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Collisional excitation in reactive systems plays a central role in astrochemistry.
Accurate state-to-state rate coefficients are key parameter for the determination
of excitation conditions of interstellar molecules with the most abundant species
in space (H, He and H,) through collisions. Unfortunately, reliable data for
collisions involving interstellar reactive radicals and ions are scarce. Despite the
molecular simplicity of these systems, considering the competition between
nonreactive and reactive processes on equal footing remains a true theoretical
and computational challenge in particular for bimolecular reactions, in addition
to excitation processes in open-shell species. This minireview emphasizes
recent progress in theoretical approaches for state-to-state scattering in
reactive systems of astrochemical interest. We discuss the strengths and
limitations of state-of-the-art quantum methods on collisions involving direct
and indirect reactions; and the encouraging alternatives proposed by statistical
frameworks. We highlight the impact of the computed state-to-state rate
coefficients in astrophysical modeling.

molecular data, quantum dynamics, astrochemistry, reactive systems, rate coefficients

1 Introduction

Molecular collisions constitute fundamental processes governing the chemical
transformation of matter. Although inherently quantum by nature, they participate in the
understanding of structures on astronomical scales. The astrochemical community aims
to understand both the molecular composition and the physical conditions lying in the
Interstellar Medium (ISM). Since the advent of radio astronomy in the 1960s, the resolution
and sensitivity of ground-based and space telescopes have reached unprecedented levels of
accuracy, enabling not only the detection of a large number of interstellar molecules, but
also probing the chemical diversity in the gas-phase at small scale structures of interstellar
sources, notably thanks to the ALMA interferometer (McGuire, 2022). More recently,
JWST observations probed a rich chemistry on icy grain mantles, providing key insights
into formation of molecules in star-forming regions (McClure et al., 2023).

Molecular spectra offer a window into the physical conditions of interstellar sources.
On one hand, the chemical composition is inferred from the line assignment supported
by computational and laboratory spectroscopy. On the other hand, line intensity is directly
related to the population of molecular energy levels and hence the excitation conditions
of interstellar environments. However, the microscopic mechanisms driving the molecular
excitation in the ISM are complex due to its extreme density conditions (107310 cm™)
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Schematic diagrams of direct (left) and indirect (right) reactions. Red pathways denote exothermic reactions and blue correspond to endothermic

reactions.

and prevent the distribution of the molecular populations through
Local Thermodynamic Equilibrium (LTE) assumption (Roueff and
Lique, 2013; Lique and Faure, 2019). Thus, radiative transfer is the
common knowledge to determine the physical conditions of the
source under study. Accurate modeling relies on the description of
the interplay between radiative and collisional processes.

Two main cases occur during a collision between two molecules
A and B in the gas-phase:

A(v},j1) +B(v),jy)  inelastic

A(vy,j;) +B(vy,j,) —
C(v},5) + D(vy,jy)

reactive

In Equation 1, (v,j) denote the vibrational quantum number
and the rotational angular momentum, respectively. The first
case corresponds to inelastic collisions, where internal energy is
redistributed between reactants among their internal degrees of
freedom (v,j;) and (v},j;). The second case represents reactive
collisions, in which the reactants are destroyed to form new
products C and D in rovibrational states (vi,j3) and (v},j)),
respectively. Figure 1 illustrates schematic pathways of molecular
reactions. Direct reactions involve the break of the bond of one
of the reactants in a short time, often requiring surmounting
an activation barrier E,, which makes them less efficient at low
temperatures. In contrast, indirect reactions proceed through a long-
lived intermediate complex by creating bonds between reactants.!
In this type of reactions, exothermic and bariereless reactions do
not present threshold energy and the reactive rate coeflicient often
decreases with increasing collision energy, due to the increasing
opening of energy levels for the reactants, in opposite behavior
of direct transitions (Song and Guo, 2023). These processes are
usually governed by long-range interactions and concern mostly
ion-molecule collisions.

