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The distribution of FeO and TiO2 reveals mantle source characteristics and 
basaltic diversity, whereas SiO2 distribution is closely related to magma 
evolution and crustal differentiation. However, global studies on SiO2 remain 
limited. To address this gap, we combined the latest lunar sample data, 
Kaguya Multiband Imager spectra, and Christiansen Feature to develop a One-
Dimensional Convolutional Neural Network (1D-CNN) for mapping lunar SiO2. 
The results reveal a clear spatial asymmetry in SiO2: high-latitude regions 
on the nearside show higher SiO2, while low-latitude regions exhibit lower 
values. Mare Tranquillitatis and Oceanus Procellarum have low SiO2 but distinct 
TiO2 variations, indicating different basaltic types and magmatic sources. The 
highlands are dominated by ferroan anorthosite, whereas the maria mainly 
consist of mafic to ultramafic rocks. Incorporating Chang’E-6 samples and 
Christiansen Feature data improved model accuracy. Future work on silicic 
volcanic rocks will further refine the global SiO2 map and deepen understanding 
of lunar crustal evolution.
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 1 Introduction

Oxide abundance is a crucial indicator for the identification of lunar rocks. Research 
on FeO, TiO2 and MgO content has been fruitful (Lucey et al., 2000; Otake et al., 2012; 
Xia et al., 2019), although there is still a scarcity of studies on the global distribution of 
SiO2 content. In this study, we mainly measure SiO2 within silicate minerals. In these 
silicates, the infrared signal of SiO2 originates from SiO4 tetrahedra embedded in the crystal 
lattice and should not be treated as a free oxide. In volcanic rocks, the SiO2 content in 
amorphous phases differs significantly from that in crystalline silicate minerals. In some 
volcanic samples, the total SiO2 content can exceed 50%, of which more than 90% exists in 
crystalline forms such as quartz, feldspar, or pyroxene, while only a small fraction (typically 
1%–5%) is present as amorphous SiO2 (Ellerbrock et al., 2024). In addition to the intrinsic 
complexity of SiO2 spectral characteristics, space weathering and surface amorphization 
further complicate spectral interpretation. Micrometeorite bombardment and solar wind 
irradiation produce amorphous rims and glassy coatings on mineral grains, modifying their 
optical properties. These processes tend to weaken absorption features and increase spectral 
slopes, and in some cases alter or shift mid-infrared diagnostic features (Chrbolková et al., 
2022; Utt et al., 2021). Moreover, the maturity of the lunar regolith (optical maturity) can 
further affect spectral interpretation and oxide inversion. Variations in regolith maturity can
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modify reflectance spectra, weaken absorption features, and alter 
spectral slopes, potentially impacting the estimation of SiO2 content 
(Blewett et al., 2005). Previous studies have applied optical maturity 
analyses to young craters, polar terrains, and magnetic anomalies 
to assess regolith properties and refine compositional mapping 
(Lemelin et al., 2022; Tomka et al., 2024). Therefore, the appropriate 
selection of spectral data and SiO2 inversion algorithms is crucial 
for reliable mapping and interpretation. SiO2 content provides 
new insights into the evolution of lunar igneous rocks and serves 
as a reliable basis for understanding the lithological distribution 
characteristics of the Moon.

Remote sensing data and lunar samples provide a reliable basis 
to estimate the global lunar oxide abundance. The Clementine 
Ultraviolet/Visible images were first used to produce the FeO and 
TiO2 content maps with a spatial resolution of 100 and 200 m/pixel 
(Blewett et al., 1997; Lucey et al., 2000; Lucey et al., 1995; 1998). 
In these studies, a linear model was constructed using the potential 
relationship between band ratios of the spectrum and oxide content. 
This method was further extended to the Kaguya Multiband Imager 
(MI) data, Chang’E-1 Interference Imaging Spectrometer data, 
the Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) 
data, and Chandrayaan-1 Moon Mineralogy Mapper (Otake et al., 
2012; Sato et al., 2017; Surkov et al., 2020; Wu, 2012). However, 
due to the more complex spectral characteristics and distribution 
features of SiO2, it is difficult to study using traditional linear 
models. Currently, the SiO2 content distribution primarily comes 
from the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) 
(Prettyman et al., 2006). It measures the lunar surface composition 
by detecting the characteristic gamma-ray energies emitted by 
different elements in the lunar surface. However, its spatial 
resolution is relatively low, only 2°/pixel, and the calibration data 
of returned samples are still being refined, necessitating further 
updates on the characteristics of SiO2 content distribution on 
the Moon. Recently, significant progress has been made in using 
machine learning for lunar oxide inversion. Machine learning 
techniques enable the inversion of multiple oxides, exploiting 
the non-linear correlation between spectra and oxide content 
(Korokhin et al., 2008; Qiu et al., 2022; Xia et al., 2019).

