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The distribution of FeO and TiO, reveals mantle source characteristics and
basaltic diversity, whereas SiO, distribution is closely related to magma
evolution and crustal differentiation. However, global studies on SiO, remain
limited. To address this gap, we combined the latest lunar sample data,
Kaguya Multiband Imager spectra, and Christiansen Feature to develop a One-
Dimensional Convolutional Neural Network (1D-CNN) for mapping lunar SiO,.
The results reveal a clear spatial asymmetry in SiO,: high-latitude regions
on the nearside show higher SiO,, while low-latitude regions exhibit lower
values. Mare Tranquillitatis and Oceanus Procellarum have low SiO, but distinct
TiO, variations, indicating different basaltic types and magmatic sources. The
highlands are dominated by ferroan anorthosite, whereas the maria mainly
consist of mafic to ultramafic rocks. Incorporating Chang'E-6 samples and
Christiansen Feature data improved model accuracy. Future work on silicic
volcanic rocks will further refine the global SiO, map and deepen understanding
of lunar crustal evolution.
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1 Introduction

Oxide abundance is a crucial indicator for the identification of lunar rocks. Research
on FeO, TiO, and MgO content has been fruitful (Lucey et al., 2000; Otake et al., 2012;
Xia et al., 2019), although there is still a scarcity of studies on the global distribution of
SiO, content. In this study, we mainly measure SiO, within silicate minerals. In these
silicates, the infrared signal of SiO, originates from SiO, tetrahedra embedded in the crystal
lattice and should not be treated as a free oxide. In volcanic rocks, the SiO, content in
amorphous phases differs significantly from that in crystalline silicate minerals. In some
volcanic samples, the total SiO, content can exceed 50%, of which more than 90% exists in
crystalline forms such as quartz, feldspar, or pyroxene, while only a small fraction (typically
1%-5%) is present as amorphous SiO, (Ellerbrock et al., 2024). In addition to the intrinsic
complexity of SiO, spectral characteristics, space weathering and surface amorphization
further complicate spectral interpretation. Micrometeorite bombardment and solar wind
irradiation produce amorphous rims and glassy coatings on mineral grains, modifying their
optical properties. These processes tend to weaken absorption features and increase spectral
slopes, and in some cases alter or shift mid-infrared diagnostic features (Chrbolkova et al.,
2022; Utt et al,, 2021). Moreover, the maturity of the lunar regolith (optical maturity) can
further affect spectral interpretation and oxide inversion. Variations in regolith maturity can
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modify reflectance spectra, weaken absorption features, and alter
spectral slopes, potentially impacting the estimation of SiO, content
(Blewett et al., 2005). Previous studies have applied optical maturity
analyses to young craters, polar terrains, and magnetic anomalies
to assess regolith properties and refine compositional mapping
(Lemelin et al., 2022; Tomka et al., 2024). Therefore, the appropriate
selection of spectral data and SiO, inversion algorithms is crucial
for reliable mapping and interpretation. SiO, content provides
new insights into the evolution of lunar igneous rocks and serves
as a reliable basis for understanding the lithological distribution
characteristics of the Moon.

Remote sensing data and lunar samples provide a reliable basis
to estimate the global lunar oxide abundance. The Clementine
Ultraviolet/Visible images were first used to produce the FeO and
TiO, content maps with a spatial resolution of 100 and 200 m/pixel
(Blewett et al., 1997; Lucey et al., 2000; Lucey et al., 1995; 1998).
In these studies, a linear model was constructed using the potential
relationship between band ratios of the spectrum and oxide content.
This method was further extended to the Kaguya Multiband Imager
(MI) data, ChangE-1 Interference Imaging Spectrometer data,
the Lunar Reconnaissance Orbiter Wide Angle Camera (WAC)
data, and Chandrayaan-1 Moon Mineralogy Mapper (Otake et al.,
2012; Sato et al., 2017; Surkov et al., 2020; Wu, 2012). However,
due to the more complex spectral characteristics and distribution
features of SiO,, it is difficult to study using traditional linear
models. Currently, the SiO, content distribution primarily comes
from the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS)
(Prettyman et al., 2006). It measures the lunar surface composition
by detecting the characteristic gamma-ray energies emitted by
different elements in the lunar surface. However, its spatial
resolution is relatively low, only 2°/pixel, and the calibration data
of returned samples are still being refined, necessitating further
updates on the characteristics of SiO, content distribution on
the Moon. Recently, significant progress has been made in using
machine learning for lunar oxide inversion. Machine learning
techniques enable the inversion of multiple oxides, exploiting
the non-linear correlation between spectra and oxide content
(Korokhin et al., 2008; Qiu et al., 2022; Xia et al., 2019).

