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As one of the most violent solar activities, coronal mass ejections (CMEs) 
are eruptions of the large-scale magnetized plasma from the Sun’s upper 
atmosphere into interplanetary space. The Earth-directed CMEs will cause 
significant disturbances to the solar-terrestrial environment, which in return 
threaten the safety of the communication, navigation, and ground technology 
systems. Therefore, predicting whether and when a CME will reach the Earth 
is an important ingredient of space weather research and forecasting. One 
commonly used prediction model for the CME’s propagation and arrival time 
is the Drag-Based Model (DBM), which considers the drag force acting on 
interplanetary CMEs (ICMEs) to explain how CMEs move through the solar wind. 
In this paper, we outline five routes for the development and evolution of the 
family models of DBM: 1. The DBM → ELEvoHI (Ellipse Evolution Model Based 
on HI Observations) series; 2. The DBM → LSF-DBM (Least-Squares Fitting Drag-
Based Model) series; 3. The DBM → PDBM (Probabilistic Drag-Based Model) 
series; 4. The DBM → ExDBM (Extended Drag-Based Model); 5. The DBM →
EnDBM (Enhanced Drag-Based Model) Series. We clarify the development and 
evolution process of the model’s mathematical expressions along each route 
as well as their connections. Finally, we provide a summary of the various 
models, comparing their similarities and differences, as well as their strengths 
and weaknesses, and suggest potential improvements.

KEYWORDS

coronal mass ejection, drag-based model, mathematical expression, arrive time 
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1 Introduction

 Coronal mass ejection (CME) refers to the phenomenon of 
the large-scale magnetized plasma in the Sun’s upper atmosphere 
being ejected outward into interplanetary space, and is believed to 
one of the most intense solar activities in the solar atmosphere. 
When propagating into interplanetary space, it is termed an 
interplanetary coronal mass ejection (ICME) (Vršnak, 2021). The 
interplanetary space between Sun and Earth often experiences 
significant disturbances from CMEs and their associated shocks, 
which are the primary drivers of hazardous space weather 
and capable of generating substantial geoeffective consequences 
(Wang et al., 2013). The Earth-directed CMEs may cause harmful 
effects on the near-Earth spacecraft, communication and navigation 
systems, safety of astronauts, and ground-based technology systems 
(such as power grids and oil pipelines) (Boteler et al., 1998). 
Therefore, predicting whether and when the CME will reach Earth 
has become an important aspect of space weather research and 
forecasting.

In the literature, the arrival time forecast of CMEs and their 
related shocks can be traced back to at least the early 70s of 
the last century. After half a century of development, dozens of 
the forecasting models have been developed. They include the 
Empirical CME Arrival (ECA) and Empirical Shock Arrival (ESA) 
model (Gopalswamy et al., 2001), the expansion speed model 
(Schwenn et al., 2005), the Drag-Based Model (DBM) (Vršnak et al., 
2013) and its variants, the “Fearless Forecast” modes [including the 
Shock Time Of Arrival (STOA), Interplanetary Shock Propagation 
Model (ISPM), and Hakamada-Akasofu-Fry/version-2 (HAFv.2)] 
(Fry et al., 2001; Smith and Dryer, 1990), the series of Shock 
Propagation Model (SPM) models (Feng and Zhao, 2006; Zhao and 
Feng, 2014), the Cone + HAF model (Wang et al., 2018), the STOAF 
and STOASF model (Liu and Qin, 2012), the MHD numerical 
models (including the Wang-Sheeley-Arge (WSA)-ENLIL + Cone 
(Odstrcil et al., 2004), Heliosphere 3D magnetohydrodynamics 
(H3DMHD) (Wu et al., 2011), Space Weather Modeling Framework 
(SWMF) (Tóth et al., 2012), CORona-HELiosphere (CORHEL) 
(Riley et al., 2013), and Solar-InterPlanetary Conservation Element 
and Solution Element magnetohydrodynamic (SIP-CESE MHD) 
(Feng et al., 2007; Feng et al., 2012; Feng, 2020)), the machine 
learning models (Sudar et al., 2016; Liu et al., 2018; Guastavino et al., 
2023; Alobaid et al., 2022; Minta et al., 2023; Li et al., 2024), and 
so on. More information about these models can be found in these 
review papers (Siscoe and Schwenn, 2006; Zhao and Dryer, 2014;
Vourlidas et al., 2019).

Currently, all kinds of prediction models for the CME 
arrival time have encountered a plateau for improving prediction 
accuracy, and it is difficult to achieve significant breakthroughs 
(Kay et al., 2024; Yordanova et al., 2024). Especially, there is 
still a considerable distance between the prediction accuracy and 
the actual demand. The low success rate will cause many “false 
alarms”, while the large prediction time error will make people take 
unnecessary evasive measures for too long. The losses caused by 
these evasive measures sometimes may exceed the impact of the 
space weather event itself. Among the predictive models mentioned 
above, the series of the DBM models is the most commonly used 
model to predict the CME’s arrival time, especially suitable for 
describing the kinematics of CMEs after their rapid acceleration 

phases. Therefore, it is necessary to conduct an in-depth research on 
the DBM models. It is essential to sort out the evolution processes 
and correlations of mathematical expressions between its different 
versions, and discover possible improvement directions to improve 
the accuracy of the CME arrival time prediction.

During the propagation in the heliosphere, ICMEs are 
subjected to three principal forces governing their evolution: 
the Lorentz force, the gravitational force, and the aerodynamic 
drag induced by the interaction with the background solar 
wind (Cargill, 2004). Emerging in the Sun’s upper atmosphere, 
CMEs are initially magnetically accelerated by the Lorentz force. 
As the eruption progresses, this force continues to drive the 
CME into the solar wind (Vršnak and Gopalswamy, 2002). 
Observational data indicate that the kinematic behavior of CMEs 
exhibits a speed dependence on interaction with the solar wind: 
(1) ICMEs slower than the solar wind exhibit acceleration, 
(2) whereas faster ICMEs show deceleration (Čalogović et al., 
2021; Shanmugaraju and Vršnak, 2014; Vršnak et al., 2013). 
Based on the observed phenomenon, DBM assumes that in the 
later stage (typically when the radial distance exceeds 20 solar 
radii), the ICME is only subject to the drag force (Vršnak and 
Gopalswamy, 2002; Vršnak et al., 2013; Vakhrusheva et al., 2024), 
and the critical factors to ICME propagation are both its initial 
physical parameters and the background solar wind conditions
(Vršnak et al., 2013).

As one of the most widely used analytical tools for predicting 
CME arrivals, DBM describes the propagation of CMEs in the 
solar wind based on the kinematic equations of the corresponding 
ICME determined by the drag force, enabling predictions of both 
transit time and propagation speed at Earth or other specified 
heliospheric targets (Čalogović et al., 2021; Vršnak et al., 2013; 
Chierichini et al., 2024). DBM has the characteristics of simplicity 
and extremely short calculation time, enabling us to obtain reliable 
estimates of the transit time and propagation speed of the CME at a 
lower computational cost (Čalogović et al., 2021; Chierichini et al., 
2024), and it is thus extremely useful for real time forecasts. 
Different versions of the DBM have been developed, and they 
are different from each other in their dependence on the initial 
geomagnetic parameters of the input CMEs or in the different 
theoretical propagation processes of the CMEs (Napoletano et al., 
2018). These different versions make up a large
family of the DBM.

In this work, the development and evolution of the DBM family 
will be traced along five routes. In the first route, the CME’s shape is 
treated as a self-similar ellipse, and the distance and speed equations 
are derived for any point of the CME front. Then, a deformed CME 
front as well as a varying background solar wind speed is introduced 
for improvements. In the second route, the CME geometry is treated 
as either a self-similar cone or a flattening cone. Subsequently, a 
flattening conical geometry equation is proposed. In the third route, 
the values of the drag parameter and the background solar wind 
speed are obtained by inversely solving the analytical solutions of 
the DBM. In the fourth route, an acceleration term describing the 
other forces besides the drag force is used to improve the model. In 
the fifth route, a GCS model and a prolate spheroid bubble model 
are adopted to depict the CME geometry and the shock geometry, 
respectively.
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Through the systematic analysis of the mathematical expressions 
and their development and evolution in the DBMs for the CME 
arrival time prediction, the evolutionary processes and correlations 
of the mathematical expressions between different versions of the 
DBM for the CME arrival time prediction can be sorted out. This 
enables the revelation of the underlying evolution patterns of the 
DBM and the identification of potential improvement directions 
for it. Such insights will facilitate further advancements in the 
DBM, thereby enhancing the predictive accuracy of the model 
regarding CME arrival time and mitigating the adverse effects of 
the CME. The remainder of this paper is structured as follows. 
Section 2 introduces the basic version of DBM. Section 3 presents 
the evolutionary process of the DBM models along these five routes. 
As a useful supplement, Section 4 lists some other DBM models 
without a clear development path. Conclusions and discussions are 
provided in Section 5. 

2 The basic version of DBM

The fundamental form of the DBM was initially introduced 
by Vršnak and Žic (2007) and subsequently refined and 
adjusted by Vršnak et al. (2013). Through analytical approaches, 
explicit solutions were obtained for two key CME parameters 
by Vršnak et al. (2013). Their study successfully solved the 
CME motion equations, determining both transit time and 
propagation speed. These analytical solutions not only provide 
immediate practical predictions but also substantially improve 
the operational effectiveness of the DBM, facilitating its broader 
applications in space weather forecasting. The basic version of 
DBM is the simplest version of the DBM family, which does 
not consider the geometry of the CME, but only considers the 
propagation of the CME apex, and is a one-dimensional model
(Dumbović et al., 2021). 

2.1 DBM in 2007

In order to study the dependence of ICME transit times on the 
initial CME speed (“take-off ” speed) and solar wind speed, Vršnak 
and Žic (2007) compared the observed ICME transit times with 
the CME take-off speed and the solar wind speed, confirmed the 
existence of the correlation between them, and proposed the basic 
form of the DBM.

The model assumes that ICME maintains constant mass 
throughout propagation (M = const), the ICME’s cross-sectional 
area is proportional to the square of the heliocentric distance (A∝
R2), and the ICME is influenced exclusively by the drag force during 
the later stage of propagation. Additionally, the model assumes 
that when the distance of ICME from the Sun is greater than 20 
solar radii, the solar wind speed remains unchanged (w ≈ const), 
while its density exhibits an inverse relationship with heliocentric 
distance (ρw ≈ R−2). The dimensionless drag coefficient generally 
remains unchanged with the distance (Cd ≈ const), then the drag 
parameter is constant: γ = CdAρw

M
= const. Subsequently, based on a =

− γ(v−w)|v−w|, the numerical calculation of the propagation time 
(TT) of ICME from 20 solar radii to Earth under different solar 
wind speeds is obtained as a function of the CME’s initial speed at 

20 solar radii (v0), where a is the acceleration of ICME and v is the 
speed of CME. 

