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Collisional excitation in reactive 
systems: recent advances in 
modeling molecular processes 
for astrochemistry

Paul Pirlot Jankowiak*

Star and Planet Formation Laboratory, RIKEN Pioneering Research Institute (PRI), Saitama, Japan

Collisional excitation in reactive systems plays a central role in astrochemistry. 
Accurate state-to-state rate coefficients are key parameter for the determination 
of excitation conditions of interstellar molecules with the most abundant species 
in space (H, He and H2) through collisions. Unfortunately, reliable data for 
collisions involving interstellar reactive radicals and ions are scarce. Despite the 
molecular simplicity of these systems, considering the competition between 
nonreactive and reactive processes on equal footing remains a true theoretical 
and computational challenge in particular for bimolecular reactions, in addition 
to excitation processes in open-shell species. This minireview emphasizes 
recent progress in theoretical approaches for state-to-state scattering in 
reactive systems of astrochemical interest. We discuss the strengths and 
limitations of state-of-the-art quantum methods on collisions involving direct 
and indirect reactions; and the encouraging alternatives proposed by statistical 
frameworks. We highlight the impact of the computed state-to-state rate 
coefficients in astrophysical modeling.
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 1 Introduction

Molecular collisions constitute fundamental processes governing the chemical 
transformation of matter. Although inherently quantum by nature, they participate in the 
understanding of structures on astronomical scales. The astrochemical community aims 
to understand both the molecular composition and the physical conditions lying in the 
Interstellar Medium (ISM). Since the advent of radio astronomy in the 1960s, the resolution 
and sensitivity of ground-based and space telescopes have reached unprecedented levels of 
accuracy, enabling not only the detection of a large number of interstellar molecules, but 
also probing the chemical diversity in the gas-phase at small scale structures of interstellar 
sources, notably thanks to the ALMA interferometer (McGuire, 2022). More recently, 
JWST observations probed a rich chemistry on icy grain mantles, providing key insights 
into formation of molecules in star-forming regions (McClure et al., 2023).

Molecular spectra offer a window into the physical conditions of interstellar sources. 
On one hand, the chemical composition is inferred from the line assignment supported 
by computational and laboratory spectroscopy. On the other hand, line intensity is directly 
related to the population of molecular energy levels and hence the excitation conditions 
of interstellar environments. However, the microscopic mechanisms driving the molecular 
excitation in the ISM are complex due to its extreme density conditions (10−3–1012 cm−3)
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FIGURE 1
Schematic diagrams of direct (left) and indirect (right) reactions. Red pathways denote exothermic reactions and blue correspond to endothermic 
reactions.

and prevent the distribution of the molecular populations through 
Local Thermodynamic Equilibrium (LTE) assumption (Roueff and 
Lique, 2013; Lique and Faure, 2019). Thus, radiative transfer is the 
common knowledge to determine the physical conditions of the 
source under study. Accurate modeling relies on the description of 
the interplay between radiative and collisional processes.

Two main cases occur during a collision between two molecules 
A and B in the gas-phase:

A(v1, j1) +B(v2, j2) →
{
{
{

A(v′1, j
′
1) +B(v′2, j

′
2) inelastic

C(v′3, j
′
3) +D(v′4, j

′
4) reactive

(1)

In Equation 1, (v, j) denote the vibrational quantum number 
and the rotational angular momentum, respectively. The first 
case corresponds to inelastic collisions, where internal energy is 
redistributed between reactants among their internal degrees of 
freedom (v′1, j

′
1) and (v′2, j

′
2). The second case represents reactive 

collisions, in which the reactants are destroyed to form new 
products C and D in rovibrational states (v′3, j

′
3) and (v′4, j

′
4), 

respectively. Figure 1 illustrates schematic pathways of molecular 
reactions. Direct reactions involve the break of the bond of one 
of the reactants in a short time, often requiring surmounting 
an activation barrier Ea, which makes them less efficient at low 
temperatures. In contrast, indirect reactions proceed through a long-
lived intermediate complex by creating bonds between reactants.1 
In this type of reactions, exothermic and bariereless reactions do 
not present threshold energy and the reactive rate coefficient often 
decreases with increasing collision energy, due to the increasing 
opening of energy levels for the reactants, in opposite behavior 
of direct transitions (Song and Guo, 2023). These processes are 
usually governed by long-range interactions and concern mostly 
ion-molecule collisions.