The oxide content maps provide an important basis for the in-
depth study of the distribution of various lunar rock suites. The
major primitive rock suites include KREEP basalt (KB), mare basalt
(MB), ferroan anorthosite suite (FAS), magnesian suite (MS), and
alkali suite (Lucey et al., 2006; Wieczorek, 2006). By comparing
the oxide content maps with lunar sample return data or lunar
meteorite samples, it is possible to map the distribution of these
rock suites and infer their potential locations on the lunar surface
(Dhingra et al., 2011; Du et al., 2010; Pasckert et al., 2015; Pieters,
2002; Shearer et al., 2015; Whitten and Head, 2015). The distribution
of SiO, content, specifically within silicate minerals, is particularly
crucial for the classification and research of volcanic rocks. Based
on SiO, content, volcanic rocks can be classified as ultramafic (SiO,
<45%), mafic (45%-52%), intermediate (52%-63%), and felsic (SiO,
>63%). The SiO, content map not only provides a scientific basis
for lithology identification but also lays the foundation for exploring
the diversity and evolutionary processes of lunar volcanic products.
However, current studies on the distribution of different rock suites
still have controversies, and the potential connections between these
rock suites remain unclear. To address these issues, more accurate
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SiO, distribution data with higher spatial resolution are needed to
advance the in-depth study of lunar volcanic products and their
geological evolution.

In this study, we utilized Kaguya MI data and lunar sample
datasets, including Apollo, Luna, Chang’E-3, Chang’E-5, and the
most recent Chang’E-6 sample data. In addition, we incorporated
a novel spectral feature, the Christiansen Feature, which is highly
sensitive to SiO, content. These datasets were processed using
a One-Dimensional Convolutional Neural Network (1D-CNN)
model to generate a high-resolution map of SiO, content across
the Moon. This new SiO, content map, with a spatial resolution
of 59 m per pixel, effectively eliminates terrain shadowing effects.
Based on this map, we conducted a comprehensive analysis of
the global distribution characteristics of SiO, and the lithological
diversity of the lunar surface from a fresh perspective. We also
discussed the limitations of the inversion model and proposed
methods for its future refinement. This study demonstrates
the successful application of deep learning techniques to oxide
inversion, providing valuable new data for lunar research. It
represents an important step toward a deeper understanding
of elemental distribution on the lunar surface and the Moon’s
evolutionary history. Accurate mapping of SiO, abundance also
holds significant practical value for future lunar exploration and in
situ resource utilization (ISRU) (Lucas et al., 2024).

2 Data and methods

The MI has 9 spectral bands, at 415, 750, 900, 950, 1001 nm
in ultraviolet-visible spectroscopy and 1000, 1050, 1250, 1550 nm
in near-infrared. The MI reflectance has been corrected for
the shading effects of topography, with a spatial resolution
of 59 m/pixel, covering the latitude range of 65°N to 65°S
of the Moon (Ohtake et al., 2013). Since the similarity of reflectance
at 1000 nm and 1001 nm, eight bands (415, 750, 900, 950, 1001,
1050, 1250, and 1550 nm) are employed to calculate SiO, content
in this work.

The Christiansen Feature (CF) is a spectral characteristic
observed in the thermal-infrared region of the lunar surface, which
is highly sensitive to the average silica polymerization of lunar soils
(Lucey et al, 2021). The CF occurs where the real part of the
complex refractive index passes unity and serves as an indicator
of silica polymerization (Kumari et al., 2025). The CF appears as
a distinctive absorption feature in the thermal-infrared spectrum,
which is influenced by the Si-O bond vibrations in the minerals, its
absorption features are shown in Figure 1. The strength and position
of this feature are closely related to the silica content and the degree
of polymerization of silica structures in the lunar soil. Its wavelength
position is inversely correlated to the bulk silica content of the
mineral, occurring at shorter wavelengths for silicic minerals and at
longer wavelengths for mafic minerals (Christensen et al., 2000). The
Christiansen Feature (CF) (7.5-8.5 um) data acquired from lunar
remote sensing instruments such as the Diviner radiometer can
indicate the degree of silicate polymerization on the lunar surface.
When used in conjunction with MI reflectance spectra as inputs to
a one-dimensional convolutional neural network (1D-CNN), this
combined approach may help identify spatial variations in SiO,
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FIGURE 1
Simulated lunar reflectance spectrum highlighting the christiansen feature (CF).

abundance that are difficult to detect using traditional empirical or
linear models.

The ground truth of SiO, abundance was obtained from 40 lunar
sampling sites, including Apollo, Luna, Chang’E-3, Chang’E-5, and
the most recent Chang’E-6 landing sites (Supplementary Table S1
in the Supporting Information). The inclusion of Chang’E-6 data
will significantly enhance the spatial coverage and accuracy of SiO,
abundance measurements. To reduce noise, the reflectance data and
the CF data from each sampling station were averaged usinga 2 x 2
pixel window (Lucey et al., 2000).

