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Introduction: As cyber-physical systems become increasingly virtualized, digital
twins have emerged as essential components for real-time monitoring,
simulation, and control. However, their growing complexity and exposure to
dynamic network environments make them vulnerable to sophisticated cyber
threats. Traditional rule-based and machine-learning-based security models
often fail to adapt in real time to evolving attack patterns, particularly in
decentralized and resource-constrained settings.
Methods: This study introduces the Neuromorphic Cyber-Twin (NCT), a brain-
inspired architectural framework that integrates spiking neural networks (SNNs)
and event-driven cognition to enhance adaptive cyber defense. The NCT
leverages neuromorphic principles such as sparse coding, temporal encoding,
and spike-timing-dependent plasticity (STDP) to transform telemetry data from
the digital-twin layer into spike-based sensory inputs. A layered cognitive
architecture continuously monitors behavioral deviations, infers anomalies,
and autonomously adapts its defensive responses in alignment with system
dynamics.
Results: Lightweight prototype simulations demonstrate the feasibility of
NCT-based event-driven anomaly detection and adaptive defense. The results
highlight advantages in low-latency detection, contextual awareness, and energy
efficiency compared with conventional machine-learning models.
Discussion: The NCT framework represents a biologically inspired paradigm
for scalable, self-evolving cybersecurity in virtualized ecosystems. Potential
applications include infrastructure monitoring, autonomous transportation,
and industrial control systems. Comprehensive benchmarking and large-scale
validation are identified as future research directions.

KEYWORDS

neuromorphic computing, digital twins, spiking neural networks, cybersecurity,
cognitive defense, adaptive learning, STDP, event-driven processing

1 Introduction

The digital transformation of physical infrastructure has ushered in a new era
of intelligent systems, with Digital Twins (DTs) becoming central to the modeling,
monitoring, and control of cyber-physical environments (Kreuzer et al., 2024). These
high-fidelity virtual replicas facilitate real-time synchronization between physical assets
and their digital counterparts, fostering applications in smart cities (Peldon et al., 2024),
industrial automation, transportation, and healthcare. However, as DTs become more
autonomous and interconnected, they also become high-value targets for cyber threats,
ranging from data manipulation and spoofing to advanced persistent attacks that evolve
over time (Hassija et al., 2025).
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Traditional cybersecurity mechanisms, including rule-
based intrusion detection systems and supervised machine
learning classifiers, offer limited adaptability and often struggle
with high false positives, insufficient context awareness, and
energy inefficiency (Mohamed, 2025). These limitations are
especially problematic in virtualized ecosystems, where real-time
responsiveness and low computational overhead are critical.
Moreover, current approaches typically lack the cognitive flexibility
to anticipate emerging threats or respond meaningfully in dynamic,
distributed environments.

Inspired by the adaptive intelligence of biological systems,
neuromorphic computing presents a promising new avenue for
designing cyber defense architectures that are both energy-
efficient and context-aware. Specifically, SNNs offer event-driven
computation and local learning mechanisms such as STDP, making
them well suited for modeling dynamic behavioral patterns and
identifying anomalies without relying on labeled data or centralized
processing (Farsa et al., 2025).

In this work, we present a conceptual analysis of the
Neuromorphic Cyber-Twin, a novel architectural framework that
integrates neuromorphic intelligence directly into the Digital
Twin layer to enable autonomous, cognitive cybersecurity. Unlike
conventional DTs that passively mirror physical states, the NCT
actively senses, interprets, and reacts to threats in a manner
inspired by the brains adaptive immune and learning systems.
As a conceptual contribution, the emphasis is on theoretical
grounding, architectural vision, and prototype feasibility, while
comprehensive empirical benchmarking is identified as a direction
for future research.

The contributions of this paper are threefold:

• We propose a layered architecture for the NCT that
incorporates spike-based sensing, temporal encoding,
neuromorphic inference, and adaptive policy execution.

• We present the theoretical foundations behind its cognitive
processing model, drawing from biological learning principles
and computational neuroscience.

• We discuss potential use cases across virtualized infrastructure
domains and outline key research challenges for realizing
neuromorphic cyber defense in practice.

This work lays the groundwork for a new class of intelligent,
self-defending digital systems capable of learning and evolving
alongside their cyber-physical counterparts.

2 Background and related work

Recent studies demonstrate the growing maturity of
neuromorphic and Digital Twin security research. For example,
Roy et al. (2019) and Schuman et al. (2022) highlight spike-based
models as a foundation for energy-efficient and context-aware
inference, while Yan et al. (2019) demonstrate large-scale
distributed neuromorphic hardware suitable for real-time
anomaly detection. More recent work has explored hybrid DT-
AI frameworks for cyberphysical security and neuromorphic
computing integration in safety-critical IoT deployments,
reinforcing the timeliness of the NCT approach. Building on

these advances, this article contributes to a unified architectural
vision that emphasizes spiking-based cognitive defense, scalable
federation, and reproducibility (Uludağ et al., 2024; Lutes et al.,
2025; Muir and Sheik, 2025). In this section, we first examine
the cybersecurity needs of DTs, followed by an exploration
of related efforts in neuromorphic computing and intelligent
anomaly detection.

2.1 Digital twins and cybersecurity needs

DTs serve as virtual real-time representations of physical
systems, enabling predictive maintenance, operational
optimization, and autonomous control. As they become central
to the functioning of critical infrastructure, such as smart grids,
transportation networks, and industrial control systems, their
exposure to cyber threats increases significantly. Malicious actors
can manipulate DT data streams, inject false telemetry, or interfere
with their synchronization logic to cause physical disruptions or
misinformed decisions (Holmes et al., 2021).

Despite their importance, current DT implementations often
rely on conventional IT-centric security models that are reactive,
centralized, or computationally heavy. These models do not
account for the continuous, high-dimensional, and event-driven
nature of DT environments, nor do they provide mechanisms for
adaptive learning or contextual defense (Homaei et al., 2024).

2.2 Neuromorphic computing and spiking
neural networks

Neuromorphic computing is an emerging paradigm inspired
by the structure and function of the human brain. At its
core are SNNs, which process information through discrete
time-encoded events (spikes), offering advantages in temporal
sensitivity, energy efficiency, and local learning. Unlike traditional
neural networks, SNNs do not require dense input vectors or
continuous processing; they operate on sparse, asynchronous data
and support biologically plausible mechanisms such as STDP for
unsupervised adaptation (Auge et al., 2021). These properties make
SNNs ideal candidates for real-time anomaly detection, context-
sensitive decision-making, and energy-aware computation, key
requirements for intelligent cyber-defense systems embedded in
DT environments (Bäßler et al., 2022).

2.3 Cybersecurity in neuromorphic and DT
contexts

Recent works have investigated neuromorphic systems in
various applications, including signal classification, IoT anomaly
detection, and physical-layer intrusion detection. However, these
efforts are primarily focused on low-level signal processing or
specific application domains and do not propose an architectural
integration of SNN-based cognitive reasoning directly within the
Digital Twin layer. The cognitive modeling and autonomous
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reaction capabilities required for high-level defense in virtualized
systems remain unexplored (Korki et al., 2022).