Usually, the extreme low temperatures of interstellar objects 
such as molecular clouds (∼10–100 K) hinder direct reactions 

1 Direct and indirect reactions are often referred to as “abstraction” and 

“insertion” reactions in the literature, respectively.

to the profit of collisional excitation (Roueff and Lique, 2013). 
Furthermore, exothermic and barrierless reactions still occur under 
such conditions and form products in excited states (Caselli and 
Ceccarelli, 2012). This difference of behavior in reactivity can have 
an impact on excitation processes. Therefore, depending on the 
nature of the interaction and the temperature, there can be a 
complex interplay between inelastic and reactive processes during 
a collision. This minireview focuses on collisional excitation in 
molecular systems presenting such competition between exctiation 
and reactivity, and are defined as “reactive systems”. We focus here 
on processes involving collisions between light species like H+, H 
and H2 with hydrides, i.e., molecules consisting of one heavy atom 
and one ore more hydrogen atoms. Hydrides received considerable 
attention in the past decade as they are of fundamental interest 
in initiating the chemical evolution in both gas and solid-phases, 
probing conditions in diffuse and dense gas, tracing the molecular 
fraction of H2 or the cosmic-ray ionization rate (Gerin et al., 2016). 
We will emphasize the behavior of these molecules when colliding 
with atomic, molecular hydrogen and protons, the main interstellar 
colliders.

Recent achievements in experiments like crossed-beam laser 
techniques or cryogenic ion traps has enabled precise measurements 
of rate coefficients for reactive processes (Toscano et al., 2020). 
Supported by theoretical investigations, these data are reported in 
KIDA (Wakelam et al., 2024) and UMIST (Millar et al., 2023), 
which are the most important reaction databases for chemical 
modeling. However, although experimental data take into account 
all processes occuring during a collision, state-to-state resolved 
rate coefficients tracking both, excitation and reaction, are still 
hardly achievable, however necessary in radiative transfer. Scattering 
calculations remain currently the most reliable approach to provide 
such collisional data. Typical study of a molecular system lies in the
Born-Openheimer approximation (Born and Oppenheimer, 1927). 
Ab initio methods such as Configurational Interaction type 
(Knowles and Werner, 1988) or Coupled Clusters (Knowles et al., 
1993) are currently the methods of choice for treating high 
dimensional reactive potential energy surface (PES), as the 
scattering is highly sensitive to its accuracy (Tonolo and 
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Alessandrini, 2024; Bowman et al., 2011; Jiang et al., 2020). 
Collisional cross sections and rate coefficients are then derived from 
the S-matrix obtained by solving the Schrödinger equation for the 
nuclear motion, with appropriated coordinate system and boundary 
conditions (Arthurs and Dalgarno, 1960). The competition between 
inelastic and reactive behavior make difficult to determine the S-
matrix at a state-to-state level due to the “coordinate problem”, i.e., 
the issue to find a common coordinate system for both reactants 
and products (Hu and Schatz, 2006). This problem has been carried 
out for atom-diatom collisions using the hyperspherical coordinates 
and implemented in the ABC software (Skouteris et al., 2000), but 
remains difficult to extend to polyatomic systems (Zhao and Guo, 
2017). Of course several bimolecular reactions have been treated 
including diatomic or triatomic molecules in quantum state-to-state 
scattering, but only the reactive behavior has been discussed. We will 
not discuss these reactions in this minireview and refer the reader to 
excellent reviews about high dimensional reactive collisions (Zhang 
and Guo, 2016; Zhao and Guo, 2017; Song and Guo, 2023).

In this minireview, we restrict the discussion to collisional 
excitation in reactive systems relevant to astrochemical applications 
over the past decade; and available in the molecular databases 
EMAA (Faure et al., 2025), BASECOL (Dubernet et al., 2023) 
and LAMDA (Van der Tak et al., 2020). The manuscript is 
organized as follows: Section 2 presents the state-of-the-art 
methods for providing state-to-state collisional data, section 3 
discusses recent work on collisions involving direct reactions, 
while section 4 highlights recent achievements for indirect 
reactions. Finally, section 5 will discuss excitation processes in 
open-shell molecules and the impact of the data sets in astrophysical 
applications. 