The 1D-CNN model was constructed to estimate the global
distribution of SiO, abundance in this work. Traditional inversion
models rely on physicochemical properties, where crystal field
transitions cause absorption features in the ultraviolet, visible, and
near-infrared ranges (Lucey et al., 2000; Lucey et al., 1995; 1998;
Otake et al., 2012; Sato et al., 2017; Surkov et al., 2020; Wu,
2012). However, these traditional models are not applicable for
the inversion of SiO, content on the lunar surface. The laboratory
reflectance data from Lunar Soil Characterization Consortium
samples have demonstrated that chemical components significantly
affect the albedo values (Pieters, 2002; Wu, 2012; Xia et al,
2019). Lunar mineralogy is relatively simple, consisting primarily
of feldspar, pyroxene, olivine, and ilmenite, each with varying SiO,
contents. These minerals exhibit different spectral characteristics
across the ultraviolet-visible and near-IR wavelength ranges, with
distinct reflectance information corresponding to different SiO,
contents. In this study, we integrate CF data with MI reflectance
spectra as inputs to a one-dimensional convolutional neural network
(ID-CNN) to improve the accuracy of global SiO, abundance
estimation. The inclusion of CF data offers reliable information
on the degree of silicate polymerization on the lunar surface,
enabling the model to better distinguish silica-rich regions from
other lithological units. It should be noted that the spectral signal
of SiO, depends strongly on its structural context. When SiO, is
incorporated within silicate mineral lattices, the SiO, tetrahedra
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produce characteristic infrared absorption features that are readily
detectable. In contrast, SiO, present as an oxide in amorphous
phases exhibits much weaker spectral features, and in many cases,
its signal may be difficult to identify. This distinction highlights
the importance of considering the crystallinity and mineralogical
context of SiO, when interpreting CF-based spectral data.

Therefore, we used a One-Dimensional Convolutional Neural
Network (1D-CNN) to explore the relationship between SiO,
content, spectral reflectance, and Christiansen Feature (CF) data.
As shown in Figure 2, the network consists of two convolutional
layers, one pooling layer, and a final linear output layer. The input
to the model includes 40 spectral reflectance bands and CF values,
while the output is the corresponding measured SiO, content.
The first convolutional layer scans through the input spectrum
and extracts basic local patterns between adjacent bands, such as
absorption features. The second convolutional layer then captures
more complex relationships by combining these local features. After
the convolutional steps, a pooling layer reduces the dimensionality
of the data by summarizing neighboring features. This step helps
to simplify the representation and reduce the risk of overfitting.
The extracted features are passed through a linear activation layer
that outputs the predicted SiO, content. The model’s performance
is evaluated by comparing the predicted values with the measured
SiO, contents using the Root Mean Squared Error (RMSE) and the
coefficient of determination (R?).

3 Results

3.1 Map of SiO, content and model
accuracy evaluation

As shown in Figure 3, the eight bands of Kaguya MI data, along

with the Christiansen Feature (CF) data, are imported into the
1D-CNN model, resulting in the distribution map of lunar SiO,
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FIGURE 2
Architecture of the 1D Convolutional Neural Network. The model has four parts, including input data, output data, feature extraction, and feature
output. The input data consists of 40 sets of spectral reflectance. The output data is the SiO, content of the corresponding 40 lunar samples. The
feature extraction has two convolutional layers and one pooling layer to extract and compress the feature values. The feature output has a fully
connected layer to associate the feature values with SiO, content.

content. We sampled histogram statistics for the global distribution
of SiO, content, which were compared to 40 lunar sampling sites.
The prediction accuracy of the 1D-CNN model for SiO, content was
evaluated.

As shown in Figure 3a, the SiO, content in the new map is
~40-~55 wt.%, with an average value of 45.45 wt.%. The region
with the lowest measured SiO, content is Mare Tranquillitatis, with
a regional average of 37.95 wt.%, while the highest SiO, content
is found in Lacus Temporis South, with a regional average of
48.37 wt.%. The SiO, content is noticeably lower than the global
average in regions such as Mare Tranquillitatis, Lacus Lenitatis, Mare
Fecunditatis, Billy, Mare Vaporum, and Lacus Odii. Conversely, the
SiO, content is generally higher than the global average in Mare
Crisium, Leibnitz, Campbell, Mare Ingenii, Mare Undarum, Baldet,
Lacus Somniorium, Mare Australe, Von Karman, South Pole Aitken
Basin, Minkowski, Lacus Mortis, Davisson, Maclaurin, and Lacus
Temporis South. These high-SiO,-content areas are located in the
high-latitude regions of the Moon. There is no significant variation
in the SiO, content of the lunar highlands, with an average value of
~45.56 wt.%.

