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Introduction: Traditional approaches to improving speech perception in noise
(SPIN) for hearing-aid users have centered on directional microphones and
remote wireless technologies. Recent advances in artificial intelligence and
machine learning offer new opportunities for enhancing the signal-to-noise
ratio (SNR) through adaptive signal processing. In this study, we evaluated the
efficacy of a novel deep neural network (DNN)-based algorithm, commercially
implemented as Edge ModeTM, in improving SPIN outcomes for individuals
with sensorineural hearing loss beyond that of conventional environmental
classification approaches.
Methods: The algorithm was evaluated using (1) objective KEMAR-based
performance in seven real-world scenarios, (2) aided and unaided speech-in-
noise performance in 20 individuals with SNHL, and (3) real-world subjective
ratings via ecological momentary assessment (EMA) in 20 individuals with SNHL.
Results: Significant improvements in SPIN performance were observed on
CNC+5, QuickSIN, and WIN, but not NST+5, likely due to the use of speech-
shaped noise in the latter, suggesting the algorithm is optimized for multi-talker
babble environments. SPIN gains were not predicted by unaided performance
or degree of hearing loss, indicating individual variability in benefit, potentially
due to differences in peripheral encoding or cognitive function. Furthermore,
subjective EMA responses mirrored these improvements, supporting real-world
utility.
Discussion: These findings demonstrate that DNN-based signal processing can
meaningfully enhance speech understanding in complex listening environments,
underscoring the potential of AI-powered features in modern hearing aids and
highlighting the need for more personalized fitting strategies.
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Introduction

Approximately 15% of adults in the United States report some
difficulty hearing (Blackwell et al., 2014), and by 2050 nearly 2.5
billion individuals are projected to have some degree of hearing
loss (Chadha et al., 2021). The most common complaint associated
with hearing loss is difficulty communicating in background noise
(Pichora-Fuller, 1997; Gatehouse and Noble, 2004; Hannula et al.,
2011; Le Prell and Clavier, 2017; Jorgensen and Novak, 2020; Carr
and Kihm, 2022). For individuals with sensorineural hearing loss
that cannot be treated medically or surgically, hearing aids (HA) are
the most common recommendation, and these devices have helped
millions of people to hear and communicate more effectively.
Despite the many benefits of hearing aids, difficulty understanding
speech in noise (SPIN) remains a common complaint. These
difficulties (e.g., “they don’t work”) are a common reason given by
individuals who obtain hearing aids, and either return them within
the trial period, or do not wear them consistently (McCormack
and Fortnum, 2013; Hong et al., 2014; Humes, 2003; Hickson
et al., 2014; Jilla et al., 2020; Powers and Rogin, 2020; Aazh et al.,
2015). Consistent with these self-reports, speech in noise abilities
correlate with hearing aid satisfaction (Saunders and Forsline,
2006; Davidson et al., 2021; Walden and Walden, 2004), and
are worse in patients who tried and returned hearing aids when
compared to individuals who kept their hearing aids (Humes,
2021a). Thus, while hearing aids benefit millions of individuals
each year, difficulties with SPIN persist in many patients, leading
to dissatisfaction, and even discontinuation in some cases.

Speech in noise abilities not only deteriorate with increasing
hearing loss, but are also highly variable between individuals
with similar hearing thresholds, even when the signal is audible
(Wilson, 2011; Fitzgerald et al., 2023; Smith et al., 2024). These
suprathreshold deficits in speech understanding are particularly
noteworthy given that current procedures for fitting of hearing aids
is focused primarily on maximizing audibility without exceeding
uncomfortable loudness levels. This approach is at the heart of
prescriptive procedures such as the “Desired Sensation Level” (DSL;
Seewald et al., 1985; Scollie et al., 2005; Bagatto et al., 2005),
those from the National Acoustics Laboratories (NAL; Byrne and
Tonisson, 1976; Byrne and Dillon, 1986; Byrne et al., 2001; Keidser
et al., 2011), and with proprietary prescriptive fitting methods
developed by hearing aid manufacturers (e.g., Keidser et al., 2003).
Thus, addressing the SPIN difficulties faced by patients requires
solutions beyond making sounds audible.