2.4 Positioning of this work

In this paper, we bridge this gap by proposing the NCT: a
layered cognitive security model for Digital Twins, empowered
by neuromorphic learning and real-time adaptation. Unlike
conventional anomaly detection pipelines, the NCT continuously
monitors the DT’s behavior, identifies cognitive anomalies, and
adapts policy decisions using SNN-driven internal reasoning loops.

2.5 Literature landscape and positioning

2.5.1 Neuromorphic cybersecurity architectures
Recent efforts in neuromorphic cybersecurity have explored

spiking-based intrusion detection, radio signal classification, and
low-power threat inference. For instance, Loihi-based platforms
have demonstrated on-chip learning for detecting anomalies in
network traffic using spike-timing-dependent plasticity. Similarly,
BrainChips Akida SoC has been applied in edge AI use cases for
environmental and behavioral anomaly detection. However, these
works primarily operate at the physical or signal level and do
not engage with the abstraction or autonomy layer introduced by
Digital Twins (Zahm et al., 2022).

More recent studies further advance this direction. For
example, Farsa et al. (2025) survey FPGA-based neuromorphic
implementations that target security-critical workloads,
demonstrating reconfigurable hardware support for adaptive
defense. Xu et al. (2024) explore federated reinforcement learning
in V2X networks, providing distributed intelligence that aligns
closely with our federated neuromorphic vision. At the algorithmic
level, Nazari and Amiri (2025) propose a biologically inspired fast
STDP learning approach, while Stadtmann et al. (2023) investigates
robust local learning on neuromorphic hardware. Collectively,
these works reinforce the timeliness of embedding spiking-based
cognition into cybersecurity systems and highlight the gap that the
NCT addresses by extending beyond low-level anomaly detection
to cognitive, digital-twin-aware defense.

2.5.2 Hybrid DT–AI security frameworks
Digital Twins have increasingly integrated AI models

for predictive maintenance, fault diagnosis, and anomaly
detection. Hybrid architectures often involve machine learning
algorithms that analyze DT telemetry to detect abnormal behaviors
or recommend control actions (Alfaro-Viquez et al., 2025).
Nevertheless, such systems are typically trained offline, require
high-quality labeled datasets, and lack mechanisms for real-time
adaptation under data drift or adversarial manipulation.

2.5.3 Contribution of this work
To the best of our knowledge, this paper presents the

first architectural and theoretical formulation of a neuromorphic

cognitive layer embedded within a Digital Twin framework. The
proposed NCT advances the state-of-the-art by:

• Embedding online, unsupervised SNNs for cyber defense
within the DT layer,

• Offering a biologically inspired feedback loop for local
inference and adaptation,

• Proposing a federated expansion of neuromorphic DTs for
secure, scalable collaboration.

This uniquely positions NCT between traditional ML-
enhanced DTs and edge-deployed neuromorphic security
primitives, bridging the gap between abstraction, autonomy, and
adaptive defense.

3 Conceptual framework: the
neuromorphic Cyber-Twin

Building on the gaps identified in conventional DT security
solutions, this section introduces a neuromorphic alternative
inspired by cognitive neuroscience and event-driven processing.
The proposed NCT aims to embed adaptive intelligence directly
into the DT architecture, enabling it to autonomously perceive,
infer, and respond to anomalies in real time.

3.1 Overview and motivation

The NCT is conceived as a next-generation cybersecurity
architecture that combines biologically inspired intelligence with
virtualized Digital Twin environments. Unlike conventional Digital
Twins that passively mirror physical states, the NCT introduces
an active, cognitive layer capable of recognizing, learning from,
and responding to security threats in real time. The proposed
framework embeds a neuromorphic processing unit, primarily a
SNN, within the DT control loop to form an intelligent anomaly
detection and response module.

3.2 Functional design objectives

The design of the NCT is guided by four primary objectives:

1. Real-time threat monitoring: Continuous analysis of DT
telemetry for deviations or anomalies.

2. Low-power cognitive reasoning: Event-driven SNN-based
processing for energy-efficient inference.

3. Adaptive behavior: Online learning through STDP to respond to
emerging threats without human intervention.

4. Autonomous actuation: Enabling local response policies within
the DT ecosystem based on anomaly context.

3.3 Layered architecture of the NCT

The NCT architecture is structured into five core layers:
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• Physical-Digital Interface Layer: Gathers real-time data from
the physical system (e.g., sensor telemetry, actuator feedback)
and maps it to the DT model.

• Spike Encoder Layer: Converts multivariate DT state features
into spike trains using biologically inspired methods such as
rate coding, latency coding, or time-to-first-spike encoding
(Auge et al., 2021).

• Neuromorphic Inference Core: A multi-layer SNN trained
with unsupervised learning rules (e.g., STDP) that identifies
anomalies based on temporal spike pattern deviations (Bäßler
et al., 2022).

• Decision and Actuation Layer: Interprets spiking activity
using winner-take-all or voting mechanisms to initiate
security actions such as data isolation, subsystem rollback, or
alert generation.

• Feedback and Memory Loop: Supports lifelong learning
by integrating memory decay and plasticity stabilization
mechanisms, allowing the system to adapt while avoiding
catastrophic forgetting.

3.4 Cognitive defense loop

Inspired by biological immune and learning systems, the NCT
incorporates a cyclical defense loop, as shown in Figure 1. This loop
ensures that the NCT is not a static classifier but an evolving system
capable of improving its threat recognition over time, especially in
adversarial or previously unseen environments.

3.5 Comparison with traditional DT
security models

Traditional DT security frameworks rely heavily on cloud-
based detection, periodic retraining, and often require labeled data.
In contrast, the NCT:

• Operates locally with minimal energy overhead,
• Supports unsupervised and continual learning,
• Leverages biologically plausible mechanisms for real-time

reasoning.

This architecture positions the NCT as a future-proof
framework for intelligent, resilient, and self-defending cyber-
physical environments.

4 Neuro-cognitive foundations

To justify the biological plausibility and computational design
of the NCT, this section outlines the foundational principles
of cognitive neuroscience that inspire its core components. We
focus particularly on the neural mechanisms that support sparse,
event-driven computation and adaptive learning in dynamic
environments, drawing parallels to spiking neural networks and
plasticity-based memory systems.

FIGURE 1

Conceptual framework: the neuromorphic Cyber-Twin. The layered
architecture includes a spike encoder, neuromorphic inference
core, decision module, physical interface, and feedback loop for
adaptive cognitive defense.

4.1 Biological inspiration: cognitive
security models

The NCT is fundamentally inspired by biological neural
systems, particularly the brain’s ability to process sensory input,
adapt to novel threats, and execute defensive actions in real time.
The proposed framework mirrors cognitive security behaviors such
as attention, recognition, learning, and self-regulation, similar to
how the immune and nervous systems co-operate to identify
and neutralize external threats. These concepts are translated into
computational equivalents via spiking neurons, plastic synapses,
and feedback mechanisms, enabling the DT to autonomously
detect behavioral anomalies and respond contextually. The
layered organization and data-flow of the NCT are illustrated
in Figure 2.