Usually, the extreme low temperatures of interstellar objects
such as molecular clouds (~10-100 K) hinder direct reactions

1 Direct and indirect reactions are often referred to as "abstraction” and

“insertion” reactions in the literature, respectively.
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to the profit of collisional excitation (Roueff and Lique, 2013).
Furthermore, exothermic and barrierless reactions still occur under
such conditions and form products in excited states (Caselli and
Ceccarelli, 2012). This difference of behavior in reactivity can have
an impact on excitation processes. Therefore, depending on the
nature of the interaction and the temperature, there can be a
complex interplay between inelastic and reactive processes during
a collision. This minireview focuses on collisional excitation in
molecular systems presenting such competition between exctiation
and reactivity, and are defined as “reactive systems” We focus here
on processes involving collisions between light species like H", H
and H, with hydrides, i.e., molecules consisting of one heavy atom
and one ore more hydrogen atoms. Hydrides received considerable
attention in the past decade as they are of fundamental interest
in initiating the chemical evolution in both gas and solid-phases,
probing conditions in diffuse and dense gas, tracing the molecular
fraction of H, or the cosmic-ray ionization rate (Gerin et al.,, 2016).
We will emphasize the behavior of these molecules when colliding
with atomic, molecular hydrogen and protons, the main interstellar
colliders.

Recent achievements in experiments like crossed-beam laser
techniques or cryogenic ion traps has enabled precise measurements
of rate coefficients for reactive processes (Toscano et al., 2020).
Supported by theoretical investigations, these data are reported in
KIDA (Wakelam et al., 2024) and UMIST (Millar et al., 2023),
which are the most important reaction databases for chemical
modeling. However, although experimental data take into account
all processes occuring during a collision, state-to-state resolved
rate coeflicients tracking both, excitation and reaction, are still
hardly achievable, however necessary in radiative transfer. Scattering
calculations remain currently the most reliable approach to provide
such collisional data. Typical study of a molecular system lies in the
Born-Openheimer approximation (Born and Oppenheimer, 1927).
Ab initio methods such as Configurational Interaction type
(Knowles and Werner, 1988) or Coupled Clusters (Knowles et al.,
1993) are currently the methods of choice for treating high
dimensional reactive potential energy surface (PES), as the
scattering is highly sensitive to its accuracy (Tonolo and
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Alessandrini, 2024; Bowman et al, 2011; Jiang et al., 2020).
Collisional cross sections and rate coefficients are then derived from
the S-matrix obtained by solving the Schrodinger equation for the
nuclear motion, with appropriated coordinate system and boundary
conditions (Arthurs and Dalgarno, 1960). The competition between
inelastic and reactive behavior make difficult to determine the S-
matrix at a state-to-state level due to the “coordinate problem’ i.e.,
the issue to find a common coordinate system for both reactants
and products (Hu and Schatz, 2006). This problem has been carried
out for atom-diatom collisions using the hyperspherical coordinates
and implemented in the ABC software (Skouteris et al., 2000), but
remains difficult to extend to polyatomic systems (Zhao and Guo,
2017). Of course several bimolecular reactions have been treated
including diatomic or triatomic molecules in quantum state-to-state
scattering, but only the reactive behavior has been discussed. We will
not discuss these reactions in this minireview and refer the reader to
excellent reviews about high dimensional reactive collisions (Zhang
and Guo, 2016; Zhao and Guo, 2017; Song and Guo, 2023).

In this minireview, we restrict the discussion to collisional
excitation in reactive systems relevant to astrochemical applications
over the past decade; and available in the molecular databases
EMAA (Faure et al, 2025), BASECOL (Dubernet et al., 2023)
and LAMDA (Vander Tak et al, 2020). The manuscript is
organized as follows: Section2 presents the state-of-the-art
methods for providing state-to-state collisional data, section 3
discusses recent work on collisions involving direct reactions,
while section 4 highlights recent achievements for indirect
reactions. Finally, section 5 will discuss excitation processes in
open-shell molecules and the impact of the data sets in astrophysical
applications.

