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Finding the needle in the
haystack—An interpretable
sequential pattern mining
method for classification
problems

Alexander Grote*, Anuja Hariharan† and Christof Weinhardt

Institute for Information Systems (WIN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Introduction: The analysis of discrete sequential data, such as event logs and
customer clickstreams, is often challenged by the vast number of possible
sequential patterns. This complexity makes it difficult to identify meaningful
sequences and derive actionable insights.
Methods: We propose a novel feature selection algorithm, that integrates
unsupervised sequential pattern mining with supervised machine learning.
Unlike existing interpretable machine learning methods, we determine important
sequential patterns during the mining process, eliminating the need for post-hoc
classification to assess their relevance. Compared to existing interesting
measures, we introduce a local, class-specific interestingness measure that is
inherently interpretable.
Results: We evaluated the algorithm on three diverse datasets - churn
prediction, malware sequence analysis, and a synthetic dataset - covering
different sizes, application domains, and feature complexities. Our method
achieved classification performance comparable to established feature selection
algorithms while maintaining interpretability and reducing computational costs.
Discussion: This study demonstrates a practical and efficient approach for
uncovering important sequential patterns in classification tasks. By combining
interpretability with competitive predictive performance, our algorithm provides
practitioners with an interpretable and efficient alternative to existing methods,
paving the way for new advances in sequential data analysis.

KEYWORDS

sequential pattern mining, feature selection, sequence classification, interpretable
machine learning, categorical time series

1 Introduction

Sequential pattern mining (SPM) is a critical area of data mining, focused on
discovering insights into sequences of discrete events, with a broad range of practical
applications. For example, SPM can be applied to various types of sequential data,
including clickstream data of customers (Melnykov, 2016), DNA sequences (Fokianos and
Kedem, 2003; Weiß and Göb, 2008), and protein sequences (Krogh et al., 1994). However,
analysing these sequences, e.g., for personalised marketing or behaviour analysis, can be
challenging, particularly when the number of unique events is high, which leads to a very
large number of sequential patterns (Fournier-Viger et al., 2017). This issue is particularly
pronounced in real-world scenarios, where the number of unique events, such as clicks,
searches, and likes, can range from thousands to hundreds of thousands for a modern
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website (Liu et al., 2016; Olmezogullari and Aktas, 2022; Su and
Chen, 2015). Furthermore, a single event can trigger a cascade of
underlying events, including internal transactions, status updates,
and notifications to external systems, among others, thereby
amplifying the complexity of the analysis. Moreover, since SPM
is typically unsupervised and agnostic to the end goal (Gan
et al., 2019), many discovered patterns may not be relevant or
interpretable in the context of specific business outcomes, such as
churn prediction. In such cases, the goal is to identify patterns
that are highly specific to churning customers, even if they
occur infrequently, as these can serve as early warning signals or
triggers for targeted retention strategies. While traditional SPM
methods tend to highlight frequent patterns, this can obscure
less common but more informative1 sequences. Previous works
(Adda et al., 2007; Darrab et al., 2024) have shown such effects
for rare item mining, where the focus is explicitly on infrequent
patterns. Furthermore, in large-scale datasets, even rare patterns
can achieve statistical significance due to the sheer number of
sequences, which complicates the task of isolating truly meaningful
signals from statistically significant, but potentially spurious noise.
This highlights the need for goal-driven or supervised approaches
that prioritise patterns based on relevance to the outcome of
interest, rather than frequency or statistical significance alone.
Similar problems arise in analysing process mining graphs, which
are directed graphs from discrete event logs (Van Der Aalst,
2016). For instance, interpreting and linking the results of a
customer satisfaction survey back to the specific sequences of
events responsible for churning customers can be challenging due
to the high number of nodes in these graphs (Lamghari, 2022).
This problem is even more challenging when analysing graphs
visually, owing to the numerous event paths, resulting in situations
of cognitive overload, error-prone and time-consuming analyses
(Lamghari, 2022; Zimmermann et al., 2024).

One way to overcome these issues and to better understand
such complex sequential data is to use explainable Artificial
Intelligence (xAI) (Molnar, 2025; Lou et al., 2012). xAI frameworks,
such as SHAP (Lundberg and Lee, 2017) or LIME (Ribeiro et al.,
2016), offer explanations as to which sequences have the most
predictive power. However, the application of such frameworks,
in particular deep neural networks for modelling sequential data,
is often hindered by computational costs, error susceptibility
(Atzmueller et al., 2024; Rudin, 2019; Bilodeau et al., 2024) and
potential financial constraints from a scalability and business
perspective (Cubric, 2020). As a result, simpler approaches with
glass-box models, such as decision trees and generalised additive
models, are often preferred (Hastie and Tibshirani, 1987; Rudin,
2019). Yet these models have their own challenges, particularly
when dealing with sequential patterns. To evaluate the impact a
sequential pattern has on the underlying classification variable,
it needs to be isolated as a one-hot encoded feature (Mougan
et al., 2023). This process, however, can become quickly unfeasible
due to the high-memory requirements of one-hot encoding

1 We use the terms “informative”, “interesting” and “important”

interchangeably to describe the sequences that carry information about the

underlying classification problem.

(Yang et al., 2018; Xiang et al., 2020), which is especially true for a
large number of sequential patterns.

Thus, there is a pressing need to reduce the number
of sequential patterns in time series data in a way that
maintains alignment with a supervised classification goal, while
supporting interpretability and scalability. Addressing this gap,
our study explores the integration of unsupervised SPM with
supervised learning to filter and reduce the number of meaningful
patterns before feature encoding. This approach aims to balance
interpretability, computational feasibility, and relevance to a
downstream classification task.

To this end, we investigate the following research questions:

• RQ1: Can unsupervised sequential pattern characteristics be
used as a reliable indicator for selecting the most informative
patterns that contribute to accurate binary classification?

• RQ2: If so, how well does our feature selection criterion
compare to existing feature selection algorithms, such as
mutual information or feature importance from decision
trees?

To investigate our research questions, we quantify the impact
a sequential pattern has on a binary classification problem by
correlating its confidence measure class-wise, and we are able
to reduce the number of sequential patterns through statistical
significance tests. To assess the effectiveness of our proposed feature
selection process, we conducted a comprehensive evaluation with
(1) an artificially generated classification dataset, enabling control
of the informativeness of the sequences, and (2) two real-world
sequence datasets for malware detection and clickstream analysis
(RQ1). For all datasets, our correlation analysis of the delta
confidence measure, based on which we select the sequences,
shows a statistically significant positive correlation with the target
variable. These results imply that our feature criterion can be
used to determine the influence that a sequence has on a
classification problem. Moreover, we show the importance of
the mined sequential patterns by comparing the downstream
classification performance on all datasets with existing feature
selection algorithms (RQ2). The results indicate that our feature
selection criterion performs equally well on two of three datasets
compared to existing feature selection algorithms. In terms of
computational time and memory usage, we demonstrate that our
feature selection algorithm is more efficient than one-hot encoded
sequential patterns with the subsequent application of interpretable
machine learning methods.