4.2 Spiking neural networks

SNN represent the third generation of neural models. Unlike
conventional artificial neural networks, which rely on continuous
values, SNNs operate on discrete spike events across time.
Each neuron integrates inputs as membrane potential and fires
only when a threshold is reached, emulating real synaptic
firing patterns. This mechanism leads to sparse, energy-efficient
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FIGURE 2

Expanded architecture of the Neuromorphic Cyber-Twin. The telemetry received from the Digital Twin is spike-encoded and processed through an
SNN core with embedded STDP learning. The output is a cognitive state used to trigger local or controller-level defense actions.

communication, a critical requirement for embedded or real-time
cybersecurity systems.

While the NCT framework conceptually adopts spiking neuron
models, the Leaky Integrate-and-Fire (LIF) model is used in
preliminary simulations due to its simplicity and suitability for
rapid prototyping. However, the architecture remains agnostic to
the specific neuron model and can accommodate more complex
models (e.g., Izhikevich, Adaptive Exponential) depending on
application needs and hardware capabilities. The neuron model in
the Leaky LIF model, defined as:

τm
dVm(t)

dt
= −Vm(t) + RmI(t) (1)

where Vm(t) is the membrane potential, I(t) is the input
current, τm is the membrane time constant, and Rm is the
membrane resistance. When Vm(t) exceeds a threshold Vth, the
neuron emits a spike and resets.

4.3 STDP

In the conceptual design of the NCT, learning is envisioned
through STDP, a biologically inspired, unsupervised learning rule
that enables temporal adaptation and memory formation without
the need for labeled data. While STDP aligns well with the
NCT’s cognitive objectives and supports localized, online learning,
the architecture remains agnostic to the specific learning rule.
Depending on the target application or neuromorphic hardware,
alternative mechanisms such as Reward-Modulated STDP (R-
STDP), Hebbian plasticity, or homeostatic adaptation may also
be integrated to balance learning stability, context sensitivity,

and energy efficiency. For STDP synaptic weights are adjusted
based on the temporal correlation between pre-synaptic and post-
synaptic spikes:

�w =
{

A+e−�t/τ+ , if �t > 0

−A−e�t/τ− , if �t < 0
(2)

where �t = tpost − tpre is the timing difference between the
spikes, and A+, A−, τ+, τ− are the potentiation and depression
constants. This allows the NCT to autonomously adapt to
environmental changes and evolving attack patterns without the
need for explicit labels or centralized retraining (Izhikevich et al.,
2004).

4.4 Spike encoding for digital twin
telemetry

To enable neuromorphic inference, continuous telemetry
streams from the Digital Twin must be transformed into spike
trains. This is achieved through biologically inspired encoding
strategies. Let x(t) represent a real-valued feature (e.g., latency,
voltage, signal strength) at time t, as discussed in Table 1.

Latency coding has been widely studied for its energy benefits:
empirical evaluations show that latency-based encoding can
achieve comparable accuracy to rate coding while significantly
reducing spike counts and communication overhead, making
it highly suitable for resource-constrained neuromorphic
deployments (Diehl and Cook, 2015; Mostafa, 2018).
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TABLE 1 Comparison of spike encoding strategies for digital twin telemetry.

Encoding strategy Description Advantages / limitations

Rate coding Spike frequency is proportional to the input magnitude over
a time window.

+ Simple to implement and robust to noise.
− Low temporal precision; not ideal for fast-changing or bursty signals.

Latency coding Input value is encoded as the timing of the first spike, lower
inputs spike earlier.

+ High temporal resolution; efficient for rapid event detection.
− Susceptible to jitter and time alignment errors.

Rank / threshold coding Spikes are generated only for top-k input values or those
exceeding a threshold.

+ Efficient spike usage; highlights salient or dominant features.
− May neglect subtle but relevant anomalies.

Burst / binary coding Spikes encode categorical states using bursts or binary
presence.

+ Useful for representing discrete events (e.g., packet type, state
transitions).
− Less effective for continuous-valued telemetry.

4.5 Toward a quantitative evaluation
framework

To operationalize the NCT, future work must define a rigorous
evaluation methodology. We propose the following roadmap:

• Simulation Platforms:

• Brian2 – for spiking simulation and rapid prototyping of
STDP-based SNNs.

• Nengo – for higher-level cognitive models with visualization
and encoding utilities.

• Loihi SDK / Lava – for benchmarking event-driven
neuromorphic inference on Intel’s hardware.

• Suggested Evaluation Metrics:

• Spike Count per Class: Sparsity and discriminability of spike
patterns across nominal vs. anomalous states.

• False Positive/Negative Rate: Accuracy of anomaly detection
under temporal and contextual drift.

• Plasticity Saturation: Monitoring weight convergence and
forgetting during continuous learning.

• Latency to React: Time from anomaly onset to defense
policy activation.

• Energy per Inference: Estimated using SNN hardware
counters or runtime profiling.

In future benchmarks, these metrics can be tracked under
varying attack types (e.g., spoofing, delay injection) and
environments (smart grid, V2X, medical twins). Synthetic
DT datasets or real telemetry logs can serve as inputs for
performance profiling.

A range of spike encoding methods, including rate coding,
latency coding, and burst coding, were considered in this study.
Rate coding offers implementation simplicity but suffers from
higher energy costs due to dense spiking activity, whereas latency
coding provides sparse, energy-efficient representations at the
expense of timing precision. Burst coding enhances robustness
in noisy environments but increases decoding complexity.
Comparative evaluations in prior works, such as Roy et al. (2019);
Schuman et al. (2022) demonstrate that hybrid approaches can
balance accuracy and power consumption, informing our choice of
latency coding for anomaly detection tasks where energy efficiency
and responsiveness are critical. The proposed evaluation metrics,
including detection latency, spike sparsity, energy per inference,

and throughput, are intended as design guidelines for future
benchmarking rather than results reported here. These metrics
emphasize neuromorphic advantages such as low-latency inference,
sparse computation, and power efficiency, serving as a consistent
baseline for subsequent large-scale validation across hardware and
simulator platforms.

For transparency, we provide the implementation and
demonstration results via GitHub. On the NSL-KDD dataset,
our prototype SNN achieved lower accuracy and F1-scores than
conventional ML baselines. This is expected in a conceptual study,
where the emphasis lies on demonstrating the feasibility of scaling,
real-time Digital Twin integration, and neuromorphic efficiency
(latency, sparsity, energy). These results are therefore presented as
illustrative evidence rather than optimized benchmarks, pointing
toward directions for future refinement.

5 Use cases and operational scenarios

The NCT is designed for intelligent, autonomous defense
across a variety of cyber-physical systems where traditional security
models are insufficient. This section outlines several realistic
domains where the NCT framework can be deployed to enhance
resilience and cognitive responsiveness.

5.1 Smart grids and industrial automation

Digital Twins in smart grid environments model physical
infrastructure such as substations, transformers, and load balancing
systems. These assets are frequent targets for coordinated
cyberattacks, including load-altering or false data injection. The
NCT can monitor voltage fluctuations, response latencies, and
operational commands in spike-encoded format. SNNs can detect
spatiotemporal anomalies and initiate corrective actions, such as
isolating a subnetwork or reversing a control instruction, before
failures spread (Lu et al., 2020).