2.2 DBM in 2013

Vršnak et al. (2013) improved the above DBM and proposed 
explicit solutions of the transit time and propagation speed of ICME 
at Earth, which provides a direct application for the CME arrival 
prediction. Unlike the DBM in 2007, the DBM in 2013 considered 
the virtual mass of the ICME was Mv ≈

ρwV
2

. In this case, γ = CdAρw
M+Mv
=

CdAρw

V(ρ+ ρw
2
)
= CdA

AL( ρ
ρw
+ 1

2
)
= Cd

L( ρ
ρw
+ 1

2
)

, where V is the volume of ICME, A

is the cross-sectional area of ICME, L is the thickness of ICME in 
the radial direction, V ≈ AL, ρ is the density of ICME. From the 
expression of γ, we see that when ρ≫ ρw, only the ICME mass needs 
to be considered.

The model applies only when the ICME is at least 20 solar radii 
away from the Sun. Under this condition, A∝ R2, M = const, Cd =
const, and w = const, consistent with the DBM proposed in 2007. 
In addition, the model assumes ρ≫ ρw, from which we derive γ =
const.

Considering that the CME is influenced exclusively by the 
drag force during the later stage of CME propagation, based on 
the assumption (w = const; γ = const), the explicit solutions of the 
transit time and propagation speed of ICME at Earth can be obtained 
by solving a = − γ(v−w)|v−w| analytically.

 The mathematical derivation processes for solving the explicit 
solutions of the transit time and propagation speed of ICME at 
Earth’s orbit are as follows:

a = −γ(v−w)|v−w| (1)

Equation 1 can be transformed into dv(t)
dt
= ± γ(v(t) −w)2. Let 

y(t) = v(t) −w, then dy(t)
dt
= ± γy2(t). Thus dy(t)

y2(t)
= ± γdt, y−1(t) = ±

γt+C1, and y(t) = 1
C1±γt

. So v(t) = 1
C1±γt
+w. When t = 0, v(t) = v0. 

Then v0 =
1

C1
+w, thus C1 =

1
v0−w

, and we get

v(t) = 1
1

v0−w
± γt
+w =

v0 −w
1± γ(v0 −w)t

+w (2)

Equation 2 can be transformed into dR(t)
dt
= v0−w

1±γ(v0−w)t
+w. 

Integrate both sides of the equation and we get R(t) = ∫ v0−w
1±γ(v0−w)t

dt+

wt+C2 = ±
1
γ

ln[1± γ(v0 −w)t] +wt+C2. When t = 0, R(t) = R0. 
Thus C2 = R0, and we get

R(t) = ±1
γ

ln[1± γ(v0 −w)t] +wt+R0 (3)

Equations 2, 3 are the explicit solutions for the ICME’s 
propagation speed and transit time upon arrival. When v0 > w, 
the sign takes “+”, indicating the ICME is undergoing deceleration. 
When v0 < w, it takes “−”, indicating the ICME is undergoing 
acceleration.

The input parameters of DBM are: the initial time (t0), the initial 
speed of the ICME (v0), the initial radial distance of the ICME (R0), 
the speed of the background solar wind (w), and the drag parameter 
(γ). The output parameters of the DBM are: Sun-Earth transit time 
(TT) and the propagation speed of ICME at 1AU (v1AU). 
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FIGURE 1
The development routes of the DBM family models.

3 The evolution routes based on the 
basic version of DBM

Up till now, a series of models have been developed based on the 
basic version of DBM. In this paper, we will sort out the development 
and evolution of the DBM family along five routes (see Figure 1 
for details): 

1. DBM → Ellipse Evolution Model Based on HI observations 
(ELEvoHI) model series;

2. DBM → Least-Squares Fitting Drag-Based Model (LSF-
DBM) series;

3. DBM → Probabilistic DBM (PDBM) series;
4. DBM → Extend Drag-Based Model (ExDBM);
5. DBM → Enhanced Drag-Based Model (EnDBM) series.

In the following, we will introduce the development and 
evolution of the models along different routes, investigate the 
relationship between their mathematical expressions of the DBM 
within each route, and propose the directions of improvement for 
some routes. 

3.1 ELEvoHI model series

Möstl et al. (2015) improved DBM and proposed the 
ELEvo model. Rollett et al. (2016) improved ELEvo and 
established the ELEvoHI model. Subsequently, Braga et al. 

(2020) determined the movement of CME by using the 
ELEvoHI model within the Heliospheric Imager-1 (HI-1) field 
of view and using the DBM model outside the HI-1 field
of view.

Amerstorfer et al. (2018) refined the ELEvoHI model 
originally proposed by Rollett et al. (2016), developing it into an 
ensemble model. Hinterreiter et al. (2021) improved the ELEvoHI 
ensemble model and proposed the ELEvoHI 2.0 model. 

3.1.1 ELEvo model
The ELEvo model (Möstl et al., 2015) assumes that the 

shape of the CME-driven shock in the ecliptic plane is a 
self similar expanding ellipse, as shown in Figure 2. Here a0
refers to a and ξ refers to ω in Figure 5 of Möstl et al. 
(2015). It also assumes that the half angular width (λ), the 
inverse aspect ratio ( f), and the propagation direction of the 
ellipse are constant. Additionally, it assumes that one of the 
main axes of the ellipse is along the propagation direction 
throughout the evolution. This model extends the DBM from 
one dimension to two dimensions. The motion of the ellipse 
apex is given by the analytical solutions of the DBM. Taking 
into account the propagation direction of CMEs, this model can 
predict the arrival time and the propagation speed at time of 
arrival at any point along the CME front at a specific location
in space.

The semi-major axis (a0), the semi-minor axis (b), and the 
distance from the center of the Sun to the center of the ellipse (c) 
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FIGURE 2
(Left) The shape of CME. (Right) The speed along the ellipse front. Originally published in Möstl et al. (2015) with redrawing. A: CME boundary; B: Apex; 
C: CME central direction; D: Tangent; E: Flank; F: Apex; G: Earth; H: Front solution (+); I: Rear solution (−).

can be transformed into functions of R(t), f, and λ (Equations 4, 5), 
combined with Figure 2:

b =
R(t)ξ sin λ

cos (λ− θ) + ξ sin λ
(4)

a0 =
b
f
,c = R(t) − b (5)

where ξ = √( f2 − 1)cos2 θ+ 1, θ = arctan( f2 tan λ). R(t) can be 
derived from the analytical solutions in the DBM: R(t) = ±
1
γ

ln[1± γ(v0 −w)t] +wt+R0.
Then the speed along the ellipse front can be calculated as a 

function of the ellipse parameters, combined with Figure 2:

d1,2 =
c cos Δ±√(b2 − c2) f2 sin2Δ+ b2 cos2Δ

f2 sin2Δ+ cos2Δ
(6)

vΔ(t) =
d1(t)
R(t)

v(t), where Δ is the angle between the CME propagation 
direction and Earth (or any other planet or spacecraft in the solar 
wind), and it is a known parameter. v(t) is from the analytical 
solutions in the DBM. In Equation 6, “+” is taken for the “front” 
solution (d1), and “−” is taken for the “rear” solution (d2). The 
CME’s propagation speed at arrival time, is determined under 
two conditions: either the distance equals the target’s heliocentric 
distance, or the arrival time at that location is explicitly defined. 
Complete expressions for the parameters are available in the cited 
references (Möstl et al., 2015). 

3.1.2 ELEvoHI model
Rollett et al. (2016) improved the ELEvo model (Möstl et al., 

2015) by replacing coronagraph observations with HI data and 

integrating the Fixed-ϕ Fitting (FPF) method, the Elliptical 
Conversion (ElCon) method, the DBM fitting method, and the 
ELEvo model to develop the ELEvoHI model. The geometry of the 
CME ellipse adopted in ELEvoHI is shown in Figure 3.

The specific processes of the ELEvoHI model are as follows. 
Firstly, the time-elongation profile (ε(t)) is extracted from the 
HI observations. Then, the FPF method is applied to obtain the 
propagation direction of the CME (ϕ). Assuming the values of λ
and f of CME as the input parameters of the ElCon method, the 
distance (R(t)) from the apex of the CME to the center of the Sun 
is obtained by the ElCon method, and the corresponding speed 
(v(t)) is subsequently derived by taking the time derivative of this 
distance. The distance expression from the DBM is employed to fit 
R(t), yielding values for parameters w, γ, t0, R0, and v0. Finally, these 
parameters, combined with ϕ, λ and f are input to the ELEvo model 
to give both the transit time of CME and its propagation speed upon 
arrival. The mathematical expressions in the ELEvoHI model are 
identical to that in the ELEvo model. With reference to Figure 3, the 
mathematical expressions for converting ε(t) to R(t) via the ElCon 
method are presented as follows (Equations 7–9):

b =
d0 sin (ε) sin (λ)ΩθΩφ

sin (90+ θ− λ) sin (ω)Ωφ + sin(90+φ−ω) sin (λ)Ωθ
(7)

c =
d0 sin (ε) − rω sin(90+φ−ω)

sin (ω)
or =

rλ sin (90+ θ− λ)
sin (λ)

(8)

Therefore,

R(t) = c+ b (9)

After differentiating R(t) with respect to t, we obtain v(t), where 
θ = arctan( f2 tan λ), φ = arctan( f2 tan ω), Ωx = √ f2 cos2 x+ sin2 x, 
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FIGURE 3
The geometry of the elliptic front. Originally published in Rollett et al. (2016) with redrawing © AAS. Reproduced with permission.

x ∈ {θ,φ} and ω = 180°− ε−ϕ. When ε+ϕ < 90°, ω = ε+ϕ. Besides, 
rω =

b
√ f2 cos2 φ+sin2 φ

, rλ =
b

√ f2 cos2 θ+sin2 θ
. Complete derivations for the 

remaining formulas are available in Rollett et al. (2016).
Braga et al. (2020) obtained CME parameters within the HI-

1 field of view through the above-mentioned ELEvoHI model by 
using simultaneous observation data from two perspectives of the 
HI-1 on STEREO (Solar TErrestrial RElations Observatory)-A and 
STEREO-B. Outside the HI-1 field of view, assuming that the CME 
is solely affected by the drag force, the DBM is used to determine the 
motion of the CME. The mathematical expressions of the DBM used 
in this model are:

Fdrag[s] = −Mγ[s](v[s] −w[s])|v[s] −w[s]|

γ[s] = Cd[s]nSW[s]
mPA[s]

M

Cd[s] = 0.148− 4.3× 104(Re[s])−1 + 9.8× 10−9Re[s]

A[s] = π×R2
CME[s] ×

λ
180

w2[s] = w2
@1au[1− e−(s−r1)/ra]

nSW[s] = (
nSW@1au

7.2
)(3.3× 105s−2 + 4.1× 106s−4 + 8× 107s−6)

where s is the distance from the Sun along the Sun-Earth line, M is 
the mass of the CME, v is the speed of the CME, w is the speed of 
the background solar wind, nSW is the solar wind proton density, 
mP is the proton mass, A is the cross-sectional area of the CME, 
Re is the Reynolds number, RCME is the radius of the CME, λ is 
the CME half angular width, r1 = 1.5RΘ is the heliocentric distance 
when the background solar wind speed is 0, and ra = 50RΘ is the 
heliocentric distance when the background solar wind speed reaches 

the asymptotic constant value. More information about the model 
can be found in the references. 