Conventional approaches to improving the signal-to noise
ratio (SNR) in users of hearing aids has routinely focused on
directional microphones or the use of wireless remote microphones
(Gnewikow et al., 2009). These approaches, while beneficial in
many regards, do not directly manipulate the signal itself in an
effort to improve the SNR. Conventional approaches to noise
management based on spectral subtraction or modulation-based
noise reduction systems are primarily shown to improve listening
comfort with little to no improvement in speech understanding
(Mueller et al., 2006; Bentler et al., 2008). In recent years, however,
there has been a revolution in the use of artificial intelligence
(AI) and machine learning (ML) technologies to understand and
manipulate auditory signals (Bishop and Nasrabadi, 2006; LeCun

et al., 2015; Zhang et al., 2018; Fabry and Bhowmik, 2021).
Deep neural networks have been trained to simulate cochlear
and nerve fiber outputs (Baby et al., 2021; Nagathil et al., 2021;
Drakopoulos et al., 2021), and to compensate for impaired cochlea
(Bondy et al., 2004; Diehl et al., 2023). To date, most ML
efforts to improve SPIN abilities attempt to remove noise from
the speech to improve the SNR (Soni et al., 2023; Healy and
Yoho, 2016; Healy et al., 2017; Zhao et al., 2018; Alexander,
2021; Fischer et al., 2021; Fabry and Bhowmik, 2021). While
promising, the integration of these approaches into conventional
hearing aids has been limited until recently due to challenges
such as the need for specialized computational processing
hardware, constraints in power consumption, insufficient training
data for these models, and other technological variables (Zou,
2025).

In the present study, our goal was to evaluate the effectiveness
of a novel signal processing technique based on deep neural
networks. This signal processing algorithm was implemented in
a hearing aid feature called Edge ModeTM. Here, this algorithm
was evaluated in three ways, including (1) objective evaluation of
SNR improvements in laboratory testing, (2) clinical evaluation of
SNR benefits for individuals with sensorineural hearing loss, and
(3) subjective assessment using ecological momentary assessment
(EMA) questions during use in their daily life.

Methods

Data were collected in two phases. The first phase consisted of
objective laboratory evaluation of changes in the SNR on a KEMAR
mannequin. The second phase consisted of both behavioral and
subjective data obtained in participants with sensorineural hearing
loss. These phases are described below.

Procedures

Phase I
In this phase, changes in SNR with the Edge ModeTM algorithm,

relative to the default “Personal” program (Adaptive Directionality
enabled with Speech in Noise default setting) were evaluated on
a Knowles Electronics Manakin for Acoustic Research (KEMAR)
using a pair of Starkey Genesis AI receiver-in-canal (RIC) hearing
aids fitted with occluding power dome ear tips. The devices were
programmed to meet prescriptive targets for a gently sloping
(N3) mild-to-moderate sensorineural hearing loss (Figure 1). The
KEMAR was positioned at the center of an 8-speaker array in
a sound-treated room, with loudspeakers spaced 45◦ apart and
placed 1 meter away (Figure 2).

Seven acoustic scenes designed to stimulate real-world listening
environments were evaluated: bar, shopping mall, restaurant,
construction, indoor crowd, outdoor crowd, and city noise. To
stimulate diffuse noise, commonly experienced by hearing aid
users (Wu et al., 2018), uncorrelated noise snippets from the
same recording were played simultaneously from all 8 speakers,
with speech presented from the front (0◦ azimuth) speaker. Each
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FIGURE 1

Audiogram for a gently sloping (N3) mild-to-moderate SNHL, used
for the objective measurements in Phase I of the study.