5.2 Autonomous vehicles and V2X
communication

Vehicular Digital Twins replicate the dynamic states of
connected vehicles, enabling predictive control and fleet-
wide optimization. However, V2X systems are vulnerable to
spoofing, jamming, or man-in-the-middle attacks. By embedding
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TABLE 2 Comparison of classical and neuromorphic DT security.

Feature Classical AI/ML NCT (SNN-based) References

Learning type Supervised / offline Unsupervised / online Nazari and Amiri, 2025; Daddinounou et al., 2025

Latency sensitivity Medium to high Ultra low Chen et al., 2025; Qu et al., 2025; Sun et al., 2025

Energy efficiency Moderate to high High (event-driven) Liu et al., 2024; Sun et al., 2025

Adaptivity to drift Weak (requires retraining) Strong (via STDP) Chakraborty and Mukhopadhyay, 2021; Demin et al., 2021

Deployment layer Cloud / edge Edge / On-device Cañete et al., 2022; Davies et al., 2021

Explainability Moderate Low to moderate Iaboni and Abichandani, 2024; Stadtmann et al., 2023

neuromorphic modules into vehicle DTs, the NCT can monitor
real-time telemetry (e.g., speed, heading, latency) and recognize
temporal inconsistencies that deviate from learned traffic behavior.
Upon detection, the NCT may trigger emergency stop routines or
reroute communications to verified peers (Xu et al., 2024).

5.3 Healthcare and medical device security

Medical Digital Twins represent patient vitals, infusion pumps,
and implant telemetry. Given their safety-critical nature, these
systems require zero-latency and zero-failure cybersecurity. A
neuromorphic security layer can monitor patterns in heart rate,
signal delay, and dosage cycles. Temporal learning via STDP allows
the NCT to adapt to personalized baselines, identifying anomalies
in device activity, network integrity, or patient response, even with
limited data Al-Dalati (2023).

5.4 Federated smart city infrastructure

In smart cities, federated DTs govern public assets, such
as traffic systems, surveillance cameras, or utility grids, in
multiple jurisdictions. These systems must function under noisy,
distributed, and adversarial conditions. The NCT framework
enables localized threat detection and response at the DT node
level without depending on centralized data fusion. As a result,
security decisions become context-sensitive and computationally
autonomous, ensuring system-wide scalability and robustness
(Kreuzer et al., 2024).

5.5 Comparison with classical detection
systems

As shown in Table 2, the proposed NCT offers significant
advantages over classical detection systems, particularly in
environments that demand ultra-low latency, high adaptivity, and
energy-efficient cyber defense. By leveraging event-driven spiking
neural networks and unsupervised plasticity mechanisms, the NCT
can operate at the edge with minimal computational overhead
while continuously adapting to emerging threats. This makes it
particularly suited for dynamic and resource-constrained cyber-
physical systems such as autonomous vehicles, industrial IoT, and
smart healthcare infrastructures.

6 Challenges and research directions

Despite its promising architecture, the implementation of the
NCT presents several technical and interdisciplinary challenges.
Addressing these issues is critical for advancing from conceptual
design to deployable systems. Summary of key challenges is
tabulated in Table 3.

6.1 Neuromorphic-DT integration

Integrating SNNs with Digital Twin platforms is non-trivial.
Most DT frameworks are developed in high-level programming
environments (e.g., MATLAB, Unity, or Python-based simulators),
while neuromorphic systems typically run on specialized hardware
or simulators (e.g., Brian2, Nengo, Intel Loihi). Bridging these
domains requires middleware capable of real-time, spike-based
communication, along with standardized APIs and data encoders
(Muir and Sheik, 2025).

6.2 Data encoding and representational
fidelity

Encoding continuous telemetry streams from the DT into spike
trains is a major bottleneck. Rate coding is simple but may lose
critical temporal detail; latency coding is sensitive but difficult
to calibrate. Choosing the appropriate encoding method remains
an open problem and likely requires dynamic switching strategies
based on context, feature dimensionality, and real-time constraints
(Auge et al., 2021).

6.3 Evaluation metrics for cognitive
security

Unlike traditional security systems that evaluate performance
using accuracy or precision-recall, cognitive systems like the NCT
need novel metrics. These include:

• Cognitive latency: Time to recognize and react to a novel
threat.

• Plasticity-efficiency balance: Ability to learn continuously
without catastrophic forgetting.
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TABLE 3 Summary of key technical and research challenges.

Challenge Proposed direction

Spike encoding from DT
telemetry

Design of adaptive hybrid spike encoders
(rate-based + latency-based) for noisy and
dynamic telemetry signals.

Real-time SNN integration Development of lightweight middleware and
on-device simulators for seamless integration
with DT platforms.

Evaluation frameworks Creation of DT-specific benchmarks
combining anomaly detection metrics with
cognitive adaptability scores.

Hardware deployment Porting to neuromorphic chips (e.g., Intel
Loihi, BrainChip Akida) and edge
co-processor integration.

Interdisciplinary gaps Toolkits and design workflows to support
co-evolution of DT models and SNN
architectures across domains.

• Adaptability index: Performance under concept drift or
adversarial perturbation.

Developing benchmark datasets and simulators that reflect DT-
specific anomalies is equally essential.

6.4 Hardware constraints and scalability

While neuromorphic processors (e.g., Loihi, Akida,
BrainScaleS) offer impressive energy efficiency, they are still
in early adoption phases. Their availability, documentation, and
development toolchains remain limited. Furthermore, scaling
NCTs across thousands of DTs (e.g., in a smart city) requires
distributed learning protocols, federated update mechanisms, and
secure SNN sharing frameworks (Daddinounou et al., 2025).

6.5 Interdisciplinary knowledge gaps

The realization of NCTs demands expertise across domains:
neuromorphic computing, DT simulation, cybersecurity, and
embedded systems. However, current development workflows are
siloed. Collaborative research platforms, cross-domain training,
and integrated toolkits will be vital for success (Kreuzer et al., 2024).

6.6 Challenges and strategies in federated
STDP aggregation

Federated Spiking Neural Networks (SNNs) with STDP
learning face unique challenges due to their local, time-dependent
updates and asynchronous behavior. To maintain global learning
consistency while preserving node-specific adaptability, we propose
the following strategies:

1) Avoiding Catastrophic Forgetting: Instead of directly
overwriting local synapses, the aggregator performs weighted

1. For each round t = 1, 2, . . .

2. For each NCT device k ∈ {1, ..., N} (in parallel):
• Collect telemetry and encode into spike trains.
• Run local STDP updates on weights Wk.
• Compute �Wk = W(t)

k − W(t−1)
k .

• Align STDP traces via time bins.
• Apply clipping: �Wk ← min(�Wk, τ ).
• Add Gaussian noise: �Wk ← �Wk +N (0, σ 2).
• Transmit �Wk to aggregator.

3. Aggregator computes global model:

W(t+1) ← W(t) + 1
N

∑
k

�Wk

4. Broadcast updated global weights W(t+1) to all NCT nodes.

Algorithm 1. Federated STDP Aggregation with Privacy and Temporal
Alignment.

aggregation of synaptic deltas:

w(t+1)
i = w(t)

i + 1
N

N∑
k=1

�w(k)
i (3)

Here, wi is the synapse of interest and �w(k)
i is the local

STDP-induced change at device k.
2) Temporal Alignment of Spike Events: To resolve drift or

desynchronization across devices, local spike updates are:

• Timestamped using quantized intervals (e.g., 1 ms slots),
• Aligned using a shared logical clock or synchronization

pulses via DT middleware.