The oxide content maps provide an important basis for the in-
depth study of the distribution of various lunar rock suites. The 
major primitive rock suites include KREEP basalt (KB), mare basalt 
(MB), ferroan anorthosite suite (FAS), magnesian suite (MS), and 
alkali suite (Lucey et al., 2006; Wieczorek, 2006). By comparing 
the oxide content maps with lunar sample return data or lunar 
meteorite samples, it is possible to map the distribution of these 
rock suites and infer their potential locations on the lunar surface 
(Dhingra et al., 2011; Du et al., 2010; Pasckert et al., 2015; Pieters, 
2002; Shearer et al., 2015; Whitten and Head, 2015). The distribution 
of SiO2 content, specifically within silicate minerals, is particularly 
crucial for the classification and research of volcanic rocks. Based 
on SiO2 content, volcanic rocks can be classified as ultramafic (SiO2
<45%), mafic (45%–52%), intermediate (52%–63%), and felsic (SiO2
>63%). The SiO2 content map not only provides a scientific basis 
for lithology identification but also lays the foundation for exploring 
the diversity and evolutionary processes of lunar volcanic products. 
However, current studies on the distribution of different rock suites 
still have controversies, and the potential connections between these 
rock suites remain unclear. To address these issues, more accurate 

SiO2 distribution data with higher spatial resolution are needed to 
advance the in-depth study of lunar volcanic products and their 
geological evolution.

In this study, we utilized Kaguya MI data and lunar sample 
datasets, including Apollo, Luna, Chang’E-3, Chang’E-5, and the 
most recent Chang’E-6 sample data. In addition, we incorporated 
a novel spectral feature, the Christiansen Feature, which is highly 
sensitive to SiO2 content. These datasets were processed using 
a One-Dimensional Convolutional Neural Network (1D-CNN) 
model to generate a high-resolution map of SiO2 content across 
the Moon. This new SiO2 content map, with a spatial resolution 
of 59 m per pixel, effectively eliminates terrain shadowing effects. 
Based on this map, we conducted a comprehensive analysis of 
the global distribution characteristics of SiO2 and the lithological 
diversity of the lunar surface from a fresh perspective. We also 
discussed the limitations of the inversion model and proposed 
methods for its future refinement. This study demonstrates 
the successful application of deep learning techniques to oxide 
inversion, providing valuable new data for lunar research. It 
represents an important step toward a deeper understanding 
of elemental distribution on the lunar surface and the Moon’s 
evolutionary history. Accurate mapping of SiO2 abundance also 
holds significant practical value for future lunar exploration and in 
situ resource utilization (ISRU) (Lucas et al., 2024). 

2 Data and methods

The MI has 9 spectral bands, at 415, 750, 900, 950, 1001 nm 
in ultraviolet-visible spectroscopy and 1000, 1050, 1250, 1550 nm 
in near-infrared. The MI reflectance has been corrected for 
the shading effects of topography, with a spatial resolution 
of 59 m/pixel, covering the latitude range of 65°N to 65°S 
of the Moon (Ohtake et al., 2013). Since the similarity of reflectance 
at 1000 nm and 1001 nm, eight bands (415, 750, 900, 950, 1001, 
1050, 1250, and 1550 nm) are employed to calculate SiO2 content 
in this work.

The Christiansen Feature (CF) is a spectral characteristic 
observed in the thermal-infrared region of the lunar surface, which 
is highly sensitive to the average silica polymerization of lunar soils 
(Lucey et al., 2021). The CF occurs where the real part of the 
complex refractive index passes unity and serves as an indicator 
of silica polymerization (Kumari et al., 2025). The CF appears as 
a distinctive absorption feature in the thermal-infrared spectrum, 
which is influenced by the Si-O bond vibrations in the minerals, its 
absorption features are shown in Figure 1. The strength and position 
of this feature are closely related to the silica content and the degree 
of polymerization of silica structures in the lunar soil. Its wavelength 
position is inversely correlated to the bulk silica content of the 
mineral, occurring at shorter wavelengths for silicic minerals and at 
longer wavelengths for mafic minerals (Christensen et al., 2000). The 
Christiansen Feature (CF) (7.5–8.5 µm) data acquired from lunar 
remote sensing instruments such as the Diviner radiometer can 
indicate the degree of silicate polymerization on the lunar surface. 
When used in conjunction with MI reflectance spectra as inputs to 
a one-dimensional convolutional neural network (1D-CNN), this 
combined approach may help identify spatial variations in SiO2
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FIGURE 1
Simulated lunar reflectance spectrum highlighting the christiansen feature (CF).

abundance that are difficult to detect using traditional empirical or 
linear models.

The ground truth of SiO2 abundance was obtained from 40 lunar 
sampling sites, including Apollo, Luna, Chang’E-3, Chang’E-5, and 
the most recent Chang’E-6 landing sites (Supplementary Table S1 
in the Supporting Information). The inclusion of Chang’E-6 data 
will significantly enhance the spatial coverage and accuracy of SiO2
abundance measurements. To reduce noise, the reflectance data and 
the CF data from each sampling station were averaged using a 2 × 2 
pixel window (Lucey et al., 2000).

