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Application and comparison of
ARIMA, LSTM, and ARIMA-LSTM
models for predicting foodborne
diseases in Liaoning Province

Xiaoxiao Du, Haomiao Yu, Hao Zhang, Xiangyun Liu, Xinling Yu,
Tao Xie* and Wenli Diao*

Liaoning Provincial Center for Disease Control and Prevent, Shenyang, Liaoning, China

Objective: To compare the application of the ARIMA model, the Long Short-Term
Memory (LSTM) model and the ARIMA-LSTM model in forecasting foodborne
disease incidence.
Methods: Monthly case data of foodborne diseases in Liaoning Province from
January 2015 to December 2023 were used to construct ARIMA, LSTM, and
ARIMA-LSTM models. These three models were then applied to forecast the
monthly incidence of foodborne diseases in 2024, and their predictions were
compared with those of a baseline model. Model performance was evaluated
by comparing the predicted and observed values using root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE),
allowing identification of the optimal model. The best-performing model was
subsequently employed to predict the monthly incidence for 2025.
Results: The ARIMA-LSTM model was identified as the optimal model.
Specifically, the ARIMA (2,0,0) (0,1,1)12 model produced RMSE = 300.03, MAE
= 187.11, and MAPE = 16.38%, while the LSTM model yielded RMSE = 408.71,
MAE = 226.03, and MAPE = 17.21%. In contrast, the ARIMA-LSTM model
achieved RMSE = 0.44, MAE = 0.44, and MAPE = 0.08%, representing a dramatic
improvement over the baseline model (RMSE = 204.17, MAE = 146.75, MAPE =
15.62%), with reductions of 99.5%, 99.7%, and 99.4% in RMSE, MAE, and MAPE,
respectively. Based on the ARIMA–LSTM model, the predicted monthly cases of
foodborne diseases for 2025 are: 214.62 (Jan), 260.84 (Feb), 462.92 (Mar), 590.92
(Apr), 800.88 (May), 965.11 (Jun), 2410.36 (Jul), 2651.36 (Aug), 1711.15 (Sep),
941.22 (Oct), 628.21 (Nov), and 465.05 (Dec).
Conclusion: The ARIMA-LSTM model is considered the optimal model for
predicting foodborne disease incidence in Liaoning Province in 2025.
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1 Introduction

Foodborne diseases represent one of the most critical global public health challenges,
significantly impacting human health and quality of life (Ntshoe et al., 2021). According
to World Health Organization (WHO) data, millions of people worldwide fall ill or die
annually due to foodborne illnesses. In 2015, the WHO released its first global estimates of
foodborne disease burden, revealing that nearly 1 in 10 people globally suffer from illnesses
caused by contaminated food each year, resulting in 420,000 deaths and the loss of 33
million healthy life-years (DALYs) (Kirk et al., 2015).
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Foodborne diseases exhibit notable seasonal patterns (Yu
et al., 2024). Therefore, developing predictive models based on
historical incidence data can provide valuable support for the
prevention and control of foodborne diseases. The ARIMA model
is a commonly used method in infectious disease forecasting and
is particularly well-suited for seasonal data. However, foodborne
disease incidence is also influenced by factors such as geography,
climate, and socioeconomic conditions, leading to nonlinear trends
(Siguo et al., 2022; Pijnacker et al., 2024). The LSTM model, with
its capacity for nonlinear fitting and its ability to capture temporal
patterns in data, may improve forecasting accuracy (Gao et al.,
2025). The ARIMA model performs well in capturing linear trends
and seasonality (Balawi and Tenekeci, 2024); however, it assumes
that the data-generating process is primarily linear, making
it difficult to model complex nonlinear dynamics (Sattarzadeh
et al., 2025). In recent years, Long Short-Term Memory (LSTM)
networks have demonstrated strong capabilities in time series
forecasting, particularly in handling long-term dependencies and
nonlinear features (Mahmoudi, 2025). Nevertheless, using LSTM
alone also has limitations, such as requiring a relatively large
amount of training data and being less efficient in modeling
linear components (Lim and Zohren, 2021). To overcome the
shortcomings of individual models, researchers have proposed the
ARIMA–LSTM hybrid model (Ray et al., 2023).

In this study, we constructed ARIMA, LSTM, and ARIMA-
LSTM hybrid models using foodborne disease data from 2015 to
2023. These three models were employed to predict the monthly
number of foodborne disease cases in 2024, and the predictions
were compared with the actual reported cases as well as with a
baseline model to identify the most accurate model. Finally, the
optimal model was applied to forecast the number of cases in 2025,
providing a scientific basis for the development of prevention and
control strategies for foodborne diseases in Liaoning Province.