2 Theoretical methods

State-to-state collisional cross sections characterize the 
probability for the reactants to transit from an initial energy state 
to a final one, or to react and form products (see Equation 1). 
Computing this observable requires the solution of the Close-
Coupling equations within the Time-Independent Quantum 
Mechanical (TIQM) framework. This approach provides the S-
matrix for the reactants and products in the asymptotic region of 
the propagation, subject to proper boundary conditions (Arthurs 
and Dalgarno, 1960). TIQM method is one of the most accurate and 
permit the computation of the S-matrix for all available quantum 
states at a given total energy, but restricted to low temperatures as 
the computational time scales as N3 (with N being the number of 
channels, representing the combination of initial and final energy 
levels satisfying the conservation of the total energy; Flower (2007)). 
At higher temperatures, Time-Dependent Quantum Mechanical 
(TDQM) methods based on Wave Packet (WP) propagation 
offer a practical alternative, which scales as N log N (Light and 
Carrington Jr, 2000). However, WP methods are less likely to work 
at low temperature due to convergence problems at low collisional 
energies (Honvault et al., 2011; 2012).

Both TIQM and TDQM methods are efficient for direct 
reactions contrary to indirect ones, which often involve a deep 
potential well. In the latter, calculations require large basis functions 
to reach convergence, especially at high angular momentum. 

Statistical methods are proposed as an alternative to overcome this 
challenge. The main assumption is that the collision proceed through 
a long-lived enough intermediate complex so that its formation and 
decay are treated as independent events. Among various approaches, 
the Statistical Adiabatic Channel Model (SACM; Quack and Troe 
(1975)) have shown satisfactory agreement with TIQM methods 
at low temperatures for nonreactive (Loreau et al., 2018) systems 
and collisions involving heavy colliders (Godard Palluet et al., 
2025; Tonolo et al., 2025). For reactive systems, both SACM 
and Statistical Quantum Methods (SQM; Rackham et al. (2003)) 
were employed for indirect reactions. Comparisons with TIQM 
benchmarks show that statistical methods reproduce cross sections 
within a factor of ∼2 at low temperatures while dramatically saving 
computational time (González-Lezana, 2007; Konings et al., 2021). 
However, they are expected to fail at high temperatures, as the 
formation of a long-lived complex is not supposed to be the 
dominant mechanism in the dynamics. Quasi-Classical Trajectories 
(QCT) are suited to cover these ranges of temperature since 
quantum effects become less significant. The inelastic or reaction 
probability depends on the proportion of trajectories corresponding 
to excitation or reaction with respect to the total number of 
trajectories (Bai et al., 2017). Table 1 summarizes key studies from 
the past decade, including the methodologies applied and their 
accuracy with respect to the TIQM method or experiment, when 
clearly available from the corresponding reference.

3 Direct reactions

Unimolecular reactions are by far the most studied due to 
the molecular simplicity of the colliders. In case of collisional 
excitation in direct reactions, TIQM and TDQM can be easily 
applied. It is intuitive to think that activation energy should a priori
inhibit reactive processes, depending on the temperature regime. For 
instance, in the HF + H → F + H2 reaction, with an endothermicity 
of 15,000 K and a barrier Ea of 20,000 K, Desrousseaux and Lique 
(2018) revealed that reactive and exchange channels are negligible 
for interstellar temperatures. Similar results were found for the 
HD–H (Ea ∼5,000 K) (Zhou et al., 2021; Desrousseaux et al., 
2022) and HCl–H (Ea ∼2,500 K) (Lique, 2015a; Lique and Faure, 
2017) systems for low temperatures. At higher collisional energies, 
reactants possess enough energy to overcome the barrier, in 
addition to quantum tunneling usually present for systems involving 
light atoms (Schreiner, 2020). Such features impact the magnitude of 
rate coefficients at roughly one-tenth of the reaction barrier.

Because reactive rate coefficients are often small at low 
temperatures, it might be tempting to facilitate scattering studies 
and reduce the dimensionality of the problem by omiting reactive 
channels. However, severe discrepancies can appear compared to full 
calculation especially when vibrational excitation is not negligible. 
Indeed, vibration has been established to strongly enhance reactivity, 
explained, for example, by Polanyi (1987) to the location of 
the barrier for atom-diatom reactions. Also, Barg et al. (1981) 
emphasized the decreasing of the threshold reaction energy with 
increasing vibration mode. For the H–H2 (Lique, 2015b) and HD–H 
(Desrousseaux et al., 2022) systems, comparisons with previous 
studies which considered pure inelastic calculations revealed 
discrepancies by several orders of magnitude (Wrathmall et al., 2007; 
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TABLE 1  Collisional studies for reactive systems of astrochemical interest.