3.1.3 ELEvoHI ensemble model
Amerstorfer et al. (2018) improved the ELEvoHI model 

proposed by Rollett et al. (2016), and put forward the ELEvoHI 
ensemble model. When given real-time (near real-time) HI data, this 
model uses the GCS model to obtain the information of the shape 
of the CME in the ecliptic plane, and uses the ELEvoHI model to 
predict the arrival of the CME in real time. It uses different input 
parameters for the same event by changing the values of ϕ, λ, and 
f, and obtains the minimum errors and associated uncertainties 
of CME arrival time and propagation speed through the ensemble 
method. Furthermore, this model also constrains the range of 
the ELEvoHI model’s prediction results based on the frequency 
distribution of the drag parameter, the speed of the background 
solar wind, initial speed, and initial distance, thereby optimizing the 
prediction results. 

3.1.4 ELEvoHI 2.0 model
Hinterreiter et al. (2021) improved the ELEvoHI ensemble 

model and proposed the ELEvoHI 2.0 model. The model replaces 
the elliptical front with a deformed CME front outside the 
DBM fitting range. Then, during the propagation of CME, its 
front is continuously affected by the background solar wind 
conditions, and this effect leads to corresponding morphological 
adjustments in the CME front. The model also uses the Heliospheric 
Upwind eXtrapolation model (HUX), the Heliospheric Upwind 
eXtrapolation with time dependence model (HUXt), and the 
EUropean Heliospheric FORecasting Information Asset model 
(EUHFORIA) to consider the varying drag parameters and the 
background solar wind speed, and uses the analytical solutions 
of DBM to obtain the arrival time and propagation speed of the 
CME at any position in the heliosphere. The values of w, and 
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γ at each time and position in the heliosphere are calculated as
follows:

From the aforementioned three solar wind models (HUX, 
HUXt, and EUHFORIA), we can obtain the parameter w. The 
expression for drag parameter is γ = cd

A(r)ρw
M

, where cd = 1, the 
background solar wind density (ρw) can be either derived from 
the EUHFORIA model or estimated from the HUX and HUXt 
models using empirical relationships, A = πr2 tan (λ) tan (κ/2), r is 
the radial distance, λ and κ are assumed to be constant and can be 
obtained from observations. Furthermore, the model assumes that 
the CME maintains a constant mass (M) throughout the heliospheric 
propagation. At the transition point from the fixed front to the 
deformed front, the DBM fitting method is used to obtain the fitting 
values of w and γ, which can then be used to calculate M, thereby to 
estimate the value of γ(r) at any position in the heliosphere. 

3.1.5 The relationship between the mathematical 
expressions in various models

In contrast to DBM, the ELEvo model assumes that the shape of 
the CME is elliptic (Möstl et al., 2015), and considers the propagation 
direction of the CME. In this way the motion of each point along the 
CME front can be obtained. Therefore, the one-dimensional model 
is extended to a two-dimensional model after taking into account the 
evolution of the CME boundary in the ecliptic plane. In ELEvo, the 
mathematical equations that describes the propagation of the CME 
apex are the explicit solutions adopted in the DBM.

Compared with the ELEvo model, the ELEvoHI model 
developed in 2016 uses the HI observation data (Rollett et al., 2016), 
which has a wider field of view than coronagraphs and can obtain 
the CME kinematic parameters in a larger heliospheric space. The 
methods for deriving the expressions of θ, rλ, φ and rω in the ElCon 
method are consistent with those in the ELEvo model. Furthermore, 
the ELEvoHI model uses the ELEvo model to calculate the evolution 
of the CME boundary in the ecliptic plane.

The ELEvoHI model in 2020, compared with its 2016 version, 
uses the ELEvoHI model of 2016 within the HI-1 field of view and 
uses the DBM to describe the propagation of the CME outside the 
HI-1 field of view. The processes of the ELEvoHI ensemble model in 
2018 are consistent with that of the ELEvoHI model in 2016.

Compared with the ELEvoHI ensemble model in 2018, the 
ELEvoHI 2.0 model in 2021 replaces the elliptical front with 
a deformed CME front outside the DBM fitting range. It also 
considers the varying drag parameter and background solar wind 
speed, and uses the analytical solutions of DBM to obtain the 
arrival time and propagation speed of the CME. For improvement 
direction in the future, the following aspects can be considered: 
(1) The aspect ratio in the ELEvo model could be developed as 
a function of time (Möstl et al., 2015); (2) More realistic solar 
wind conditions could be adopted instead of empirical expressions; 
(3) The mass of CME could be treated as a variable along time 
or distance. 

3.2 LSF-DBM series

In the implementations of the above-mentioned DBM models, 
their input parameters were typically determined through empirical 
selection based on the studied events, which are not necessarily 

suitable for the event being forecasted (Žic et al., 2015). To address 
this limitation, Žic et al. (2015) developed an optimized approach 
termed the LSF-DBM in 2015, which determines the optimal input 
parameters by minimizing the discrepancy between the model 
predictions and the observations. Sudar et al. (2022) conducted a 
further study on the shape of the flattening CME front in the LSF-
DBM, analyzing the behavior of the CME front, the influence of the 
drag force on the CME front, the change in the shape of the CME 
front, and the change in the speed of the CME front over time.

Combining the shape of the flattening CME front in LSF-
DBM, Dumbović et al. (2018) proposed DBEM to address the 
problem of insufficient reliable input data for the CME prediction. 
Subsequently, the DBEM was developed in 2021 and 2022 to yield 
the DBEMv3 (Čalogović et al., 2021) and DBEMv4, respectively. 

3.2.1 LSF-DBM
LSF-DBM (Žic et al., 2015) assumes that the CME shape is 

conical, as shown in Figure 3 of Žic et al. (2015). The model 
dynamically updates the DBM inputs based on the changing of 
the CME’s kinematics as well as the ambient conditions, with 
parameters optimized via the least-square fitting. The mathematical 
expressions used in this model are consistent with those in the 
DBM models mentioned earlier, except that it takes into account 
the disturbances that the CME experiences during its motion, 
where the values of the background solar wind speed (w) and the 
drag parameter (γ) vary with time. Since the DBEM developed 
later (Čalogović et al., 2021; Dumbović et al., 2018) only uses the 
geometry of the CME assumed in the LSF-DBM, the mathematical 
expressions of the CME geometry and their mathematical derivation 
processes (Dumbović et al., 2021) will be introduced in the following 
content (Equations 10–15). The calculation equations for the initial 
state of the ICME front are as follows, here r′ is r, and ψ is φ in 
Figure 3 of Žic et al. (2015):

As shown in Figure 3 of Žic et al. (2015), r′ = h tan λ, then R0 =
h+ r′ = h+ h tan λ = h(1+ tanλ). Therefore, h = R0

1+tanλ
. Thus

Rψ = h(cos ψ+√tan2 λ− sin2 ψ) = R0

cos ψ+√tan2 λ− sin2 ψ

1+ tanλ
(10)

By differentiating both sides of the equation with respect to 
t, we obtain

vψ = v0

cos ψ+√tan2 λ− sin2 ψ

1+ tanλ
(11)

where the expressions of R0 and v0 are obtained analytically 
in the DBM. 

1. DBM with a self-similar cone:

At time t, the calculation equations for the initial state of the 
ICME front are as follows:

R(ψ, t) = R(t)
cos ψ+√tan2 λ− sin2 ψ

1+ tanλ
(12)

v(ψ, t) = v(t)
cos ψ+√tan2 λ− sin2 ψ

1+ tanλ
(13)

where R(t) = ± 1
γ

ln[1± γ(v0 −w)t] +wt+R0, v(t) = v0−w
1±γ(v0−w)t

+w. 
When v0 > w, the sign takes “+”; when v0 < w, it takes “−”. 
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2. DBM with a flattening cone:

At time t, the calculation equations for the initial state of the 
ICME front are as follows:

R(ψ, t) = ±1
γ

ln[1± γ(vψ −w)t] +wt+Rψ (14)

v(ψ, t) =
vψ −w

1± γ(vψ −w)t
+w (15)

where Rψ = R0
cos ψ+√tan2 λ−sin2 ψ

1+tanλ
, vψ = v0

cos ψ+√tan2 λ−sin2 ψ

1+tanλ
. When v0 >

w, the sign takes “+”; when v0 < w, it takes “−”.
Sudar et al. (2022) further developed the equations for the 

above-mentioned flattening front, where each point of the CME 
front propagates independently. Based on the equations in DBM, 
they investigated the morphological evolution characteristics of the 
CME front as well as the speed variations at any point of the 
CME front along radial distance, and derived several significant 
conclusions (Equations 16, 17). The specific processes are as
follows:

It can be known from the previous text, Rψ =

R0
cos ψ+√tan2 λ−sin2 ψ

1+tanλ
= R0F(ψ), vψ = v0F(ψ), R(ψ, t) = ±

1
γ

ln[1± γ(v0F(ψ) −w)t] +wt+R0F(ψ), v(ψ, t) = v0F(ψ)−w
1±γ(v0F(ψ)−w)t

+
w. Thus

∂R(ψ, t)
∂ψ
=

tv0F′(ψ)
±tγ(v0F(ψ) −w) + 1

+R0F′(ψ) (16)

Based on the expression of ∂R(ψ,t)
∂ψ

 along time and its relationship 
with zero, it can be concluded that: the closer to the apex, the greater 
the radial distance would be, and thus the point where ψ = 0 (the 
apex of the CME) always remains at the forefront of the CME.

