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Sex differences are well-documented in the prevalence of psychiatric disorders,
with anxiety and stress-related conditions more common in women. Growing
evidence highlights the role of sex hormones, particularly estradiol (E2), and its
receptor mechanisms as contributing factors to this disparity. Estrogen exerts its
effects through three main receptors: estrogen receptor alpha (ERa), estrogen
receptor beta (ERp), and the G protein-coupled estrogen receptor (GPER). While the
classical receptors ERa and ERp have been widely studied in the context of fear and
anxiety, the role of GPER remains less understood. Moreover, estrogen receptors
themselves may be sexually dimorphic, adding complexity to their functional
roles. Preclinical research has been valuable in advancing our understanding of
these mechanisms; therefore, this review mostly focuses on findings from rodent
studies. Here we discuss the influence of sex and E2 on anxiety and fear-related
behavior, highlight emerging research on sex differences in GPER modulation
of fear and anxiety in mice, rats, and humans, and explore GPER as a potential
therapeutic target for anxiety and stress-related disorders.
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Introduction

Estrogens, particularly 17p-estradiol (E2), are steroid hormones that significantly influence
the neurobiological mechanisms underlying emotional learning and memory. E2, the most
potent form of estrogen, is present in both sexes, but most research on its effects on these
processes has been conducted in females. Emerging evidence suggests that E2 may exert
sex-specific effects, potentially contributing to observed sex differences in the prevalence of
anxiety and stress-related disorders, such as post-traumatic stress disorder (PTSD). For
instance, low E2 levels have been associated with heightened anxiety in women, whereas
elevated E2 levels in men have been linked to increased depressive symptoms (Stanikova
etal., 2018).

E2 acts through classical genomic pathways via nuclear estrogen receptors such as estrogen
receptor alpha (ERa) and estrogen receptor beta (ERp), as well as rapid, non-genomic
mechanisms involving membrane-bound receptors. One such receptor, the G protein-coupled
estrogen receptor (GPER), notable for its distinct structure and role in neurophysiology, has
been implicated in the modulation of anxiety, fear behaviors, stress responses, and memory
consolidation- crucial processes in the pathophysiology of PTSD and other anxiety-related
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disorders. This review examines current preclinical findings on E2’s
role in mediating sex differences in stress- and fear-related behaviors,
GPER’s
sex-specific mechanisms.

focusing  on potential  involvement and  its

Sex and estradiol influences on animal
behavior

Various well-established behavioral paradigms have been used to
model fear and anxiety in rodents, providing insights into the
mechanisms underlying conditions such as PTSD and anxiety
disorders. Sex differences have been reported in the behavioral
outcomes of these paradigms and appear to be sensitive to E2’s
modulatory effects. These paradigms highlight how sex hormones,
particularly E2, influence fear and anxiety responses.

Elevated plus maze test

The elevated plus maze (EPM) test measures anxiety-like behavior
by assessing a rodent’s exploration of open arms versus enclosed arms,
with more time spent in the open arms suggesting lower anxiety
(Pellow et al., 1985). Adult female Wistar rats spend more time and
make more open arm entries than males, indicating less anxiety-like
behavior (Johnston and File, 1991; Knight et al., 2021). Circulating
gonadal hormones may mediate these sex differences. Female rats in
proestrus spent significantly more time in the open arms of the EPM
than male rats, OVX rats, or rats in other estrous stages. E2
administration to rats in diestrus also increased open-arm time
(Marcondes et al., 2001), suggesting an anxiolytic effect.

Open field test and light—dark test

The open field test (OFT) and light-dark test (LDT) are also used
to assess anxiety behavior. In the LDT, spending more time in the dark
compartment suggests higher anxiety (Bourin and Hascoét, 2003),
whereas in the OFT, more time spent in the center versus the
periphery indicates reduced anxiety (Ohl, 2003). Sex differences and
gonadal hormone influences have been noted in anxiety-related
behaviors in the OFT (Blizard et al., 1975). Knight et al. (2021)
reported that adult female Wistar rats traveled more to and spent more
time in the center of the OF than males. In addition, female mice given
E2 subcutaneously spent significantly more time in the OFT center
and significantly more time in the LDT lit area (Walf and Frye, 2010),
indicating anxiolytic E2 effects.