With this new feature selection methodology, we contribute
to existing information systems literature by proposing a novel
and utility-independent way to use sequential pattern algorithms
to mine and rank informative sequential features. The overall
principle generally applies to any SPM algorithm and does
not require any algorithmic modifications. Using information
about the binary target variable during the SPM process and
subsequent testing for statistical significance reduces the need for
memory-intensive feature selection for downstream classification
problems. In comparison to existing methods that rely on statistical
association metrics such as the phi coefficient, 1-quality (Pellegrina
and Vandin, 2024), Chi-squared, or entropy, our approach offers
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a locally sensitive measure of pattern impact that is based on class-
conditional dependencies. The phi coefficient and 1-quality capture
global associations between two binary variables but tend to dilute
the importance of class-specific patterns, especially those confined
to small subgroups. In contrast, Chi-squared and entropy are more
sensitive to local patterns; however, their non-linear behaviour
can make the results difficult to interpret. By providing a class-
local estimate of impact, our method makes it easier to identify
and understand patterns that are specific to particular classes,
even when they occur infrequently. This interpretability helps
practitioners uncover hidden correlations in their sequential data.
For instance, these findings can be used in customer interaction
analysis to enhance recommendations, bundling, and offerings.
Furthermore, the mined sequential patterns also represent an
innovative starting point for feature engineering, with the potential
to enrich already existing machine-learning models with novel
feature sets.

The remainder of our paper introduces related work in Section
2. In Section 3, we explain our novel feature selection method
and the evaluation methodology. In Section 4, we elaborate on
our experiments and discuss the results in Section 5. Lastly, we
summarise our findings and outline directions for future research
in Chapter 6.

2 Related work

In the following section, we review the feature selection
problem for SPM from various perspectives. First, we introduce
the fundamental aspects of SPM problems. Then, we provide an
overview of algorithms used to model sequential data, including
categorical time series and state-of-the-art deep learning methods.
Lastly, we review the most common feature selection methods
employed for binary classification problems to form the basis for
evaluating our approach.

2.1 Association rules and sequential
pattern mining

Association rules, introduced in the early 1990s (Agrawal et al.,
1993b,a), find relationships and dependencies between items that
co-occur in a dataset. Typically, association rules are expressed
in the form of A → B, where A and B represent sets of items.
One of the most well-known applications of association rules is
market basket analysis, where the goal is to discover relationships
between items frequently purchased together. By identifying such
associations, businesses can gain insights into customer behaviour
and make informed decisions regarding product placement, cross-
selling, and promotions. The original algorithm for mining
association rules, known as Apriori, was proposed by Agrawal et al.
(1993b). It employs a principle known as the Apriori property,
which asserts that all subsets of a frequent itemset must also
be frequent. However, due to its iterative approach that requires
multiple database scans, it was found to be computationally
inefficient in practice. A more efficient algorithm called FPGrowth
was later introduced by Han et al. (2004). The FPGrowth algorithm
efficiently finds frequent itemsets by using a compact prefix tree

TABLE 1 2×2 contingency table showing the joint distribution of itemsets
A and B, with a, b, c and d being the corresponding absolute frequencies.

Itemset B B Total

A a b a + b

A c d c + d

Total a + c b + d n

(FP-tree) to avoid candidate generation, whereas the Apriori
algorithm generates and tests candidate itemsets, making FP-
Growth faster and more memory-efficient for large datasets.

To evaluate association rules, support and confidence measures
as shown in Equations 1, 2 are used. While support captures
the frequency of an association rule, confidence describes the
conditional probability of a rule, given a certain prior.

support(A, B) = P(A | B) (1)

confidence(A → B) = P(B|A) (2)

While support and confidence are commonly employed to
evaluate association rules, these metrics have notable limitations.
In particular, they overlook statistical correlations and may fail
to reflect genuine dependencies between events (Morishita and
Sese, 2000; Sese and Morishita, 2002; Llinares-López et al., 2015).
To address this, Piatetsky-Shapiro (1991) propose the use of lift,
defined in Equation 3.

lift(A, B) = P(A, B)
P(A)P(B)

(3)

Although lift is useful for identifying deviations from
independence, it can still yield association rules that are statistically
insignificant (Hämäläinen and Nykänen, 2008). To address this
limitation, alternative interestingness measures based on statistical
hypothesis testing have been proposed to more rigorously assess
the significance of associations (Webb, 2006). These methods
typically rely on a 2×2 contingency table, as shown in Table 1,
which summarises the joint and marginal frequencies of itemset
occurrences and non-occurrences. This table serves as the
foundation for statistical tests such as the Chi-squared test and
Fisher’s exact test, both of which evaluate whether item co-
occurrence significantly deviates from what would be expected
by chance. Like the Chi-squared statistic, the 1-quality measure,
which is also known as leverage, can be used as an alternative to
assess the association between a pattern and the target variable
(Pellegrina and Vandin, 2024). This measure captures how often a
pattern and the target variable co-occur, compared to what would
be expected if they were independent. In other words, it quantifies
the gap between the observed frequency of a pattern appearing in
transactions labelled with 1 and the frequency we would expect
under the assumption that the pattern and the target are unrelated.

Algorithms such as AprioriSMP (Morishita and Sese, 2000) and
TidalSMP (Sese and Morishita, 2002) incorporate the application
of these tests, employing horizontal and vertical mining strategies
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utilising p-values to identify statistically significant itemsets. To
combat the multiple testing problem in significant pattern mining,2

which searches for the most significant patterns, one can control
for false discoveries (e.g., False Discovery Rate (FDR) (Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001) or Family-
Wise Error Rate (FWER) (Bonferroni, 1936; Holm, 1979)). In their
tutorial, Pellegrina et al. (2019) provide a comprehensive overview
of existing methods. For instance, Terada et al. (2013a) introduced
the “Limitless Arity Multiple-testing Procedure” (LAMP), which
enhances efficiency by pruning itemsets based on their minimum
attainable p-values. The computational performance of LAMP was
further improved in subsequent work by Minato et al. (2014).
Alternatively, Terada et al. (2013b); Llinares-López et al. (2015)
applied permutation tests to adjust for multiple comparisons.

Despite their effectiveness in discovering associations, the
aforementioned approaches do not consider temporal constraints
in their rule mining process. In other words, they only look at the
frequency of items but ignore the order of their occurrence. To
address this limitation, SPM algorithms have been developed. SPM
algorithms can be divided into two categories, namely Apriori-
based and pattern-growth approaches (Millham et al., 2021).
Apriori-based algorithms, such as Sequential PAttern Discovery
using Equivalence classes algorithm (SPADE) (Zaki, 2001) and
Generalised Sequential Pattern algorithm (GSP) (Srikant and
Agrawal, 1996), generate a large number of sequence candidates,
which are then tested for a specified minimum support threshold.
Pattern-growth algorithms, such as PrefixSpan (Pei, 2001) and
FreeSpan (Han et al., 2000), solve the computational issues of
large candidate generation by introducing an efficient search space
partitioning (Abdullah et al., 2019).