FIGURE 2

Overview of the laboratory setup with a KEMAR in the middle of an
8-speaker array, with the speakers placed 45-degrees apart and 1 m
equidistant from the KEMAR.

condition began with 30 s of noise alone, followed by 30 s of speech-
in-noise (SPIN). The speech level was fixed at 70 dB SPL and the
noise at 73 dB SPL, creating a challenging −3 dB SNR environment.
These values were chosen as they approximate conversational
speech levels and a SNR that that would normally yield poor speech
recognition for individuals with hearing loss or perceived hearing
difficulties (Fitzgerald et al., 2023, 2024; Smith et al., 2024; Wilson,
2011).

The “Personal” program uses a machine-learning algorithm
to perform acoustic environmental classification (AEC). In this
process, the AEC algorithm monitors and categorizes the listening
environment into one of the seven acoustic environments
listed above. Based on the results of the classification, the
program automatically applies necessary hearing aid features
(e.g., frequency-specific gain, output limitation, multiple-channel
compression, omni and directional microphones, multiple channel

continuous or transient noise management, and wind noise
suppression). In contrast, the Edge ModeTM algorithm applies
a user-initiated “acoustic snapshot” that provides an additional
analysis of the soundscape across the seven acoustic scenes.
This analysis results in more aggressive offsets than the default
“Personal” program.

The Edge ModeTM algorithm is executed directly on the hearing
aid’s processor chip, which features a custom-designed integrated
hardware accelerator optimized for deep neural network (DNN)
operations under low-power, real-time conditions. As a result, no
smartphone or cloud connectivity is required. Figure 3 presents
a schematic comparison between traditional noise reduction
architectures in hearing aids and the advanced sound-processing
framework incorporating onboard DNN processing.

Measurements were made using the Hagerman method
(Hagerman and Olofsson, 2004), a well-established procedure
that may be used for evaluating hearing aids’ noise reduction
systems. It is based on the phase inversion technique, where
multiple recordings take place and the phase of one signal
is inverted between the measurements. This phase inversion
method separates signal and noise at the hearing aid output,
enabling accurate calculate of SNR improvement by isolating
the processed signals from the recorded mixed signal. For a
given condition, Speech Intelligibility Index (SII) computations
may be used to estimate the audibility and relative importance
of speech information across different bands from Hagerman
measurements to calculate SNR and predicted SPIN measurements
in humans.

Phase II
In this phase, we determined whether behavioral or subjective

improvements were observed in hearing-aid users when Edge
ModeTM algorithm was active relative to the default “Personal”
program. Here, 20 human participants (11 female) with an average
age of 77 years (SD = 6.8 years) were recruited from patients
seen at the Stanford Ear Institute, or from a residential living
facility. Demographic information for this sample is provided in
Table 1. All participants first began with pure-tone audiometric
assessments, including measurement of air- and bone-conduction
thresholds using the modified Hughson-Westlake method (Carhart
and Jerger, 1959). Inter-octave thresholds at 3,000 and 6,000 Hz
were always obtained, with other inter-octave thresholds measured
when thresholds differed by ≥ 20 dB HL between octaves (Wilson
and McArdle, 2014).

Unaided speech recognition in background noise was assessing
using four speech-in-noise tasks. The first task consisted of
Consonant-Nucleus-Consonant (CNC) words (Peterson and
Lehiste, 1962). Scores were obtained using a single 50-word list
presented in the presence of multi-talker babble with a signal-to-
noise ratio (SNR) of +5 dB. Performance was scored in percent
correct using whole words and individual phonemes. The second
measure was the QuickSIN (Killion et al., 2004), which measures
the SNR at which 50% of key words in low-context sentences can
be repeated in the presence of multi-talker babble. Each QuickSIN
list consists of six low-context sentences, with each sentence
containing five key words, presented in decreasing SNR steps from
+25 dB to 0 dB in 5 dB steps (Killion et al., 2004). The third SPIN
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FIGURE 3

Schematic diagram comparing (A) conventional noise reduction in traditional hearing aids and (B) Edge ModeTM where a DNN is used to inform the
noise reduction.