The prediction accuracies of the 1D-CNN model for SiO,
are shown in Figure 3c. The R? for the prediction of SiO, content
is 0.975, and the RMSE for the prediction of SiO, content is 0.113.
This result confirmed the good performance of the 1D-CNN model.

3.2 Comparison with other data

In this work, the SiO, map from the CNN model was compared
with the SiO, map from the Lunar Prospector (LP) Gamma-Ray
Spectrometer (GRS) to validate the reliability of the CNN model.
Elemental abundance values for SiO, derived from the LP GRS
observations acquired during the high- and low-altitude portions
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of the LP mission (Prettyman et al., 2006). The resolution of the
SiO, map of the LP GRS is 2°/pixel. To compare the SiO, map
from the CNN model and LP GRS data, we resampled the CNN
SiO, map to 2°/pixel, the same resolution as the LP GRS data, and
a uniform range between 65°N and 65°S. The comparison results
are shown in Figure 4.

As shown in Figure 4a, the SiO, content predicted by the
CNN model for the lunar highlands is in strong agreement with
the LP GRS measurements, with most regions showing negligible
differences near zero. This reflects a high degree of consistency
and reliability. However, a noticeable and stable systematic error
is observed in the lunar maria regions. The 2D probability
density function scatter plot (Figure 4b) demonstrates a positive
correlation between the SiO, content predicted by the CNN
model and that measured by LP GRS, with the abundance
predominantly concentrated around 45%, which corresponds to the
lunar highlands. Nevertheless, certain regions exhibit significant
deviations. The histogram of SiO, content discrepancies (Figure 4c)
illustrates a distinct normal distribution of the differences between
the CNN predictions and LP GRS measurements. The CNN model
tends to slightly overestimate the SiO, content, with an average
difference of 2.4 wt.% and a standard deviation of 4.84 wt.%. These
results indicate a systematic bias in the CNN model’s predictions,
which, based on Figure 4a, primarily originates from the lunar
maria regions. Conversely, the CNN model provides highly accurate
predictions for the lunar highlands.

To further examine the systematic discrepancies in the lunar
maria, we separated mare regions from the highlands and compared
CNN-predicted SiO, content with measurements from the Lunar
Prospector Gamma Ray Spectrometer (LP GRS) (Prettyman et al.,
2006). As shown in Figure 5a, the CNN predictions exhibit a strong
correlation with LP GRS data, with a scatter plot trendline slope of
0.69 and an RMSE of 4.63 wt.%. This indicates a significant positive
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FIGURE 3

Inversion result for SiO, content. (a) Distribution map of lunar SiO, content. Notably, our model predicts a global SiO, content ranging from 30 to

~55 wt.%. However, regions with SiO, content below 40 wt.% and above 50 wt.% are relatively sparse. To more clearly highlight the significant
differences predicted by our model between the lunar maria and the highlands, we have restricted the content map to a range of 40-~50 wt.%. This
allows for a more intuitive analysis of the lunar SiO, distribution. Regions with content below 40 wt.% are represented in deep blue, while those above
50 wt.% are shown in deep red. The black line indicates the lunar mare boundary (Nelson et al., 2014). The map is plotted in the Moon 2000 coordinate
system, which is centered on the mean Earth-facing longitude of the Moon. (b) Histograms of global SiO, content. Red bars represent the training data

correlation, although some systematic deviation remains, likely due
to differences in detection depth and data sources.

To investigate this bias further, we focused on four well-
covered maria: Mare Insularum, Mare Frigoris, Mare Imbrium,
and Oceanus Procellarum. Figure 5b shows the average differences
between CNN-predicted and LP GRS SiO, contents, ranging from
6.23 wt.% to 7.47 wt.%, demonstrating stable performance across
these regions. Error bars are small, indicating minor variations
between areas. Figure 5c presents boxplots of the same data,
with median differences of 5-7 wt.% and similar interquartile
ranges, confirming consistent and stable error distributions without
significant outliers.