The distance (ΔR(t)) from the point on the CME flank (ψ = ψ′) 
to the apex (ψ = 0) is:

ΔR(t) = R(0, t) −R(ψ′, t) = ± 1
γ

ln
1± γ(v0 −w)t

1± γ(v0F(ψ′) −w)t
+R0(1− F(ψ′)) (17)

The asymptotic constant form of ΔR(t) is
lim ΔR(t) ≈

t→∞
± 1

γ
ln v0−w

v0F(ψ′)−w
+R0(1− F(ψ′)), which is attained earlier 

with larger value of γ.
From the expression of v(ψ, t), we find that v(ψ) = w when 

t→∞, and thus Δv(t) = v(0, t) − v(ψ′, t) → 0. Consequently, each 
point on the CME front with different initial speeds will eventually 
approach the solar wind speed. 

3.2.2 DBEM
DBEM (Dumbović et al., 2018) adopts the geometry of the CME 

front proposed in the LSF-DBM, which is a cone that gradually 
flattens out. DBEM employs an ensemble method to account for the 
uncertainties in the DBM parameters to address the limitation of 
insufficient reliable input data for the CME prediction, obtaining the 
most likely arrival time and propagation speed upon arrival of the 
corresponding ICME.

For the input parameters, n distinct measurement sets are 
employed for the CME’s initial parameters, and the synthetic 
values are adopted for w and γ. The mathematical derivation 

processes for obtaining the m synthetic values are as follows
(Equations 18, 19):

Assuming that the real measurements of w and γ follow a normal 
distribution, thus x = x±Δx, where x = μ is the mean of the normal 
distribution, and Δx = 3 · σ. Then, normalizing the random variable 
x through the transformation z = x−μ

σ
 makes z follow the standard 

normal distribution:

g(z) = 1
2
(1+ erf( z

√2
)) (18)

where erf(z) = 2
√π
∫z0e−y

2
dy.

Multiplying both sides of Equation 18 by m− 1 will result in g∗
(z) = (m− 1)g(z), then

zi = −√2erf−1(1− 2
g∗i (z)
m− 1
) (19)

where gi∗ (z) = 0,1,2,…,m− 2,m− 1. Thus m synthetic values can 
be obtained. The complete derivations for the formulas are available 
in the cited references (Dumbović et al., 2018).

By substituting n ·m2 sets of the input parameters into 
Equations 14, 15, the DBM is run for n ·m2 times to generate an 
ensemble of the CME’s arrival times and propagation speeds. In 
this way, we can obtain the most likely arrival time of the CME 
and its propagation speed upon arrival along with their associated 
uncertainties. 

3.2.3 DBEMv3, DBEMv4
Čalogović et al. (2021) sorted out the development process 

from the original DBEM to its third-generation version (DBEMv3). 
The DBEMv1 was established by replacing all input parameters 
in DBEM with the aforementioned synthetic values. Subsequently, 
under the assumption that the input parameters follow a normal 
distribution, they drew random samples from the distribution with 
the number of samples equal to the number of times of running 
DBEM, thus yielding DBEMv2. After that, the actual motion state 
of the target is considered during the propagation of CME, more 
targets are added, and the calculating speed is increased, which 
lead to the DBEMv2.5 model. Then, the visualization of DBMv2.5 
is enhanced through the integration of the existing DBM tools. 
Additionally, the model can optionally incorporate the Graduated 
Cylindrical Shell (GCS) model to calculate the CME’s half angular 
width (λ). As a result, the DBEMv3 model is obtained. In 2022, a 
Solar Wind (SW) module was added to the model, allowing users 
to run the DBEM in multiple steps, resulting in DBEMv4. The 
mathematical expressions for λ derived from the GCS model are
given by:

k = sin (δ)

ωFO = 2(α+ δ)

ωEO = 2δ

λ = ωFO − (ωFO −ωEO)(|γ|/90)

where α, k, and γ are the input parameters of GCS model. Additional 
details can be found in the cited references (Čalogović et al., 2021). 
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3.3 PDBM series

Napoletano et al. (2018) proposed the PDBM model to address 
the issue of the lack of the CME information. Subsequently, 
Napoletano et al. (2022) made improvements to it. Recently, 
Chierichini et al. (2024) and Mugatwala et al. (2024) further 
developed this model. 

3.3.1 PDBM
The 2018 PDBM (Napoletano et al., 2018) replaced the constant 

input parameters (R0, v0, w, and γ) of the DBM with the probability 
distribution functions (PDFs) of the input parameters. For R0 and v0, 
the PDFs are determined such that their mean values are the distance 
and speed obtained by the CME tracking, respectively. The standard 
deviations are the uncertainties related to these measurements. For 
w and γ, the PDFs are determined by using the selected CME 
event data, solving the analytical solutions of the DBM in reverse 
to obtain the values of w and γ, thereby obtaining the distribution 
histograms of the two parameters. Then, the normal distribution 
function is used to fit the histogram of the background solar wind 
speed distribution, and the Log-Normal function is used to fit the 
histogram of the drag parameter distribution. The mathematical 
derivation processes for solving the analytical solutions of the DBM 
in reverse are as follows:

The analytical solutions proposed in the DBM are 
transformed into

γ =
v0 − v1AU

(v0 −w)(v1AU −w)t1AU
(20)

(v0 −w)(v1AU −w)t1AU

v0 − v1AU
ln[

v0 − v1AU

v1AU −w
+ 1]+wt1AU +R0 −R1AU = 0

(21)

where R0, v0, the arrival time of ICME at 1AU (t1AU), and the 
propagation speed of ICME at 1AU (v1AU) are the known quantities. 
Solve Equation 21 numerically to obtain the value of w, and then 
substitute it into Equation 20 to obtain the value of γ.

Subsequently, n initial condition sets are sampled from the 
obtained distribution functions of these parameters R0, v0, w and γ, 
and substituted into the analytical solutions of the DBM. Using the 
ensemble method, the PDFs of the arrival time and the propagation 
speed at the target location are generated. The best estimates of both 
arrival time and propagation speed as well as their corresponding 
error estimates are the mean and the root mean square of the 
obtained PDFs, respectively.

The PDBM in 2022 (Napoletano et al., 2022) employed an 
expanded ICME dataset to establish the new empirical probability 
distribution functions (PDFs) for the model’s input parameters, 
where the drag parameter’s distribution maintains a log-normal 
functional form, but is categorized into two cases, v0 < w and v0 >
w.

The PDBM proposed by Chierichini et al. (2024) improved 
the model by enhancing the distribution functions of the input 
parameters through the use of a Monte Carlo Markov Chains 
method. Also in 2024, Mugatwala et al. (2024) developed the 2022 
PDBM by using pairwise selection for the initial speed (v0) and the 
transit time (t1AU) to explore the samples with a lower probability in 
the parameter space, restricting values of w and γ, and selecting the 
CMEs suitable for the DBM inversion according to the acceptance 

rate (AR =  the number ratio of the feasible solutions under restricted 
conditions to the total solutions) to obtain the most suitable PDFs for 
w and γ. 

3.3.2 The relationship between the mathematical 
expressions in the PDBM series

The PDBM in 2018, relative to the DBM, obtains the expressions 
for the drag parameter and the background solar wind speed 
by inverting the analytical solutions proposed in the DBM. The 
background solar wind speed from the numerical solution can be 
input to the equation to calculate the drag parameter. Furthermore, 
the model also uses the analytical solutions proposed in the DBM 
to calculate the arrival time of CME and its propagation speed 
upon arrival.

Compared with the PDBM in 2018, the equations for calculating 
the drag parameter, background solar wind speed, CME arrival time, 
and propagation speed in the 2022 PDBM remain unchanged. The 
mathematical relationship between the two 2024 PDBMs and the 
2022 PDBM is the same as that between the 2018 and 2022 PDBMs. 

3.4 ExDBM

Knowing that the general DBM models account for only the drag 
force and thus cannot depict appropriately the complex dynamical 
interactions between CMEs and the ambient solar wind, Rossi et al. 
(2025) introduced the ExDBM model. ExDBM addresses the 
limitations inherent to the 2013 version of the DBM through 
the incorporation of an additional acceleration term (a′). This 
acceleration term represents the other forces involved in the 
dynamic interaction between the CME and the solar wind, enabling 
a more accurate modeling of the CME’s propagation dynamics in the 
heliosphere.

The form of the ExDBM is:

R̈ = −γ|Ṙ−w|(Ṙ−w) + a′ (22)

The asymptotic constant solution of the model is v = w±
√±a′/γ. When a′ < 0, the sign takes “−”; when a′ > 0, it takes “+”.

The processes for solving Equation 22 are as follows 
(Equations 23–38):

When v0,v(t) ≤ w, R̈ = γ(v(t) −w)2 + a′. Therefore, 
d( dR

dt
)

dt
= a′ +

γ(v(t) −w)2. Thus dv
a′+γ(v(t)−w)2

= dt.
When a′ > 0, we assume that u = v′ −w, thus dv′ = du. 

Therefore, ∫vv0

dv′

a′+γ(v′−w)2
= ∫v−wv0−w

du
a′+γu2 = t, 1

√a′γ
arctan(√γu

√a′
)

|
v−w

v0 −w
= t. Thus

t = 1

√a′γ
(arctan(√

γ
a′
(v−w)) − arctan(√

γ
a′
(v0 −w))) (23)

Equation 23 can be transformed into √a′γt =
arctan(√ γ

a′
(v−w)) − arctan(√ γ

a′
(v0 −w)). Assuming σ+ =

arctan(√ γ
a′
(w− v0)), it follows that √a′γt = arctan(√ γ

a′
(v−w)) +

σ+, and consequently

v(t) = w+√a′

γ
tan(√a′γt− σ+),0 ≤ t ≤ 1

√a′γ
σ+ (24)
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Integrating this expression, we obtain

R(t) = wt+R0 −
1
γ

ln(S+ cos(√a′γt− σ+)),0 ≤ t ≤ 1

√a′γ
σ+ (25)

where S+ = √
a′+γ(v0−w)

2

a′
. Similarly, when a′ < 0,

v(t) = w+√−a′

γ
e−2√−a′γtA− +B−
e−2√−a′γtA− −B−

, t ≥ 0 (26)

R(t) = (w−√−a′

γ
)t+R0 −

1
γ

ln(
A−e
−2√−a′γt −B−
2√−a′

), t ≥ 0 (27)

Here, A− = √γ(v0 −w) +√−a′, B− = √γ(v0 −w) −√−a′.
When v0 < w < v(t), a′ > 0. Unlike the previous content,