TABLE 1

Participants Age Sex Race/ethnicity RIGHT:
500
Hz

RIGHT:
1,000

Hz

RIGHT:
2,000

Hz

RIGHT:
4,000

Hz

LEFT:
500
Hz

LEFT:
1,000

Hz

LEFT:
2,000

Hz

LEFT:
4,000

Hz

1 77 Female White 45 55 60 60 45 55 60 65

2 95 Male Asian 50 50 55 70 65 60 55 65

3 79 Female White 25 30 35 50 25 30 40 50

4 68 Female Asian 30 40 45 40 30 35 40 25

5 82 Female White 15 30 60 60 15 15 50 65

6 73 Male Asian 25 35 30 50 35 50 60 75

7 71 Female White 35 40 45 70 20 25 35 65

8 87 Female White 35 40 45 40 40 35 50 45

9 75 Male Asian 20 35 70 65 20 35 65 65

10 70 Male White 15 15 15 40 25 20 20 50

11 78 Male White 15 20 35 45 15 15 30 40

12 69 Male White 20 15 15 70 20 15 25 70

13 79 Male White 20 30 35 40 20 25 25 50

14 85 Male White 50 55 65 65 40 25 35 65

15 76 Female White 20 40 55 50 20 35 50 50

16 78 Male White 35 35 35 70 35 35 45 55

17 71 Male White 20 30 55 65 20 25 50 65

18 79 Female Other 45 55 55 55 35 45 55 60

19 82 Female White 15 20 30 60 20 15 20 60

20 67 Female White 25 35 45 60 25 30 40 60

21 80 Female White 25 40 50 25 25 50 60 45
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measure was the Words in Noise (WIN) test (Wilson, 2003; Wilson
et al., 2003). In this measure monosyllabic words are presented
at different SNR values beginning at +24 dB and decreasing to
0 dB. As with the QuickSIN, the output of this test is the SNR at
which 50% of words can be correctly repeated. The final SPIN
measure was the Non-sense Syllable Test (NST, Kuk et al., 2010).
In this measure, 115 phonetically balanced non-sense words were
presented in the presence of continuous speech-weighted noise
with a 5 dB SNR, and the percent correct was recorded.

All SPIN assessments were conducted using a three–speaker
array centered at 0-, 135-, and 225-degrees azimuth. In all tests,
speech was presented at 0 degrees azimuth. In the CNC, WIN
and NST tests, the noise was delivered through the 135- and 225-
degree azimuth speakers. For the QuickSIN test, the noise was also
presented at 0 degrees azimuth. Speech stimuli across all conditions
were presented at a fixed level of 75 dB SPL.

All participants first completed the SPIN tests in an unaided
condition. Following baseline testing, participants were fit with
Starkey Genesis AI RIC RT hearing aids. All fits were verified
using real-ear measures with the NAL-NL2 fitting formula and
were within 5 dB of target at all frequencies. Participants were then
provided with the hearing aids to use in their daily life for 4 weeks.
They were instructed by the research team how to manually activate
“Edge ModeTM” and were encouraged to use the devices during all
waking hours. Datalogging was monitored weekly. If average daily
use fell below four hours, participants returned to the lab for re-
instruction and device reprogramming, and their trial was extended
by 1 week. All participants met this requirement without exception.
After completing the 4-week field trial, participants returned to the
lab and repeated the SPIN measures in an aided condition. In the
post-fitting SPIN measures, each test was repeated twice, once with
Edge ModeTM active, and once with it deactivated (i.e., using default
“Personal” program).

To determine the subjective benefits of the Edge ModeTM

algorithm, we examined participant preferences during the take-
home field testing period. During this four-week timeframe,
participants were required to wear the devices for at least 4 h each
day in the default Personal program, and to use the on-demand
Edge ModeTM program at least twice daily. Subsequently, subjects
answered a total of six questions (Appendix 1) regarding their
subjective preference for the Personal program or Edge ModeTM

via survey or ecological momentary assessment questionnaire
through a smartphone mobile application. This allowed assessment
of subject participants’ overall preference, ease of use, and the
perceived listening environment when either the personal program
or Edge ModeTM was used. Subjects were blinded to the use of EMA
“catch” trials (randomized to 30%) that used an audible indicator
but did not apply acoustic changes when the on-demand feature
was activated.