The 1D-CNN model was constructed to estimate the global 
distribution of SiO2 abundance in this work. Traditional inversion 
models rely on physicochemical properties, where crystal field 
transitions cause absorption features in the ultraviolet, visible, and 
near-infrared ranges (Lucey et al., 2000; Lucey et al., 1995; 1998; 
Otake et al., 2012; Sato et al., 2017; Surkov et al., 2020; Wu, 
2012). However, these traditional models are not applicable for 
the inversion of SiO2 content on the lunar surface. The laboratory 
reflectance data from Lunar Soil Characterization Consortium 
samples have demonstrated that chemical components significantly 
affect the albedo values (Pieters, 2002; Wu, 2012; Xia et al., 
2019). Lunar mineralogy is relatively simple, consisting primarily 
of feldspar, pyroxene, olivine, and ilmenite, each with varying SiO2
contents. These minerals exhibit different spectral characteristics 
across the ultraviolet-visible and near-IR wavelength ranges, with 
distinct reflectance information corresponding to different SiO2
contents. In this study, we integrate CF data with MI reflectance 
spectra as inputs to a one-dimensional convolutional neural network 
(1D-CNN) to improve the accuracy of global SiO2 abundance 
estimation. The inclusion of CF data offers reliable information 
on the degree of silicate polymerization on the lunar surface, 
enabling the model to better distinguish silica-rich regions from 
other lithological units. It should be noted that the spectral signal 
of SiO2 depends strongly on its structural context. When SiO2 is 
incorporated within silicate mineral lattices, the SiO4 tetrahedra 

produce characteristic infrared absorption features that are readily 
detectable. In contrast, SiO2 present as an oxide in amorphous 
phases exhibits much weaker spectral features, and in many cases, 
its signal may be difficult to identify. This distinction highlights 
the importance of considering the crystallinity and mineralogical 
context of SiO2 when interpreting CF-based spectral data.

Therefore, we used a One-Dimensional Convolutional Neural 
Network (1D-CNN) to explore the relationship between SiO2
content, spectral reflectance, and Christiansen Feature (CF) data. 
As shown in Figure 2, the network consists of two convolutional 
layers, one pooling layer, and a final linear output layer. The input 
to the model includes 40 spectral reflectance bands and CF values, 
while the output is the corresponding measured SiO2 content. 
The first convolutional layer scans through the input spectrum 
and extracts basic local patterns between adjacent bands, such as 
absorption features. The second convolutional layer then captures 
more complex relationships by combining these local features. After 
the convolutional steps, a pooling layer reduces the dimensionality 
of the data by summarizing neighboring features. This step helps 
to simplify the representation and reduce the risk of overfitting. 
The extracted features are passed through a linear activation layer 
that outputs the predicted SiO2 content. The model’s performance 
is evaluated by comparing the predicted values with the measured 
SiO2 contents using the Root Mean Squared Error (RMSE) and the 
coefficient of determination (R2).

3 Results

3.1 Map of SiO2 content and model 
accuracy evaluation

As shown in Figure 3, the eight bands of Kaguya MI data, along 
with the Christiansen Feature (CF) data, are imported into the 
1D-CNN model, resulting in the distribution map of lunar SiO2
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FIGURE 2
Architecture of the 1D Convolutional Neural Network. The model has four parts, including input data, output data, feature extraction, and feature 
output. The input data consists of 40 sets of spectral reflectance. The output data is the SiO2 content of the corresponding 40 lunar samples. The 
feature extraction has two convolutional layers and one pooling layer to extract and compress the feature values. The feature output has a fully 
connected layer to associate the feature values with SiO2 content.

content. We sampled histogram statistics for the global distribution 
of SiO2 content, which were compared to 40 lunar sampling sites. 
The prediction accuracy of the 1D-CNN model for SiO2 content was 
evaluated.

As shown in Figure 3a, the SiO2 content in the new map is 
∼40–∼55 wt.%, with an average value of 45.45 wt.%. The region 
with the lowest measured SiO2 content is Mare Tranquillitatis, with 
a regional average of 37.95 wt.%, while the highest SiO2 content 
is found in Lacus Temporis South, with a regional average of 
48.37 wt.%. The SiO2 content is noticeably lower than the global 
average in regions such as Mare Tranquillitatis, Lacus Lenitatis, Mare 
Fecunditatis, Billy, Mare Vaporum, and Lacus Odii. Conversely, the 
SiO2 content is generally higher than the global average in Mare 
Crisium, Leibnitz, Campbell, Mare Ingenii, Mare Undarum, Baldet, 
Lacus Somniorium, Mare Australe, Von Kármán, South Pole Aitken 
Basin, Minkowski, Lacus Mortis, Davisson, Maclaurin, and Lacus 
Temporis South. These high-SiO2-content areas are located in the 
high-latitude regions of the Moon. There is no significant variation 
in the SiO2 content of the lunar highlands, with an average value of 
∼45.56 wt.%.

The prediction accuracies of the 1D-CNN model for SiO2
are shown in Figure 3c. The R2 for the prediction of SiO2 content 
is 0.975, and the RMSE for the prediction of SiO2 content is 0.113. 
This result confirmed the good performance of the 1D-CNN model. 