While these algorithms provide a computationally efficient way
of mining sequential patterns, they typically result in a large set
of sequences that are often redundant and do not necessarily
carry information about the underlying classification problem (Gan
et al., 2019). One way to minimise redundancy is to use Closed
and maximal sequential patterns. A closed sequential pattern
(Han et al., 2013) retains frequency information by ensuring no
supersequence has the same support, while a maximal sequential
pattern ensures no supersequence is frequent, keeping only the
longest relevant patterns (Fournier-Viger et al., 2013). However,
these approaches fall short in accounting for correlation with
external classes since statistical measures such as Chi-squared
or the correlation coefficient are anti-monotone (Morishita and
Sese, 2000; Sese and Morishita, 2002). In this context, non-
maximal or open patterns might still hold high explanatory value.
Another solution is high-utility SPM, which considers the utility
of each sequential pattern during the mining process (Truong-
Chi and Fournier-Viger, 2019). For utility-based pattern mining,
its associated algorithms, such as USpan (Yin et al., 2012) and
CHUSP (Dinh et al., 2023), generally assume that a utility value is
specified for each event in the sequence. However, in a classification
setting, such utility measures are not explicitly available, which

2 This task is studied under various names in the literature, including

subgroup discovery (Atzmueller, 2015), discriminative pattern mining (Cheng

et al., 2008), and contrastive pattern mining (Bay and Pazzani, 2001).

Accordingly, we use these terms interchangeably in this work.

makes the algorithms unsuitable. Similar to the previous work on
statistical testing for itemsets, Dalleiger and Vreeken (2022) also
leverage an upper bound during the mining process to increase
the efficiency, while Tonon and Vandin (2019) proposes using the
Westfall-Young method for multiple hypothesis testing with SPM.
Our work complements these existing works on statistical testing
by proposing a more streamlined approach that repurposes existing
SPM algorithms without in-built statistical testing capabilities to
compute a novel measure of interest. This novel measure captures
the directional and bounded discriminative effect size that a pattern
exhibits with respect to a given binary classification problem and is
based on conditional, within-group differences.

2.2 Categorical time series modelling

A binary time series classification problem involves
categorising sequences of time-dependent data (time series)
into one of two distinct classes (Lin et al., 2015). Each time series
consists of ordered data points collected over time, and the goal
is to train a model to predict whether a given time series belongs
to one of the two predefined classes, typically based on patterns or
trends in the temporal data (Ismail Fawaz et al., 2019). We refer
to this time series as categorical when dealing with discrete data
points as features.

There are two ways of modelling a binary time series
classification problem: (1) using time series models directly or (2)
extracting features from the time series and treating them as a
tabular and time-invariant dataset as input to a regression problem
(Fulcher and Jones, 2014). Compared to numerical time series,
categorical time series require learning a numerical representation
of the categorical values. One of the earliest approaches to model
categorical time series is Markov chains (Gagniuc, 2017), which
use a transition matrix to estimate the next event. Lin et al. (2022)
introduces a hidden Markov ensemble algorithm that uses the
Wasserstein distance and autoencoders to learn discrete features of
time series, combined with a hidden Markov model for learning
continuous features. An alternative approach is given by Wang
et al. (2021), who propose an end-to-end representation learning
model for time series classification, utilising temporal convolution,
residual networks, bidirectional long short-term memory (LSTM)
networks, and a multi-layer perception network. Similarly, the
Temporal Fusion Transformer (Lim et al., 2021) proposes a neural
network architecture that not only learns a representation of a time
series but also combines it with static, time-independent features to
solve a classification problem. However, such neural network based
architectures are considered black-box models. To interpret such
them on an observation level, we need an additional interpretability
component, such as SHAP (Lundberg and Lee, 2017) or one of its
time-aware derivatives (Nayebi et al., 2023; Raykar et al., 2023).
This, however, adds more complexity and runtime, necessitating
more straightforward approaches in practice.

An easier-to-interpret and computationally less demanding
way of determining significant features for a classification problem
is through machine learning, where the importance of features can
be learned based on their correlation to the underlying problem
(Saarela and Jauhiainen, 2021; Liu et al., 2022). However, the
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features must be mined manually beforehand, involving domain
knowledge and feature engineering to create meaningful features
(Dong and Liu, 2018). In the case of numerical time series, such
features are overall trends, seasonality, stationarity, lagged values
and other measures of central tendency, such as the minimum
or maximum value (Mukhopadhyay and Samanta, 2023). A more
advanced technique of mining features is time series shapelets,
which aims at finding the most representative numerical time series
subsequence for a given class (Ye and Keogh, 2009). However, these
numerical features do not apply to a categorical time series since
categorical values cannot be directly transformed to an ordinal scale
(Lin et al., 2015; Fokianos and Kedem, 2003). Instead, one common
technique used to encode categorical events is binary encoding, also
known as one-hot-encoding (Suits, 1957). Although this technique
disregards the temporal relationships within sequences, it identifies
whether a specific sequence appears in an observation. As a result, it
is commonly used in interpretable machine learning (Davis, 2021;
Alkharusi, 2012). However, we obtain a memory-intensive feature
matrix by doing so, making it challenging to apply this approach in
practice (Xiang et al., 2020). In this study, we propose a memory-
efficient method for extracting important sequential patterns from
categorical time series data and quantifying their influence on the
classification task, thereby making it well-suited for exploratory
data analysis and feature selection.

2.3 Feature selection algorithms

Feature selection aims to reduce dimensionality in machine
learning problems. In their survey, Preyanka Lakshme and Kumar
(2022) divide the feature selection process into unsupervised and
supervised problems. For supervised problems, the authors further
distinguish between (1) filter, (2) wrapper, (3) embedding, and
(4) hybrid methods. The filter approach describes the selection
of features based on statistical properties, such as the missing
value ratio, the correlation coefficient, or the permutation feature
importance, ANOVA, Mutual information (Kraskov et al., 2004).
Wrapper methods iteratively check if a machine learning model
has improved its prediction capabilities due to the inclusion or
removal of features. Typical examples encompass the forward
(Whitney, 1971) and backward selection (Marill and Green, 1963)
of features, as well as genetic algorithms (Leardi, 1996). The
embedded and hybrid approaches are mixtures of the already
mentioned types. Embedded methods use the filter and wrapper
methods within the actual prediction model, implementing their
own feature selection during the training process of the machine
learning model. A typical example is the L1 or L2 regularisation
of linear regression models (Ng, 2004). Hybrid approaches, in
contrast, use a combination of filter and wrapping methods. A
prominent example of such a hybrid system is Boruta (Kursa et al.,
2010), which iteratively checks if each feature is more important
than randomly shuffled features from the supplied dataset. Based
on statistical significance tests, the features are then either retained
or discarded. Another advanced hybrid feature selection algorithm
is the minimum Redundancy Maximum Relevancy (mRMR)
principle (Peng et al., 2005). The idea is to account for redundancy
among the important features and thereby maximise the overall

discriminative power of the selected features. While the above-
mentioned feature selection methods work well with tabular data,
they do not consider temporal dependencies of sequential events
by design. Hence, to utilise these feature selection algorithms, it
is necessary to extract temporal features beforehand. With our
work, we address this shortcoming and directly integrate the feature
selection into the SPM process. The subsequent section presents a
comprehensive delineation of the proposed methodology utilised
for the extraction and subsequent selection of temporal features.

3 Materials and methods

In this section, we first explain our feature selection algorithm
in detail. This includes the criteria used to evaluate the
importance of each sequence and the subsequent evaluation (i.e.
statistical measure) for assessing the algorithm. The pseudo-
code in Algorithm 1 introduces our framework more formally.
Next, we describe the datasets we used in our experiments
to evaluate the feature selection method and the selection
procedure of these datasets. The entire codebase to reproduce
the experiments is available at https://github.com/alexandergrote/
cts.