2 Theoretical methods

State-to-state collisional cross sections characterize the
probability for the reactants to transit from an initial energy state
to a final one, or to react and form products (see Equation 1).
Computing this observable requires the solution of the Close-
Coupling equations within the Time-Independent Quantum
Mechanical (TIQM) framework. This approach provides the S-
matrix for the reactants and products in the asymptotic region of
the propagation, subject to proper boundary conditions (Arthurs
and Dalgarno, 1960). TIQM method is one of the most accurate and
permit the computation of the S-matrix for all available quantum
states at a given total energy, but restricted to low temperatures as
the computational time scales as N* (with N being the number of
channels, representing the combination of initial and final energy
levels satisfying the conservation of the total energy; Flower (2007)).
At higher temperatures, Time-Dependent Quantum Mechanical
(TDQM) methods based on Wave Packet (WP) propagation
offer a practical alternative, which scales as Nlog N (Light and
Carrington Jr, 2000). However, WP methods are less likely to work
at low temperature due to convergence problems at low collisional
energies (Honvault et al., 2011; 2012).

Both TIQM and TDQM methods are efficient for direct
reactions contrary to indirect ones, which often involve a deep
potential well. In the latter, calculations require large basis functions
to reach convergence, especially at high angular momentum.
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Statistical methods are proposed as an alternative to overcome this
challenge. The main assumption is that the collision proceed through
along-lived enough intermediate complex so that its formation and
decay are treated as independent events. Among various approaches,
the Statistical Adiabatic Channel Model (SACM; Quack and Troe
(1975)) have shown satisfactory agreement with TIQM methods
at low temperatures for nonreactive (Loreau et al., 2018) systems
and collisions involving heavy colliders (Godard Palluet et al.,
2025; Tonolo et al, 2025). For reactive systems, both SACM
and Statistical Quantum Methods (SQM; Rackham et al. (2003))
were employed for indirect reactions. Comparisons with TIQM
benchmarks show that statistical methods reproduce cross sections
within a factor of ~2 at low temperatures while dramatically saving
computational time (Gonzédlez-Lezana, 2007; Konings et al., 2021).
However, they are expected to fail at high temperatures, as the
formation of a long-lived complex is not supposed to be the
dominant mechanism in the dynamics. Quasi-Classical Trajectories
(QCT) are suited to cover these ranges of temperature since
quantum effects become less significant. The inelastic or reaction
probability depends on the proportion of trajectories corresponding
to excitation or reaction with respect to the total number of
trajectories (Bai et al., 2017). Table 1 summarizes key studies from
the past decade, including the methodologies applied and their
accuracy with respect to the TIQM method or experiment, when
clearly available from the corresponding reference.

3 Direct reactions

Unimolecular reactions are by far the most studied due to
the molecular simplicity of the colliders. In case of collisional
excitation in direct reactions, TIQM and TDQM can be easily
applied. It is intuitive to think that activation energy should a priori
inhibit reactive processes, depending on the temperature regime. For
instance, in the HF + H — F + H, reaction, with an endothermicity
of 15,000 K and a barrier E, of 20,000 K, Desrousseaux and Lique
(2018) revealed that reactive and exchange channels are negligible
for interstellar temperatures. Similar results were found for the
HD-H (E, ~5,000K) (Zhou et al, 2021; Desrousseaux et al.,
2022) and HCI-H (E, ~2,500 K) (Lique, 2015a; Lique and Faure,
2017) systems for low temperatures. At higher collisional energies,
reactants possess enough energy to overcome the barrier, in
addition to quantum tunneling usually present for systems involving
light atoms (Schreiner, 2020). Such features impact the magnitude of
rate coefficients at roughly one-tenth of the reaction barrier.

Because reactive rate coeflicients are often small at low
temperatures, it might be tempting to facilitate scattering studies
and reduce the dimensionality of the problem by omiting reactive
channels. However, severe discrepancies can appear compared to full
calculation especially when vibrational excitation is not negligible.
Indeed, vibration has been established to strongly enhance reactivity,
explained, for example, by Polanyi (1987) to the location of
the barrier for atom-diatom reactions. Also, Barg et al. (1981)
emphasized the decreasing of the threshold reaction energy with
increasing vibration mode. For the H-H, (Lique, 2015b) and HD-H
(Desrousseaux et al., 2022) systems, comparisons with previous
studies which considered pure inelastic calculations revealed
discrepancies by several orders of magnitude (Wrathmall et al., 2007;
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TABLE 1 Collisional studies for reactive systems of astrochemical interest.