2 Materials and methods

2.1 Data sources

Monthly case counts of foodborne diseases from January 2015
to December 2024 were extracted from the Liaoning Provincial
Foodborne Disease Risk Surveillance System. The dataset from
January 2015 to December 2023 served as the training set, while the
data from 2024 were used as the validation set for model evaluation.

2.2 Research methods

2.2.1 ARIMA model
The construction process of the ARIMA model is shown in

Figure 1.
The autoregressive integrated moving average (ARIMA) model

is a linear, univariate time series model that combines three
components: autoregression (AR), differencing (I), and moving
average (MA) (Wagner and Cleland, 2023). Its general form can be
expressed as:

ARIMA(p, d, q) : ϕ(B)(1 − B)dyt = θ(B)εt

FIGURE 1

Flowchart of ARIMA model construction.

Where yt denotes the observed value at time t, B is the
backward shift operator (Byt = yt−1), and d represents the
order of differencing required to achieve stationarity. The
autoregressive component is defined as ϕ(B)=1–ϕ1B–ϕ2...B2-
...–ϕpBp, while the moving average component is defined
as θ(B)=1+θ1B+θ2B2+...+θqBq. The error term εt represents
white noise.

In practice, the differencing operator (1–B)d is applied to
remove non-stationarity in the series. The AR part captures the
dependence of the current observation on its past values, whereas
the MA part accounts for the dependency on past forecast errors.
By integrating these three components, ARIMA provides a flexible
yet interpretable framework for modeling and forecasting time
series data.

Considering the seasonal characteristics of foodborne diseases,
the model structure was specified as ARIMA (p,d,q) (P, D,
Q)s, where:

• p and q represent the orders of non-seasonal autoregression
and moving average, respectively;

• d denotes the degree of non-seasonal differencing;
• P and Q indicate the seasonal autoregressive and moving

average orders;
• D stands for seasonal differencing;
• s corresponds to the seasonal period length.
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2.2.1.1 Series stationarization
Prior to modeling, the time series must be tested for

stationarity using the ADF test. For non-stationary series,
appropriate transformations (e.g., Box-Cox transformations,
seasonal differencing) are applied until stationarity is confirmed
via repeated testing.

2.2.1.2 Model identification
The autocorrelation function (ACF) and partial autocorrelation

function (PACF) plots are examined to determine the preliminary
model structure. Based on the ACF and PACF patterns, initial
parameters are identified (typically with orders not exceeding
2) (Peng, 2014). The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are then computed, and
the model with the lowest AIC and BIC values is selected as the
optimal model.

2.2.1.3 Model diagnostics
Residual diagnostics were conducted using the Ljung-Box test

for white noise. The non-significant test result (P > 0.05) confirms
the residuals are uncorrelated, validating the model’s suitability
for predictions.

2.2.1.4 Model forecasting
The final selected optimal model was employed for prediction.

The goodness-of-fit between the actual and predicted values across
the entire series was evaluated using the RMSE, MAE, MAPE.

2.2.2 LSTM model
The Long Short-Term Memory (LSTM) model is a specialized

type of recurrent neural network (RNN) that incorporates memory
cells along with three gating mechanisms—namely, the input gate,
forget gate, and output gate (Aldrich et al., 2022). These gates
regulate the flow of information and enable the model to selectively
retain or discard information, thereby effectively addressing
the issues of vanishing and exploding gradients commonly
encountered in modeling long time series with traditional RNNs
(Malashin et al., 2024).

Prior to model construction, all time series data were
normalized to the range [0, 1] using the Min–Max scaling method
to ensure numerical stability during training. Input sequences were
generated with a fixed time window, where the values from the
preceding N time steps were used to predict the next observation.
The dataset was divided into a training set and a validation set to
assess model performance (Figure 2).

The long short-term memory (LSTM) network was
implemented with the following architecture and configurations:

Hidden units: determining the model’s capacity to capture
temporal dependencies.

Number of LSTM layers: to balance model complexity and
computational efficiency.

Dropout rate: a dropout rate of 0.2 was applied to
mitigate overfitting.

Activation functions: tanh and sigmoid, as defined by the
standard LSTM architecture.

Optimizer: Adam with a learning rate of 0.001.

FIGURE 2

Flowchart of LSTM model development.

Loss function: mean squared error (MSE), suitable for
continuous-valued predictions.

Batch size: defined the number of samples.
Epochs: with an early stopping criterion to prevent overfitting,

and early stopping strategy was employed based on the validation
loss with a patience of 10 epochs.