Statistical analysis

Our primary objective in this phase was to assess the
influence of a speech enhancement algorithm on improving speech
understanding abilities in noise. For each SPIN measure, we
compared performance with the algorithm active vs. inactive via

a paired t-test. We then examined the relationship between the
magnitude of improvement (if any) and the degree of hearing loss
by completing a linear regression on the difference between active
and inactive modes vs. the degree of hearing loss as determined
by the High-Frequency Pure Tone Average (HFPTA; average at 1,
2, and 4 kHz). Finally, we examined the relationship between the
magnitude of improvement (if any) on a given SPIN test when the
algorithm was active relative to the pre-fitting unaided performance
on that test.

For the subjective ratings obtained in Phase II, we calculated
the percentage of improvement, no change, or worsening of
speech understanding after turning on the Edge ModeTM, and
the percentage of preference for Edge ModeTM or automatic
mode, stratified by environment or noise level. We used a one-
sample binomial test to determine (1) whether the observed
proportion of improvement is statistically significant compared to
the random 50–50% chance; (2) whether the observed proportion
of improvement is significantly different from that of worsening
when Edge ModeTM was turned on, in each environment and at
each noise level and all scenarios combined. The same test was
used to test the preference for Edge ModeTM or automatic mode.
P-values < 0.05 was deemed to be statistically significant under
two-tailed test.

Results

Phase I

Results from Hagerman and SII computations indicate
that in comparison to baseline amplification conditions with
omnidirectional microphones and no noise reduction, the default
Personal program provided an SNR improvement of over 7 dB in
challenging listening environments (e.g., “bar” or “construction”
environments), and up to 13 dB SNR improvement (vs. the
base condition) when Edge ModeTM was enabled (Figure 4). The
magnitude of benefit varied across the seven “real-life” conditions,
but each showed predicted SPIN and SNR improvements for
the Edge ModeTM conditions over the default Personal program
conditions. Additionally, the magnitude of benefit will vary with
acoustic coupling used (e.g., occluded vs. vented domes or
earmolds) under “real world” conditions.

Phase II: behavioral SPIN performance

Taken together, our results show improvements with activation
of the signal processing algorithm on the CNC +5 SNR,
the QuickSIN and the WIN, but not on the NST +5 SNR.
In all instances, these improvements were independent both
degree of hearing loss and the unaided pre-fitting performance.
Figure 5 shows group performance on the CNC+5 condition
when the algorithm was active or inactive (left panel), while
individual improvements are depicted in the right panel. Here
a significant improvement in performance was observed when
the algorithm was active (t20 = 5.30, p < 0.001). A moderate
relationship was observed with performance when the algorithm
was on and off (p = 0.007; R2 = 0.46), with the slope
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FIGURE 4

SII-weighted SNR improvement with a variety of challenging diffuse noise environments with Edge ModeTM hearing aids. The bars show comparison
between the automatic default Personal program (dark blue) and Edge ModeTM (light blue), vs. the baseline condition of omnidirectional microphone
and noise reduction disabled.

FIGURE 5

Group performance in the CNC+5 condition with the algorithm active or inactive (Left) and individual improvements (Right). Significant
improvement was observed with the algorithm active.

of the line suggesting that greater improvements were more
likely to be observed when performance without the algorithm
was lower. Finally, the magnitude of these improvements
was unrelated to both the degree of hearing loss (p =
0.33; R2 = 0.05) and the unaided performance (p = 0.69;
R2 = 0.01).