10.3389/fspas.2025.1710248

Method Temperature (K) Excitation Accuracy?®
TIQM <100 Rotation 1,2
H'+H,
TIQM/SQM 5-3,000 Rovibration < 50% 3,4
TIQM < 1,500 Rotation < 50%° 5
TIQM 100-5,000 Rovibration 6
H+H,
QCT 5,000-15 000 Rovibration < factor 3 7
ANN 100-5,000 Rovibration 10%-50% 8
D,+H TIQM < 500 Rotation 9
TIQM < 500 Rotation 10
HCl+H
108 < 500 Hyperfine < factor 2¢ 11
TIQM 5-800 Rotation ~20%¢ 12
CH"+H QCT 10-3,000 Rotation 13
SACM 20-500 Rotation < factor 3 14
SQM 10-300 Fine structure 15
CH +H,
Recoupling/M;-random 10-300 Hyperfine 16
SQM 10-300 Fine structure 17
CH+H
Recoupling/M;-random 10-300 Hyperfine 16
TIQM 10-150 Fine structure 18
OH + H,
Recoupling 10-150 Hyperfine 19
TIQM 10-1,000 Rotation 20
HD +H
TIQM 10-5,000 Rovibration 21,22
HF +H TIQM 10-500 Rotation 23
QCT 10-4,000 Rovibration factor 3-6 24
TIQM/WP 15-10 000 Rovibration 25
SH* +H
108 10-1,000 Hyperfine 26
SACM < 500 Rotation ~30% 14
HeH' +H TIQM < 500 Rovibration 27
TIQM/SACM <300 Rotation < 30%° 28
HD + H*
SQM 5-3,000 Rovibration ~25% 29
C'+H, TIQM 5-500 Rotation 30
(Continued on the following page)
Frontiers in Astronomy and Space Sciences 04 frontiersin.org
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TABLE 1 (Continued) Collisional studies for reactive systems of astrochemical interest.

System Method Temperature (K) Excitation Accuracy?® Ref.
SQM 5-500 Fine structure 31
OH +H
Recoupling/M;-random 5-500 Hyperfine 32
OH" +H, SACM 5-300 Rotation < 50%" 33

“The accuracy refers to the reliability of the used method with respect to the TIQM approach or experimental measurement, when available.

"In the range 300-444 K with experiments by Schulz and Le Roy (1965).

“In the range 200-500 K with fit to various experiments of Kumaran et al. (1994).

9In the range 50-800 K with experiments by Federer et al. (1984); Plasil et al. (2011).

€For 205 K and 305 K with experiments by Henchman et al. (1981).

Mn the range 15-160 K with experiments by Tran et al. (2018); Kumar et al. (2018).

References. (1) Honvault et al. (2011); (2) Honvault et al. (2012); (3) Gonzalez-Lezana and Honvault (2017); (4) Gonzalez-Lezana et al. (2021); (5) Lique et al. (2012); (6) Lique (2015b); (7)
Bossion et al. (2018); (8) Bossion et al. (2024); (9) Lique and Faure (2012); (10) Lique (2015a); (11) Lique and Faure (2017); (12) Werfelli et al. (2015); (13) Faure et al. (2017); (14) Konings et al.
(2021); (15) Dagdigian (2016); (16) Dagdigian (2018); (17) Dagdigian (2017); (18) Klos et al. (2017); (19) Klos et al. (2020); (20) Desrousseaux et al. (2018); (21) Zhou et al. (2021); (22)
Desrousseaux et al. (2022); (23) Desrousseaux and Lique (2018); (24) Zanchet et al. (2013); (25) Zanchet et al. (2019); (26) Lique et al. (2020); (27) Desrousseaux and Lique (2020); (28)
Desrousseaux et al. (2021); (29) Gonzélez-Lezana et al. (2022); (30) Klos et al. (2021); (31) Dagdigian (2022); (32) Dagdigian (2023); (33) Pirlot Jankowiak and Lique (2025).