System Method Temperature (K) Excitation Accuracya Ref.

H+ + H2

TIQM ≤ 100 Rotation 1, 2

TIQM/SQM 5–3,000 Rovibration <  50% 3, 4

H + H2

TIQM <  1,500 Rotation <  50%b 5

TIQM 100–5,000 Rovibration 6

QCT 5,000–15 000 Rovibration <  factor 3 7

ANN 100–5,000 Rovibration 10%–50% 8

D2 + H TIQM <  500 Rotation 9

HCl + H
TIQM <  500 Rotation 10

IOS <  500 Hyperfine <  factor 2c 11

CH+ + H

TIQM 5–800 Rotation ∼20%d 12

QCT 10–3,000 Rotation 13

SACM 20–500 Rotation <  factor 3 14

CH + H2

SQM 10–300 Fine structure 15

Recoupling/MJ-random 10–300 Hyperfine 16

CH + H
SQM 10–300 Fine structure 17

Recoupling/MJ-random 10–300 Hyperfine 16

OH + H2

TIQM 10–150 Fine structure 18

Recoupling 10–150 Hyperfine 19

HD + H
TIQM 10–1,000 Rotation 20

TIQM 10–5,000 Rovibration 21, 22

HF + H TIQM 10–500 Rotation 23

SH+ + H

QCT 10–4,000 Rovibration factor 3–6 24

TIQM/WP 15–10 000 Rovibration 25

IOS 10–1,000 Hyperfine 26

SACM <  500 Rotation ∼30% 14

HeH+ + H TIQM <  500 Rovibration 27

HD + H+
TIQM/SACM ≤ 300 Rotation <  30%e 28

SQM 5–3,000 Rovibration ∼25% 29

C+ + H2 TIQM 5–500 Rotation 30

(Continued on the following page)
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TABLE 1  (Continued) Collisional studies for reactive systems of astrochemical interest.

System Method Temperature (K) Excitation Accuracya Ref.

OH + H
SQM 5–500 Fine structure 31

Recoupling/MJ-random 5–500 Hyperfine 32

OH+ + H2 SACM 5–300 Rotation <  50%f 33

aThe accuracy refers to the reliability of the used method with respect to the TIQM approach or experimental measurement, when available.
bIn the range 300–444 K with experiments by Schulz and Le Roy (1965).
cIn the range 200–500 K with fit to various experiments of Kumaran et al. (1994).
dIn the range 50–800 K with experiments by Federer et al. (1984); Plasil et al. (2011).
eFor 205 K and 305 K with experiments by Henchman et al. (1981).
fIn the range 15–160 K with experiments by Tran et al. (2018); Kumar et al. (2018).
References. (1) Honvault et al. (2011); (2) Honvault et al. (2012); (3) González-Lezana and Honvault (2017); (4) González-Lezana et al. (2021); (5) Lique et al. (2012); (6) Lique (2015b); (7) 
Bossion et al. (2018); (8) Bossion et al. (2024); (9) Lique and Faure (2012); (10) Lique (2015a); (11) Lique and Faure (2017); (12) Werfelli et al. (2015); (13) Faure et al. (2017); (14) Konings et al. 
(2021); (15) Dagdigian (2016); (16) Dagdigian (2018); (17) Dagdigian (2017); (18) Kłos et al. (2017); (19) Kłos et al. (2020); (20) Desrousseaux et al. (2018); (21) Zhou et al. (2021); (22) 
Desrousseaux et al. (2022); (23) Desrousseaux and Lique (2018); (24) Zanchet et al. (2013); (25) Zanchet et al. (2019); (26) Lique et al. (2020); (27) Desrousseaux and Lique (2020); (28) 
Desrousseaux et al. (2021); (29) González-Lezana et al. (2022); (30) Kłos et al. (2021); (31) Dagdigian (2022); (32) Dagdigian (2023); (33) Pirlot Jankowiak and Lique (2025).