3.2 Comparison with other data

In this work, the SiO2 map from the CNN model was compared 
with the SiO2 map from the Lunar Prospector (LP) Gamma-Ray 
Spectrometer (GRS) to validate the reliability of the CNN model. 
Elemental abundance values for SiO2 derived from the LP GRS 
observations acquired during the high- and low-altitude portions 

of the LP mission (Prettyman et al., 2006). The resolution of the 
SiO2 map of the LP GRS is 2°/pixel. To compare the SiO2 map 
from the CNN model and LP GRS data, we resampled the CNN 
SiO2 map to 2°/pixel, the same resolution as the LP GRS data, and 
a uniform range between 65°N and 65°S. The comparison results 
are shown in Figure 4.

As shown in Figure 4a, the SiO2 content predicted by the 
CNN model for the lunar highlands is in strong agreement with 
the LP GRS measurements, with most regions showing negligible 
differences near zero. This reflects a high degree of consistency 
and reliability. However, a noticeable and stable systematic error 
is observed in the lunar maria regions. The 2D probability 
density function scatter plot (Figure 4b) demonstrates a positive 
correlation between the SiO2 content predicted by the CNN 
model and that measured by LP GRS, with the abundance 
predominantly concentrated around 45%, which corresponds to the 
lunar highlands. Nevertheless, certain regions exhibit significant 
deviations. The histogram of SiO2 content discrepancies (Figure 4c) 
illustrates a distinct normal distribution of the differences between 
the CNN predictions and LP GRS measurements. The CNN model 
tends to slightly overestimate the SiO2 content, with an average 
difference of 2.4 wt.% and a standard deviation of 4.84 wt.%. These 
results indicate a systematic bias in the CNN model’s predictions, 
which, based on Figure 4a, primarily originates from the lunar 
maria regions. Conversely, the CNN model provides highly accurate 
predictions for the lunar highlands.

To further examine the systematic discrepancies in the lunar 
maria, we separated mare regions from the highlands and compared 
CNN-predicted SiO2 content with measurements from the Lunar 
Prospector Gamma Ray Spectrometer (LP GRS) (Prettyman et al., 
2006). As shown in Figure 5a, the CNN predictions exhibit a strong 
correlation with LP GRS data, with a scatter plot trendline slope of 
0.69 and an RMSE of 4.63 wt.%. This indicates a significant positive 
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FIGURE 3
Inversion result for SiO2 content. (a) Distribution map of lunar SiO2 content. Notably, our model predicts a global SiO2 content ranging from 30 to 
∼55 wt.%. However, regions with SiO2 content below 40 wt.% and above 50 wt.% are relatively sparse. To more clearly highlight the significant 
differences predicted by our model between the lunar maria and the highlands, we have restricted the content map to a range of 40–∼50 wt.%. This 
allows for a more intuitive analysis of the lunar SiO2 distribution. Regions with content below 40 wt.% are represented in deep blue, while those above 
50 wt.% are shown in deep red. The black line indicates the lunar mare boundary (Nelson et al., 2014). The map is plotted in the Moon 2000 coordinate 
system, which is centered on the mean Earth-facing longitude of the Moon. (b) Histograms of global SiO2 content. Red bars represent the training data 
for SiO2. (c) Scatter plots of the measured and predicted values.

correlation, although some systematic deviation remains, likely due 
to differences in detection depth and data sources.

To investigate this bias further, we focused on four well-
covered maria: Mare Insularum, Mare Frigoris, Mare Imbrium, 
and Oceanus Procellarum. Figure 5b shows the average differences 
between CNN-predicted and LP GRS SiO2 contents, ranging from 
6.23 wt.% to 7.47 wt.%, demonstrating stable performance across 
these regions. Error bars are small, indicating minor variations 
between areas. Figure 5c presents boxplots of the same data, 
with median differences of 5–7 wt.% and similar interquartile 
ranges, confirming consistent and stable error distributions without 
significant outliers.

The stability of errors across these maria suggests that the 
systematic deviation likely arises from differences in sampling 

depth: LP GRS measures SiO2 as a volumetric average over 
the upper ∼20–30 cm of the lunar regolith (Lawrence et al., 
2002), while the CNN model reflects surface composition based 
on spectral data. In some maria, low SiO2 mare material may 
be mixed with highland ejecta, artificially increasing apparent 
SiO2 and causing discrepancies. Both methods consistently 
show higher SiO2 content in highlands (45–50 wt.%) than in 
maria (35–45 wt.%). This range is comparable to terrestrial 
anorthositic rocks (41–55 wt.%), suggesting that the lunar 
highlands represent early, plagioclase-rich crustal materials 
similar to Earth’s anorthosite complexes (Wiszniewska et al., 
2002). The slight overestimation by the CNN model is therefore 
reasonable and supports its feasibility for estimating SiO2 content 
(Lawrence et al., 2002; Prettyman et al., 2006).
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FIGURE 4
Comparison of the SiO2 content result from Convolutional Neural Network (CNN) and Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS). (a)
Difference maps between SiO2 content from CNN and LP GRS. Where red indicates higher values for the CNN result and blue indicates lower values for 
the CNN result. (b) 2D probability density function scatter plots of SiO2 content derived by the CNN versus the LP GRS. (c) Histograms of difference 
between SiO2 content from CNN and LP GRS.