The stability of errors across these maria suggests that the
systematic deviation likely arises from differences in sampling
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depth: LP GRS measures SiO, as a volumetric average over
the upper ~20-30cm of the lunar regolith (Lawrence et al,
2002), while the CNN model reflects surface composition based
on spectral data. In some maria, low SiO, mare material may
be mixed with highland ejecta, artificially increasing apparent
SiO, and causing discrepancies. Both methods consistently
show higher SiO, content in highlands (45-50 wt.%) than in
maria (35-45 wt.%). This range is comparable to terrestrial
anorthositic rocks (41-55wt.%), suggesting that the lunar
highlands represent early, plagioclase-rich crustal materials
similar to Earth’s anorthosite complexes (Wiszniewska et al.,
2002). The slight overestimation by the CNN model is therefore
reasonable and supports its feasibility for estimating SiO, content
(Lawrence et al., 2002; Prettyman et al., 2006).
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the CNN result. (b) 2D probability density function scatter plots of SiO, content derived by the CNN versus the LP GRS. (c) Histograms of difference
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4 Discussions

4.1 Advantages of the convolutional neural
network

The CNN algorithm is a machine learning method focusing on
local connections, which was initially used to solve the document
recognition problem (Lecun et al., 1998). The neurons can extract
elementary visual features in local receptive fields. These features
are further analyzed to detect higher order features. The 1D-CNN
model is a modified version of 2D-CNN. As Lucey et al. (2000),
Lucey et al. (1995), Lucey et al. (1998) discovered the correlation
between band ratios and lunar oxide content by statistical methods,
the 1D-CNN model can extract the correlation between bands as
features and construct the correlation between features and oxide
content. The 1D-CNN model is universal, and even if the user
does not have extensive theoretical knowledge of spectroscopy and
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observation ability, the correlation between the spectrum and the
oxide content can be found by the performance of the computational
method. In addition, the 1D-CNN is much easier to train and
implement because of its networks with shallow architectures. Since
any standard computer can implement the training of this model
with high efficiency, 1D-CNN is well-suited for real-time and low-
cost applications (Kiranyaz et al., 2021).

4.2 SiO, content of maria

The new SiO, content map (Figure 3a) shows that the lunar
SiO, content varies significantly within the maria region, and
less within the highlands. Maria was divided into 97 mare units
of various sizes, according to the work by Nelson et al. (2014).
Because of the nearside-farside lunar asymmetry (Jones et al,
2022; Zhong et al., 2000), the SiO, content of the lunar nearside
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and farside are investigated separately, with the results shown in
Figure 6. The central coordinates and SiO, content of mare units
are given in Supplementary Table S2 of the supporting information.

As shown in Figure 6a, in the low-latitude regions of the near
side of the Moon, Mare Tranquillitatis (29.99°E, 8.25°S) and Lacus
Lenitatis (12.15°E, 14.26°S), the average silica (SiO,) content is
37.96 wt.% and 41.18 wt.%, respectively. However, as the latitude
increases, the SiO, content shows a notable increase. In the high
northern latitudes, Lacus Temporis South (51.49°E, 40.89°S) and
Schumacher_B_region (51.32°E, 42.20°S) show SiO, contents of
48.37 wt.% and 48.38 wt.%, respectively. Similarly, in the high
southern latitudes, South Pole-Aitken Basin (162.73°E, 57.12°S) and
Von Krmn (175.93°E, 45.26°S) exhibit SiO, contents of 47.77 wt.%
and 47.70 wt.%, respectively. Additionally, Maclaurin, located at
1.99°N latitude and 68.02°E longitude, has an unusually high SiO,
content of 49.32 wt.%, despite its small area of 512.45 km?. This
exceptionally high SiO, content in Maclaurin may represent an
anomaly. Excluding these small, anomalous regions, the lowest SiO,
content in the near side of the Moon is found near the equator in
low-latitude regions, whereas the highest SiO, content is typically
observed in high-latitude regions. We divided the SiO, content
map into six latitudinal zones: 65°N to 40°N, 40°N to 20°N, 20°N
to the equator, equator to 20°S, 20°S to 40°S, and 40°S to 65°S.
The average SiO, content of the lunar mare in each of these zones
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was calculated, as shown in Figure 6¢c. The results reveal a clear
correlation between the chemical composition of the lunar basalt
and latitude. Specifically, in the near side of the Moon, SiO, content
is lower in the low-latitude regions and increases towards higher
latitudes. This variation may be attributed to the Moon’s rotation
and large-scale impact events, which have likely induced spatial
asymmetry in the Moon’s mantle (Jones et al., 2022). In contrast,
the SiO, content in the mare basalts on the far side of the Moon
is generally higher than that on the near side. This finding aligns
with the observed asymmetry between the near and far sides of
the Moon (Jones et al., 2022; Zhong et al., 2000). The far side of
the Moon has relatively fewer mare regions, and SiO, content in
these areas is typically greater than 45%. Notably, due to the sparse
distribution and generally smaller area of the lunar seas on the far
side, the corresponding pixels are more susceptible to measurement
noise or the influence of surrounding highland material, which
can lead to locally elevated SiO, values. Consequently, no clear
trend of SiO, content variation with latitude was observed on
the far side (Figure 6b), unlike the near side.