2.2.3 ARIMA-LSTM model
The following is a simplified flowchart for constructing the

ARIMA–LSTM model (Figure 3).
First, the collected data were organized and preprocessed. An

ARIMA model was then constructed using the processed data
to generate forecasts, which were compared with the observed
values to obtain the residuals. The residuals were subsequently
modeled with an LSTM network to capture their nonlinear
characteristics, producing forecasts of the residual component.
Finally, the predictions from the ARIMA model and the LSTM
residual forecasts were combined to obtain the predictions of the
hybrid model.

2.2.4 Baseline model
Since foodborne diseases exhibit seasonality, the Seasonal Naïve

method can be used as a baseline model. This approach is a simple
yet commonly applied time series forecasting method for data
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FIGURE 3

Flowchart of ARIMA–LSTM model construction.

with seasonal patterns, where the forecast value is set equal to the
observation from the same point in the previous season.

ŷt = yt−s
Here, s is the length of the seasonal period, ŷt is the forecasted

value, yt−s and is the observed value from the same month in the
previous year or the same quarter in the previous season.

2.2.5 Model evaluation metrics
In this study, model performance in terms of fitting and

forecasting was assessed using RMSE, MAE, MAPE value of
less than 10% indicates excellent predictive performance, values
between 10% and 20% indicate good performance, and values
below 40% are considered acceptable.

2.2.6 Statistical methods
Data were organized using Excel 2019. The ARIMA model was

constructed using R 4.4.2 software, while the LSTM model and
the ARIMA-LSTM model were developed using Python 3.13. A
significance level of α = 0.05 was adopted, and P-values less than
0.05 were considered statistically significant.

FIGURE 4

The epidemiological trend of reported foodborne disease cases in
Liaoning Province, 2015–2023.

3 Results

3.1 ARIMA model construction

3.1.1 Time series stationarity
The stationarity of the raw time series data (Figure 4) was

examined through the Augmented Dickey-Fuller test (ADF). A
statistically significant p-value (P = 0.01 < 0.05) suggested the
rejection of the null hypothesis, demonstrating that the data
followed a stationary time series pattern; therefore, d = 0.

3.1.2 Model identification and order
determination

Seasonality was removed by applying seasonal differencing
identified through nsdiffs() function, resulting in D = 1. Following
the principle of model parsimony and practical experience, the
orders of p, q, P, and Q were generally limited to no more than
2. Examination of the ACF and PACF plots (Figure 5), together
with parameter optimization using the auto.arima function from
the R forecast package and consideration of AIC/BIC minimization
criteria, led to the selection of ARIMA (2,0,0) (0,1,1)12 as the
optimal model (AICc = 1,548.26).

3.1.3 Model diagnostics
The Box-Ljung test for white noise produced a p-value of 0.9696

(P > 0.05), confirming that the model residuals exhibit white
noise behavior, suggesting all extractable information from the time
series has been captured. The autocorrelation (ACF) and partial
autocorrelation (PACF) plots of the residual series (Figure 6) show
that nearly all residuals fall within the 95% confidence intervals,
demonstrating the model’s adequacy for forecasting.

3.1.4 Model fitting
The monthly incidence of foodborne diseases from 2015 to

2023 was fitted using a seasonal ARIMA (2,0,0) (0,1,1)12 model.
The fitted values exhibited strong agreement with the observed
data trends (Figure 7). The model was then applied to forecast case
numbers for January to December 2024 (Table 1).

Frontiers in Big Data 04 frontiersin.org

https://doi.org/10.3389/fdata.2025.1666962
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Du et al. 10.3389/fdata.2025.1666962

FIGURE 5

The ACF and PACF plots after first-order seasonal differencing. ACF, autocorrelation function; PACF, partial autocorrelation function.

FIGURE 6

ACF and PACF plots of the residual series from the fitted ARIMA (2,0,0) (0,1,1)12 model. ACF, autocorrelation function; PACF, partial autocorrelation
function.

FIGURE 7

The epidemiological trends of observed vs. fitted data for foodborne
diseases (2015-2023). The shaded zone represents the 95%
confidence interval of the fitted values.