3) Privacy-Preserving Learning: Before transmitting synaptic
deltas to the aggregator, each NCT applies:

• Gradient clipping: �w ← min(�w, τ )
• Differential privacy noise: �w ← �w +N (0, σ 2)

This ensures that no individual input pattern can be inferred from
shared weight updates.

Federated learning in neuromorphic systems introduces
unique challenges compared to conventional federated averaging,
primarily due to the temporal and non-IID nature of spiking
activity across distributed nodes. In the proposed federated
STDP framework, synaptic weight updates are computed locally
via STDP and periodically aggregated using spike-derived delta
weights, as suggested in Algorithm 1. Literature on distributed
neuromorphic learning (Wang et al., 2023) highlights trade-offs
between communication frequency, convergence stability, and
hardware efficiency, motivating an adaptive aggregation schedule
driven by spike activity drift rather than fixed update intervals.
Summary of key research challenges have been discussed in Table 3.

Parameter tuning of STDP plays a critical role in achieving
stable learning. Excessively large potentiation or depression
rates lead to weight saturation, while conservative values slow
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convergence. We followed stability ranges reported in (Davies
et al., 2021; Yan et al., 2019), setting the learning rates in a range
that preserves spike-timing sensitivity while avoiding synaptic
saturation. These considerations ensure that the model remains
energy-efficient and robust in dynamic Digital Twin environments.

Adjustable Parameters In addition to the strategies above,
two further considerations improve robustness in practice. First,
aggregation frequency can be made adaptive, triggered by spike
distribution drift thresholds rather than fixed intervals, thereby
reducing communication overhead. Second, asynchronous update
handling mechanisms, as explored in distributed FL systems,
can be integrated to tolerate stragglers and heterogeneous
DT environments.

7 Benefits and limitations

While the NCT presents a promising approach to embedding
cognitive adaptability within Digital Twin security architectures, it
is essential to assess both its strengths and inherent trade-offs. In
this section, we outline the key advantages that differentiate the
NCT from traditional systems, while also acknowledging current
limitations related to scalability, interpretability, and hardware
readiness. The overall federated STDP aggregation workflow with
temporal alignment is shown in Figure 3.

7.1 Key advantages

The NCT presents several compelling advantages over
traditional DT security architectures:

• Low-latency inference: The use of event-driven SNN allows
the NCT to respond to threats with minimal processing
delay, which is critical for time-sensitive cyber-physical
environments (Datta et al., 2025).

• Online adaptivity: The STDP-based learning mechanism
enables continuous, unsupervised adaptation to novel or
evolving threats without requiring retraining or human
intervention.

• Energy efficiency and scalability: SNNs inherently offer low-
power computation due to sparse, asynchronous activation,
making the NCT suitable for deployment on edge and
embedded neuromorphic hardware platforms.

• Independence from cloud infrastructure: By processing locally
on the DT or associated edge node, the NCT reduces
dependence on centralized cloud analytics, thereby improving
latency, resilience, and data privacy.

7.2 Current limitations

Despite its theoretical promise, the realization of the NCT
model presents several limitations and open challenges:

• Lack of domain-specific datasets: There is a notable scarcity
of publicly available Digital Twin telemetry datasets with

FIGURE 3

Federated learning flow for neuromorphic Cyber-Twins. Local
STDP-based inference produces synaptic deltas (�w), which are
aggregated to form a consensus model, redistributed to edge NCTs.

annotated cyber anomalies, hindering standardized training
and evaluation.

• Interpretability of spiking decisions: While biologically
plausible, the internal decision-making process of SNNs,
especially in STDP-based architectures, remains difficult to
explain or audit, limiting user trust in critical infrastructure
settings.

• Hardware support and deployment readiness: Neuromorphic
processors (e.g., Intel Loihi, BrainChip Akida) are still under
development, and integration with mainstream Digital Twin
platforms (e.g., Unity, Siemens NX, or ANSYS Twin Builder)
remains limited.

Addressing these limitations will require advances in
neuromorphic interpretability, standardized telemetry encoding
interfaces, and co-development of datasets and toolchains for
hybrid DT–SNN platforms.

7.3 Federated cognitive twins: toward
distributed neuromorphic defense

As Digital Twin ecosystems scale across smart cities, industrial
zones, and vehicular networks, the centralized processing of
cyber-defense data becomes infeasible due to latency, privacy,
and scalability constraints. To address this, we envision a future
class of Federated Cognitive Twins (FCTs), a distributed, privacy-
preserving neuromorphic framework where each Digital Twin
hosts a localized instance of the NCT, collaboratively learning
through federated mechanisms.

Each FCT unit is equipped with its own spike-based learning
module, processing local telemetry in real time using SNN-
based inference. Periodically, learned synaptic updates or anomaly
signatures are aggregated across a network of twins via secure,
federated communication protocols. Unlike conventional federated
learning, which transmits large ANN weights or gradients, FCTs
can exchange lightweight synaptic delta patterns or compressed
spiking templates, significantly reducing bandwidth and preserving
spatio-temporal data locality.
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• Decentralized Learning: Cognitive twins update their own
SNNs using STDP or other local rules and contribute only
sparse summaries to a global model.

• Privacy-Aware Security Intelligence: Raw telemetry or
sensitive behavioral data never leaves the local DT node,
addressing regulatory and ethical concerns.

• Federated Anomaly Consensus: Anomalies detected by one
twin can inform the response policies of others, enabling
swarm-like situational awareness across a distributed CPS.

• Resilience to Partitioning: Even in cases of network
segmentation or link failure, FCTs maintain their cognitive
defense loop independently, ensuring continued operation
and gradual convergence when reconnected.

This approach is especially suited to scenarios such as:

• Smart grids with regional substations and DTs per
transformer,

• Vehicular fleets in V2X environments with onboard
neuromorphic cores,

• Hospital networks where each medical device or patient DT
acts as an autonomous anomaly detector.

The development of FCTs will require innovations in spike-
based federated learning protocols, distributed SNN coordination,
and neuromorphic model compression. Future work may explore
the design of lightweight consensus algorithms that operate
over temporal spiking patterns and enable secure, explainable
collaboration among autonomous Digital Twins.

7.4 Synthetic telemetry for neuromorphic
evaluation

Given the lack of publicly available telemetry datasets with
labeled anomalies in Digital Twin systems, we propose a synthetic
data generation strategy to evaluate the Neuromorphic Cyber-
Twin (NCT) pipeline under controlled yet realistic conditions.
Table 4 summarizes representative anomalies, suitable encoders,
and aligned NCT use cases.

1) Domain-Specific Simulators: We suggest leveraging domain-
specific simulators to generate deterministic, controllable
system behaviors:

• GridLAB-D: For generating voltage, frequency, and load
profiles in smart grids.

• CARLA: For simulating vehicular dynamics and inter-
vehicle coordination in autonomous driving scenarios.

• NS-3: For network traffic flow, jitter, and congestion
telemetry.

2) Anomaly Injection Framework: Time-series outputs from
these simulators can be perturbed using known anomaly types
such as:

• Gaussian Noise: For simulating sensor degradation.