Similar results were observed for the QuickSIN (Figure 6).
Small, but statistically significant improvements were observed
on the QuickSIN when the algorithm was active vs. not (t20 =
3.59, p = 0.002). A strong relationship was observed between
the algorithm on vs. off conditions (p < 0.001; R2 = 0.87),
with the slope of the line suggesting that the magnitude of
improvement was similar regardless of the performance without
the algorithm. As with the CNC+5 SNR, these improvements

were not related to the degree of hearing loss (p = 0.93; R2

= 0.001) nor the unaided QuickSIN performance (p = 0.2;
R2 = 0.09).

As with the QuickSIN, small, but statistically significant
improvements were observed with the WIN (Figure 7) when
the algorithm was active relative to when it was not (t20 =
2.12, p = 0.046). A strong relationship was again observed
between the algorithm on and off conditions (p < 0.001; R2

= 0.73), with the slope of the line suggesting that, when
improvements are observed, their magnitude was similar regardless
of the performance without the algorithm. Any improvements
were once again unrelated to the degree of hearing loss (p
= 0.48; R2 = 0.03), and the unaided performance (p = 0.45;
R2 = 0.03).
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FIGURE 6

Group (Left) and individual (Right) performance on QuickSIN with the algorithm active and inactive were significant.

FIGURE 7

Group (Left) and individual (Right) performance on WIN with the algorithm active and inactive were significant.

FIGURE 8

Group (Left) and individual (Right) performance on NST words with active and inactive algorithm were not significant.

Unlike the previous SPIN tests, there were no differences
observed on the NST+5 SNR (Figure 8) when the algorithm was
active or inactive regardless of whether the test was scored as

whole words (t20 = 0.26, p = 0.81) or phonemes (t20 = 0.82,
p = 0.42). A significant relationship between NST performance
with the algorithm on and off was observed (p < 0.001; R2 =
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0.59), consistent with the idea that better or worse performance
without the algorithm is unchanged when the algorithm is active.
Finally, no relationship was found between the magnitude of
improvement (if any) and the degree of hearing loss (p = 0.79;
R2 = 0.003), or the unaided performance on the NST (p = 0.72;
R2 = 0.007).

Phase II: subjective ratings

The primary objective in this phase was to assess whether
the measured laboratory benefits from Phase I and clinical
benefits in Phase II were perceived as beneficial by participants
during take-home testing using EMA and subjective testing.
Here, significant improvements when Edge ModeTM was active
were reported across all listening environments (Figure 9). Even
after accounting for the catch trials, participants reported
significant improvements (p < 0.001) for the questions
asking about improvements in speech understanding and
reduction in listening effort. Finally, when asked about
listening preference between Edge ModeTM and the Personal
program (Figure 10), participants were more likely to prefer
listening with the Edge ModeTM active (p < 0.001) when in
noisy environments.

Discussion

In this multiphase assessment of a DNN-based on-demand
hearing aid feature (Edge ModeTM), we demonstrated strong
support in Phase I for the theoretical benefits in laboratory
conditions using the Hagerman method and via predicted
audibility represented by SII computations. In Phase II we also
observed significant improvements in both lab-based measures of
speech perception in noise, and subjective benefit in real-world
environments as measured by EMA questionnaires. However, these
benefits were observed on some tests (CNC + 5 SNR, QuickSIN
and WIN), but not others (NST + 5 SNR). When observed, these
benefits were independent of the degree of hearing loss and unaided
pre-fitting performance. Taken together, these results suggest that
this algorithm results in small, but significant improvements in the
SNR relative to current signal processing techniques, but that these
benefits may vary between individuals and may not be present with
all types of background noise.

