these three elements will
form a deep synergy: Large-scale deployment will rely on
IoT/micro-edge ubiquitous connections to achieve full-scenario
coverage. The environmental robustness will break through the
limitations of scenarios through transfer learning and edge adaptive
algorithms, ultimately building an intelligent monitoring system
of “deployment as a service, perception as decision-making, and
environment as adaptation,” and achieving a paradigm shift from
“passive response” to “active warning” in fields such as energy
and municipal services (see Tables BI-B3). Furthermore, in order
to trade-offs in model complexity and real-time application,
we can structurally prune and quantize the model to make it
more lightweight, reducing computational costs while maintaining
accuracy. For embedded hardware commonly used in industry,
the convolution operations in the residual network can be
converted into pipelined calculations that can be processed in
parallel by FPGA, or the CUDA cores of GPU can be utilized to
accelerate spatiotemporal feature fusion. This enables the model
to improve inference speed on low-cost hardware and increase
the speed of real-time response for different types of events in
low-load scenarios.
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Appendix A. On-site verification plan

TABLE A1 Verification object and scenario design.

Verification
dimension

Fluid type

Scene type

Water, crude oil

Quantity/Scale

Two verification
pipelines each

Soil conditions

Clay (with moisture content of

Each consisting of 3

(medium), 3 kilometers (long)

25%) and sandy soil verification points
Weather Sunny weather, light rain Each lasts for 3 days
conditions (< 20mm/h), heavy rain of verification

(> 50mm/h)
Pipeline length 1 kilometers (short), 2 kilometers One verification

pipeline each

10.3389/fdata.2025.1667284

TABLE B2 Internet of things/evolution path of edge technologies.

Long-term goals

(5—10 years)

Edge node

Current Mid-term

status goals (3-5
years)

With a single Integrated with

function lightweight AT

(such as data chips, supporting

collection) local inference

Possessing self-repairing
capability (automatically
switching to the backup
module in case of
hardware failure)

Internet of Wireless as a 5G slice dedicated | 6G ubiquitous
things supplement network coverage, | connectivity, supporting
network to wired transmission ultra-long-range edge
(LoRa) delay < 50ms collaboration up to 100
kilometers
Cloud-edge Periodic Real-time Self-evolutionary
collaboration | model update Federated collaboration (where
(monthly) Learning (Hourly edge nodes
Parameter autonomously initiate
Synchronization) model optimization

requests)

Appendix B. Structured outlook
(deployment, loT/edge,
environmental robustness)

TABLE B3 Prospects for environmental resilience.

TABLE B1 Stage-based deployment path.

Stage Objective Key task Time Environmental Current Breakthrough  Expected
dimension challenges technology outcome
Pilot Verify the Select 3 to 5 typical 1to 2 years
verification feasibility of the scenarios (oil pipeline + Extreme climate Heavy rain or For the pipe optical The optical
core scenario sandy soil), and complete intense heat fibers, a fiber signal
the model and hardware exposure double-layer sheath attenuation is
compatibility testing structure is controlled
adopted, and a within 0.2
Regional Formulate a Establish hardware 2 to 3 years real-time signal dB/km, and
promotion standardized installation guidelines and calibration the failure
deployment model parameter algorithm is rate is
plan adjustment manuals, and employed. reduced to
replicate them in the same below 0.1%
type of areas per year.
Cross- Covering Integrate the transfer 3 to 5 years Complex geology The signal Adaptive signal Reduction of
domain multiple learning module to achieve attenuation in enhancement positioning
scalability scenarios and rapid deployment across the clay zone algorithm (adjusts error
the entire chain scenarios for fluids, soils, leads to the sensor’s
link and lengths, and form an inaccurate transmission power
industry solution. positioning. dynamically
according to soil
resistivity)

Fluid diversity Interference of | Fluid feature The accuracy
crude oil alignment module rate of
impurities on based on transfer cross-fluid
model learning (real-time type
predictions correction of prediction

density / viscosity to | remains
mitigate the impact above 90%.
on the model)
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