∫
w

v0

dv′

a′ + γ(v′ −w)2
+∫

v

w

dv′

a′ − γ(v′ −w)2
= t (28)

where ∫wv0

dv′

a′+γ(v′−w)2
= 1
√a′γ

arctan(√ γ
a′
(w− v0)) =

1
√a′γ

σ+. 
Assuming u = v′ −w, it follows that dv′ = du, and the integral 
in question is transformed to ∫v−w0

du
a′−γu2 . Thus, ∫v−w0

du
a′−γu2 =

1
2√a′γ

ln(
√a′+√γu
√a′−√γu
)|

v−w

0
= 1

2√a′γ
ln(
√a′+√γ(v−w)
√a′−√γ(v−w)

). Therefore, t−

1
√a′γ

σ+ =
1

2√a′γ
ln(
√a′+√γ(v−w)
√a′−√γ(v−w)

). Take the exponential functions 

on both sides of the equation, and we obtain 
√a′+√γ(v−w)
√a′−√γ(v−w)

=

e
2√a′γ(t− 1

√a′γ
σ+)

. Assuming k = e
2√a′γ(t− 1

√a′γ
σ+)

, it follows that 
√a′ +√γ(v−w) = k(√a′ −√γ(v−w)), and consequently

v = w+ k− 1
1+ k
√a′

√γ
= w+√a′

γ
e2(√a′γt−σ+) − 1

e2(√a′γt−σ+) + 1
, t > 1

√a′γ
σ+ (29)

By integrating the preceding equation, we obtain

R(t) = (w−√ a′

γ
)t+R0 +

1
γ
(ln( e

2(√a′γt−σ+) + 1
2S+

)+ σ+), t >
1

√a′γ
σ+

(30)

In summary, when a′ > 0, if v0 ≤ w, then

v(t) =

{{{{{{{{
{{{{{{{{
{

w+√a′

γ
tan(√a′γt− σ+),0 ≤ t ≤ 1

√a′γ
σ+

w+√a′

γ
e2(√a′γt−σ+) − 1

e2(√a′γt−σ+) + 1
, t > 1

√a′γ
σ+

(31)

R(t) =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

wt+R0 −
1
γ

ln(S+ cos(√a′γt− σ+)),0 ≤ t ≤ 1

√a′γ
σ+

(w−√ a′

γ
)t+R0 +

1
γ
(ln( e

2(√a′γt−σ+) + 1
2S+

)+ σ+),

t > 1

√a′γ
σ+

(32)

Here, σ+ = arctan(√ γ
a′
(w− v0)), S+ = √

a′+γ(v0−w)
2

a′
.

When a′ < 0, if v0 ≤ w, then

v(t) = w+√−a′

γ
e−2√−a′γtA− +B−
e−2√−a′γtA− −B−

, t ≥ 0 (33)

R(t) = (w−√−a′

γ
)t+R0 −

1
γ

ln(
A−e
−2√−a′γt −B−
2√−a′

), t ≥ 0 (34)

where A− = √γ(v0 −w) +√−a′, B− = √γ(v0 −w) −√−a′.
By replacing the plus and minus signs in Equations 31–34, 

we can obtain:
When a′ > 0, if v0 > w, then

v(t) = w+√a′

γ
e2√a′γtA+ +B+
e2√a′γtA+ −B+

, t ≥ 0, (35)

R(t) = (w−√a′

γ
)t+R0 +

1
γ

ln(
A+e

2√a′γt −B+
2√a′

), t ≥ 0. (36)

Here, A+ = √γ(v0 −w) +√a′ and B+ = √γ(v0 −w) −√a′.
When a′ < 0, if v0 > w, then

v(t) =

{{{{{{{{
{{{{{{{{
{

w−√−a′

γ
tan(√−a′γt− σ−),0 ≤ t ≤ 1

√−a′γ
σ−

w+√−a′

γ
e−2(√−a′γt−σ−) − 1

e−2(√−a′γt−σ−) + 1
, t > 1

√−a′γ
σ−

, (37)

R(t) =

{{{{{{{{{{{{
{{{{{{{{{{{{
{

wt+R0 +
1
γ

ln(S− cos(√−a′γt− σ−)),0 ≤ t ≤ 1

√−a′γ
σ−

(w−√−a′

γ
)t+R0 −

1
γ
(ln( e−2(√−a′γt−σ−) + 1

2S−
)− σ−), t

> 1

√−a′γ
σ−

(38)

where σ− = arctan(√− γ
a′
(v0 −w)), S− = √

a′−γ(v0−w)
2

a′
.

3.5 EnDBM series

3.5.1 EnDBM
Employing the remote-sensing observations of STEREO, Hess 

and Zhang (2014) independently tracked the evolution of not only 
the CME front but also the associated shock front. By fitting the 
evolution of these two fronts to the DBM, they predicted the in situ
arrival of both the CME and the shock, thereby developing the DBM 
further and proposing the EnDBM. In this approach, geometric 
structures are superimposed onto images captured by different 
spacecraft at approximately the same time using the forward 
modeling technology. Optimal parameters are then determined to 
ensure the consistency between the model images and the multi-
view observations. Where the CME front uses the GCS model and 
direct images, while the shock front uses the prolate spheroid bubble 
model and the running-difference images. These geometric models 
were applied to the given events along multiple time steps, yielding 
a series of height-time measurements for both the CME and shock. 
Subsequently, the DBM was used to fit the time-height data of both 
fronts obtained through the forward modeling, determining the sole 
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TABLE 1  The reference, key features, basic assumptions and limitations of the DBM family models. w stands for the speed of the background solar wind, 
and γ stands for the drag parameter. Y indicates Yes, N indicates No.

Model References Key features Basic assumptions Limitations

w = const
γ = const

Geometry Reliance on 
idealized 

assumptions

Cannot be 
applied to 
interacting 

ICMEs

DBM Vršnak et al. (2013) geometry-
independent

Y N Y Y

ELEvo Möstl et al. (2015) DBM + a self similar 
expanding ellipse

Y self similar 
expanding ellipse

Y Y

ELEvoHI

Rollett et al. (2016) HI observations + 
FPF method + 

ElCon method + 
DBM fitting + 

ELEvo

Y self similar 
expanding ellipse 
(ElCon method, 

ELEvo)

Y Y

Braga et al. (2020) data from two 
perspectives of the 

HI-1 on STEREO A 
and STEREO B+ 
ElCon method + 

DBM

N (w ≠ const,γ ≠
const)

self similar 
expanding ellipse 
(ElCon method)

Y Y

ELEvoHI ensemble 
model

Amerstorfer et al. 
(2018)

ELEvoHI (2016) + 
GCS + ensemble 

method

Y self similar 
expanding ellipse 

(ELEvoHI)

Y Y

ELEvoHI 2.0 Hinterreiter et al. 
(2021)

ELEvoHI ensemble 
model + deformed 

CME front

N (w ≠ const,γ ≠
const)

deformed CME 
front (outside the 

DBM fitting range)

Y Y

LSF-DBM Žic et al. (2015), 
Sudar et al. (2022)

DBM + a self-similar 
cone; DBM + a 
flattening cone

Y self-similar cone, 
flattening cone

Y Y

DBEM Dumbović et al. 
(2018)

DBM with a 
flattening cone + 

ensemble method + 
the synthetic values 
are adopted for w

and γ

Y flattening cone Y Y

DBEMv1 Čalogović et al. 
(2021)

DBEM + all input 
parameters in 
DBEM use the 

synthetic values

Y flattening cone Y Y

DBEMv2 Čalogović et al. 
(2021)

DBEM + random 
samples from the 

distribution of input 
parameters

Y flattening cone Y Y

DBEMv2.5 Čalogović et al. 
(2021)

DBEMv2 + actual 
motion state of the 

target + more targets 
+ increased 

calculation speed

Y flattening cone Y Y

DBEMv3 Čalogović et al. 
(2021)

DBEMv2.5 + 
optional GCS model

Y flattening cone Y Y

DBEMv4 DBEMv3 + Solar 
Wind (SW) module

N (w ≠ const) flattening cone Y Y

(Continued on the following page)
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TABLE 1  (Continued) The reference, key features, basic assumptions and limitations of the DBM family models. w stands for the speed of the 
background solar wind, and γ stands for the drag parameter. Y indicates Yes, N indicates No.

Model References Key features Basic assumptions Limitations

w = const
γ = const

Geometry Reliance on 
idealized 

assumptions

Cannot be 
applied to 
interacting 

ICMEs

PDBM Napoletano et al. 
(2018), 

Napoletano et al. 
(2022)

DBM + ensemble 
method

Y N Y Y

PDBM Chierichini et al. 
(2024)

DBM + ensemble 
method + Monte 

Carlo Markov Chains 
method

Y N Y Y

PDBM Mugatwala et al. 
(2024)

DBM + ensemble + 
pairwise selection 

method

Y N Y Y

ExDBM Rossi et al. (2025) DBM + additional 
acceleration term

Y N Y Y

EnDBM Hess and Zhang 
(2014)

DBM + GCS + the 
prolate spheroid 

bubble model

Y GCS (CME front), the 
prolate spheroid 

bubble model (shock 
front)

Y Y

EnDBM Hess and Zhang 
(2015)

DBM + GCS + the 
prolate spheroid 
bubble model + 

geometric corrections 
to the propagation 

direction

N (γ ≠ const) GCS (CME front), the 
prolate spheroid 

bubble model (shock 
front)

Y Y

unknown parameter (γ), and ultimately deriving the equations of 
motions for both the CME and the shock.

Hess and Zhang (2015) further refined the EnDBM by (1) 
changing the drag parameter to a variable one, (2) implementing 
the geometric corrections to the propagation direction, and 
(3) developing a new shock propagation prediction model. The 
changing drag parameter is calculated as:

γ =
Cd

ρ0kR0

ρw0
+ kR

2

(39)

where Cd and k are the known dimensionless parameters, which 
are 1.35 and 0.4, respectively. In Equation 39, only the density 
ratio is an unknown quantity. Through the forward modeling 
technique used in the EnDBM in 2014, multiple sets of the 
height-time data measured during the CME propagation are 
obtained. A series of fits are performed to these data to estimate 
the value of γ for each time. Subsequently, a series of the 
discrete γ values obtained by fitting with Equation 39 were 
used with an optimization algorithm to determine the density 
ratio (ρ0/ρw0), thereby defining the complete γ(R) function. The 
specific derivation processes of γ can be found in the reference
(Hess and Zhang, 2015).

By combining measurements of the ejecta front and the sheath 
front, the proposed model predicts the sheath propagation through 

the motion equations: RSF(t) = RFR(t) +At+B and vSF(t) = vFR(t) +
A, where A and B are the coefficients for the linear fitting of the 
distance of the ejecta front and the sheath front, respectively. The 
propagation of the sheath is geometrically corrected using the same 
method for the CME. 