Fear conditioning and extinction

Fear conditioning is a paradigm for investigating mechanisms
underlying fear control, which is impaired in PTSD and anxiety
(Milad and Quirk, 2012; Zoladz et al., 2012). Learning how to reduce
or regulate fear responses once a threat is removed, a process known
as fear extinction, has been integral to treatments for fear-related
disorders, while poor extinction learning and memory are
characteristic of PTSD (Milad and Quirk, 2012).

E2 levels influence sex differences in fear extinction. High E2
female rats display greater fear extinction retention in a manner
similar to males, and both outperform low E2 females (Milad et al.,
2009). In contextual and auditory fear conditioning, male rodents
have exhibited stronger conditioned fear acquisition compared to
female rodents (Maren et al, 1994), which was unaffected by
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castration (Anagnostaras et al., 1998). Alternatively, ovariectomized
(OVX) female rats have shown enhanced fear expression, suggesting
E2 may reduce fear expression (Gupta et al., 2001). Additionally,
females in proestrus and estrus have displayed more rapid rates of
successful fear extinction compared to males and diestrus females.
E2-treated OVX females had more rapid rates of successful fear
extinction when compared to control and OVX females treated with
progesterone (Chang et al., 2009). Together, these data highlight E2’s
capability to regulate fear.

Single prolonged stress model

A preclinical model used to study neurobiological mechanisms
underlying PTSD is the single prolonged stress (SPS) paradigm.
Rodents are subjected to a sequence of stressors, including forced
swim, restraint stress, and anesthesia, followed by a post-stress
incubation period. After SPS, rodents show enhanced fear responses
and impaired fear extinction, similar to symptoms observed in
PTSD patients (Liberzon et al., 1997). Female rats administered an
estrogen receptor antagonist before SPS did not exhibit the typical
SPS-induced impairment in extinction (Biddle and Knox, 2023).
E2-treated SPS females also showed no change in freezing levels
during extinction training, whereas E2 reduced freezing in non-SPS
control rats (Biddle and Knox, 2023). These data indicate that E2
can modulate SPS-induced effects on fear extinction (Keller
etal., 2015).

Together, these findings support a modulatory role of E2 in fear
and anxiety. E2 contributes to sex differences observed in fear
extinction and anxiety-like behavior and may confer resilience against
stress-induced impairments, particularly in females. This highlights
the importance of investigating the receptor mechanisms underlying
E2’s effects in both sexes.

GPER'’S discovery, mechanism, signaling
effects, and function

The classical genomic nuclear receptors, ERa and ERf, have
been extensively studied for their role in modulating anxiety and
fear behaviors (Cover et al., 2014; Borrow and Handa, 2017).
However, the G protein-coupled receptor, also known as GPER
and GPR30 (Alexander et al., 2008), is the focus of this review due
to its recent implication in these processes. GPER was first
identified and cloned in the 1990s (O'Dowd et al., 1998; Carmeci
et al., 1997) and was found to mediate E2’s rapid non-genomic
effects (Filardo et al., 2000; Filardo et al., 2002). The selective
GPR30 agonist, G1, and selective antagonists, G15 and G36, were
developed between 2006 and 2011 (Bologa et al., 2006; Dennis
et al., 2009; Dennis et al., 2011), and they have been integral to
understanding GPER function.

Diverging from classical ERa and ERf genomic mechanisms,
GPER activates pathways via a nongenomic mechanism (Igbal et al.,
2024) and initiates rapid transcriptional responses, including quick
activation of ion channels and second messenger pathways within
seconds to minutes. Once an agonist, such as G1, binds to the
receptor, G proteins divide into subunits Go and Gpy (Luo et al,,
2023) as well as Gai/o and Gq/11 proteins (Bushi et al., 2025). Ga
activates adenylyl cyclase (AC), an enzyme that converts adenosine
triphosphate into cyclic adenosine monophosphate (Thomas et al.,
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2005), which then activates protein kinase A (PKA), an enzyme
regulating cellular processes (Thomas et al., 2005). In contrast, Gai/o
suppresses AC activity, resulting in lower cAMP levels and reduced
activation of PKA, while
phosphatidylinositol 3-kinase/protein kinase B signaling pathway,

simultaneously stimulating the

aiding cell survival, growth, and metabolism (Bushi et al., 2025). GPy
which
metalloproteinases and causes the release of heparin-binding