Require: Number of bootstrap rounds Z
Require: Minimum support threshold θsupp

Require: Maximum sequence length θl

Require: Minimum effect size θδ

Require: Significance level α

1: for z = 1 to Z do
2: Draw bootstrapped sample s
3: Apply SPM class-wise with θsupp and θl

4: Calculate δs,r = Ps,r(B|A,Dpos) − Ps,r(B|A,Dneg)
for each sequential pattern r

5: end for
6: Shrink sequences to a unique subset of sequences,

ignoring antecedents and precedents
7: for each unique sequence r do
8: Conduct a Mann-Whitney-U test with the

alternative hypothesis |δr| > θδ

9: Correct for multitesting
10: Keep sequence based on corrected p-value < α

11: end for

Algorithm 1. Pseudocode of feature selection process of binary
classification problem.

3.1 Feature selection algorithm

The main idea of the feature selection algorithm is to first
capture sequential patterns for each class of the binary classification
problem separately. Next, we calculate the difference in the
confidence measure ∈ [0, 1] for each pattern r and select the most
important sequences based on this difference.

δr = Pr(B|A, Dpos) − Pr(B|A, Dneg) (4)
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Equation 4 illustrates the underlying concept formally, where
Dpos represents the set of positive examples and Dneg the negative
examples. For each sequence r, we calculate a difference δr yielding
values within the range [-1,1]. This difference represents the
contrast in confidence levels between two subsets: one containing
only positive class values and the other containing only negative
class values. The absolute value of δr serves as an indicator of the
sequence’s impact on classification. A value close to 1 indicates a
strong influence, while 0 suggests the sequence is equally influential
for both classes. Furthermore, the sign of δr provides additional
insight: negative values indicate a greater impact on the negative
class, whereas positive values indicate a greater impact on the
positive class. In this work, we used the PrefixSpan algorithm (Pei,
2001) to mine sequential patterns, but the overall procedure is
independent of the SPM algorithm.

We repeat the overall process Z = 10 times with stratified,
random sampling to better reflect the underlying aleatoric
uncertainty. This means each fold contains the same proportions
of classes, but the data points are drawn at random. The choice
of Z is arbitrary; however, we select ten as a balance between the
computational cost of SPM and predictive accuracy. This choice
aligns with findings in cross-validation research, suggesting that
5-10 folds is generally sufficient for model evaluation (Kohavi,
1995; Breiman and Spector, 1992; Hastie et al., 2009). We store the
confidence difference between positive and negative classes for each
run. As an initial measure to diminish the number of sequences, we
employ two minimum support thresholds: an absolute threshold
of 100 occurrences, which guarantees the existence of a sufficient
number of data points for statistical analysis, thereby precluding
the extraction of numerous unimportant patterns. Afterwards, we
shrink the number of sequences by only considering unique ones.
This is important since sequences may have different antecedents
and consequents but share the same sequence of events. For
instance, the sequence A → B → C consists of two sequential
patterns with different confidence estimations: P(C|A → B) and
P(B → C|A). In our case, we have retained the sequences with
the highest absolute delta confidence measure and disregarded the
remaining sequences.

To select discriminative features that have statistically
significant effects on the classification problem, we conduct
a Mann-Whitney-U (MWU) test (Mann and Whitney, 1947;
Wilcoxon, 1945) on the confidence differences for each sequence.
This non-parametric approach was selected based on several
methodological considerations. First, the data exhibited non-
normal distribution patterns and were measured on an ordinal
scale, while also meeting the critical assumption of independence
between comparison groups. Additionally, the dataset comprised
absolute delta confidence values strictly bounded between 0
and 1, which precluded the use of parametric tests that assume
unbounded, normally distributed continuous data. The number
of samples in this context depends heavily on the number of
bootstrap iterations, which directly influences the stability and
reliability of the resampled estimates. Finally, the MWU test
offers robust performance with small sample sizes and is relatively
unaffected by outliers, an advantage given the constrained range
and potential skewness of our measures. In particular, we are
interested in sequences with an absolute delta confidence value

greater than 0. To further reduce the chances that a sequence is
considered important by randomness and to ensure a sufficiently
large effect size for practical significance, we require the absolute
delta confidence value of the sequences to be above a user-defined
delta confidence threshold. To combat the multitesting problem
of inferring only based on observed values and to control the false
discovery rate (i.e., identify as many significant features as possible
while incurring a relatively low proportion of false positives), we
adjust the p-values via Benjamini-Yekutieli correction (Benjamini
and Yekutieli, 2001). Unless stated otherwise, we have considered
the maximum sequence length of 3 as a length constraint, similar
to prior work on website/clickstream data based on online retail
behaviour (Desai and Ganatra, 2015). Longer sequences generally
have lower support and are unnecessary to demonstrate our feature
selection algorithm.

3.2 Datasets

In this section, we will introduce the three datasets with
sequential patterns, based on which we conducted our evaluation.
We primarily use a synthetic dataset to provide a controlled
environment and showcase the inner workings, and then utilise
two real-world datasets to test the applicability of the proposed
algorithm in practice. In particular, we utilise a dataset on malware
detection through API call sequences (Oliveira, 2019) and a dataset
on customer churn with clickstream data (Requena et al., 2020).
After a brief description of each dataset and its preprocessing, we
compare and provide an overview of the statistical properties of
each dataset.

The synthetic dataset consists of 20,000 sequences composed of
15 unique events, which we will denote as separate letters, ranging
from “A” to “O” in the Latin alphabet. To generate a sequence, we
randomly draw the letters sequentially until we meet the desired
sequence length, which we also select randomly to be between 2
and 15. We control for the informativeness by imposing mutually
exclusive constraints, that is, we require some sequences to be only
indicative for one class and not to appear together with another
informative sequence. In our case, A → B, B → C, C → D,D →
E are indicative for the positive class and each of the subsequences
occurs in 10 % of all sequences. Likewise, F → G, G → H, H → I,
I → J signal the negative class, and each subsequence also occurs
in 10 % of all sequences. With these sequences, we can predict the
classes of 80 % of all sequences, and the classification results of the
remaining 20 % are subject to chance.

The malware dataset consists of 44,058 API call sequences
resulting from a 3,000-hour-long execution of malware and
goodware data points in a Cuckoo Sandbox environment (Oliveira,
2019). It consists of 43,979 malware and 1,079 goodware call
sequences, constituting the two classes in this classification task.
Each sequence has 100 non-consecutive API calls encoded as
integer values, which means the same API call does not occur in
direct succession. To avoid class imbalance effects, we downsample
the malware class at random.

The raw customer churn clickstream data stems from
a fashion e-commerce website over two months in 2018
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TABLE 2 Statistical properties of preprocessed and downsampled
datasets.

Dataset Number of Sequence length

Sequences Unique
events

Min Average Max

Synthetic 15 20,000 2 7.14 14

Malware 232 2,158 100 100 100

Churn 4 11,948 5 20.76 155

(Requena et al., 2020). It contains 443,652 anonymised sessions of
clickstream trajectories of website visitors. Each session represents
a series of events that occur within 30 min. The six unique
clickstream events, which are “Page view”, “Detail”, “Add”,
“Remove”, “Purchase”, and “Click”, describe actions on the website.
Notably, only 2.08 % of these clickstream sessions culminate
in purchases, thereby rendering it a profoundly imbalanced
classification problem. To maintain comparability, we conduct the
same preprocessing on the raw data as Requena et al. (2020). This
implies that we keep sequences that are longer than 4 clicks to
ensure that the sequence contains enough events for classification,
and we trim the sequences by only considering the clicks that
occurred before a purchasing decision. Furthermore, we also
downsample the majority class to create a balanced classification
problem and remove sequences that are unreasonably long for a
30-minute session. Just as Requena et al. (2020), we choose 155 as
the maximum allowed sequence length, equalling a reduction in
observations of only 1 %.