4 Other DBM models

In addition to the series of models evolving based on the basic 
version of the DBM, there are also some DBMs without a clear 
development route, such as the Graduated Cylindrical Shell Drag-
Based Model (GCSDBM), the mass-changing Drag-Based Model 
(mass-changing DBM). 

4.1 GCSDBM

Shi et al. (2015) employed the GCS model fitting to determine 
the CME’s initial speed, as this method ensures that the derived 
speed remains unaffected by the projection effects. Then they 
utilized the DBM to establish the relationship between the CME’s 
transit time and its initial speed, which yields the GCSDBM. The 
expressions of the DBM are:
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TABLE 2  The input and output parameters of the DBM family models. t0 stands for the initial time of the CME, v0 stands for the initial speed of the CME, 
r0 stands for the initial radial distance of the CME, w stands for the speed of the background solar wind, γ stands for the drag parameter, λ stands for the 
half angular width of the CME, ϕ stands for the propagation direction of the CME, and f stands for the inverse aspect ratio of the CME. Y indicates Yes, N 
indicates No.

Model Input parameters Output parameters

t0, v0, r0, w, 
γ, distance 

to the 
target

λ,ϕ f Optional 
GCS 

parameters

Associated 
uncertainties 

of the 
CME’s 
initial 

parameters

Transit time 
and 

propagation 
speed of 

CME

Associated 
uncertainties 

of the 
CME’s 

transit time 
and 

propagation 
speed

DBM Y N N N N Y N

ELEvo Y Y Y N N Y N

ELEvoHI Y Y Y N N Y N

ELEvoHI 
ensemble model

Y Y Y N Y (ϕ,λ, f) Y Y

ELEvoHI 2.0 Y Y Y N Y (ϕ,λ, f) Y Y

LSF-DBM Y Y N N N Y N

DBEM Y Y N N Y (w,γ) Y Y

DBEMv1 Y Y N N Y (t0,v0,w,
γ,λ,ϕ)

Y Y

DBEMv2 Y Y N N Y (t0,v0,w,
γ,λ,ϕ)

Y Y

DBEMv2.5 Y Y N N Y (t0,v0,w,
γ,λ,ϕ)

Y Y

DBEMv3 Y Y N Y Y (t0,v0,w,
γ,λ,ϕ)

Y Y

DBEMv4 Y Y N Y Y (t0,v0,w,
γ,λ,ϕ)

Y Y

PDBM Y N N N Y Y Y

ExDBM Y N N N N Y N

EnDBM Y N N N N Y N

Based on the equation dv
dt
= − γ(v−w)|v−w|β−1, it can be obtained

that Rβ = wt± 1
γ(2−β)
{|v0 −w|2−β − [γ(β− 1)t+ |v0 −w|1−β]

2−β
1−β} when 

1 < β < 2. For β = 1, R1 = wt+ 1
γ
(v0 −w)(1− e−γt). For β = 2, R2 =

wt± 1
γ

ln(γ|v0 −w|t+ 1). When v0 > w, the sign takes “+”; when v0 <
w, it takes “−”. Then, by using the fitting method and the above 
relationships, the parameters γ, β, and w can be derived from the 
existing measurements of the initial speed and the transit time. 
Subsequently, the transit time of the CME to 1 AU can be determined 
with the known parameter v0 derived from the GCS model.

4.2 The mass-changing DBM

Stamkos et al. (2023) proposed the mass-changing DBM 
for modeling the propagation of fast CMEs in the inner 
heliosphere, which improved the prediction accuracy of their 
arrivals at 1 AU. Compared with the previous models, this 
version considers: (1) the virtual mass of CMEs, and (2) 
the CME’s magnetic erosion caused by the reconnection 
between the CME and the interplanetary magnetic field
(IMF).
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This model adopts a cylindrical geometry of CME with radial 
propagation in the inner heliosphere. The expression satisfied by the 
non-erosive fast CME subject to the drag force (Fdrag) is

dv
dt
= −γCd|v−w|(v−w) −

(v+Vexp −w)
Mtot

dMv

dt
(40)

where γ = ρwA
V(ρ+ ρw

2
)
= 4

πR( 2ρ
ρw
+1)

, Mtot =M+Mv, v is the speed of the 

CME, w is the background solar wind speed, Vexp is the expansion 
speed of the CME, ρ is the density of the CME, ρw is the density of 
the background solar wind, Mtot is the total mass, M is the mass of 
the CME, Mv is the virtual mass, V is the volume of the CME, R is 
the radius of the CME, and A is the cross-sectional area of the CME. 
Assuming that M remains constant, it can be seen that Mtot varies 
with the CME’s propagation distance.

Subsequently, by reducing the radius of the CME, the influence 
of the magnetic erosion is incorporated into the motion of the CME 
(i.e., Equation 40): Ri = R∗i−1(

Ri
Ri−1
)

α
, where Ri = C′S is a hybrid 

magnetic-reconnection rate, C′ is a dimensionless coefficient, which 
is approximately 0.1, S = 2(B1B2)

3
2 (μ0ρ1B2 + μ0ρ2B1)

− 1
2 (B1 +B2)

− 1
2 , 

B is the magnetic field intensity, subscript 1 represents CME, 
subscript 2 represents the solar wind and IMF at the position of the 
CME front, and μ0 represents the magnetic permeability of vacuum. 
The specific derivation and solution processes of the mass-changing 
DBM can be found in the reference (Stamkos et al., 2023). 

5 Conclusion

This paper systematically reviews the development and 
evolution of the DBM models. The DBM assumes that the CME 
is only subject to the drag force in its later propagation stage. It 
describes the propagation of CMEs in the interplanetary medium 
(solar wind) based on the motion equations determined by the 
drag force, and is used to predict the transit time and propagation 
speed of the CME at Earth or any given target in the solar system. 
It is one of the most widely employed analytical models, due to its 
simplicity and computational efficiency. Furthermore, this paper 
also presents the mathematical derivation processes of each version 
of the DBM, sorts out the development and evolution processes as 
well as the interrelationships between the mathematical expressions 
of different versions of the DBM, and proposes the potential 
improvement directions for some evolution routes. According to 
our compilation, the development and evolution of the DBM models 
can be categorized into five development routes: DBM → ELEvoHI 
model series; DBM → LSF-DBM series; DBM → PDBM series; 
DBM → ExDBM; DBM → EnDBM series. In addition, some DBM 
without a clear development route are also introduced, including 
the GCSDBM and the mass-changing DBM. As a summary, 
Tables 1, 2 list the key features of each model, including the 
assumptions, inputs, outputs, limitations and so on, for a detailed
comparison.

The ELEvo model treats the CME shape as a self-similar ellipse. 
Based on the analytical solutions of the DBM, it derives the distance 
and speed equations at any point of the CME front. The ELEvo 
model was used in the subsequent development of the ELEvoHI 
model. Furthermore, the ELEvoHI model is improved by combining 
the ensemble method, introducing the deformed CME front, the 

varying drag parameter, and the varying background solar wind 
speed. In the future, the inverse aspect ratio in the ELEvo model 
can be developed as a function of time, using more realistic solar 
wind conditions instead of empirical expressions, and considering 
the mass-changing of the CME over time to further improve
the model.

The LSF-DBM treats the CME geometry as either a self-similar 
cone or a flattening cone. Similar to the ELEvo model, it employs 
the analytical solutions of the DBM to derive the distance and speed 
equations at any point of the CME front. In the subsequently 
developed DBEM, the flattening conical geometry equation 
proposed in the LSF-DBM is adopted. Future improvements 
to the model may include incorporating a sophisticated drag 
parameter model.

The PDBM employs the DBM’s analytical solutions to calculate 
the CME’s arrival time and speed, and obtains the values of the drag 
parameter and the background solar wind speed by inversely solving 
the analytical solutions. In the future, the model can be improved 
by adding two-dimensional geometric models (conical or elliptical 
shapes), or by further exploring the Bayesian method.

The ExDBM improves the model by adding an acceleration 
term to the DBM. This term represents other forces in the dynamic 
interaction between the CME and the solar wind, enabling more 
accurate modeling of the CME’s propagation dynamics in the 
heliosphere.

In the EnDBM, the CME geometry is modeled using the 
GCS model, while the shock geometry is modeled using a prolate 
spheroid bubble model. The model employs the DBM’s analytical 
solutions to fit the measured height-time data, deriving the CME’s 
motion equations to predict the in situ arrival of both the CME flux 
rope and the sheath. A variable drag parameter is then applied, and 
the GCS model’s results undergo the geometric correction. A new 
model is used to predict the propagation of the sheath.

We have to admit that the various versions of the DBM family 
models have their own some limitations. These limitations include, 
but are not limited to the idealized assumptions, sensitivity to the 
initial conditions of both CME and solar wind. These assumptions, 
on one hand, come from the idealized geometries of the CME front 
shape, which could be very complicated in real cases. On the other 
hand, they come from the negligence of other forces besides the 
drag force exerted by the background solar wind. Especially, none of 
the various DBM-based models discussed above explicitly takes into 
account the deflection of CMEs during their propagation. However, 
the CME deflection is known to be an important factor influencing 
not only the prediction accuracy of the CME arrival time but also 
the success rate of whether a CME can reach the Earth or a given 
target location at all (Wang et al., 2004; Gui et al., 2011; Zhuang et al., 
2019). The lack of the deflection treatment in current DBM models 
hinders the improvement of the model’s accuracy. In addition 
to these, the DBM models do not consider the interactions of
multiple CMEs.

In the future, these improvements can be implemented to further 
develop the DBM and enhance its prediction accuracy for the 
CME arrival time and propagation speed. The models can be better 
validated if we could have more accurate observations for CMEs 
(e.g., with radial ICME lineup observations) and incorporate the 
deflection effects of CMEs. In addition to the improved accuracy
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of the CME initial conditions, which can be obtained by regular 
multi-viewpoint imaging by missions like ESA Vigil in combination 
with missions at L1, we need to improve the ambient wind models 
to improve the arrival time and speed forecasts of CMEs, as they 
are also the key factors concerning the prediction of the CME’s 
kinematics. Besides, we can compare the prediction results of 
different versions of the DBM for the same specific CME-ICME 
events. These comparisons can not only verify whether advanced 
models can give better predictions, but also reveal which factors 
are important in the modeling. They will be implemented in 
the next work.