3.2 LSTM model development

An LSTM model was constructed using data from 2015 to 2023
as the training set and data from 2024 as the validation set. The
data were normalized to a range between 0 and 1 prior to model
construction. Given the seasonal characteristics of the dataset, a
time step of 12 was selected as optimal. For a comprehensive
consideration of avoiding overfitting, maintaining computational
efficiency, and ensuring interpretability, the LSTM model consists
of two layers: an LSTM layer and a Dense layer, and each with
50 hidden units. The Adam optimizer was employed, with mean
squared error (MSE) used as the loss function. The Adam optimizer
was selected due to its adaptive learning rate mechanism, fast
convergence, and robustness, which make it a widely adopted and
effective choice for time series prediction tasks. The batch size was
set to 12. The model was trained for 200 epochs. After training, both
the fitted and predicted values were denormalized (Figure 8). Based
on this model, monthly case numbers for 2024 were forecasted and
compared with the observed values (Table 2).
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3.3 ARIMA-LSTM model construction

Since the ARIMA forecasts had already been obtained, the
corresponding residuals were calculated and used to build an
LSTM model. Residuals from 2015 to 2023 were used for training,
and those from 2024 for validation. To reduce overfitting while
maintaining efficiency, the model included one LSTM layer and one
Dense layer, with 64 hidden units. A time step of 12 was selected
to account for the seasonal pattern in the residuals. The tanh
activation function, default in LSTM and suitable for nonlinear
time series, was applied, while the Adam optimizer was chosen for

TABLE 1 Comparison between predicted and observed monthly
incidence of foodborne diseases in 2024 (case).

Time Predicted
values

Actual
values

95% LCL 95% UCL

Jan 231.81 277 −1,217.18 1,680.80

Feb 274.95 182 −1,901.10 2,451.00

Mar 470.81 421 −2,061.32 3,002.94

Apr 594.76 593 −2,080.54 3,270.06

May 802.44 845 −1,919.01 3,523.89

Jun 965.57 1,281 −1,767.05 3,698.19

Jul 2,410.42 2,848 −323.88 5,144.72

Aug 2,651.36 3,484 −83.00 5,385.73

Sept 1,711.24 1,739 −1,023.16 4,445.64

Oct 841.42 1,108 −1,793.07 3,675.92

Nov 628.51 683 −2,106.06 3,363.08

Dec 465.42 544 −2,269.19 3,200.02

LCL, Lower confidence limit; UCL, Upper confidence limit.

its adaptive and efficient learning. Given the relatively small dataset
(120 observations), a batch size of 8 and 100 epochs were used. The
residual predictions were then combined with the ARIMA forecasts
to generate the final results, which showed close agreement with the
observed values (Figure 9). The specific forecasted values for 2024
are shown in Table 3.

3.4 Baseline model development

Because foodborne diseases exhibit seasonal periodicity, the
parameter was set to s = 12, and the baseline model forecasts (ŷt)for
2024 are equal to the actual values of 2023.

3.5 Comparison of forecasting
performance between the four models

The predicted values of the four models for 2024 were
compared with the actual observations, and model performance
was evaluated using RMSE, MAE, and MAPE (Figure 10). The
results showed that the ARIMA-LSTM hybrid model achieved the
best agreement with the observed data and had the lowest error
metrics (Table 4). Compared with the baseline model, RMSE, MAE,
and MAPE were reduced by 99.5%, 99.7%, and 99.4%, respectively.
Therefore, the ARIMA-LSTM model was identified as the optimal
predictive model in this study.

3.6 Forecasting with the optimal model

The ARIMA-LSTM model was employed to forecast the
monthly number of foodborne disease cases in Liaoning Province

FIGURE 8

Comparison of trends between fitted and actual values from 2015 to 2023, as well as the forecast for 2024. Blue line, True value; Orange line, Fitted
value; Green line, Predicted value.
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for the year 2025 (Table 5). And compared to the case numbers in
2024, a slight decline is observed.

4 Discussion

As one of the most critical global public health challenges,
foodborne diseases present extensive coverage, multifactorial
influences, and significant management difficulties (Deng et al.,
2021). To mitigate their occurrence, comprehensive control
measures targeting various influencing factors are essential, along

TABLE 2 Comparison between predicted and actual values for 2024
(case).

Time Predicted values Actual values

Jan 300.35 227

Feb 258.13 182

Mar 323.40 421

Apr 520.96 593

May 896.40 845

Jun 1,470.41 1,281

Jul 2,129.49 2,848

Aug 2,302.45 3,484

Sept 1,765.14 1,739

Oct 1,168.87 1,108

Nov 718.35 683

Dec 445.62 544

with timely prediction of disease trends to provide evidence-based
support for prevention strategies.

The ARIMA model, a classical approach in time series analysis,
has been widely applied to short-term forecasting of infectious
diseases. In recent years, its application has extended to predicting
foodborne diseases (Shao et al., 2021; Liu et al., 2023; Shao and
Xia, 2021). For instance, Miao et al. (2021) developed an ARIMA
product model to forecast monthly incidence trends of foodborne
illnesses. Similarly, Xian et al. (2023) employed SARIMA, Holt-
Winters, and exponential models to predict the incidence of
foodborne diseases in Nan’an District, Chongqing.