Flower and Roueff, 1999). Moreover, exchange processes were found 2015); however for a restricted range of temperature or basis
to facilitate vibrational relaxation. Properly accounting for these  level (see Table 1).

effects permitted Lique (2015b) to be in good agreement with the These systems are ideal test cases for statistical treatments. For
experimental measurements of the H, (v=0) + H— H, (+' =1) +  most of the cited reactions, comparisons between TIQM and SQM
H rate coeflicient at room temperature (Heidner and Kasper, 1972).  methods show satisfactory statistical behavior for indirect reactions

Reactive systems involve sometimes radicals which are open-  with deep well of ~4.5eV. Desrousseaux et al. (2021) used the

shell molecules, i.e., their nonzero electronic spin leads to a ~ HD-H" system to benchmarck SACM calculations against TIQM
splitting of the energy levels into a fine structure when coupling  for rotational excitation, finding an agreement within a factor of
to the rotation. Accounting simultaneously for both excitation in  2; and consistency with experiments on the HD + H* — H, +
a complex energetic structure and reactive processes is difficult D" reaction (Henchman et al., 1981). Konings et al. (2021) found
in scattering calculations. When the spin-rotation coupling is  similar agreement between SACM and TIQM/TDQM calculations
weak, one idea is closing fine structure and only consider the  for the CH"-H and SH*-H systems for the indirect reaction. The
competition between rovibrational excitation and reactivity. This  only exception was for collisions of HeH* by H, where TIQM
was applied to the SH*-H system by Zanchet et al. (2019) for  calculations revealed that inelastic and exchange processes are not
the direct reaction. However, when the coupling of the electronic  equal, characterizing a non-statistical behavior despite a well depth
spin is strong, fine structure cannot be avoided. In this framework, of about 0.8 eV.
Dagdigian (2017), Dagdigian (2022) investigated pure fine structure Collisional excitation at a state-to-state level in bimolecular
excitation of (CH?IT) and (OH?II) by atomic hydrogen by means of ~ reactions remains a true issue due to the coordinate problem
a modified SQM method to account for the electronic coupling in ~ mentioned in section 1. As discussed in section 3, a possibility is
the molecular Hamiltonian, and excluded reactive channels. Also,  reducing the dimension and treat the problem as a pure nonreactive
to propose a strategy to overcome the coordinate problem in case  system in the case of direct reactions. For exothermic and barrierless
of bimolecular reactions, Dagdigian (2016) and Klos et al. (2017) reactions, this aspect cannot be ignored. Pirlot Jankowiak and
used the same methodology to treat the excitation of (CH?IT) and  Lique (2025) proposed the use of SACM to investigate the
(OH?II) with H, as nonreactive systems. These studies involve the  rotational excitation of OH*(*°%7) induced by collisions with H,.
interactions between several PESs, leading to a contribution to  Despite the presence of a submerged barrier that should prevent
inelastic transitions from both direct and indirect processes. Then, a statistical behavior (Song and Guo, 2023), SACM obtained
neglecting the reactive channel should in principle overestimates the ~ satisfactory agreement with the measurements of the OH* + H,
contribution from fine structure excitation to the cross sections. — H,0" + H reaction (Tran et al, 2018; Kumar et al., 2018)
by a factor of 2. However, preliminary tests showed that SACM
is inadequate for fine structure excitation in OH™ collisions,
4 Indirect reactions justifying the restriction of the study to rotational excitation
(Pirlot Jankowiak, 2024).
For indirect reactions, calculations become more complicated
due to the presence of deep potential well, requiring large basis ) )
functions in scattering calculations. Despite this challenge, TIQM 5 Discussion
approach have been successfully applied in atom-diatom reactions
like H*-H, (Gonzélez-Lezana and Honvault, 2017; Gonzalez- The inclusion of the reactive channel in the reported studies
Lezana et al., 2021), HD-H* (Desrousseaux et al., 2021), HeH*-H was done at the expense of interactions arising from the presence
(Desrousseaux and Lique, 2020) and CH'-H (Werfelli et al.,  of the nuclear spin. However, the sensitivity of telescopes enables
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observations of hyperfine lines. Properly accounting for hyperfine
excitation in scattering calculations is crucial for providing complete
data set for radiative transfer modeling. Direct treatment with
TIQM and TDQM approaches is computationally prohibitive, as the
number of energy levels increases rapidly with the energy. Several
approximations can overcome this limitation, the most accurate
being recoupling techniques based on the assumption that the
nuclear spin to be spectator during collision, allowing hyperfine-
resolved cross sections to be reconstructed from rotational/fine-
structure data (Alexander and Dagdigian, 1985). This method has
been applied to the CH-H, CH-H, (Dagdigian, 2018), OH-H
(Dagdigian, 2023) and OH-H, (Klos et al., 2020) for the direct
reaction. Excitation driven by a formation and decay of an
intermediate complex still remains computationally excessive for
recoupling approaches. Then, the M; randomization approximation
(Alexander and Dagdigian, 1985) was used for the indirect
processes. In this limit, the projection of the total angular
momentum becomes fully randomized within the intermediate
complex, leading to hyperfine transition proportional to the
degeneracy of the final level. Furthermore, Infinite Order Sudden
(IOS) based methods (Neufeld and Green, 1994; Faure and
Lique, 2012) supposes a decoupling of orientations from the
rotational motion during the collision; and was successfully
applied to the HCI-H (Lique and Faure, 2017) and SH'-H
(Lique et al., 2020) systems. These two alternatives have shown
to agree with the recoupling method within a factor of 3
depending on the system and on the temperature (Faure and
Lique, 2012).