Author contributions

 XZ: Supervision, Writing – review and editing, Writing – 
original draft, Resources, Funding acquisition. CS: Validation, 
Visualization, Writing – original draft. XL: Writing – review and 
editing. XF: Supervision, Writing – review and editing. YZ: Writing 
– review and editing, Supervision. NX: Writing – review and editing. 
LD: Writing – review and editing. AK: Writing – review and editing. 
CM: Supervision, Writing – review and editing. 

Funding

The author(s) declare that financial support was received 
for the research and/or publication of this article. The author(s) 
declare that this work is jointly supported by the National 
Natural Science Foundation of China (grant Nos. 42474224, 
12203054, 12373059, 12463009), the Beijing Natural Science 
Foundation (1242035), the Specialized Research Fund for State 
Key Laboratories, the “Yunnan Revitalization Talent Support 
Program” Innovation Team Project (grant No. 202405AS350012), 
and the Yunnan Fundamental Research Projects (grant No. 
202301AV070007). This work is supported by ERC grant 
(HELIO4CAST, 10.3030/101042188). Funded by the European 
Union. Views and opinions expressed are however those of the 
author(s) only and do not necessarily reflect those of the European 
Union or the European Research Council Executive Agency. 
Neither the European Union nor the granting authority can be 
held responsible for them. AK acknowledges financial support 

from the Ministry of Science and Higher Education of the Russian
Federation.

Conflict of interest

 The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer YC declared a past co-authorship with the 
author(s) XZ and XF to the handling editor.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the 
peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

 The Supplementary Material for this article can be 
found online at: https://www.frontiersin.org/articles/10.3389/
fspas.2025.1686823/full#supplementary-material

References

Alobaid, K. A., Abduallah, Y., Wang, J. T. L., Wang, H. M., Jiang, H. D., Xu, Y., et al. 
(2022). Predicting CME arrival time through data integration and ensemble learning. 
Front. Astron. Space Sci. 9, 1013345. doi:10.3389/fspas.2022.1013345

Amerstorfer, T., Möstl, C., Hess, P., Temmer, M., Mays, M. L., Reiss, M. A., et al. 
(2018). Ensemble prediction of a halo coronal mass ejection using heliospheric imagers. 
Space weather. 16, 784–801. doi:10.1029/2017SW001786

Boteler, D. H., Pirjola, R. J., and Nevanlinna, H. (1998). The effects of geomagnetic 
disturbances on electrical systems at the Earth’s surface. Adv. Space Res. 22, 17–27. 
doi:10.1016/S0273-1177(97)01096-X

Braga, C. R., Vourlidas, A., Stenborg, G., Dal Lago, A., Mendonça, R. R. S. d., 
and Echer, E. (2020). Predicting the time of arrival of coronal mass ejections at 
earth from heliospheric imaging observations. J. Geophys. Res. 125, e2020JA027885. 
doi:10.1029/2020JA027885

Čalogović, J., Dumbović, M., Sudar, D., Vršnak, B., Martinić, K., Temmer, M., 
et al. (2021). Probabilistic drag-based ensemble model (DBEM) evaluation for 
heliospheric propagation of CMEs. Sol. Phys. 296, 114. doi:10.1007/s11207-021-
01859-5

Cargill, P. J. (2004). On the aerodynamic drag force acting on interplanetary 
coronal mass ejections. Sol. Phys. 221, 135–149. doi:10.1023/b:sola.0000033366.
10725.a2

Chierichini, S., Francisco, G., Mugatwala, R., Foldes, R., Camporeale, E., De Gasperis, 
G., et al. (2024). A Bayesian approach to the drag-based modelling of ICMEs. J. Space 
Weather Space Clim. 14, 1. doi:10.1051/swsc/2023032

Dumbović, M., Čalogović, J., Vršnak, B., Temmer, M., Mays, M. L., Veronig, A., 
et al. (2018). The drag-based ensemble model (DBEM) for coronal mass ejection 
propagation. Astrophys. J. 854, 180. doi:10.3847/1538-4357/aaaa66

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2025.1686823
https://www.frontiersin.org/articles/10.3389/fspas.2025.1686823/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspas.2025.1686823/full#supplementary-material
https://doi.org/10.3389/fspas.2022.1013345
https://doi.org/10.1029/2017SW001786
https://doi.org/10.1016/S0273-1177(97)01096-X
https://doi.org/10.1029/2020JA027885
https://doi.org/10.1007/s11207-021-01859-5
https://doi.org/10.1007/s11207-021-01859-5
https://doi.org/10.1023/b:sola.0000033366.10725.a2
https://doi.org/10.1023/b:sola.0000033366.10725.a2
https://doi.org/10.1051/swsc/2023032
https://doi.org/10.3847/1538-4357/aaaa66
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Zhao et al. 10.3389/fspas.2025.1686823

Dumbović, M., Čalogović, J., Martinić, K., Vršnak, B., Sudar, D., Temmer, M., et al. 
(2021). Drag-based model (DBM) tools for forecast of coronal mass ejection arrival time 
and speed. Front. Astron. Space Sci. 8, 639986. doi:10.3389/fspas.2021.639986

Feng, X. S. (2020). Magnetohydrodynamic modeling of the solar corona and 
heliosphere. Singapore: Springer.

Feng, X. S., and Zhao, X. H. (2006). A new prediction method for the arrival time of 
interplanetary shocks. Sol. Phys. 238, 167–186. doi:10.1007/s11207-006-0185-3

Feng, X. S., Zhou, Y. F., and Wu, S. T. (2007). A novel numerical implementation for 
solar wind modeling by the modified conservation element/solution element method. 
Astrophys. J. 655, 1110–1126. doi:10.1086/510121

Feng, X. S., Yang, L. P., Xiang, C. Q., Jiang, C. W., Ma, X. P., Wu, S. T., et al. (2012). 
Validation of the 3D AMR SIP–CESE solar wind model for four Carrington rotations. 
Sol. Phys. 279, 207–229. doi:10.1007/s11207-012-9969-9

Fry, C. D., Sun, W., Deehr, C. S., Dryer, M., Smith, Z., Akasofu, S. I., et al. (2001). 
Improvements to the HAF solar wind model for space weather predictions. J. Geophys. 
Res. 106, 20985–21001. doi:10.1029/2000JA000220

Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M. L., and Howard, R. A. (2001). 
Predicting the 1‐AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 
29207–29217. doi:10.1029/2001JA000177

Guastavino, S., Candiani, V., Bemporad, A., Marchetti, F., Benvenuto, F., Massone, A. 
M., et al. (2023). Physics-driven machine learning for the prediction of coronal mass 
ejections’ travel times. Astrophys. J. 954, 151. doi:10.3847/1538-4357/ace62d

Gui, B., Shen, C. L., Wang, Y. M., Ye, P. Z., Liu, J. J., Wang, S., et al. (2011). Quantitative 
analysis of CME deflections in the corona. Sol. Phys. 271, 111–139. doi:10.1007/s11207-
011-9791-9

Hess, P., and Zhang, J. (2014). Stereoscopic study of the kinematic evolution of a 
coronal mass ejection and its driven shock from the sun to the Earth and the prediction 
of their arrival times. Astrophys. J. 792, 49. doi:10.1088/0004-637X/792/1/49

Hess, P., and Zhang, J. (2015). Predicting CME ejecta and sheath front arrival at 
L1 with a data-constrained physical model. Astrophys. J. 812, 144. doi:10.1088/0004-
637X/812/2/144

Hinterreiter, J., Amerstorfer, T., Temmer, M., Reiss, M. A., Weiss, A. J., 
Möstl, C., et al. (2021). Drag‐based CME modeling with heliospheric images 
incorporating frontal deformation: ELEvoHI 2.0. Space weather. 19, e2021SW002836. 
doi:10.1029/2021SW002836

Kay, C., Palmerio, E., Riley, P., Mays, M. L., Nieves-Chinchilla, T., Romano, M., 
et al. (2024). Updating measures of CME arrival time errors. Space weather. 22, 
e2024SW003951. doi:10.1029/2024SW003951

Li, Y. C., Yang, Y., Shen, F., Tang, B. F., and Lin, R. P. (2024). CME arrival 
time prediction based on coronagraph observations and machine-learning techniques. 
Astrophys. J. 976, 141. doi:10.3847/1538-4357/ad82e5

Liu, H. L., and Qin, G. (2012). Using soft x‐ray observations to help the prediction 
of flare related interplanetary shocks arrival times at the Earth. J. Geophys. Res. 117, 
A04108. doi:10.1029/2011JA017220

Liu, J. J., Ye, Y. D., Shen, C. L., Wang, Y. M., and Erdélyi, R. (2018). A new tool for CME 
arrival time prediction using machine learning algorithms: CAT-PUMA. Astrophys. J.
855, 109. doi:10.3847/1538-4357/aaae69

Minta, F. N., Nozawa, S., Kozarev, K., Elsaid, A., and Mahrous, A. (2023). Forecasting 
the transit times of earth-directed halo CMEs using artificial neural network: a case 
study application with GCS forward-modeling technique. J. Atmos. Sol. Terr. Phys. 247, 
106080. doi:10.1016/j.jastp.2023.106080

Möstl, C., Rollett, T., Frahm, R. A., Liu, Y. D., Long, D. M., Colaninno, R. C., et al. 
(2015). Strong coronal channelling and interplanetary evolution of a solar storm up to 
Earth and Mars. Nat. Commun. 6, 7135. doi:10.1038/ncomms8135

Mugatwala, R., Chierichini, S., Francisco, G., Napoletano, G., Foldes, R., Giovannelli, 
L., et al. (2024). A catalogue of observed geo-effective CME/ICME characteristics. J. 
Space Weather Space Clim. 14, 6. doi:10.1051/swsc/2024004

Napoletano, G., Forte, R., Del Moro, D., Pietropaolo, E., Giovannelli, L., and Berrilli, 
F. (2018). A probabilistic approach to the drag-based model. J. Space Weather Space 
Clim. 8, A11. doi:10.1051/swsc/2018003

Napoletano, G., Foldes, R., Camporeale, E., de Gasperis, G., Giovannelli, L., 
Paouris, E., et al. (2022). Parameter distributions for the drag‐based modeling 
of CME propagation. Space weather. 20, e2021SW002925. doi:10.1029/2021SW
002925

Odstrcil, D., Pizzo, V. J., Linker, J. A., Riley, P., Lionello, R., and Mikic, Z. (2004). 
Initial coupling of coronal and heliospheric numerical magnetohydrodynamic 
codes. J. Atmos. Sol. Terr. Phys. 66, 1311–1320. doi:10.1016/j.jastp.2004.
04.007

Riley, P., Linker, J. A., and Mikić, Z. (2013). On the application of ensemble modeling 
techniques to improve ambient solar wind models. J. Geophys. Res. 118, 600–607. 
doi:10.1002/jgra.50156