Table 2 illustrates key characteristics of the resulting
preprocessed datasets. While they all yield a balanced class
ratio, the number of unique events and sequence lengths differ
significantly. The malware dataset has, on average, the longest
sequence length and the highest number of unique events.
The synthetic dataset, on the other hand, has the shortest
sequences on average, and the churn dataset possesses the fewest
unique events.

4 Results

We conduct a comprehensive evaluation of our proposed
algorithm through six distinct approaches. Firstly, we examine the
correlation between the delta confidence measure and the target
variable, as presented in Subsection 4.1. Secondly, we compare the
delta confidence with existing interesting measures in Subsection
4.2, followed by an ablation study of the effect of different
hyperparameters on runtime, number of selected sequences and
classification accuracy in Subsection 4.3. Next, we compare the
efficacy of our proposed solution with existing feature selection
algorithms in Subsection 4.4. This is succeeded by a benchmark
analysis in Subsection 4.5, which contextualises the obtained
classification accuracies in relation to a fine-tuned classifier. Finally,
we conclude the chapter with Subsection 4.6, wherein we present
a cost-benefit analysis of our algorithm, in comparison to other
feature selection algorithms.

TABLE 3 Number of sequences after each selection step.

Steps Dataset

Synthetic Malware Churn

Unique patterns 210 (100 %) 51,747 (100 %) 119 (100 %)

Aggregated patterns 209 (100 %) 26,751 (52 %) 67 (56 %)

Statistically significant patterns 107 (51 %) 23,161 (45 %) 54 (45 %)

4.1 Feature selection criterion analysis

To analyse the individual steps of our proposed feature
selection algorithm, we track the number of sequences remaining
after each step in Table 3. For clarity in the discussion and analysis,
we refer to the aggregated mined sequences after bootstrapping.
Notably, applying SPM on the malware dataset results in a very high
number of sequences due to 1) a high number of unique events and
2) a sequence length of 100 for each observation.

Figure 1 demonstrates the correlation between the target
variable and the delta confidence measure (RQ1). We observe a
statistically significant positive linear correlation, as measured by
the Pearson correlation coefficient ρ, for all three datasets, albeit
to varying extents. The synthetic and malware datasets exhibit an
almost perfect linear correlation of 0.85 and 0.9, while the churn
dataset only yields a correlation coefficient of 0.56. Furthermore, as
expected, no sequences with a delta confidence around δ = 0 exist.
Instead, sequences with δ > 0 have, on average, a higher number of
positive observations, whereas the reverse is true for sequences with
δ < 0. In the synthetic dataset, the extreme points are represented
by their weighted sequences, which also matches our expectations.

4.2 Comparison to alternative statistical
measures

As noted by Geng and Hamilton (2006) and Tan et al. (2004), a
multitude of interesting measures exist. In this section, we compare
the delta confidence criterion against five of the most prevalent
measures, namely Chi-squared ∈ [0,∞], entropy ∈ [0, 1], the
Fisher odds ratio ∈ [0,∞], the Phi-statistic ∈ [−1, 1] and the 1-
quality ∈ [−1, 1]. The previous visualisation of delta confidence
values in Figure 1 reveals that only the malware dataset exhibits
delta confidence values ranging from -1 to 1. As a consequence,
this is the only dataset that can give a complete overview of
the relationship between other interesting measures and the delta
confidence criterion, which Figure 2 visualises.3 For the Chi-
squared and entropy, we observe a parabolic trend, whereas for
the Fisher Odds Ratio, we see an exponential correlation. Given

3 We have verified the overall trends for the synthetic and churn datasets as

well. While the synthetic dataset exhibits trends identical to those observed

in the malware dataset, the churn dataset does not produce a symmetric

distribution of delta confidence values as shown in Figure 1, limiting the

interpretability of the full range of relationships. To conserve space, we

present visualisations of the subgroup measures exclusively for the malware

dataset.

Frontiers in Big Data 07 frontiersin.org

https://doi.org/10.3389/fdata.2025.1604887
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Grote et al. 10.3389/fdata.2025.1604887

FIGURE 1

Feature selection criterion analysis.

FIGURE 2

Subgroup Interesting measure analysis.

the symmetric nature of Chi-squared values and entropy, it is not
possible to deduce the influence direction from these metrics alone.
The Fisher odds ratio ranges from ∈ [0,∞], whereby a value < 1
indicates a negative influence and a value > 1 a positive one.
However, given the asymmetric nature of the importance curve,
these interestingness measures are difficult to interpret.

A particular interesting comparison is between the delta
confidence, the phi coefficient and the 1-quality criterion. While
the theoretical bounds of Phi (±1) and 1-quality (±1) are seldom
reached in practice, delta confidence more readily approaches its
extremes when patterns are highly class-specific. This disparity
arises from their distinct methodological underpinnings: delta
confidence quantifies directional association by normalising the
difference in pattern occurrence across classes, whereas the Phi-
statistic is derived from the full confusion matrix, considering both
the presence and absence of a pattern. Similarly, the 1-quality
measure, derived from statistical independence, relies on joint and
marginal probabilities from the contingency table, often yielding
smaller values. Hence, both the Phi coefficient and 1-quality
provide a more conservative, global assessment of association,
reflecting the influence of cases where the sequence does not
occur. In contrast, delta confidence highlights local, class-specific
associations.

This difference has practical implications, especially in
applied domains like e-commerce or fraud detection. Consider a
behavioural sequence, e.g., [newsletter → product →
checkout], that occurs almost exclusively among premium

users. Even if rare in the total dataset, delta confidence will correctly
yield a value close to +1, highlighting the pattern’s strong class
specificity. The phi coefficient or 1-quality measure, on the other

hand, will under-represent the sequence’s discriminative power due
to the dilution from observations that do not comply with the
sequence. From a business perspective, such high delta confidence
patterns are valuable for tasks like targeted marketing or early
customer profiling, where the goal is to identify precise, class-
specific signals rather than optimise global prediction performance.

Beyond correlation analysis, further insights emerge when
considering p-values, which are illustrated in Figure 3. The
figure compares the p-values obtained using the delta confidence
combined with the MWU test to those derived from the Chi-
squared test and Fisher’s exact test. It also includes a comparison
with a similar setup to the delta confidence + MWU test, but
instead of using delta confidence, it employs the phi coefficient
along with the 1-quality criterion. Notably, for a fixed p-value
obtained through the delta confidence + MWU approach, we
observe differing p-value magnitudes for the Chi-squared and
Fisher’s exact test. For the alternative setups with the phi coefficient
and 1-quality, we cannot observe such a clear pattern. This suggests
that, despite their monotonic correlation as indicated by the
Spearman coefficient rs, the delta confidence and conventional
subgroup interesting measures may carry different information and
therefore complement each other. While delta confidence measures
conditional, within-group differences, the subgroup interesting
measures assess the significance of observed patterns based on
frequency distributions. Importantly, even when the MWU test
confirms the statistical significance of the delta confidence values,
the Chi-squared or Fisher’s exact test can yield different results,
due to inherent differences in the data and hypothesis (such
as continuous vs. categorical data, or testing for differences in
distributions vs. testing for independence). In summary, delta
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FIGURE 3

P-values comparison.