One of the most striking results observed here is that the
algorithm improved SPIN abilities for all tests except for the
NST+5 SNR. The most likely reason for this result reflects the
differences in noise types between the two tests. Here, the NST
used a speech-shaped noise, while the other tests utilized multi-
talker babble. By this logic, the algorithm was most likely trained on
various types of multi-talker babble and was subsequently unable
to generalize any improvements to the speech-shaped noise. If
so, these data suggest that this algorithm needs to be further
refined to optimize the SNR in different acoustic environments.
An alternative, less likely information is that the NST+5 required
additional cognitive resources for optimal performance than the
other tests, and the additional cognitive load obscured any
improvement in SNR elicited by the algorithm. Single-word or

phoneme tests are often thought to rely more heavily on auditory
cues because of their lack of context than sentence-based tests.
Thus, one might expect that a non-sense syllable test should require
the participant to focus more on purely auditory cues. However,
participants may have attempted to assign meaning to the non-
sense word and confused it with similar-sounding real words.
If so, it may be possible that this process required additional
cognitive load which obscured any benefits in SNR brought about
by the algorithm.

One implication of observing benefits for some SPIN tests but
not others is that it suggests that the benefits observed here are
not resulting solely from a directional microphone. If this were
the case, then we should have observed improvements in all SPIN
tests. However, the fact that the same speaker configuration was
used for all tests, and that differences were only observed for the
test which used speech-shaped noise instead of multi-talker babble,
suggests that other factors in the signal processing algorithm than
microphone directionality accounted for the small but significant
improvements observed here.

While significant improvements were observed in three of the
four SPIN tests used here, it is worth noting that the improvements
were on average relatively small on average (∼1 dB for the
QuickSIN and WIN, and 10% for the CNC+5), and often varied
between individuals. For example, the smallest effect size was
observed for the WIN (Cohen’s d = 0.42, indicating a small effect),
while the effect sizes were larger for the QuickSIN and CNC+5
(0.78 and 1.16, respectively). One possibility is that the smaller
effect size with the WIN reflects the test administration. In this test,
the noise level is fixed, and the level of the signal is systematically
reduced. In contrast, the signal level is fixed with the QuickSIN and
the CNC+5 tests, and the noise level is varied in the QuickSIN.
One implication of this difference is that for some participants,
there may have been a reduction of audibility for some signals,
which could have hindered the effectiveness of the algorithm. Such
confounds are less likely with the QuickSIN or the CNC+5 as the
speech level and thus audibility was fixed in these measures, and
this may help account for the reduced effect size for the WIN.

Another possibility is that the between-participant variability
observed here regarding the effectiveness of the algorithm reflects
individual differences between participants regarding distortions
of peripheral encoding or executive function. For example, when
measured in thousands of patients, performance on the QuickSIN
and WIN has been shown to vary considerably between individuals
with similar amounts of hearing loss (Fitzgerald et al., 2023;
Wilson, 2011; Smith et al., 2024). In some instances, these between-
subject differences are often attributed to differences in peripheral
encoding of the signal. These include, and are not limited to, deficits
in spectral-temporal modulation (Bernstein et al., 2013; Mehraei
et al., 2014; Bernstein et al., 2016), temporal fine structure (Moore
et al., 2008; Lorenzi et al., 2006; Hopkins et al., 2008; Viswanathan
et al., 2021), the encoding of the fundamental frequency (Coffey
et al., 2017; Mepani et al., 2021), synaptopathy (Liberman et al.,
2016; DiNino et al., 2022), and the distortion of tonotopicity
(Parida and Heinz, 2022a,b). In other instances, differences in
executive function capacity have been put forth as predictors of
SPIN abilities. For example, reducing working memory capacity is
consistently associated with poor performance on SPIN measures
in elderly patients (Humes, 2021b; Akeroyd, 2008; Janse and
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FIGURE 9

Subjective results from take-home testing comparing preference for the default Personal program vs. Edge ModeTM for seven quiet and noisy
listening environments.

FIGURE 10

Overall preference for Personal vs. Edge ModeTM programs reported from take-home testing for seven quiet and noisy listening environments.