As shown in Figure 7, we identified and mapped the low SiO,
characteristics of Mare Tranquillitatis (6a) and Oceanus Procellarum
(6b), which exhibit distinct geochemical signatures not widely
noted in previous studies. Specifically, the SiO, content in Mare
Tranquillitatis ranges from 30 wt.% to 40 wt.%, while Oceanus
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SiO, distribution map of mare tranquillitatis (a) and oceanus procellarum (b) with mare boundaries indicated by black lines.

Procellarum has a minimum SiO, concentration of about 37 wt.%.
The low SiO, content suggests that the rocks in these regions are
primarily FeO - rich, low - SiO, basalts, consistent with lunar
basalt characteristics, and likely originated from partial melting
of the lunar mantle (Hiesinger et al., 2003). Mare Tranquillitatis
is dominated by high-titanium basalt, which corresponds to its
spectral features and high Ti content (Giguere et al, 2000),
while Oceanus Procellarum is characterized by low-titanium basalt,
reflecting different magmatic sources and evolutionary pathways.
These basalts likely came from deep lunar mantle sources and
underwent minimal fractional crystallization, indicating simple
magma formation with limited mixing from the lunar crust.

The low SiO, characteristics of these regions are linked to
spatial heterogeneity in the lunar mantle composition and regional
thermal differences. The high-titanium basalt in Mare Tranquillitatis
may suggest a source region enriched in titanium, possibly due to
early lunar magma ocean differentiation or localized impact events.
Conversely, the low-titanium basalt of Oceanus Procellarum reflects
a more uniform source composition, likely tied to deeper melting
or varying degrees of partial melting. These regions represent two
extremes of lunar mantle-derived magmatic activity: one with high
titanium, high iron, and low silicon, and the other with low titanium,
high iron, and low silicon. These differences offer insights into lunar
mantle evolution, including magma ocean crystallization, thermal
reworking from impacts, and potential mantle plume activity.
Additionally, the low SiO, content may be related to early volatile
element redistribution during lunar crust and mantle differentiation.
The relatively low interaction between magma and crust in these
areas could be due to thicker crust, lower tectonic activity, or rapid
magma ascent. This isolated magmatic system preserves features of
the deep lunar mantle, providing valuable data for further studies.

4.3 Lithology

Lithology provides insight into the evolution of the Moon, and
SiO, content is an indicator to distinguish between rock types. It
should be noted that this SiO, primarily refers to that incorporated
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within silicate minerals. The spectral signal from amorphous SiO,
(oxide form) is generally weak and does not directly reflect silicate
mineral composition. The lunar highlands is dominated by FAS
and MS, which represent early crustal materials (Day et al., 2020;

Jang and Zhao, 2017). The SiO, content of the lunar highlands is
generally about 45 wt.%, which is consistent with the SiO, content
of the lunar FAS samples in Supplementary Table S2 in Supporting
Information. In contrast to FAS, the MS samples have a higher
SiO, content, with the highest of 52.0 wt.%. The distribution map
of SiO, content indicates that there is no evidence for widespread
Mg-suite (MS) outcrops in the lunar highlands. This finding is
consistent with the interpretation of Shearer et al. (2015), but
contrasts with the conclusion of Wang and Zhao (2017), who
suggested that MS is widely distributed across the highlands. The
Mg-suite formed later than the ferroan anorthosite (FAN) with
some temporal overlap (Spudis, 1996). Since FAN represents the
primordial lunar crust, MS must have formed as intrusive bodies
derived from deeper crustal layers, implying that it cannot be
extensively exposed on the lunar surface. The apparent widespread
distribution of MS inferred by Wang and Zhao (2017) was likely
due to the limitations of their lithology identification model. Their
C5.0 decision-tree classifier, based on geochemical ratios such as
Th/MgO, TiO,/MgO, FeO/CaO, and Th/CaO, may have suffered
from overlapping ratio values and mixed pixels between FAN and
MS regions, especially given the resolution differences between the
CE-1 IIM and LP-GRNS datasets. As a result, some Th-rich FAN
terrains were probably misclassified as MS. This misclassification
suggests a strong compositional correlation between FAN and MS,
consistent with the genetic linkage among KREEP, FAN, and MS
proposed in previous studies (Papike et al., 1996; Shearer et al,
2015; Snyder et al, 1995). The crustal melting model could be
considered a likely mechanism in the formation of lunar silicic rocks
(Hagerty et al., 2006). This model explains well the genesis of rocks
with high SiO, content. And the rocks of FAN and MS cannot be
generated from the same magma (Raedeke and McCallum, 1980).
We can reasonably infer that MS have evolved to a higher degree
than FAN, and the formation of MS has originated from the melting
process between KREEP and the lower lunar crust.
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The nonmare areas within the South Pole-Aitken Terrane
have significantly higher SiO, content than the surrounding
highlands material. A possible explanation is that these nonmare
regions may contain more silicic or evolved lithologies compared
to the adjacent highlands, leading to higher SiO, content.
Additionally, localized magmatic differentiation or impact-related
processes could have contributed to this enrichment. As shown in
Supplementary Table S2, the SiO, content of AS samples ranged
from 43.4 to 74.2 wt.%. The high-Si feature in these nonmare areas
is the same as the suggestion by Wang and Zhao (2017), which
indicated that the South Pole-Aitken Terrane is dominated by AS.