Flower and Roueff, 1999). Moreover, exchange processes were found 
to facilitate vibrational relaxation. Properly accounting for these 
effects permitted Lique (2015b) to be in good agreement with the 
experimental measurements of the H2 (v = 0) + H → H2 (v′ = 1) + 
H rate coefficient at room temperature (Heidner and Kasper, 1972).

Reactive systems involve sometimes radicals which are open-
shell molecules, i.e., their nonzero electronic spin leads to a 
splitting of the energy levels into a fine structure when coupling 
to the rotation. Accounting simultaneously for both excitation in 
a complex energetic structure and reactive processes is difficult 
in scattering calculations. When the spin-rotation coupling is 
weak, one idea is closing fine structure and only consider the 
competition between rovibrational excitation and reactivity. This 
was applied to the SH+–H system by Zanchet et al. (2019) for 
the direct reaction. However, when the coupling of the electronic 
spin is strong, fine structure cannot be avoided. In this framework, 
Dagdigian (2017), Dagdigian (2022) investigated pure fine structure 
excitation of (CH2Π) and (OH2Π) by atomic hydrogen by means of 
a modified SQM method to account for the electronic coupling in 
the molecular Hamiltonian, and excluded reactive channels. Also, 
to propose a strategy to overcome the coordinate problem in case 
of bimolecular reactions, Dagdigian (2016) and Kłos et al. (2017) 
used the same methodology to treat the excitation of (CH2Π) and 
(OH2Π) with H2 as nonreactive systems. These studies involve the 
interactions between several PESs, leading to a contribution to 
inelastic transitions from both direct and indirect processes. Then, 
neglecting the reactive channel should in principle overestimates the 
contribution from fine structure excitation to the cross sections. 

4 Indirect reactions

For indirect reactions, calculations become more complicated 
due to the presence of deep potential well, requiring large basis 
functions in scattering calculations. Despite this challenge, TIQM 
approach have been successfully applied in atom-diatom reactions 
like H+–H2 (González-Lezana and Honvault, 2017; González-
Lezana et al., 2021), HD–H+ (Desrousseaux et al., 2021), HeH+–H 
(Desrousseaux and Lique, 2020) and CH+–H (Werfelli et al., 

2015); however for a restricted range of temperature or basis 
level (see Table 1).

These systems are ideal test cases for statistical treatments. For 
most of the cited reactions, comparisons between TIQM and SQM 
methods show satisfactory statistical behavior for indirect reactions 
with deep well of ∼4.5 eV. Desrousseaux et al. (2021) used the 
HD–H+ system to benchmarck SACM calculations against TIQM 
for rotational excitation, finding an agreement within a factor of 
2; and consistency with experiments on the HD + H+ → H2 + 
D+ reaction (Henchman et al., 1981). Konings et al. (2021) found 
similar agreement between SACM and TIQM/TDQM calculations 
for the CH+–H and SH+–H systems for the indirect reaction. The 
only exception was for collisions of HeH+ by H, where TIQM 
calculations revealed that inelastic and exchange processes are not 
equal, characterizing a non-statistical behavior despite a well depth 
of about 0.8 eV.

Collisional excitation at a state-to-state level in bimolecular 
reactions remains a true issue due to the coordinate problem 
mentioned in section 1. As discussed in section 3, a possibility is 
reducing the dimension and treat the problem as a pure nonreactive 
system in the case of direct reactions. For exothermic and barrierless 
reactions, this aspect cannot be ignored. Pirlot Jankowiak and 
Lique (2025) proposed the use of SACM to investigate the 
rotational excitation of OH+(3Σ−) induced by collisions with H2. 
Despite the presence of a submerged barrier that should prevent 
a statistical behavior (Song and Guo, 2023), SACM obtained 
satisfactory agreement with the measurements of the OH+ + H2
→ H2O+ + H reaction (Tran et al., 2018; Kumar et al., 2018) 
by a factor of 2. However, preliminary tests showed that SACM 
is inadequate for fine structure excitation in OH+ collisions, 
justifying the restriction of the study to rotational excitation
(Pirlot Jankowiak, 2024). 