FIGURE 4

Ablation study on hyperparameters.

confidence offers directional, subgroup-sensitive properties that
are particularly useful for decision-making scenarios that require
understanding nuanced behaviours within specific subpopulations.

4.3 Ablation study on hyperparameters

To elucidate the impact of the hyperparameters on our
proposed feature selection process, we conducted ablation studies,
controlling for accuracy, number of remaining sequences, and
overall runtime on the synthetic dataset. Figure 4 synthesises
the effects of the minimum support, maximum sequence
length, multitesting, minimum effect size, and the number of
bootstrapping rounds. Overall, each threshold value was subjected
to five iterations, and for enhanced readability, we report solely
the average values of the results. To better show the effect of
multiple bootstrap rounds and the maximum sequence length,
we have set the minimum support threshold for these ablation
studies to 0. As anticipated, the minimum support precipitously
reduces the overall runtime and sequence count until no sequences
surpass this threshold. The overall classification accuracy remains
unaffected. The maximum sequence length also shows the expected
effects: for an increasing maximum sequence length, the runtime
increases exponentially while the AUC values and the number
of significant features do not change significantly. We can also
observe that multitesting reduces the overall number of sequences,
has no effect on the overall classification accuracy, but introduces
a computational overhead in terms of runtime. Elevating the
minimum effect size yields a drastic reduction in the overall
feature count and runtime, while accuracy is maintained until no

sequences are available anymore. With regard to bootstrapping, it
is unsurprising that the runtime increases linearly with increasing
bootstrap rounds, while overall classification performance remains
largely unchanged. However, with fewer bootstrap rounds, the
statistical power of the MWU test is low, which can result in no
sequences passing the significance test. In contrast, higher numbers
of bootstrap rounds increase statistical power, leading to more
sequences reaching significance and a more stable delta confidence
distribution.

4.4 Feature selection comparison

To address RQ2, we conduct a comparative analysis of the
feature selection capabilities of the delta confidence measure with
respect to existing algorithms. However, instead of directly using
the absolute delta confidence measure, we create a new ranking ∈
[0,1] by multiplying the relative support values with the absolute
delta confidence values. In this way, we also account for the
frequency of each pattern, which is independent of the delta
confidence measure. We adhere to a machine-learning workflow
as illustrated in Figure 5, partitioning our data into training
and testing sets using a stratified 80:20 split. Furthermore, for
increased robustness, we repeat each experiment five times with
different random seeds each time and employ three well-established
algorithms: Naïve Bayes, Logistic Regression, and an eXtreme
Gradient Boosting (XGB) (Chen and Guestrin, 2016) classifier.
Before training and evaluating each classifier on the area under
the curve (AUC) of the receiver operating characteristic (ROC), we
utilise a feature selection algorithm to select the most informative
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FIGURE 5

Machine Learning workflow for experiments.

features based on the training data. For benchmarking purposes,
we deliberately select three established feature selection methods
that each belong to a different category introduced in Subsection
2.3: mutual information (filter), random forest feature importance
(embedding), and an adaptation of mRMR (hybrid). Furthermore,
we have also considered the Chi-squared as an additional filter
method to reflect statistical significance testing. By selecting at least
one representative from each category, we aim to achieve a broad
diversification of different feature selection methods, allowing for
a comprehensive comparison with the delta confidence measure.
We exclude the wrapper category from consideration due to the
high computational costs associated with its iterative process. In
terms of the employed mRMR adaptation, we base our mRMR
feature selection on the feature importance of a random forest,
which was first introduced by Zhao et al. (2019). To control for
the redundancy (i.e. high correlation), we use Theil’s U ∈ [0,1], an
asymmetric correlation measure between categorical variables. In
addition to comparing our approach with existing feature selection
methods, we conduct a separate analysis on the impact of sequence
encoding techniques. Specifically, we contrast one-hot encoded
events with one-hot encoded sequential patterns to elucidate the
overall significance of sequential patterns in classification tasks. For
better readability, we report only the mean AUC values.

Figure 6 shows that the overall effectiveness of sequential
patterns versus one-hot encoded events depends on the
characteristics of the datasets. The feature selection based on
one-hot encoded events for the churn dataset shows better results
than our proposed sequential pattern feature selection for all
benchmark algorithms. The AUC values on the synthetic dataset
indicate the opposite result. On the malware dataset, the sequential
patterns initially perform better than the one-hot encoded events,
indicating that there is one pattern which is particularly important
for the classification problem. However, with more features, the
results plateau and the event-based feature selection methods
achieve better results.

In Figure 7, we benchmark the delta confidence measure
with the other feature selection algorithms on one-hot encoded
sequential data. For a fair comparison, we use the same
preprocessing as our proposed algorithm but different feature
selection algorithms after discarding the uninformative sequences

by the statistical tests. Our proposed solution achieves results
comparable to those of the churn and synthetic datasets of the
benchmark feature selection algorithms. However, the feature
selection with the delta confidence-based ranking on the malware
dataset performs similarly to the Chi-squared feature selection but
worse than the other algorithms.

4.5 Benchmark study

As an additional analysis to investigate the robustness of overall
sequential patterns (RQ2), we assess their importance in our
study and contextualise the classification results from the feature
selection analysis. Specifically, we compare the performance of
various encoding schemes and machine learning models to evaluate
the consistency and impact of sequential patterns across different
methodological approaches.

In the following, we describe the experimental setup for these
scenarios. We use a XGB classifier for the first two cases, and
a LSTM model for the third case. For all scenarios, we follow
the machine-learning workflow outlined in Section 4.4, with the
addition of hyperparameter tuning for the employed models. We
use a shallow LSTM model, consisting of three layers, as a proxy
for a more complex network. Although we recognise that deeper
architectures often produce better results, we opted for a simpler
model due to the risk of overfitting for the given sample sizes.
The first layer of the employed architecture is an embedding layer
that transforms the discrete sequences into a dense representation.
Next, the representation is passed to an LSTM layer with a hidden
size of n, which is subject to hyperparameter tuning. The final
layer is a fully connected layer, which transforms the output of
size n to the desired binary format. To avoid overfitting, we
additionally apply Dropout (Srivastava et al., 2014) to the fully
connected layer with a dropout rate of 20 %. For updating the
weights during training, we utilise the Adam optimiser (Kingma
and Ba, 2014) in combination with binary cross-entropy loss and
train for 100 epochs unless the result has not improved for ten
consecutive rounds. Table 4 provides an overview of the possible
hyperparameters, which have been selected for each scenario by the
Tree-Parzen-Algorithm (Bergstra et al., 2011).
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FIGURE 6

Feature selection analysis on one-hot encoded events.

Table 5 shows the mean and standard deviation of F1
and AUC for five experimental runs with different random
seeds, for the above three scenarios. The best values are
highlighted in bold. The results show that the performance
of the selected sequential patterns, which have subsequently
been passed to an XGB classifier, achieve the same or greater
classification performance than the one-hot encoded events, which
have also been passed to an XGB classifier. The classification
accuracy of the LSTM is lower than that of the previously
mentioned XGB classifier. The exception is the synthetic dataset,

where the LSTM achieves on-par results with the sequentially
encoded features.