It is interesting to look at the impact of the collisional data in
the excitation of these molecules in the ISM. When the collisional
data are absent, one common practice is to use data set involving
He or H as a proxy for H, as a collision partner (Roueff and
Lique, 2013). While this substitution can be somehow relevant for
nonreactive systems at low temperature, fundamental differences
arise for reactive systems from the nature of their interactions. As an
example, Lique and Faure (2017) reported large differences in trend
and magnitude between HCI collisions with H, He (Lanza and Lique,
2012) and H, (Lanza and Lique, 2014). Lique and Faure (2017)
also found a substantial difference of a factor 1.5-2 in brightness
temperatures for the hyperfine components of the HCI(j = 1 —
0) transition at 626 GHz observed in L1157-B1 (Codella et al,,
2011) when involving collisional data set for H or both H and H,
partners. Differences are even more promounced for ion-molecule
interactions. Gomez-Carrasco et al. (2014) modeled the abundance
of OH" in photo-dissociation regions using collisional data for
the OH*-He system. However, the rate coefficients found for the
OH*-H, system are orders of magnitude smaller, in the range of
107210712 cm’s™! below 100 K, compared to typical values of 1071
cm’s! for nonreactive systems (Pirlot Jankowiak and Lique, 2025).
Such discrepancies are likely to alter significantly the populations of
the OH* energy levels in modeling line intensities and review the
abundance of this molecule in the ISM.

Finally, the collisional data for the HD-H" collisional system
(Gonzélez-Lezana et al., 2022) have been notably implemented in
chemical network simulations for primordial chemistry of H, and
HD in the ISM (Faure et al., 2024). Although the refine of the
abundance of H, and HD was modest, they also checked the impact
of the data for the HD-H system (Desrousseaux et al., 2022) and
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noticed a decreasing of the HD abundance by a factor of 3 for
redshifts of 400 < z < 1300.

In this minireview, we emphasized the importance of inelastic
and reactive pathways in interstellar collisions through recent
advancements about collisional excitation in reactive systems of
astrochemical interest. For reactions presenting a large barrier
or endothermicity, reactive processes can be safely neglected up
to about one-tenth of the activation barrier. However, neglecting
reactive channels in case of vibrational excitation can result in
large overestimations of the collisional data. In general, state-of-
the-art methods can be easily applied to atom-diatom collisions
especially for direct reactions. Statistical methods have proven
to be efficient and reliable for treating indirect reactions. The
increasing dimensionality of the systems and the complexity of
open-shell molecules remain difficult for describing collisional
processes at a state-to-state level, but encouraged by the use
of statistical methods. Explorations based on artificial neural
networks (ANN) algorithms can also offer promising perspectives
to cover a more range of complex systems involving polyatomic
molecules (Bossion et al., 2024).
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