4 Discussions

4.1 Advantages of the convolutional neural 
network

The CNN algorithm is a machine learning method focusing on 
local connections, which was initially used to solve the document 
recognition problem (Lecun et al., 1998). The neurons can extract 
elementary visual features in local receptive fields. These features 
are further analyzed to detect higher order features. The 1D-CNN 
model is a modified version of 2D-CNN. As Lucey et al. (2000), 
Lucey et al. (1995), Lucey et al. (1998) discovered the correlation 
between band ratios and lunar oxide content by statistical methods, 
the 1D-CNN model can extract the correlation between bands as 
features and construct the correlation between features and oxide 
content. The 1D-CNN model is universal, and even if the user 
does not have extensive theoretical knowledge of spectroscopy and 

observation ability, the correlation between the spectrum and the 
oxide content can be found by the performance of the computational 
method. In addition, the 1D-CNN is much easier to train and 
implement because of its networks with shallow architectures. Since 
any standard computer can implement the training of this model 
with high efficiency, 1D-CNN is well-suited for real-time and low-
cost applications (Kiranyaz et al., 2021). 

4.2 SiO2 content of maria

The new SiO2 content map (Figure 3a) shows that the lunar 
SiO2 content varies significantly within the maria region, and 
less within the highlands. Maria was divided into 97 mare units 
of various sizes, according to the work by Nelson et al. (2014). 
Because of the nearside-farside lunar asymmetry (Jones et al., 
2022; Zhong et al., 2000), the SiO2 content of the lunar nearside 

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2025.1696995
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Chen et al. 10.3389/fspas.2025.1696995

FIGURE 5
2D Probability Density Function Scatter Plot of SiO2 Content Derived by CNN versus LP GRS for the Lunar Maria (a). Mean difference between CNN and 
LP GRS SiO2 contents for different mare regions (b). Distribution of CNN–LP GRS SiO2 content differences across mare regions (c).

and farside are investigated separately, with the results shown in 
Figure 6. The central coordinates and SiO2 content of mare units 
are given in Supplementary Table S2 of the supporting information.

As shown in Figure 6a, in the low-latitude regions of the near 
side of the Moon, Mare Tranquillitatis (29.99°E, 8.25°S) and Lacus 
Lenitatis (12.15°E, 14.26°S), the average silica (SiO2) content is 
37.96 wt.% and 41.18 wt.%, respectively. However, as the latitude 
increases, the SiO2 content shows a notable increase. In the high 
northern latitudes, Lacus Temporis South (51.49°E, 40.89°S) and 
Schumacher_B_region (51.32°E, 42.20°S) show SiO2 contents of 
48.37 wt.% and 48.38 wt.%, respectively. Similarly, in the high 
southern latitudes, South Pole-Aitken Basin (162.73°E, 57.12°S) and 
Von Krmn (175.93°E, 45.26°S) exhibit SiO2 contents of 47.77 wt.% 
and 47.70 wt.%, respectively. Additionally, Maclaurin, located at 
1.99°N latitude and 68.02°E longitude, has an unusually high SiO2
content of 49.32 wt.%, despite its small area of 512.45 km2. This 
exceptionally high SiO2 content in Maclaurin may represent an 
anomaly. Excluding these small, anomalous regions, the lowest SiO2
content in the near side of the Moon is found near the equator in 
low-latitude regions, whereas the highest SiO2 content is typically 
observed in high-latitude regions. We divided the SiO2 content 
map into six latitudinal zones: 65°N to 40°N, 40°N to 20°N, 20°N 
to the equator, equator to 20°S, 20°S to 40°S, and 40°S to 65°S. 
The average SiO2 content of the lunar mare in each of these zones 

was calculated, as shown in Figure 6c. The results reveal a clear 
correlation between the chemical composition of the lunar basalt 
and latitude. Specifically, in the near side of the Moon, SiO2 content 
is lower in the low-latitude regions and increases towards higher 
latitudes. This variation may be attributed to the Moon’s rotation 
and large-scale impact events, which have likely induced spatial 
asymmetry in the Moon’s mantle (Jones et al., 2022). In contrast, 
the SiO2 content in the mare basalts on the far side of the Moon 
is generally higher than that on the near side. This finding aligns 
with the observed asymmetry between the near and far sides of 
the Moon (Jones et al., 2022; Zhong et al., 2000). The far side of 
the Moon has relatively fewer mare regions, and SiO2 content in 
these areas is typically greater than 45%. Notably, due to the sparse 
distribution and generally smaller area of the lunar seas on the far 
side, the corresponding pixels are more susceptible to measurement 
noise or the influence of surrounding highland material, which 
can lead to locally elevated SiO2 values. Consequently, no clear 
trend of SiO2 content variation with latitude was observed on 
the far side (Figure 6b), unlike the near side.