4.6 Cost-benefit analysis

We conduct a qualitative analysis to further distinguish our
proposed algorithm from existing feature selection algorithms. We
compare our feature selection methodology with a non-exhaustive
list of existing solutions, focusing on two primary criteria:
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FIGURE 7

Feature selection analysis on one-hot encoded sequential patterns.

interpretability and computational efficiency. To qualitatively
evaluate the interpretability dimension, we distinguish between
the set of mined features and the direction of influence.
To characterise the set of mined features, we use the same
naming convention of Kursa et al. (2010), who differentiates
between “all-relevant” and “minimal-optimal” feature selection
algorithms. While “all-relevant” describes a feature set containing
all important features, “minimal optimal” refers to a setting where
the optimal subset of features for a given classifier is mined.
Table 6 provides an overview of the interpretability aspect. While all

classifier-based feature selection solutions, except Boruta, represent
minimal-optimal solutions, all filter methods are all-relevant.
The direction of influence a feature has on the classification
task depends on the chosen model. Our approach is the only
solution offering a directed impact quantification with an all-
relevant feature set. While this approach might yield a lot of
statistically significant features, it is important for exploratory data
analysis, where all features that contribute to a given classification
problem are important and not just an inferred subset from a
covariance matrix.
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TABLE 4 Overview hyperparameters.

Model Hyperparameter space Hyperparameter results

Name Possible values Synthetic Malware Churn

XGB (events) Number of trees [1, 100] 43 39 73

Maximum depth [3, 10] 4 9 10

Learning rate [0, 1] 0.5447 0.8500 0.6894

XGB (sequences) Number of trees [1, 100] 51 44 50

Maximum depth [3, 10] 8 4 3

Learning rate [0, 1] 0.8447 0.7226 0.4441

LSTM Batch size 16, 32, 64, 128, 256 32 64 256

Learning rate [0, 1] 0.0082 0.0014 0.0067

Hidden Size 16, 32, 64, 128, 256, 512 512 16 128

TABLE 5 Benchmark analysis.

Dataset Metrics One-hot-encoded events LSTM One-hot-encoded sequential patterns

Synthetic F1 Score 0.8045 ± 0.0063 0.8958 ± 0.0087 0.9044 ± 0.0063

AUC 0.9069 ± 0.0045 0.9778 ± 0.0016 0.9794 ± 0.0017

Malware F1 Score 0,9230 ± 0.0192 0.8960 ± 0.0142 0.9320 ± 0.0180

AUC 0.9755 ± 0.0098 0.9503 ± 0.0099 0.9769 ± 0.0053

Churn F1 Score 0.8581 ± 0.0052 0.8536 ± 0.0038 0.8533 ± 0.0114

AUC 0.8867 ± 0.0052 0.9137 ± 0.0065 0.9055 ± 0.0056

Bold values indicate the best performance in each row.

TABLE 6 Interpretability Analysis of feature selection methods for
sequential patterns.

Algorithm Category Interpretability

Feature set Influence
direction

Mutual information Filter All-relevant No

Chi-squared Filter All-relevant No

LASSO1 Embedding Minimal-optimal Yes

Tree-based FI2 Embedding Minimal-optimal No

Forward selection Wrapper Minimal-optimal Depends on
model

Backward selection Wrapper Minimal-optimal Depends on
model

mRMR Hybrid Minimal-optimal No

Boruta Hybrid All-relevant No

Our approach Hybrid All-relevant Yes

1Least absolute shrinkage and selection operator (L1 regularization).
2Feature importance (based on information gain).

Regarding computational efficiency, we differentiate between
the maximum memory consumption and the time required to
select the feature. Since our primary objective is to identify and
interpret sequential patterns, we focus solely on mining them
and their subsequent feature selection process. In particular, we
compare the feature selection process as outlined in Algorithm 1

with the alternative approach of first mining the sequential
patterns with the PrefixSpan algorithm and then selecting the
important sequential patterns, for example, by means of the feature
importance of a random forest or the mutual information criterion.
This contrasts with Subsection 4.4, where we only compare the
delta confidence measure with existing feature selection solutions
and not the entire process.

Figure 8 illustrates the time and peak memory required for
increasing sample sizes of the synthetic dataset. As expected,
mRMR is the most computationally expensive method in
processing time since it incrementally looks for the sequential
pattern that minimises the redundancy of the already existing
features. While the random forest and mutual information show
the fastest execution times for a low number of sequences,
the delta confidence measure becomes relatively faster for an
increasing number of sequences until it becomes the quickest
feature selection method. We attribute this performance difference
to two counteracting forces. First, for a sufficiently high bootstrap
rate, mining sequential patterns multiple times on bootstrapped
datasets generally takes longer than mining them on the full
dataset. Second, with the delta confidence measure, it is not
necessary to explicitly pass the mined sequences to another feature
selection model. However, the random forest feature importance
and the mutual information criterion require a separate projection
of the mined sequential pattern on the observations. This step
is computationally expensive since it involves checking for each
sequential pattern if it is contained in an observation. Since
this effect depends on the sample sizes and the number of
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tational efficiency analysis of feature selection methods for sequential patterns.
FIGURE

Compu

sequential patterns, which increases with increasing sample sizes,
the resulting computational time complexity is bilinear. Given
that the PrefixSpan algorithm scales linearly with increasing
sample sizes (Pei, 2001), our proposed delta confidence criterion
scales better for large sample sizes. In terms of peak memory
consumption, our delta confidence criterion avoids the costly
creation of a one-hot encoded feature matrix, which is needed for
subsequent machine learning models to estimate the importance
of each sequential pattern. Given that this one-hot encoded matrix
requires the majority of the memory, the peak consumption
of the mRMR, random forest and the mutual information
criterion overlap.

5 Discussion

In this work, we investigated whether we can correlate
unsupervised SPM with supervised classification to enhance the
selection of important sequences (RQ1) and how robust such a
solution is compared to existing feature selection methods (RQ2).
Our new feature selection algorithm successfully meets both criteria
by using confidence scores from unsupervised SPM. It calculates
differences for each class and assesses how much a sequence
influences the classification task. Our correlation analysis shows
a positive and statistically significant linear correlation with the
target variable, indicating its usefulness for selecting subsequences.
The subsequent analyses further confirm its robustness for
feature selection and positions the delta confidence criterion as a
viable alternative interesting measure. In particular, its high class
specificity, its complementary information to statistical significance
testing and its invariance to the imbalance in rule frequencies in
comparison with the phi coefficient and 1-quality highlight its
usefulness. Furthermore, in terms of feature selection, the delta
confidence criterion obtains equal or better results on the synthetic
and churn datasets than traditional feature selection criteria,
such as mRMR, mutual information and random forest feature
importance. When comparing interpretable machine learning
solutions based on the memory-intensive one-hot encoding of
the sequential patterns, our approach shows better peak memory
consumption and better runtime statistics for an increasing number
of sequences.