recruits a steroid receptor  coactivator, activates
epidermal growth factors (HB-EGFs) from the cell surface (Prossnitz
etal,, 2008). These HB-EGFs transactivate an EGF receptor, resulting
in PI3K/Akt, ERK1/2, and MAPK pathway activations (Filardo et al.,
2000; Bustamante-Barrientos et al., 2021; Bushi et al., 2025). Gfy also
participates in regulation of potassium and calcium ion flow across
the cell membrane, processes critical for cellular excitability, function,
and responsiveness. Additionally, PLCf is activated by Gpy,
enhancing inositol trisphosphate (IP3) and diacylglycerol (DAG)
production. The Gq/11 signaling pathway activates phospholipase C,
which also catalyzes the formation of IP3 and DAG. IP3 facilitates the
release of calcium ions from the endoplasmic reticulum into the
cytosol, increasing intracellular calcium and initiating calcium-
dependent activities. Concurrently, DAG activates protein kinase C,
which phosphorylates target proteins involved in functions such as
secretion, gene transcription, and cell proliferation (Bushi
et al., 2025).

Sex differences in GPER signaling pathways have been
described. GPER activation enhances object recognition (OR) and
spatial memory performance in gonadectomized (GDE) male and
female mice via different signaling mechanisms. Behavioral effects
of GPER involved C-Jun N-terminal kinase (JNK) signaling in the
dorsal hippocampus (DH) in females; however, CREB levels, but
not JNK, were increased in the DH in males, indicating sex-specific
signaling pathways in the DH (Kim et al, 2016; Machado
etal., 2024).

GPER activity can also impact physiological and hormonal stress
responses. Inhibition of GPER via G15 treatment has been shown to
prevent the rapid, non-genomic effects of corticosterone (CORT) in
the infralimbic region of the medial prefrontal cortex in male mice
(Karst and Joéls, 2023). Given the sexually dimorphic nature of the
hypothalamic-pituitary-adrenal (HPA) axis (Heck and Handa,
2019), GPER may also play a role in mediating sex differences in
stress-induced CORT responses. For example, GPER-knockout
(GPER-KO) female rats exhibited significantly lower basal serum
CORT levels compared to wild-type females, and this difference
varied across the estrous cycle, suggesting estrous phase-dependent
GPER effects on basal CORT (Zheng et al., 2020). Zheng et al. (2020)
also found that after acute restraint stress exposure, GPER-KO
females showed an increased adrenocorticotropic hormone (ACTH)
response compared to WT females, an effect that was more
pronounced in females than males, indicating a sex-dependent role
for GPER in stress reactivity.

GPER localization within the brain

GPER is widely expressed in various tissues and cell types. It is
found in the hippocampus, cerebral cortex, hypothalamus, striatum,
and amygdala of the central nervous system (Luo et al., 2023). More
specifically, it can be found in the perirhinal cortex, pituitary,
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substantia nigra, basolateral amygdala, as well as the cholinergic
neurons of the basal forebrain (Hammond and Gibbs, 2011; Hazell
et al,, 2009; Tian et al.,, 2013; Figure 1). It is also widely distributed
on the subcellular level, with reports of expression in the cell
membrane, endoplasmic reticulum, Golgi complex, and nucleus
(Luo et al., 2023).

GPER distribution also appears to be sex-specific (Llorente et al.,
2020; Hutson et al., 2019). GPER immunoreactive cells were higher in
adult male Wistar rats than females in the posterodorsal medial
amygdala and specific subdivisions of the CA1-CA3 and dentate gyrus
of the DH (Llorente et al., 2020); however, GPER expression was
higher in the basolateral amygdala of females compared to males.
Importantly, GPER expression appeared to differ in subregions of both
the amygdala and DH across the estrous phases in females (Llorente
et al,, 2020). These findings suggest that estradiol modulation via
GPER activation in the limbic areas, amygdala, and DH may be sex-
and estrous cycle-dependent.

Animal studies—mice

GPER'S role in fear behavior

GPERSs role in fear memory appears to be sex- and age-dependent.
In middle-aged male mice, GPER expression is significantly reduced
in the hippocampus, the structure playing a key role in learning and
memory (Xu et al., 2018). Subcutaneous GPER agonist G1 treatment
for 15 days in intact male and female middle-aged mice improved
contextual and cued fear memory in a dose-dependent manner
through the activation of brain-derived neurotrophic factor/
tropomyosin receptor kinase B (BDNF/TrkB) signaling, but not in
2-month-old male mice (Xu et al., 2018). Although GPER activation
appears to generally enhance memory consolidation in both sexes, age
may limit its effects on contextual and cued fear memory processes in
male mice.