TABLE 4 Synthetic Anomalies and Corresponding Spike Encoding
Strategies.

Anomaly
type

Encoding
strategy

Target use case

Gaussian noise Rate coding Sensor degradation in smart
metering systems

Step jump (Abrupt
load change)

Time-to-first spike Grid overload detection or
sudden cyber-physical
attacks

Latency drift Latency coding with
thresholding

Clock desynchronization in
V2X communications

Packet dropout Binary spike encoding Communication failure in
vehicular coordination
protocols

Periodic burst Multi-spike burst coding Detection of
Denial-of-Service (DoS) or
spoofing attempts

• Step Discontinuities: For power/load switching anomalies.
• Temporal Drift: For clock desynchronization or latency

buildup.

3) Spike Encoding and STDP Evaluation: These time-series can
then be encoded using rate or latency coding schemes and fed
into SNN simulators such as Brian2 or Nengo. STDP-based
learning dynamics can be assessed for anomaly recognition
accuracy, convergence speed, and spike sparsity.

7.5 Prototype simulation: STDP-based
cognitive response with synthetic telemetry

To assess the feasibility of the proposed NCT framework, we
developed a proof-of-concept prototype using the Brian2 spiking
neural network simulator. The prototype models a network of
approximately 100 excitatory and 25 inhibitory neurons configured
with biologically inspired synaptic dynamics and spike-timing
dependent plasticity. Synthetic telemetry signals are generated
to emulate normal and anomalous system behaviors, which are
then encoded into spike trains using a Poisson-based event-driven
strategy, as suggested in Algorithm 2.

This setup allows us to observe how spiking neurons adaptively
separate benign from anomalous activity streams. Key performance
indicators proposed earlier in Section IV-E, such as inference
latency, spike sparsity, and runtime efficiency, were measured.
Initial trials showed inference latency on the order of ∼0.5 ms
per input sample, spike sparsity around 15%, and an average
runtime of ∼4 seconds for processing 50 samples on a standard
workstation. While intentionally limited in scale, these results
demonstrate that the NCT architecture can operationalize the
proposed evaluation metrics even in a lightweight prototype.
The core simulation workflow is summarized in the following
pseudocode, which outlines the main steps of the implementation
pipeline. The full prototype, including simulation scripts, synthetic
telemetry generators, and visualization routines, is available as a
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1. Initialize Brian2 simulation environment.
2. Generate synthetic telemetry and encode into spike trains
(rate/latency coding).

3. For each NCT node:

a. Define LIF neuron population (e.g., ∼100 excitatory + 25
inhibitory).

b. Connect input layer to neurons via STDP synapses.
c. Apply Hebbian STDP rule:

�w = A+e−�t/τ+ (potentiation)

�w = −A−e�t/τ− (depression)

d. Run simulation for duration T.
e. If anomaly is injected → observe potentiation in specific

pathways.
f. Else → weights stabilize with sparse updates.

4. Record simulation outputs: Spike raster plot, Membrane voltage
trace, Synaptic weight evolution, Inference latency, spike sparsity,
runtime statistics, Memory usage, and STDP iteration count.

Algorithm 2. STDP Simulation Pseudocode for NCT

Jupyter notebook in the open repository referenced in the Code and
Data Availability section. This ensures that the prototype results
reported here can be reproduced, while larger-scale benchmarking
with real-world cybersecurity datasets (e.g., CICIDS2017, UNSW-
NB15, IoT-23) and comparisons with conventional IDS/ML models
remain key directions for future work.

8 Discussion and research outlook

Although this work presents a novel conceptual architecture,
several extensions are proposed to enhance its validation
and alignment with emerging trends in computational
intelligence. This work contributes to the broader advancement
of neuromorphic intelligence for secure, low-power, and
adaptive computing in distributed environments. The proposed
Neuromorphic Cyber-Twin architecture builds upon current
trends that emphasize energy-efficient, cognitive processing
using spiking neural networks (SNNs). Recent studies have
proposed federated STDP-based frameworks that enable
collective adaptation across edge devices by sharing synaptic
deltas, demonstrating scalable neuromorphic learning across
networked systems (Wang et al., 2023). In parallel, hierarchical
spiking architectures have been applied to IoT domains for
detecting spatiotemporal anomalies using biologically inspired
mechanisms (Rathi et al., 2023). This work extends these
developments by embedding neuromorphic inference directly
into the Digital Twin ecosystem, enabling context-aware threat
perception and adaptive response in virtualized cyber-physical
environments.

FIGURE 4

Simulation flow integrating Digital Twin telemetry with
neuromorphic inference using spike encoders, SNN cores
(Brian2/Loihi), and STDP-based learning.

8.1 Prototype simulation and
neuromorphic toolchains

Future iterations of the NCT will benefit from implementation
in open-source neuromorphic simulation platforms. Among the
most promising are:

• Brian2: A Python-based simulator ideal for modeling
spiking neuron dynamics, STDP learning, and multiscale
experimentation. It allows high configurability for testing
spike encoding, adaptation, and cognitive inference under
DT-like telemetry sequences.

• Intel Loihi (via Lava SDK): A hardware-aligned platform
supporting real-time SNN inference and energy monitoring.
Mapping the NCT’s modular blocks (input encoder, SNN core,
STDP learning) onto Loihi cores will validate latency and
power assumptions critical for edge deployments.

• Nengo: Offers abstraction layers for integrating neural
models with sensor data, including preliminary Digital Twin
integration for robotics and CPS simulations.

A conceptual implementation roadmap is illustrated in
Figure 4, outlining the flow from telemetry data collection (via
DT simulation tools like Unity or GridLAB-D) to neuromorphic
inference via Brian2/Loihi.

8.2 Platform selection guidance for NCT
prototyping and deployment

Selecting the appropriate neuromorphic platform is critical
to the implementation of the Neuromorphic Cyber-Twin (NCT),
depending on the development stage, performance priorities, and
available resources. Below, we summarize when each platform is
best suited for research, prototyping, and deployment:
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• Brian2 is most suitable for early-stage prototyping, where fine-
grained control over spike encoding, plasticity behavior, and
event timing is necessary. It allows detailed experimentation
with STDP, LTP, and latency-based encoding without
hardware constraints.

• Loihi (v2) is ideal for real-time, energy-aware inference and
deployment on edge neuromorphic hardware. Once the NCT
model is validated in simulation, it can be compiled and tested
on Loihi for timing, power, and adaptive responsiveness.

• Nengo provides flexibility across the stackfrom algorithm
design to embedded deployment. It supports high-level
architecture definition with optional backends (e.g., Loihi or
FPGA), making it suitable for hybrid workflows.

• SpiNNaker is recommended for large-scale cognitive twin
networks where distributed inference is required across
multiple NCT instances (e.g., federated edge-twin clusters in
smart grids or autonomous fleets).

• Lava is a developing but promising framework that unifies
neuromorphic software development for Intel’s Loihi
platform. It is suited for researchers aiming for full-stack
alignment with future neuromorphic ecosystems.

• BindsNET is appropriate for machine learning researchers
wishing to integrate SNN-like behavior into deep learning
pipelines. It offers STDP modeling with PyTorch compatibility
and is useful for comparing ANN vs. SNN in anomaly
detection or behavior prediction tasks.