KB and MB are widely distributed in the maria region, and they
are the key records of lunar volcanism and magmatic history. The
classical method distinguishes between KB and MB types by the
FeO and TiO, content (Hess and Parmentier, 1995; Xue et al., 2019).
Acidity is one of the indicators used to classify igneous rock types.
High SiO, content suggests that the igneous rock is more acidic
and more evolved (Rutanen and Andersson, 2008; Simon et al.,
2020). As shown in Supplementary Table S2, KB samples have an
SiO, content of 47.3-52.8 wt.%, and MB samples have an SiO,
content of 33.6-50.5 wt.%. The SiO, content estimated of the maria
on the new map is consistent with the measurements from the lunar
basalt sample. This result indicates that KB and MB on the Moon
are classified as basic or ultrabasic igneous rocks. On the lunar
nearside, basalt at higher latitudes is more evolved than those at
lower latitudes. It is notable that basalt on the lunar farside has a
high SiO, content. We infer that this phenomenon is caused by
the thicker crust on the lunar farside, where the longer distance
gives the magma more opportunities to meet the crust as it travels
from the mantle to the surface, evolving further in the process.
The new SiO, map provides a new way of understanding the
global distribution of lithology, and this new map constrains the
distribution of lithological features across the Moon.

4.4 Contribution of Chang’E-6 samples

The Chang’E-6 mission is a significant milestone in lunar
exploration, as it marks the first sample collection from the
Moons far side, particularly from the South Pole-Aitken Basin,
the largest and oldest impact basin on the Moon’s surface. These
samples provide crucial new data for studying the geochemistry
and mineral diversity of the Moon, especially in regions unexplored
by the Apollo and Luna missions. The mineral composition of
the Chang'E-6 samples differs significantly from the material
on the Moons near side, with notably higher feldspar content
(32.6%) and higher amounts of amorphous glass (29.4%), while the
olivine content is relatively low (0.5%) (Li et al., 2024). Inputting
these new Chang’E-6 samples into convolutional neural network
(CNN) models for training datasets could further enhance the
CNN'’s ability to predict various rock characteristics, improving the
CNN model’s prediction of SiO, content distribution, especially in
regions with similar geological features to the South Pole-Aitken
Basin.

To emphasize the impact of including the Chang’E-6 samples
on the CNN predictions, we removed the Chang’E-6 samples
from the 40 input samples, leaving 39 samples to build the
model, following the same construction method as the model
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with Chang’E-6 samples, and predicted the lunar SiO, content.
The difference between the SiO, content maps predicted by the
CNN with and without the Chang'E-6 samples was calculated
to obtain a difference map (Figure 8a). The results show that
the inclusion of Chang’E-6 samples caused a more pronounced
change in the mare regions, particularly in Mare Tranquillitatis
and Oceanus Procellarum, with a change of about 5% in the
predicted SiO, content. Regarding the lunar farside maria, the
inclusion of Chang’E-6 samples reveals that the South Pole-
Aitken Basin, as well as other maria and highland regions, exhibit
relatively noticeable variations in SiO, content, with an average
change of approximately 2-3 wt.% and SiO, values generally
around 46 wt.%. In contrast, the highland regions show much
smaller variations, typically less than 1 wt.%. This comparison
highlights the relative heterogeneity of SiO, distribution in
maria and SPA regions compared to the more homogeneous
highlands.