5 Discussion

The inclusion of the reactive channel in the reported studies 
was done at the expense of interactions arising from the presence 
of the nuclear spin. However, the sensitivity of telescopes enables 
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observations of hyperfine lines. Properly accounting for hyperfine 
excitation in scattering calculations is crucial for providing complete 
data set for radiative transfer modeling. Direct treatment with 
TIQM and TDQM approaches is computationally prohibitive, as the 
number of energy levels increases rapidly with the energy. Several 
approximations can overcome this limitation, the most accurate 
being recoupling techniques based on the assumption that the 
nuclear spin to be spectator during collision, allowing hyperfine-
resolved cross sections to be reconstructed from rotational/fine-
structure data (Alexander and Dagdigian, 1985). This method has 
been applied to the CH–H, CH–H2 (Dagdigian, 2018), OH–H 
(Dagdigian, 2023) and OH–H2 (Kłos et al., 2020) for the direct 
reaction. Excitation driven by a formation and decay of an 
intermediate complex still remains computationally excessive for 
recoupling approaches. Then, the MJ randomization approximation 
(Alexander and Dagdigian, 1985) was used for the indirect 
processes. In this limit, the projection of the total angular 
momentum becomes fully randomized within the intermediate 
complex, leading to hyperfine transition proportional to the 
degeneracy of the final level. Furthermore, Infinite Order Sudden 
(IOS) based methods (Neufeld and Green, 1994; Faure and 
Lique, 2012) supposes a decoupling of orientations from the 
rotational motion during the collision; and was successfully 
applied to the HCl–H (Lique and Faure, 2017) and SH+–H 
(Lique et al., 2020) systems. These two alternatives have shown 
to agree with the recoupling method within a factor of 3 
depending on the system and on the temperature (Faure and 
Lique, 2012).

It is interesting to look at the impact of the collisional data in 
the excitation of these molecules in the ISM. When the collisional 
data are absent, one common practice is to use data set involving 
He or H as a proxy for H2 as a collision partner (Roueff and 
Lique, 2013). While this substitution can be somehow relevant for 
nonreactive systems at low temperature, fundamental differences 
arise for reactive systems from the nature of their interactions. As an 
example, Lique and Faure (2017) reported large differences in trend 
and magnitude between HCl collisions with H, He (Lanza and Lique, 
2012) and H2 (Lanza and Lique, 2014). Lique and Faure (2017) 
also found a substantial difference of a factor 1.5–2 in brightness 
temperatures for the hyperfine components of the HCl(j = 1 →
0) transition at 626 GHz observed in L1157-B1 (Codella et al., 
2011) when involving collisional data set for H or both H and H2
partners. Differences are even more promounced for ion-molecule 
interactions. Gomez-Carrasco et al. (2014) modeled the abundance 
of OH+ in photo-dissociation regions using collisional data for 
the OH+–He system. However, the rate coefficients found for the 
OH+–H2 system are orders of magnitude smaller, in the range of 
10−13–10−12 cm3s-1 below 100 K, compared to typical values of 10−10

cm3s-1 for nonreactive systems (Pirlot Jankowiak and Lique, 2025). 
Such discrepancies are likely to alter significantly the populations of 
the OH+ energy levels in modeling line intensities and review the 
abundance of this molecule in the ISM.

Finally, the collisional data for the HD–H+ collisional system 
(González-Lezana et al., 2022) have been notably implemented in 
chemical network simulations for primordial chemistry of H2 and 
HD in the ISM (Faure et al., 2024). Although the refine of the 
abundance of H2 and HD was modest, they also checked the impact 
of the data for the HD–H system (Desrousseaux et al., 2022) and 

noticed a decreasing of the HD abundance by a factor of 3 for 
redshifts of 400 < z < 1300.

In this minireview, we emphasized the importance of inelastic 
and reactive pathways in interstellar collisions through recent 
advancements about collisional excitation in reactive systems of 
astrochemical interest. For reactions presenting a large barrier 
or endothermicity, reactive processes can be safely neglected up 
to about one-tenth of the activation barrier. However, neglecting 
reactive channels in case of vibrational excitation can result in 
large overestimations of the collisional data. In general, state-of-
the-art methods can be easily applied to atom-diatom collisions 
especially for direct reactions. Statistical methods have proven 
to be efficient and reliable for treating indirect reactions. The 
increasing dimensionality of the systems and the complexity of 
open-shell molecules remain difficult for describing collisional 
processes at a state-to-state level, but encouraged by the use 
of statistical methods. Explorations based on artificial neural 
networks (ANN) algorithms can also offer promising perspectives 
to cover a more range of complex systems involving polyatomic 
molecules (Bossion et al., 2024).
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