GPER knockout revealed sex differences in fear behavior, with
GPER-KO female mice freezing more than males when returned to
the conditioning context after contextual fear conditioning (Koitmae
etal, 2023). Freezing was also higher in GPER-KO female mice in the
high E2 estrous cycle phase compared to those in low E2 phases.
Further, there was enhanced long-term potentiation in GPER-KO
female mice and increased spinophilin expression in the hippocampus
of low E2 GPER-KO female mice (Koitmae et al., 2023). These findings
suggest that GPER activity enhances contextual fear memory
consolidation in both sexes, but its absence reveals sex differences and
estrous phase-dependent changes in hippocampal synaptic plasticity
and fear behavior.

GPER'’S role in anxiety behavior

Findings on GPER’s role in anxiety-related behaviors in mice
are mixed, with some studies suggesting that GPER activation
increases anxiety, whereas others demonstrate anxiety-reducing
effects. Kastenberger et al. (2012) reported that subcutaneous GPER
agonist G1 administration induced anxiety-like behaviors in both
intact male and OVX female mice, reducing open-arm exploration
in the EPM and time and distance traveled in LDT. Kastenberger
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GPER localization in the rodent brain. GPER is found in the cerebral cortex, hippocampus, hypothalamus, basal forebrain, ventral striatum, amygdala,

and Schwarzer (2014) found that GPER-KO male mice had greater
open-arm exploration and increased time in lit areas, indicating
reduced anxiety. Further, GPER-KO female mice in estrus displayed
more center time, distance traveled, and visits than WT mice in
estrus in the OFT. GPER-KO female mice in proestrus also
displayed increased center visits, but not center time or distance
traveled in the OFT (Kastenberger and Schwarzer, 2014), suggesting
an anxiogenic role for GPER.

In contrast, Hart et al. (2014) found that GPER activation with
G1 treatment given 30 min prior to testing reduced anxiety
behaviors in the EPM in GDE males, suggesting an anxiolytic role
for GPER (Hart et al.,, 2014). This may reflect an impact of
hormonal status, or the absence of circulating gonadal hormones
in this case, on GPER’s function. Further explorations should
investigate whether the presence and levels of circulating gonadal
hormones influence GPER's effects on behavior, possibly through
interactions with other estrogen receptors. Hart et al. (2014) also
reported that GPER activation differentially enhanced ERK
signaling in the DH of female mice, whereas ERa S118
phosphorylation was increased in the ventral hippocampus in
male mice (Hart et al., 2014). This highlights sex-dependent
responses to GPER activation that may contribute to differences
in anxiety behavior.

Stress exposure can alter GPER activity, with increased
expression in the amygdala of OVX female mice displaying anxiety-
like behavior following acute stress via restraint or forced
swimming (Tian et al.,, 2013). G1 infusions into the basolateral
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amygdala reversed anxiety-like behaviors, significantly increasing
time spent in the EPM’s open arms and time spent in the OF’s
center and suggesting anxiolytic GPER effects at this site (Tian
etal, 2013). Overall, these findings highlight sex- and site-specific
GPER effects and the influence of circulating gonadal hormones.
Additional GPER-KO studies are needed to identify specific
contingencies leading to GPER’s anxiogenic and anxiolytic
properties and to clarify the receptor’s mechanisms in these distinct
behavioral effects.

Animal studies—rats

GPER'S role in fear behavior

Effects of GPER on fear-related learning and memory in female
rats have been understudied; however, evidence in male rats has
suggested a critical role for GPER in inhibitory avoidance (IA)
memory consolidation. In intact adult male rats, subcutaneous G1
administered immediately, but not 3 or 6 h, after IA conditioning
resulted in a longer latency to step down from the platform in a
retention test 24 h later (de Souza et al., 2021). GPER also appears to
enhance aversive learning and memory consolidation in male rats if
activated within a specific time window post-training. Only a higher
Gl (150 pg/kg)
demonstrating the importance of dose in GPERS effects (de Souza
etal., 2021).

dose significantly enhanced IA memory,
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GPER'’S role in anxiety behavior