The SiO, content maps predicted by the models with and
without the Chang'E-6 samples in Mare Tranquillitatis (Figure 8b)
and Oceanus Procellarum (Figure 8c) were compared with
the LP GRS (Prettyman et al., 2006), and 2D probability density
function scatter plots were created. The results show that the
inclusion of Change-6 samples significantly improved the CNN
model’s ability to identify low SiO, content (30 wt.%-40 wt.%) in
Mare Tranquillitatis and Oceanus Procellarum, which was verified
by the SiO, content measured by LP GRS. The CNN model without
the Chang'E-6 samples had difficulty identifying SiO, content
distributions below 40 wt.%. In Mare Tranquillitatis, the CNN
model with the Chang'E-6 samples produced more stable errors
compared to the LP GRS predictions for SiO, content. This error
might stem from differences in the detection depth and data sources
of LP GRS. In Oceanus Procellarum, the CNN model with Chang'E-
6 samples had an RMSE of 4.14 wt.% compared to the SiO, content
measured by LP GRS, while the CNN model without Chang’E-6
samples had an RMSE of 4.19 wt.%. The inclusion of ChangE-
6 samples resulted in improvements in both the recognition of
lower SiO, content and overall prediction accuracy. The South
Pole-Aitken Basin is mainly composed of feldspar and pyroxene,
Mare Tranquillitatis is predominantly low-titanium basalt, and
Oceanus Procellarum contains a variety of basalt types. Although
the Chang’E-6 samples are from the South Pole-Aitken Basin,
which has geological conditions very different from those of
Mare Tranquillitatis and Oceanus Procellarum, the CNN model’s
accuracy in predicting SiO, content in Mare Tranquillitatis and
Oceanus Procellarum has significantly improved. This strongly
demonstrates the important contribution of the Chang’E-6 samples
to the prediction performance and highlights the effective use of CF
data in the CNN model, which is closely related to the SiO, content
distribution.

4.5 Limitation

The new SiO, map gives us an insight into the distribution
of SiO, content across the Moon, but it still has limitations. The
predicted SiO, content results are unsatisfactory in some local
regions and deviate significantly from the theoretical values. As
shown in Figure 9, the ejecta of Aristarchus Crater, Gruithuisen
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Silicic sites (a) Aristarchus Crater (48.2°W, 23.4°N), (b) Gruithuisen Domes (40.1°W, 36.3°N), (c) Lassell Massif (9.0°W, 14.6°S), and (d) Mons Hansteen

(50.2°W, 12.2°S). The black line is lunar mare boundary.

Domes, Lassell Massif, and Mons Hansteen are associated with
nonmare, silicic volcanoes on the Moon. The remote sensing
data suggests that the main component of these areas is felsic
rock (Hawke et al, 2003; Kiefer et al, 2016; Wagner et al.,
2010), which is an acidic igneous rock with a SiO, content
of up to 74wt% (Simon et al, 2020). However, the SiO,
predicted by the 1D-CNN model for lunar felsic rocks ranges
from 45 wt.% to 49 wt.%. Nonetheless, distinct differences between
silicic regions and surrounding areas were also identified, such
as in the Aristarchus Crater. The data from 40 lunar sampling
sites represents a subset of the numerous rock types found on
the Moon, and lunar sample data sets contain no significant high
silicic minerals. The absence of calibration points for felsic rock
samples caused erroneous predictions for SiO, content in the
silicic volcanic region. Therefore, it is also necessary to consider
potential uncertainties in the estimation of FeO and TiO, contents
within silicic volcanic regions. NASAs upcoming Artemis missions
will explore the Gruithuisen Domes for the first time, providing
new samples that are expected to improve our understanding of
oxide inversion in these areas. In addition, different inversion
algorithms and higher-resolution remote sensing datasets may
yield varying results for such regions. Future work will focus on
applying and comparing multiple inversion methods and datasets
to enhance the accuracy of oxide content estimation in silicic
terrains.
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5 Conclusion

We generated a lunar SiO, distribution map using MI data,
CF data, and lunar sample data through the 1D-CNN model. The
map achieves a spatial resolution of 59 m per pixel, free from
terrain shadows. The CNN model’s accuracy was assessed, with
an R* value of 0.975 and an RMSE of 0.113 for predicting SiO,
content. Comparison with LP GRS observations further validates
the CNN model’s effectiveness in estimating SiO, distribution. The
global SiO, distribution shows a near-side to far-side asymmetry,
with the far-side maria exhibiting higher SiO, content. We have
more precisely identified the lower SiO, content in the mare regions
and confirmed different magmatic evolution and sources in Mare
Tranquillitatis and Oceanus Procellarum. On the lunar near side,
SiO, content increases with latitude in the maria regions. Our
findings support Shearer et al.'s (2015) view that the lunar highlands,
predominantly composed of ferroan anorthosite, lack widespread
MS outcrops. Additionally, lunar basalts in higher latitudes are
more evolved compared to those at lower latitudes. The inclusion
of Chang'E-6 samples and the Christiansen Feature significantly
improved the CNN model’s accuracy in predicting SiO, content in
regions such as the South Pole-Aitken Basin, Mare Tranquillitatis,
and Oceanus Procellarum. Future collection of high-silica samples
will further enhance the model’s prediction of SiO, content in high-
silica volcanic regions.
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