As shown in Figure 7, we identified and mapped the low SiO2
characteristics of Mare Tranquillitatis (6a) and Oceanus Procellarum 
(6b), which exhibit distinct geochemical signatures not widely 
noted in previous studies. Specifically, the SiO2 content in Mare 
Tranquillitatis ranges from 30 wt.% to 40 wt.%, while Oceanus 
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FIGURE 6
SiO2 content of the mare on the lunar nearside (a), on the lunar farside (b). The SiO2 abundance values correspond to the concentrations measured 
within the mare terrains. The regions in the map are arranged from north to south, corresponding to the top-to-bottom orientation in the figure. The 
red dashed line is the trend line. The trend diagram of silica with latitude (c).
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FIGURE 7
SiO2 distribution map of mare tranquillitatis (a) and oceanus procellarum (b) with mare boundaries indicated by black lines.

Procellarum has a minimum SiO2 concentration of about 37 wt.%. 
The low SiO2 content suggests that the rocks in these regions are 
primarily FeO - rich, low - SiO2 basalts, consistent with lunar 
basalt characteristics, and likely originated from partial melting 
of the lunar mantle (Hiesinger et al., 2003). Mare Tranquillitatis 
is dominated by high-titanium basalt, which corresponds to its 
spectral features and high Ti content (Giguere et al., 2000), 
while Oceanus Procellarum is characterized by low-titanium basalt, 
reflecting different magmatic sources and evolutionary pathways. 
These basalts likely came from deep lunar mantle sources and 
underwent minimal fractional crystallization, indicating simple 
magma formation with limited mixing from the lunar crust.

The low SiO2 characteristics of these regions are linked to 
spatial heterogeneity in the lunar mantle composition and regional 
thermal differences. The high-titanium basalt in Mare Tranquillitatis 
may suggest a source region enriched in titanium, possibly due to 
early lunar magma ocean differentiation or localized impact events. 
Conversely, the low-titanium basalt of Oceanus Procellarum reflects 
a more uniform source composition, likely tied to deeper melting 
or varying degrees of partial melting. These regions represent two 
extremes of lunar mantle-derived magmatic activity: one with high 
titanium, high iron, and low silicon, and the other with low titanium, 
high iron, and low silicon. These differences offer insights into lunar 
mantle evolution, including magma ocean crystallization, thermal 
reworking from impacts, and potential mantle plume activity. 
Additionally, the low SiO2 content may be related to early volatile 
element redistribution during lunar crust and mantle differentiation. 
The relatively low interaction between magma and crust in these 
areas could be due to thicker crust, lower tectonic activity, or rapid 
magma ascent. This isolated magmatic system preserves features of 
the deep lunar mantle, providing valuable data for further studies. 

4.3 Lithology

Lithology provides insight into the evolution of the Moon, and 
SiO2 content is an indicator to distinguish between rock types. It 
should be noted that this SiO2 primarily refers to that incorporated 

within silicate minerals. The spectral signal from amorphous SiO2
(oxide form) is generally weak and does not directly reflect silicate 
mineral composition. The lunar highlands is dominated by FAS 
and MS, which represent early crustal materials (Day et al., 2020; 
Wang and Zhao, 2017). The SiO2 content of the lunar highlands is 
generally about 45 wt.%, which is consistent with the SiO2 content 
of the lunar FAS samples in Supplementary Table S2 in Supporting 
Information. In contrast to FAS, the MS samples have a higher 
SiO2 content, with the highest of 52.0 wt.%. The distribution map 
of SiO2 content indicates that there is no evidence for widespread 
Mg-suite (MS) outcrops in the lunar highlands. This finding is 
consistent with the interpretation of Shearer et al. (2015), but 
contrasts with the conclusion of Wang and Zhao (2017), who 
suggested that MS is widely distributed across the highlands. The 
Mg-suite formed later than the ferroan anorthosite (FAN) with 
some temporal overlap (Spudis, 1996). Since FAN represents the 
primordial lunar crust, MS must have formed as intrusive bodies 
derived from deeper crustal layers, implying that it cannot be 
extensively exposed on the lunar surface. The apparent widespread 
distribution of MS inferred by Wang and Zhao (2017) was likely 
due to the limitations of their lithology identification model. Their 
C5.0 decision-tree classifier, based on geochemical ratios such as 
Th/MgO, TiO2/MgO, FeO/CaO, and Th/CaO, may have suffered 
from overlapping ratio values and mixed pixels between FAN and 
MS regions, especially given the resolution differences between the 
CE-1 IIM and LP-GRNS datasets. As a result, some Th-rich FAN 
terrains were probably misclassified as MS. This misclassification 
suggests a strong compositional correlation between FAN and MS, 
consistent with the genetic linkage among KREEP, FAN, and MS 
proposed in previous studies (Papike et al., 1996; Shearer et al., 
2015; Snyder et al., 1995). The crustal melting model could be 
considered a likely mechanism in the formation of lunar silicic rocks 
(Hagerty et al., 2006). This model explains well the genesis of rocks 
with high SiO2 content. And the rocks of FAN and MS cannot be 
generated from the same magma (Raedeke and McCallum, 1980). 
We can reasonably infer that MS have evolved to a higher degree 
than FAN, and the formation of MS has originated from the melting 
process between KREEP and the lower lunar crust.
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The nonmare areas within the South Pole-Aitken Terrane 
have significantly higher SiO2 content than the surrounding 
highlands material. A possible explanation is that these nonmare 
regions may contain more silicic or evolved lithologies compared 
to the adjacent highlands, leading to higher SiO2 content. 
Additionally, localized magmatic differentiation or impact-related 
processes could have contributed to this enrichment. As shown in 
Supplementary Table S2, the SiO2 content of AS samples ranged 
from 43.4 to 74.2 wt.%. The high-Si feature in these nonmare areas 
is the same as the suggestion by Wang and Zhao (2017), which 
indicated that the South Pole-Aitken Terrane is dominated by AS.