TABLE 3 Comparison between the ARIMA–LSTM model forecasts and the
actual values for 2024 (case).

Time Predicted values Actual values

Jan 276.56 277

Feb 181.56 182

Mar 420.56 421

Apr 592.56 593

May 844.56 845

Jun 1,280.55 1,281

Jul 2,847.56 2,848

Aug 3,834.56 3,484

Sept 1,738.56 1,739

Oct 1,107.56 1,108

Nov 682.56 683

Dec 543.56 544

FIGURE 9

Comparison of the ARIMA–LSTM model fitted values with the actual values for 2016–2023, and comparison of the predicted and actual values for
2024.
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FIGURE 10

Comparison of the 2024 forecasts from the four models with the actual values in 2024.

TABLE 4 Validation performance comparison between the four models.

Model/evaluation metrics RMSE MAE MAPE

Baseline 204.17 146.75 15.62%

ARIMA 300.0303 187.1108 16.38%

LSTM 408.71 226.03 17.21%

ARIMA-LSTM 0.44 0.44 0.08%

RMSE, Root mean square error; MAE, Mean absolute error; MAPE, Mean absolute
percentage error.

With the continuous advancement of technologies such
as computer science and big data, LSTM models have been
increasingly applied in the medical field. For example, Fan et al.
(2023) developed LSTM neural network, SARIMA, and Holt-
Winters models to forecast the incidence trend of hepatitis B (Fan
et al., 2023). Khan and Jie (2025) employed a two-stage TSA-LATM
model to predict the incidence and mortality rates of cancer. Wan
et al. (2023) proposed a combined ARIMA-EEMD-LSTM approach
for forecasting the incidence of hand, foot, and mouth disease.

The ARIMA-LSTM hybrid model integrates the strengths of
both ARIMA and LSTM approaches, making it particularly suitable
for capturing complex temporal dynamics. Owing to its enhanced
predictive capability, this model has been increasingly applied
in the medical and epidemiological domains. For instance, Jain
et al. (2024) utilized the ARIMA-LSTM framework to analyze and
forecast the trajectory of COVID-19, while Liu et al. applied it
to predict the hand, foot, and mouth disease incidence in Taiwan
(Putzu et al., 2024).

In this study, ARIMA, LSTM, and ARIMA-LSTM hybrid
models were developed using data from 2015 to 2023, with 2024
data serving as the validation set. While all three models captured
the overall trends in 2024, the ARIMA-LSTM model achieved
the closest agreement with the observed values, confirming its

TABLE 5 Predicted monthly incidence of foodborne diseases in 2025
(case).

Time Predicted values

Jan 214.62

Feb 260.84

Mar 462.92

Apr 590.92

May 800.88

Jun 965.11

Jul 2,410.36

Aug 2,651.36

Sept 1,711.15

Oct 941.22

Nov 628.21

Dec 465.05

superiority in predictive performance. However, this model is
not without limitations. Although the hybrid structure allows
ARIMA and LSTM to complement each other, it does not
account for external determinants of foodborne diseases, such as
meteorological conditions, geographic distribution, and lifestyle
factors, which may contribute to residual prediction errors
(Zhang et al., 2024). Future research could therefore enhance
the ARIMA-LSTM framework by integrating relevant external
variables and fine-tuning the LSTM component to dynamically
adapt to variations in the data, thereby improving both accuracy
and robustness of predictions.

By examining the incidence patterns from 2015 to 2024 and the
predicted cases for 2025, it was observed that foodborne diseases
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usually peak in summer (July–September). Therefore, during this
period, stricter food management and safety inspections in the
catering sector are essential. For example, leftovers should be
refrigerated promptly, reheated thoroughly before consumption,
raw and cooked foods should be stored separately, and untreated
water should be avoided. Public health authorities could also
issue early warnings and strengthen education campaigns before
the summer season. Since older adults and children have weaker
immune systems and higher susceptibility, it would be beneficial to
enhance food safety training in schools and nursing institutions and
to develop dietary guidance tailored for these vulnerable groups.
Although external variables were not included in this study, future
work could incorporate meteorological, population mobility, and
food monitoring data through collaboration with relevant agencies
to enhance the model’s interpretability and generalizability.

In conclusion, the ARIMA-LSTM model outperformed the
ARIMA model and LSTM model in forecasting the incidence of
foodborne diseases in Liaoning Province, effectively capturing the
trend and providing a valuable reference for developing prevention
and control strategies.
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