The choice of platform may evolve across the lifecycle of
the NCT, from simulation (Brian2) to deployment (Loihi/Lava)
and scaling (SpiNNaker). This modularity in toolchain enables
iterative development with minimal architecture rework. While
neuromorphic platforms such as Intel’s Loihi Hala Point and
BrainChip Akida demonstrate significant improvements in
scalability and energy efficiency, they primarily target edge
inference or general-purpose spiking workloads rather than a
tightly integrated cybersecurity–Digital Twin (DT) pipeline. The
proposed Neuromorphic Cyber-Twin (NCT) distinguishes itself
by unifying telemetry-driven encoding, cognitive-layer adaptation,
and federated STDP updates within a single conceptual framework.
Whereas Hala Point emphasizes massive scalability (over 1.15B
neurons) and Akida prioritizes ultra-low-power edge anomaly
detection, NCT focuses on a hierarchical, DT-aware control
loop, enabling distributed cyber-physical threat detection and
on-device learning. This integration of SNN-based adaptation
with DT orchestration and federated weight aggregation fills a gap
not explicitly addressed by existing neuromorphic hardware or
edge-AI deployments.

8.3 Practical implementation trade-offs

While the Neuromorphic Cyber-Twin (NCT) framework
presents a conceptually robust and biologically inspired
architecture for secure, adaptive DT environments, its real-world
implementation introduces several practical challenges. These
must be carefully considered to transition from simulation-based
validation to deployment in operational settings. Comparison

of neuromorphic platforms and tools for NCT development are
tabulated in Table 5.

8.3.1 Hardware deployment readiness
The availability and maturity of neuromorphic hardware

remain significant bottlenecks. Although platforms such as Intel
Loihi, BrainChip Akida, and SpiNNaker have demonstrated
promising results in event-driven computation, they are still in the
early stages of mainstream adoption. Current limitations include:

• Restricted access and documentation: Loihi 2 is not yet widely
available for commercial prototyping, and development still
requires specialized knowledge and controlled environments
(e.g., Lava SDK).

• Toolchain compatibility: Simulators like Brian2 and Nengo
offer robust modeling but lack streamlined pipelines for
neuromorphic hardware integration.

• Limited edge-ready deployment: Although Akida and Loihi
support energy-efficient inference, packaging and interfacing
with embedded DT systems remains non-trivial.

A hybrid strategy using general-purpose CPUs to simulate
SNN dynamics with progressive hardware migration may support
early-stage deployment.

8.3.2 Middleware and API challenges
A critical barrier to practical integration lies in the absence

of standardized middleware for spike-based communication
between DT platforms and neuromorphic engines. Common DT
environments, such as Unity, MATLAB/Simulink, and ANSYS Twin
Builder, are typically time-stepped or event-based simulators, not
natively compatible with SNN dynamics.

Key integration challenges include:

• Real-time encoding overhead: Translating multivariate
telemetry (e.g., voltage, latency, throughput) into biologically
inspired spike trains in real time requires efficient encoders.

• Clock synchronization issues: SNNs depend on temporally
precise spike timing, which can be desynchronized in high-
level DT environments.

• Interfacing complexity: Bridging event-driven neuromorphic
logic with traditional communication interfaces (e.g., REST
APIs, MQTT) demands middleware capable of real-time
translation and adaptation.

Emerging tools such as Lava and ROS-integrated Brian2
interfaces may support this gap in the near future, but current
solutions are largely bespoke.

8.3.3 Real-world telemetry datasets
An ongoing limitation for validation and benchmarking is

the scarcity of publicly available Digital Twin telemetry datasets
with labeled cyber anomalies. Compared to classical cybersecurity
datasets (e.g., CICIDS, UNSW-NB15), DT telemetry is often:
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TABLE 5 Comparison of neuromorphic platforms and tools for NCT development.

Platform Type Real-time
execution

Hardware
acceleration

Plasticity
support (e.g.,
STDP)

Learning rule
support

IoT/Edge
suitability

Loihi (v2) Neuromorphic chip � � � (STDP, R-STDP) On-chip adaptive
learning

�

SpiNNaker Hardware system � � (ARM cores) � (event-driven) Local STDP × (lab scale)

Brian2 Software simulator × × � (custom Python) Custom STDP
models

×

Nengo Framework + frontend � (via hardware) � (Loihi/FPGA) � (customizable) Rule-agnostic
backend

�

Lava Software framework � (with Loihi) � � (STDP modules) Modular APIs �

BindsNET PyTorch library × × (CPU/GPU) � (via PyTorch) Backprop + STDP ×

Neurogrid Mixed-analog system � � (analog accel.) � (Hebbian) Hebbian +
Inhibition

�

TrueNorth Digital ASIC � � × (no on-chip
learning)

Pre-trained only �

NSoC (Tianjic) Hybrid SoC � � � (mixed-mode
STDP)

Hybrid ANN+SNN
control

�

Dynap-SE Mixed-signal SNN Chip � � (event-based) � (AER, Hebbian) On-chip STDP �

BrainScaleS-2 Analog neuromorphic system � � (sub-ms analog) � (bio-realistic) Hebbian, LTP/LTD × (lab setup)

GeNN GPU-accelerated SNN
framework

� (CUDA) � (NVIDIA GPUs) � (custom) STDP, Izhikevich × (GPU required)

CARLsim Software SNN simulator × × � (scalable) STDP, homeostatic ×

NeuroSim Modeling framework × � (memristor sim) � (device-level) STDP, RRAM
models

� (design-phase)

• Domain-specific: Tailored to verticals such as smart grids,
autonomous vehicles, or healthcare.

• Unlabeled or proprietary: Due to privacy, regulation, or
intellectual property concerns.

• Non-standardized: Lacking common formats and annotation
schemes across industries.

We propose two complementary strategies:

1. Synthetic data generation using simulators like GridLAB-D
(energy), CARLA (automotive), and NS-3 (networking) with
anomaly injection.

2. Collaborative curation of telemetry datasets with industry and
regulatory sandboxes, with privacy-preserving techniques for
anonymization and sharing.

In the long term, efforts toward open, anonymized telemetry
repositories, analogous to MIMIC-III in healthcare, would
significantly benefit neuromorphic cybersecurity research.

While this work focuses on demonstrating adaptive anomaly
detection and federated neuromorphic learning, adversarial
robustness remains an important direction for future research.
Neuromorphic systems, like traditional deep learning models,
can be vulnerable to adversarial perturbations or carefully
crafted telemetry signals. Emerging countermeasures such as
noise injection, spike jitter regularization, and synaptic weight
smoothing (Schuman et al., 2022) will be incorporated into the
NCT framework to harden it against adversarial evasion attempts,
particularly in safety-critical cyber-physical deployments.

8.4 Future benchmarking roadmap

To transition the Neuromorphic Cyber-Twin (NCT)
framework from concept to deployable technology, we propose a
systematic benchmarking plan:

• Simulation Environments: Utilize CARLA for autonomous
driving scenarios, GridLAB-D for power grid Digital Twins,
and NS-3 for communication network emulation to create
realistic telemetry streams.