KB and MB are widely distributed in the maria region, and they 
are the key records of lunar volcanism and magmatic history. The 
classical method distinguishes between KB and MB types by the 
FeO and TiO2 content (Hess and Parmentier, 1995; Xue et al., 2019). 
Acidity is one of the indicators used to classify igneous rock types. 
High SiO2 content suggests that the igneous rock is more acidic 
and more evolved (Rutanen and Andersson, 2008; Simon et al., 
2020). As shown in Supplementary Table S2, KB samples have an 
SiO2 content of 47.3–52.8 wt.%, and MB samples have an SiO2
content of 33.6–50.5 wt.%. The SiO2 content estimated of the maria 
on the new map is consistent with the measurements from the lunar 
basalt sample. This result indicates that KB and MB on the Moon 
are classified as basic or ultrabasic igneous rocks. On the lunar 
nearside, basalt at higher latitudes is more evolved than those at 
lower latitudes. It is notable that basalt on the lunar farside has a 
high SiO2 content. We infer that this phenomenon is caused by 
the thicker crust on the lunar farside, where the longer distance 
gives the magma more opportunities to meet the crust as it travels 
from the mantle to the surface, evolving further in the process. 
The new SiO2 map provides a new way of understanding the 
global distribution of lithology, and this new map constrains the 
distribution of lithological features across the Moon. 

4.4 Contribution of Chang’E-6 samples

The Chang’E-6 mission is a significant milestone in lunar 
exploration, as it marks the first sample collection from the 
Moon’s far side, particularly from the South Pole-Aitken Basin, 
the largest and oldest impact basin on the Moon’s surface. These 
samples provide crucial new data for studying the geochemistry 
and mineral diversity of the Moon, especially in regions unexplored 
by the Apollo and Luna missions. The mineral composition of 
the Chang'E-6 samples differs significantly from the material 
on the Moon’s near side, with notably higher feldspar content 
(32.6%) and higher amounts of amorphous glass (29.4%), while the 
olivine content is relatively low (0.5%) (Li et al., 2024). Inputting 
these new Chang’E-6 samples into convolutional neural network 
(CNN) models for training datasets could further enhance the 
CNN’s ability to predict various rock characteristics, improving the 
CNN model’s prediction of SiO2 content distribution, especially in 
regions with similar geological features to the South Pole-Aitken
Basin.

To emphasize the impact of including the Chang’E-6 samples 
on the CNN predictions, we removed the Chang’E-6 samples 
from the 40 input samples, leaving 39 samples to build the 
model, following the same construction method as the model 

with Chang’E-6 samples, and predicted the lunar SiO2 content. 
The difference between the SiO2 content maps predicted by the 
CNN with and without the Chang'E-6 samples was calculated 
to obtain a difference map (Figure 8a). The results show that 
the inclusion of Chang’E-6 samples caused a more pronounced 
change in the mare regions, particularly in Mare Tranquillitatis 
and Oceanus Procellarum, with a change of about 5% in the 
predicted SiO2 content. Regarding the lunar farside maria, the 
inclusion of Chang’E-6 samples reveals that the South Pole-
Aitken Basin, as well as other maria and highland regions, exhibit 
relatively noticeable variations in SiO2 content, with an average 
change of approximately 2–3 wt.% and SiO2 values generally 
around 46 wt.%. In contrast, the highland regions show much 
smaller variations, typically less than 1 wt.%. This comparison 
highlights the relative heterogeneity of SiO2 distribution in 
maria and SPA regions compared to the more homogeneous
highlands.

The SiO2 content maps predicted by the models with and 
without the Chang'E-6 samples in Mare Tranquillitatis (Figure 8b) 
and Oceanus Procellarum (Figure 8c) were compared with 
the LP GRS (Prettyman et al., 2006), and 2D probability density 
function scatter plots were created. The results show that the 
inclusion of Chang’e-6 samples significantly improved the CNN 
model’s ability to identify low SiO2 content (30 wt.%–40 wt.%) in 
Mare Tranquillitatis and Oceanus Procellarum, which was verified 
by the SiO2 content measured by LP GRS. The CNN model without 
the Chang'E-6 samples had difficulty identifying SiO2 content 
distributions below 40 wt.%. In Mare Tranquillitatis, the CNN 
model with the Chang'E-6 samples produced more stable errors 
compared to the LP GRS predictions for SiO2 content. This error 
might stem from differences in the detection depth and data sources 
of LP GRS. In Oceanus Procellarum, the CNN model with Chang'E-
6 samples had an RMSE of 4.14 wt.% compared to the SiO2 content 
measured by LP GRS, while the CNN model without Chang’E-6 
samples had an RMSE of 4.19 wt.%. The inclusion of Chang’E-
6 samples resulted in improvements in both the recognition of 
lower SiO2 content and overall prediction accuracy. The South 
Pole-Aitken Basin is mainly composed of feldspar and pyroxene, 
Mare Tranquillitatis is predominantly low-titanium basalt, and 
Oceanus Procellarum contains a variety of basalt types. Although 
the Chang’E-6 samples are from the South Pole-Aitken Basin, 
which has geological conditions very different from those of 
Mare Tranquillitatis and Oceanus Procellarum, the CNN model’s 
accuracy in predicting SiO2 content in Mare Tranquillitatis and 
Oceanus Procellarum has significantly improved. This strongly 
demonstrates the important contribution of the Chang’E-6 samples 
to the prediction performance and highlights the effective use of CF 
data in the CNN model, which is closely related to the SiO2 content 
distribution. 