Our findings have multiple practical and theoretical
implications. First, our robust feature selection algorithm
offers a valuable alternative to existing machine learning-based
methods that focus on identifying minimal-optimal subsets.
In contrast, we emphasise an all-relevant feature set, similar
to Boruta (Kursa et al., 2010), shifting the focus from purely
predictive performance to a deeper understanding of the data, thus
enriching exploratory data analysis. Additionally, among various
interestingness measures in statistical sequential pattern mining,
the delta confidence criterion stands out for its linear correlation
with the target variable and high local class specificity. These
properties make it particularly useful for practitioners seeking
to identify meaningful patterns more effectively. Moreover, due
to its direct interpretability, it eliminates the need for post hoc
explanation tools, such as SHAP (Lundberg and Lee, 2017) or LIME
(Ribeiro et al., 2016). These interpretability layers are typically
fitted on potentially erroneous predictions from black-box models,
which may lead to flawed estimations of importance. Accurate
interpretability is particularly important in high-stakes domains,
such as finance (Rudin, 2019) and medicine (Žlahtič et al., 2023),
where our method may increase trust and transparency (Adewale
Abayomi Adeniran et al., 2024; Rane et al., 2023). On a more
general note, our work on mining sequential patterns can also be
applied to other areas, such as rare pattern mining, which has only
been done on itemsets. Furthermore, it is easy to interpret, making
it an easy metric to report to stakeholders, and does not require
heavy upskilling as opposed to deep learning technologies, which
introduce dependencies on third-party providers and monetary
dependencies in the data management lifecycle (Borah et al.,
2022). Lastly, we challenge the notion that multiple SPM rounds
always lead to longer runtimes in the overall feature selection
process. This finding encourages researchers and practitioners to
rethink the end-to-end process when mining the most important
sequential patterns.

Despite the overall positive results, the findings also highlight
some limitations of our approach and the selection of sequential
patterns for classification problems in general. Table 5 indicates
that, in some scenarios, especially when the sparsity of the
obtained sequences is high, it might be sufficient to focus only
on the single events and not the sequences themselves when
it comes to classification performance. However, by relying on
single events rather than sequences, information about important
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temporal relations is lost. Furthermore, the delta confidence values
in Figure 1 display a varying degree of variance depending on
the dataset, which can be attributed to aleatoric and epistemic
uncertainty (Hüllermeier and Waegeman, 2021; Gal, 2016). In
addition to aleatoric uncertainty, which is induced by randomness
in data and is therefore irreducible, our approach introduces
epistemic uncertainty by bootstrapping and the delta confidence
measure estimation itself, which can have multiple values for the
same sequence. However, compared to traditional approaches,
this additional (epistemic) uncertainty does not necessarily result
in a worse feature selection performance as Figure 7 shows.
Further work is needed to validate this finding empirically.
Another potential shortcoming concerns the number of mined
sequences. While advantageous in exploratory data analysis, the
all-relevant feature selection property of our approach leads to
a relatively large subset of important and potentially correlated
sequences. One could leverage local and global correlations as
proposed by Chen et al. (2024) to decorrelate the sequences while
maintaining a representative subset. Whereas global correlations,
which are based on the lift measure for SPM, ensure that the
overall sequence is relevant for the whole dataset, the local
correlation ensures that the connection between the antecedent
and the consequent is strong. By combining and setting
adequate thresholds, practitioners can reduce the number of
sequential patterns beyond their statistical significance for the
classification problem.

Another limitation of this work is its narrow focus on
interpretable machine learning for SPM, with the primary
goal of identifying important sequences. Given this objective,
we use one-hot encoding since it is the standard approach
in interpretable machine learning, ensuring direct traceability
between input features and model decisions. While alternative
encoding methods, such as tf-idf, Markov Chains (Gagniuc,
2017), Network Motifs (Masoudi-Nejad et al., 2012) and learned
sequence representations via recurrent neural networks, could
be integrated into xAI frameworks, they introduce limitations
that make them less suitable for our goal. For instance, tf-
idf ignores the temporal structure of the input sequence.
Similarly, Markov Chains create a memoryless transition matrix,
abstracting away specific sequence occurrences. Network Motifs
focus on higher-order structural patterns in networks, which
may overlook fine-grained sequential dependencies, while learned
sequence representations, such as embeddings, introduce black-box
transformations that hinder direct interpretability. Furthermore,
we only compare the delta confidence measure with other existing
interesting measures, but do not compare the overall framework as
illustrated in Algorithm 1 with other SPM methods that leverage
statistical testing.

Further research should focus on three significant areas.
First, future work must compare our proposed feature selection
algorithm with recent advancements in deep learning, especially
in graph neural networks and explainable artificial intelligence,
and algorithms from subgroup discovery for larger datasets.
This would provide additional guidance on when to choose
which method, based on runtime-accuracy-interpretability trade-
offs. In particular, future work needs to investigate how the
interpretability of the delta confidence criterion compares against

existing explainability approaches, to assess its advantages and
limitations from a user-understandability perspective. Given the
relatively small size of the datasets employed in this study,
the application of deep learning methods could be considered
too complex a solution for the purpose; however, for larger
datasets, a comparative evaluation of the proposed feature
selection algorithm with techniques, such as GNNexplainer (Ying
et al., 2019) or WindowSHAP (Nayebi et al., 2023), would be
warranted. While the GNNexplainer extracts subgraphs with
a high contribution to the target variable, WindowSHAP can
explain predictions of time series models. Yet, these attribution
scores of WindowSHAP need additional analysis to identify
their corresponding global feature importance. Also, further
comparison with subgroup discovery algorithms, such as LAMP
(Terada et al., 2013b), WYLight (Llinares-López et al., 2015)
and SPASS Dalleiger and Vreeken (2022), would greatly enhance
comparability in terms of runtime and selected features. Second,
besides comparing to other existing algorithms, further research
is required to investigate and enhance the robustness of our
approach. This involves, in particular, experiments with severe class
imbalance, rare but important patterns and research on decreasing
the epistemic uncertainty of our delta confidence criterion.
These findings would significantly improve the practitioners’
understanding and usability of our approach in noisier datasets.
Thirdly, to guarantee the extensive adoption and scalability
of our proposed algorithm, it is imperative to enhance its
computational efficiency. Although the current implementation
has been adequate to demonstrate the efficacy of the delta
confidence criterion, the substitution of the maximum sequence
and minimum support thresholds in favour of an enhanced
Branch-and-Bound algorithm analogous to LAMP can augment its
efficiency and generalisability (Terada et al., 2013a; Minato et al.,
2014).

6 Conclusion

This work presents a novel feature selection technique that
selects informative sequences from discrete sequential data. Despite
their prominence in practical applications, selecting informative
subsequences for classification tasks is underexplored in academia.
Existing machine learning literature mainly covers feature selection
and extraction for numerical time series and tabular data. In
contrast to computationally intensive deep learning approaches,
our work offers a simple and easy-to-understand approach to
selecting informative subsequences for classification problems.
Our evaluation of three different datasets shows that our feature
selection criterion of the selected features correlates strongly
with the associated classification target, implying that our feature
selection criterion helps select features and can also be used to
reliably estimate the impact a sequence has on a classification
problem. The comparison with existing interesting measures
for subgroup discovery also shows a high correlation with our
delta confidence criterion, which offers complementary insights
to existing subgroup discovery measures and helps practitioners
uncover hidden sequential patterns in their data. Compared with
one-hot encoded feature selection of sequential patterns, our
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approach is more memory efficient and scales better for an
increasing number of sequences. Future research might leverage the
recent developments of interpretable time series classification with
deep learning and focus on extracting interpretable sequences from
their predictive explanations.
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