Jesse, 2014; Souza and Arehart, 2015; Nagaraj, 2017; Vermeire
et al., 2019; Yeend et al., 2019; Humes, 2020). Other aspects of
executive function, such as cognitive flexibility, are also associated
with SPIN abilities in adults (Rosemann and Thiel, 2020; Helfer
et al., 2020). Regarding the present data, it is possible that the
algorithm used here may facilitate improvements in the SNR for
some types of deficits in peripheral encoding or executive function,
but not others. For example, some older adults may be more

sensitive to distortions of the speech signal caused by some types of
hearing aid signal processing (Arehart et al., 2013), and that these
differences can be mediated or influenced by spectral distortion of
between-subject variance in executive function capacity (Davies-
Venn and Souza, 2014; Souza et al., 2015; Rallapalli et al., 2021;
Windle et al., 2023; Rallapalli et al., 2024). By this logic, the
algorithm used here may be more effective for some individuals
than others, but the pre-test and fitting procedures used here
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were insufficient to predict which individuals would be most likely
to benefit.

Another key result from this study is that, when improvements
were observed on behavioral SPIN abilities, they were not related
to the degree of hearing loss, or the unaided performance on any
of the SPIN measures tested here. The most likely interpretation
of these results is that the signal-processing algorithm used here
results in enhancement of speech features for all signals, and that
participant-specific factors (e.g., differences in peripheral encoding
or executive-function abilities) determined the extent to which they
could make use of the enhancements elicited by the algorithm.
Such data speaks to the need for improved-prefitting measures
to allow for greater precision in fitting of hearing aids beyond
maximizing audibility according to pre-specified formulae such as
NAL or DSL.

In addition to the behavioral improvements in SPIN
performance observed with the Edge ModeTM algorithm, these
participants also reported significant subjective improvements
when the algorithm was active. These preferences were observed
in both quiet and noisy listening environments, and were
almost uniformly in favor of the Edge ModeTM algorithm.
This subjective preference is consistent with a recent report
indicating that improved SPIN performance was associated with
a reduction in perceived auditory disability in a large cohort
of more than 1600 patients (Fitzgerald et al., 2024). Moreover,
SPIN abilities correlate with hearing aid satisfaction (Saunders
and Forsline, 2006; Davidson et al., 2021; Walden and Walden,
2004), such that patients with better SPIN abilities are happier
with their devices. Conversely, SPIN abilities are often worse
in patients who return their hearing aids (Humes, 2021a), and
difficulties with SPIN are commonly reported to be responsible
for inconsistent hearing aid use, or discontinuing use altogether
(McCormack and Fortnum, 2013; Hong et al., 2014; Humes,
2003; Hickson et al., 2014; Jilla et al., 2020; Powers and Rogin,
2020; Aazh et al., 2015). Taken together, these data suggest that
even relatively small improvements in SNR over conventional
signal processing can be noted by patients and result in improved
preference. Thus, these data suggest that the future potential
for DNN-assisted noise management has significant potential to
further improve the communication abilities of individuals with
hearing difficulties.

Conclusions

Here we evaluated the efficacy of a DNN-based hearing aid
signal processing algorithm in improving speech perception in
noise (SPIN) in 20 participants with hearing loss, in addition
to objective evaluations in a laboratory setting. We observed
significant improvement in SPIN abilities on the CNC+5 SNR,
QuickSIN, and WIN tests but not on the NST+5 SNR. We
speculate that the lack of improvement on the NST+5 SNR is
likely due to its use of speech-shaped noise, unlike the multi-
talker babble in other tests. This suggests that the algorithm
may have been optimized for speech understanding in the
presence of competing talkers and would need to be refined
for other listening conditions. The benefits observed here were
somewhat variable between individuals and were independent
of the degree of hearing loss unaided SPIN abilities. These

results likely reflect between-participant differences in as peripheral
encoding and executive function which influence the ability of
individuals to benefit from the signal processing used here.
Finally, these SPIN improvements were reflected in the subjective
preferences of these participants when using devices in their
daily lives. Taken together, they suggest that artificial intelligence
driven algorithms can elicit significant improvements in SNR
in hearing aids, and that more precise tools are needed to
improve pre-fitting measures to better tailor hearing aids to
individual users.
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