• Cybersecurity Datasets: Integrate standard datasets
such as CICIDS2017, UNSW-NB15, and IoT-23 to
train and evaluate intrusion detection and anomaly
classification accuracy.

• Hardware Benchmarking: Deploy the NCT architecture on
neuromorphic hardware platforms (Intel Loihi 2, BrainChip
Akida, SpiNNaker) to measure power efficiency, spike sparsity,
and inference latency at scale.

• Federated and Distributed Validation: Test the federated
STDP framework on distributed nodes to evaluate
synchronization overhead, scalability, and robustness
under non-IID data conditions.

This roadmap provides a clear path toward experimental
validation, ensuring that future studies will comprehensively
benchmark the proposed architecture under realistic and scalable
conditions. Quantitative comparison of neuromorphic hardware
and ANN systems is tabulated in Table 6.
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TABLE 6 Quantitative comparison of neuromorphic Hardware and ANN systems.

Platform Scale & Arch. Neurons Proc. Energy /
Event

Latency /
throughput

On-
chip

Power Application

Intel Loihi 2 Davies
et al., 2021

Neuromorphic SoC ∼1M 4 nm 100× lower vs
CPU

< 1 ms Yes 23.6 mW Sensor fusion; LLM
inference

Loihi Hala Point
Uludağ et al., 2024

1152-chip cluster ∼1.15B 4 nm 100× lower vs
GPU

50× faster Yes 2.3 kW Datacenter
neuromorphic
compute

BrainChip Akida
Lutes et al., 2025

Edge SoC ∼1.2M 28 nm sub-μ
J/inference

real-time No 1 W Edge AI;
cybersecurity

SpiNNaker Yan
et al., 2019; Furber
and et al., 2014

ARM mesh cluster ∼1M/board 130 nm 8 nJ/event 1:1 wall-clock Yes 80 kW Robotics;
neuroscience sim

Loihi (U-Net) Roy
et al., 2019

SNN U-Net ∼10M 14 nm 2× more
efficient

comparable Yes – Image segmentation

Loihi 2 (LLM)
Schuman et al.,
2022

Transformer SNN ∼1M 4 nm 2× less energy 3× faster Yes – LLM inference

GPU/CPU ANN
Mead, 1990

Dense inference N/A 5–7 nm 10–
100 mJ/inference

10–50 ms No 100–300 W Vision; NLP; HPC

Finally, we emphasize that these results are intended as
illustrative. In our proof-of-concept experiments with the NSL-
KDD dataset, the SNN achieved lower accuracy than conventional
ML baselines. This outcome is consistent with the current state
of neuromorphic research, where the primary advantages of SNNs
lie in event-driven efficiency, low latency, and energy savings
rather than maximizing classification accuracy in early prototypes.
The presented results should therefore be viewed as evidence
of feasibility within the proposed Digital Twin framework, with
future work focusing on enhanced encoding strategies, larger-scale
networks, and hybrid neuromorphic–ML approaches to improve
accuracy while retaining the neuromorphic benefits.

9 Comparative analysis with
traditional security models

To contextualize the performance and novelty of the
Neuromorphic Cyber-Twin, Table 7 presents a comparative
analysis against conventional artificial neural network and machine
learning based security models commonly applied in Digital Twin
environments. This comparison highlights the advantages of NCT
in latency-critical, resource-constrained, and dynamically evolving
cyber-physical system (CPS) scenarios. Traditional approaches
often rely on centralized training, large labeled datasets, and
periodic retraining to adapt to new threats. By contrast, the
NCT employs spiking neural networks (SNNs) with spike-timing
dependent plasticity (STDP) to achieve event-driven, on-device
adaptation. This enables decentralized decision-making, rapid
response to emerging anomalies, and significantly reduced energy
consumption.

Adversarial Robustness: While these benefits underscore
the potential of the NCT, adversarial robustness remains a
critical open challenge. Neuromorphic systems may still be
susceptible to evasion attacks, where carefully crafted spike patterns

mimic benign telemetry, and poisoning attacks, where malicious
updates compromise federated STDP aggregation. Promising
countermeasures include adversarial training with perturbed spike
encodings, anomaly-aware STDP rules resistant to gradient-
based manipulation, and trust-weighted aggregation strategies
in federated learning. Addressing these aspects is an essential
direction for strengthening the resilience of NCT deployments.

10 Conclusion and future work

Digital Twins are becoming indispensable in modern cyber-
physical systems, enabling real-time modeling, monitoring, and
autonomous control. Yet, as these systems scale in complexity
and interconnectivity, they are increasingly exposed to dynamic
cyber threats that traditional static security models cannot address.
This paper introduced the Neuromorphic Cyber-Twin, a brain-
inspired architectural framework that embeds cognitive security
mechanisms directly into DT environments. By leveraging spiking
neural networks, event-driven computation, and biologically
plausible learning rules such as spike-timing-dependent plasticity
(STDP), the NCT enables low-latency, adaptive, and energy-
efficient defense strategies capable of real-time anomaly detection
and autonomous response.

The NCT architecture has been positioned across a range
of critical use cases, from smart grids and vehicle-to-everything
(V2X) systems to medical cyber-physical devices and federated
smart city infrastructures. Compared to conventional machine
learning-based detection methods, the NCT demonstrates unique
advantages in its unsupervised learning capabilities, contextual
adaptability, and deployment feasibility on edge neuromorphic
hardware.

Looking ahead, several directions offer promising opportunities
for advancing this work. These include the development of
functional prototypes on neuromorphic platforms such as Intel
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TABLE 7 Comparison of neuromorphic Cyber-Twin with traditional DT security architectures.

Feature ML-based DT security ANN-based IDS Neuromorphic Cyber-Twin (NCT)

Learning mode Supervised Offline batch learning Unsupervised online learning

Latency Medium High Ultra low (event-driven)

Energy efficiency Low (cloud-dependent) Medium (GPU-intensive) High (event-driven neuromorphic)

Adaptivity Weak (requires retraining) Moderate (partial re-training) Strong (via STDP-based plasticity)

Hardware Fit Cloud / Edge GPU Cloud CPU / GPU Edge Neuromorphic SoC (e.g., Loihi, Dynap-SE)

Explainability Moderate (feature importance) Low (black-box models) Moderate (traceable spike activity)

Context awareness Weak (data-driven only) Weak (static features) Embedded (via feedback-memory loop)

Loihi and BrainChip Akida, and the simulation of spiking
models using frameworks like Brian2. Another critical avenue
involves the generation of synthetic DT telemetry datasets with
embedded anomalies to enable benchmarking and validation
of neuromorphic security mechanisms. The extension of the
NCT to support federated learning architectures will also
be essential, enabling secure, distributed adaptation across
decentralized DT ecosystems. Moreover, hardware–software
co-design approaches are needed to embed SNN inference
into low-power edge platforms while maintaining real-time
responsiveness. Finally, the creation of unified toolchains
that integrate Digital Twin simulation environments with
neuromorphic processing backends will be vital for streamlining
development and deployment.

In summary, the NCT lays the foundation for a new class of
intelligent, self-defending digital systems. By fusing neuromorphic
computing with dynamic cyber-physical infrastructures, it opens
a compelling direction for the future of resilient, context-aware
security in virtualized ecosystems.
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