Rollett, T., Möstl, C., Isavnin, A., Davies, J. A., Kubicka, M., Amerstorfer, U. V., et al. 
(2016). ELEvoHI: a novel CME prediction tool for heliospheric imaging combining an 
elliptical front with drag-based model fitting. Astrophys. J. 824, 131. doi:10.3847/0004-
637X/824/2/131

Rossi, M., Guastavino, S., Piana, M., and Massone, A. M. (2025). Extended drag-based 
model for better predicting the evolution of coronal mass ejections. Astron. Astrophys.
694, A247. doi:10.1051/0004-6361/202452288

Schwenn, R., Dal Lago, A., Huttunen, E., and Gonzalez, W. D. (2005). The association 
of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033–1059. 
doi:10.5194/angeo-23-1033-2005

Shanmugaraju, A., and Vršnak, B. (2014). Transit time of coronal mass 
ejections under different ambient solar wind conditions. Sol. Phys. 289, 339–349. 
doi:10.1007/s11207-013-0322-8

Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., and Zhang, J. (2015). Predicting the 
arrival time of coronal mass ejections with the graduated cylindrical shell and drag force 
model. Astrophys. J. 806, 271. doi:10.1088/0004-637X/806/2/271

Siscoe, G., and Schwenn, R. (2006). CME disturbance forecasting. Space Sci. Rev. 123, 
453–470. doi:10.1007/s11214-006-9024-y

Smith, Z., and Dryer, M. (1990). MHD study of temporal and spatial evolution 
of simulated interplanetary shocks in the ecliptic plane within 1 AU. Sol. Phys. 129, 
387–405. doi:10.1007/BF00159049

Stamkos, S., Patsourakos, S., Vourlidas, A., and Daglis, I. A. (2023). How magnetic 
erosion affects the drag-based kinematics of fast coronal mass ejections. Sol. Phys. 298, 
88. doi:10.1007/s11207-023-02178-7

Sudar, D., Vršnak, B., and Dumbović, M. (2016). Predicting coronal mass ejections 
transit times to Earth with neural network. Mon. Not. R. Astron. Soc. 456, 1542–1548. 
doi:10.1093/mnras/stv2782

Sudar, D., Vršnak, B., Dumbović, M., Temmer, M., and Čalogović, J. (2022). Influence 
of the drag force on the leading edge of a coronal mass ejection. Astron. Astrophys. 665, 
A142. doi:10.1051/0004-6361/202244114

Tóth, G., Van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, 
F., et al. (2012). Adaptive numerical algorithms in space weather modeling. J. Comput. 
Phys. 231, 870–903. doi:10.1016/j.jcp.2011.02.006

Vakhrusheva, A. A., Kaportseva, K. B., Shugay, Yu.S., Eremeev, V. E., and 
Kalegaev, V. V. (2024). Modeling arrival time of coronal mass ejections to 
near-Earth orbit using coronal dimming parameters. Cosm. Res. 62, 350–358. 
doi:10.1134/S0010952524600422

Vourlidas, A., Patsourakos, S., and Savani, N. P. (2019). Predicting the geoeffective 
properties of coronal mass ejections: current status, open issues and path forward. Phil. 
Trans. R. Soc. A 377, 20180096. doi:10.1098/rsta.2018.0096

Vršnak, B. (2021). Analytical and empirical modelling of the origin and heliospheric 
propagation of coronal mass ejections, and space weather applications. J. Space Weather 
Space Clim. 11, 34. doi:10.1051/swsc/2021012

Vršnak, B., and Gopalswamy, N. (2002). Influence of the aerodynamic drag 
on the motion of interplanetary ejecta. J. Geophys. Res. 107 (SSH 2-1), 2–6. 
doi:10.1029/2001JA000120

Vršnak, B., and Žic, T. (2007). Transit times of interplanetary coronal mass 
ejections and the solar wind speed. Astron. Astrophys. 472, 937–943. doi:10.1051/0004-
6361:20077499

Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., et al. (2013). 
Propagation of interplanetary coronal mass ejections: the drag-based model. Sol. Phys.
285, 295–315. doi:10.1007/s11207-012-0035-4

Wang, Y. M., Shen, C. L., Wang, S., and Ye, P. Z. (2004). Deflection of 
coronal mass ejection in the interplanetary medium. Sol. Phys. 222, 329–343. 
doi:10.1023/B:SOLA.0000043576.21942.aa

Wang, Y. M., Zhou, Z. J., Liu, J. J., Shen, C. L., and Wang, S. (2013). Dynamic process of 
coronal mass ejections in interplanetary space (in Chinese). Sci. Sin. Terrae 43, 934–950. 
doi:10.1360/zd-2013-43-6-934

Wang, J. J., Ao, X. Z., Wang, Y. M., Wang, C. B., Cai, Y. X., Luo, B. X., et al. (2018). 
An operational solar wind prediction system transitioning fundamental science to 
operations. J. Space Weather Space Clim. 8, A39. doi:10.1051/swsc/2018025

Wu, C. C., Dryer, M., Wu, S. T., Wood, B. E., Fry, C. D., Liou, K., et al. (2011). 
Global three‐dimensional simulation of the interplanetary evolution of the observed 
geoeffective coronal mass ejection during the epoch 1–4 August 2010. J. Geophys. Res.
116, A12103. doi:10.1029/2011JA016947

Yordanova, E., Temmer, M., Dumbović, M., Scolini, C., Paouris, E., Werner, A. L. E., 
et al. (2024). Refined modeling of geoeffective fast halo CMEs during solar cycle 24. 
Space weather. 22, e2023SW003497. doi:10.1029/2023SW003497

Zhao, X. H., and Dryer, M. (2014). Current status of CME/shock arrival time 
prediction. Space weather. 12, 448–469. doi:10.1002/2014SW001060

Zhao, X. H., and Feng, X. S. (2014). Shock propagation model version 2 and its 
application in predicting the arrivals at Earth of interplanetary shocks during solar cycle 
23. J. Geophys. Res. 119, 1–10. doi:10.1002/2012JA018503

Zhuang, B., Wang, Y. M., Hu, Y. Q., Shen, C. L., Liu, R., Gou, T. Y., et al. (2019). 
Numerical simulations on the deflection of coronal mass ejections in the interplanetary 
space. Astrophys. J. 876, 73. doi:10.3847/1538-4357/ab139e

Žic, T., Vršnak, B., and Temmer, M. (2015). Heliospheric propagation of coronal mass 
ejections: drag-based model fitting. Astrophys. J. Suppl. Ser. 218, 32. doi:10.1088/0067-
0049/218/2/32

Frontiers in Astronomy and Space Sciences 16 frontiersin.org

https://doi.org/10.3389/fspas.2025.1686823
https://doi.org/10.3389/fspas.2021.639986
https://doi.org/10.1007/s11207-006-0185-3
https://doi.org/10.1086/510121
https://doi.org/10.1007/s11207-012-9969-9
https://doi.org/10.1029/2000JA000220
https://doi.org/10.1029/2001JA000177
https://doi.org/10.3847/1538-4357/ace62d
https://doi.org/10.1007/s11207-011-9791-9
https://doi.org/10.1007/s11207-011-9791-9
https://doi.org/10.1088/0004-637X/792/1/49
https://doi.org/10.1088/0004-637X/812/2/144
https://doi.org/10.1088/0004-637X/812/2/144
https://doi.org/10.1029/2021SW002836
https://doi.org/10.1029/2024SW003951
https://doi.org/10.3847/1538-4357/ad82e5
https://doi.org/10.1029/2011JA017220
https://doi.org/10.3847/1538-4357/aaae69
https://doi.org/10.1016/j.jastp.2023.106080
https://doi.org/10.1038/ncomms8135
https://doi.org/10.1051/swsc/2024004
https://doi.org/10.1051/swsc/2018003
https://doi.org/10.1029/2021SW002925
https://doi.org/10.1029/2021SW002925
https://doi.org/10.1016/j.jastp.2004.04.007
https://doi.org/10.1016/j.jastp.2004.04.007
https://doi.org/10.1002/jgra.50156
https://doi.org/10.3847/0004-637X/824/2/131
https://doi.org/10.3847/0004-637X/824/2/131
https://doi.org/10.1051/0004-6361/202452288
https://doi.org/10.5194/angeo-23-1033-2005
https://doi.org/10.1007/s11207-013-0322-8
https://doi.org/10.1088/0004-637X/806/2/271
https://doi.org/10.1007/s11214-006-9024-y
https://doi.org/10.1007/BF00159049
https://doi.org/10.1007/s11207-023-02178-7
https://doi.org/10.1093/mnras/stv2782
https://doi.org/10.1051/0004-6361/202244114
https://doi.org/10.1016/j.jcp.2011.02.006
https://doi.org/10.1134/S0010952524600422
https://doi.org/10.1098/rsta.2018.0096
https://doi.org/10.1051/swsc/2021012
https://doi.org/10.1029/2001JA000120
https://doi.org/10.1051/0004-6361:20077499
https://doi.org/10.1051/0004-6361:20077499
https://doi.org/10.1007/s11207-012-0035-4
https://doi.org/10.1023/B:SOLA.0000043576.21942.aa
https://doi.org/10.1360/zd-2013-43-6-934
https://doi.org/10.1051/swsc/2018025
https://doi.org/10.1029/2011JA016947
https://doi.org/10.1029/2023SW003497
https://doi.org/10.1002/2014SW001060
https://doi.org/10.1002/2012JA018503
https://doi.org/10.3847/1538-4357/ab139e
https://doi.org/10.1088/0067-0049/218/2/32
https://doi.org/10.1088/0067-0049/218/2/32
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

	1 Introduction
	2 The basic version of DBM
	2.1 DBM in 2007
	2.2 DBM in 2013

	3 The evolution routes based on the basic version of DBM
	3.1 ELEvoHI model series
	3.1.1 ELEvo model
	3.1.2 ELEvoHI model
	3.1.3 ELEvoHI ensemble model
	3.1.4 ELEvoHI 2.0 model
	3.1.5 The relationship between the mathematical expressions in various models

	3.2 LSF-DBM series
	3.2.1 LSF-DBM
	3.2.2 DBEM
	3.2.3 DBEMv3, DBEMv4

	3.3 PDBM series
	3.3.1 PDBM
	3.3.2 The relationship between the mathematical expressions in the PDBM series

	3.4 ExDBM
	3.5 EnDBM series
	3.5.1 EnDBM


	4 Other DBM models
	4.1 GCSDBM
	4.2 The mass-changing DBM

	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