4.5 Limitation

The new SiO2 map gives us an insight into the distribution 
of SiO2 content across the Moon, but it still has limitations. The 
predicted SiO2 content results are unsatisfactory in some local 
regions and deviate significantly from the theoretical values. As 
shown in Figure 9, the ejecta of Aristarchus Crater, Gruithuisen 
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FIGURE 8
Difference map (a) of SiO2 content predictions between CNN models with and without the inclusion of Chang'E-6 samples. Blue regions indicate lower 
predicted values with the inclusion of Chang’E-6 samples, while red regions indicate higher predicted values. (b) Shows the 2D probability density 
function scatter plots for the model with Chang’E-6 samples and the model without Chang’E-6 samples in the Mare Tranquillitatis. (c) Shows the 2D 
probability density function scatter plots for the model with Chang'E-6 samples and the model without Chang'E-6 samples in Oceanus Procellarum.
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FIGURE 9
Silicic sites (a) Aristarchus Crater (48.2°W, 23.4°N), (b) Gruithuisen Domes (40.1°W, 36.3°N), (c) Lassell Massif (9.0°W, 14.6°S), and (d) Mons Hansteen 
(50.2°W, 12.2°S). The black line is lunar mare boundary.

Domes, Lassell Massif, and Mons Hansteen are associated with 
nonmare, silicic volcanoes on the Moon. The remote sensing 
data suggests that the main component of these areas is felsic 
rock (Hawke et al., 2003; Kiefer et al., 2016; Wagner et al., 
2010), which is an acidic igneous rock with a SiO2 content 
of up to 74 wt.% (Simon et al., 2020). However, the SiO2
predicted by the 1D-CNN model for lunar felsic rocks ranges 
from 45 wt.% to 49 wt.%. Nonetheless, distinct differences between 
silicic regions and surrounding areas were also identified, such 
as in the Aristarchus Crater. The data from 40 lunar sampling 
sites represents a subset of the numerous rock types found on 
the Moon, and lunar sample data sets contain no significant high 
silicic minerals. The absence of calibration points for felsic rock 
samples caused erroneous predictions for SiO2 content in the 
silicic volcanic region. Therefore, it is also necessary to consider 
potential uncertainties in the estimation of FeO and TiO2 contents 
within silicic volcanic regions. NASA’s upcoming Artemis missions 
will explore the Gruithuisen Domes for the first time, providing 
new samples that are expected to improve our understanding of 
oxide inversion in these areas. In addition, different inversion 
algorithms and higher-resolution remote sensing datasets may 
yield varying results for such regions. Future work will focus on 
applying and comparing multiple inversion methods and datasets 
to enhance the accuracy of oxide content estimation in silicic
terrains.

5 Conclusion

We generated a lunar SiO2 distribution map using MI data, 
CF data, and lunar sample data through the 1D-CNN model. The 
map achieves a spatial resolution of 59 m per pixel, free from 
terrain shadows. The CNN model’s accuracy was assessed, with 
an R2 value of 0.975 and an RMSE of 0.113 for predicting SiO2
content. Comparison with LP GRS observations further validates 
the CNN model’s effectiveness in estimating SiO2 distribution. The 
global SiO2 distribution shows a near-side to far-side asymmetry, 
with the far-side maria exhibiting higher SiO2 content. We have 
more precisely identified the lower SiO2 content in the mare regions 
and confirmed different magmatic evolution and sources in Mare 
Tranquillitatis and Oceanus Procellarum. On the lunar near side, 
SiO2 content increases with latitude in the maria regions. Our 
findings support Shearer et al.'s (2015) view that the lunar highlands, 
predominantly composed of ferroan anorthosite, lack widespread 
MS outcrops. Additionally, lunar basalts in higher latitudes are 
more evolved compared to those at lower latitudes. The inclusion 
of Chang'E-6 samples and the Christiansen Feature significantly 
improved the CNN model’s accuracy in predicting SiO2 content in 
regions such as the South Pole-Aitken Basin, Mare Tranquillitatis, 
and Oceanus Procellarum. Future collection of high-silica samples 
will further enhance the model’s prediction of SiO2 content in high-
silica volcanic regions. 
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