Few studies have investigated sex differences in GPER’ function
in anxiety-related behaviors in rats. In GPER-KO female rats, acute
restraint stress triggered a greater release of adrenocorticotropic
hormone than in WT controls, a response absent in GPER-KO male
rats (Zheng et al., 2020). GPER-KO male and female rats also display
increased anxiety-like behaviors, demonstrated by a significant
reduction in EPM open-arm duration and entries, following SPS. SPS
decreased serum corticosterone in WT rats but had no effect in
GPER-KO rats (Zheng et al., 2020). These findings suggest that GPER
activation may be important for regulating anxiety. Further,
intracerebroventricular G1 injections in OVX female rats produced
anxiolytic effects, with increased EPM open arm time and decreased
closed arm time compared to OVX control rats (Wang et al., 2021).
This is likely mediated by rapid PKA signaling, which may distinguish
GPER from ERa and ERp in E2’s influence on anxiety behavior in
female rats. Due to the limited number of rat studies, further work is
needed to address species differences, discrepancies across animal
models, and to determine whether GPER’s anxiolytic effects in rats are
sexually dimorphic.

Human studies

Though very few human studies have investigated GPER and its
role in anxiety, existing research suggests its involvement and indicates
the translational potential of preclinical findings. Investigations of
GPERS role in patients with generalized anxiety disorder (GAD) have
yielded mixed results. While Findikli et al. (2016) found serum GPER
levels were significantly higher in GAD patients, which correlated
with GAD severity, Hursitoglu et al. (2025) found significantly
decreased GPER levels and no correlation between GPER levels and
symptom severity. Findikli et al. (2016) excluded women experiencing
irregular menstrual cycles, and patients with endocrine disorders and/
or receiving drugs influencing serum prolactin levels, whereas
Hursitoglu et al. (2025) excluded women on hormonal replacement
therapy, in post-menopause, and pregnant but did not examine sex
differences. Further exploration of GPER influences in GAD are
necessary to determine whether these differences in hormonal status
might underlie differences in the findings.

Elevated GPER serum levels were also found in patients with
major depressive disorder (Findikli et al., 2017) and bipolar disorder
(Orhan et al., 2018), but reduced levels in patients with attention
deficit hyperactivity disorder (ADHD; Sahin et al., 2018) and autism
spectrum disorder (ASD; Altun et al., 2017). Depression and bipolar
II are more common in females (Eaton et al., 2012; Diflorio and Jones,
2010), and ADHD and ASD are more prevalent in males (Willcutt,
2012; Napolitano et al., 2022). Thus, variations in GPER levels across
psychiatric disorders appear to follow sex-specific patterns.

Discussion

Despite limited research on GPERSs role in aversive learning and
memory, current findings suggest that GPER enhances memory
consolidation in both male and female rodents (summarized in
Supplementary Table 1). Interestingly, its blockade or elimination
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leads to sex-specific effects depending on the type of learning and
memory. Further, GPER’s effects may also be age-dependent, and the
timing of GPER manipulation after emotional learning appears
critical for memory consolidation.

GPERS effects on anxiety behavior have yielded mixed results. Rat
studies consistently support an anxiolytic role for GPER, whereas
mouse studies show conflicting effects influenced by sex, the presence
of circulating hormones, and genetic knockout conditions. These
discrepancies point to sex-dependent, and likely hormone-modulated,
mechanisms of GPER action, with some downstream effects relying
on the JNK pathway and others on the PKA pathway. Additionally,
GPER localization within the brain supports its site-specific behavioral
effects. Together, these findings call for further research to clarify the
mechanisms underlying GPER’ sex and site-specific functions, its role
in aversive learning and memory, and critical timing for its most
pronounced effects. Addressing these gaps could inform therapeutic
strategies targeting GPER for disorders involving emotional
dysregulation and anxiety.

Future directions

Future research should further clarify GPER’s role in fear and
anxiety-related behaviors by using selective agonists and antagonists
under time-controlled or site-specific experimental conditions.
Evidence of sex-specific downstream effects of GPER activation and
their influence on anxiety-related and fear behaviors highlights the
need to conduct more studies in both sexes. Because hormonal status
across the estrous cycle may also affect GPER effects, future studies
should also investigate how GPER may interact with classical estrogen
receptors and influence downstream signaling pathways. Together,
these approaches could provide valuable insight into the therapeutic
potential of GPER modulation in treating psychiatric disorders.
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