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Regular Bardeen-like black holes
In higher-dimensional pure
Lovelock gravity with nonlinear
Yang—Mills fields
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Department of Physics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta,
Tarkiye

Introduction: We construct spherically symmetric, static, and regular Bardeen-
like black hole solutions in the framework of higher-dimensional pure Lovelock
gravity coupled to nonlinear Yang—Mills (YM) fields. The aim is to generalize
the notion of regular black holes to higher-curvature gravity theories while
preserving regularity and asymptotic flatness.

Methods: The gauge fields are modeled using a higher-dimensional Wu-Yang
ansatz, and the nonlinear YM Lagrangian is designed to reproduce Bardeen-
type configurations known from Einstein gravity. The field equations are solved
analytically to obtain exact metric functions, and curvature invariants are
computed to verify the regularity of the spacetime.

Results: The resulting solutions are asymptotically flat and regular at the
origin, with all curvature invariants remaining finite throughout the spacetime.
In dimensions N=2p+1, the configurations describe particle-like solutions
without horizons. For N>2p+1, depending on the model parameters, the
solutions can represent either regular black holes or particle-like spacetimes.
Analytic conditions determining the existence and number of horizons are
derived, allowing for a full classification of the spacetime structure.

Discussion: A detailed thermodynamic analysis is performed by computing
the Hawking temperature and heat capacity. The phase structure reveals
regions of thermal stability and the occurrence of first- and second-order
phase transitions. These findings extend the concept of regular black holes to
pure Lovelock gravity and emphasize the rich interplay between nonlinearity,
dimensionality, and gauge dynamics.

regular Bardeen-like black holes, higher-dimensional pure Lovelock gravity, nonlinear
Yang-—Mills fields, spherically symmetric, static, regular Bardeen-like black hole
solutions, higher-dimensional Wu-Yang ansatz, asymptotically flat

1 Introduction

One of the most remarkable discoveries in the history of science is the existence
of black holes. The concept originated from Einstein’s theory of general relativity and
was first revealed through the mathematical ingenuity of Karl Schwarzschild, who, in
1916, became the first to solve Einstein’s field equations in vacuum. The solution he
obtained—now famously known as the Schwarzschild black hole—was named in his
honor. The Schwarzschild black hole describes a static, spherically symmetric spacetime
characterized by a single parameter: the mass of the black hole. It features a central
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singularity hidden behind an event horizon. At the time, both
the singularity and the event horizon were entirely new and
unexpected features of modern cosmology, revealed through
the exact solution of Einstein’s equations. Now, more than a
century since Schwarzschild introduced his solution, physicists are
still grappling with the physical interpretation of the spacetime
singularity. It is widely believed that, at the singularity, the
mass of the black hole collapses under its own gravitational
pull into a region of infinite curvature. Under such extreme
conditions, classical physics breaks down, and known physical
laws become inapplicable. This description is so speculative and
counterintuitive that some physicists question whether singularities
truly exist. The leading candidate for resolving this classical
problem is quantum gravity. In other words, in such high-
energy and small-scale regimes, it becomes necessary to quantize
the gravitational field, thereby potentially eliminating the need
to introduce singularities altogether. Unfortunately, a complete
and consistent formulation of quantum gravity has not yet been
achieved, although several promising frameworks are under active
development, most notably string theory and loop quantum gravity
(Bojowald, 2001; Blanchette et al., 2021). In a different but related
direction, within classical general relativity coupled to nonlinear
electrodynamics (NED), there have been attempts to construct
regular black holes, ie., black holes whose central regions are
nonsingular. One of the earliest such solutions is the well-known
Bardeen black hole (Ba and rdeen, 1968). The original Bardeen
metric, introduced in Bardeen (1968), is described by the line

—(1— >dt2+(1_ )

where M and g are constants. Initially, the matter source for this

element:

dar?
2Mr?

(P+q?)’l

5 2M7? )
ds? = = q2)3/2 +72d032,

(1)

solution was unspecified. Later, Ayon-Beato and Garcia (2000)
proposed a nonlinear electrodynamics Lagrangian to generate the
Bardeen solution within Einstein gravity (Equation 2)

1+\/2qT]-'

with a magnetic field given by Equation 3

2sq”

F = Psin 8dO A d¢. (3)

Solving the field equations reveals that M = IqI ; Plays the role of
the ADM mass, particularly due to the asymptotlc expansion of the
metric function in Equation 1

3Mg?
dsu_(l_@ =4 o 5)>dt2
T
+ drzz +72dQ?%, asr—oo.  (4)
1—% ML o>)

The absence of a 1/7* term in the asymptotic expansion in
Equation 4 implies that the NED model does not reduce to
Maxwell’s linear theory in the weak-field limit. Nonetheless, the
parameter ¢ still represents a magnetic monopole, consistent with

Gauss’s law g = ij oF- It is worth noting that the ADM mass
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M= arises entirely from the nonlinear self-interaction of the
electromagnetic field and that there is no separate gravitational mass
as in the Schwarzschild or Reissner-Nordstrom black holes. Using
the Newman-Janis algorithm, Bambi and Modesto extended the
Bardeen solution to include rotation (Bambi and Modesto, 2013).
Bardeen black holes in higher dimensions were also studied by Ali
and Ghosh (2018), where the extended NED Lagrangian takes the

form

2N-3
N-2

N-2
L=—| —— (5)
A4\ 14 \22F
The associated magnetic field is given by (Equation 6)
N-4
F= <qN‘3 sinfy_; l_[ sin? 9j> dOy_s NdOy_,, (6)
j=1

and the corresponding line element is provided in Equation 23.

Although the Bardeen regular black hole has been extensively
studied in various contexts, these works are not directly relevant to
our present investigation, aside from the general consideration of
the Bardeen-type solution reviewed above. We, therefore, limit our
citations to studies that directly inform our current research.

In a separate context, higher-derivative gravity theories,
particularly the Lovelock theory (Lovelock, 1971), have attracted
significant attention in the study of higher-dimensional black holes.
The key features of Lovelock gravity are as follows (Kastor and Mann,
2006; Cai and Ohta, 2006; Cai et al., 2008) (and the references cited
in): i) it is the natural extension of general relativity. This is because
the Lovelock action is built from dimensionally extended Euler
densities, which generalize the Einstein-Hilbert action in higher
dimensions. ii) Unlike most higher-derivative gravity theories,
Lovelock gravity yields equations of motion containing no more
than second derivatives of the metric, avoiding the pathologies
usually associated with higher-derivative theories. iii) When
expanded around flat spacetime, Lovelock gravity is free of ghosts,
which means it preserves unitarity and avoids instabilities. iv) The
Lovelock terms (such as the Gauss-Bonnet term) arise naturally
with positive coeflicients as higher-order corrections in superstring
theory, giving the framework strong theoretical motivation. v)
Higher curvature terms in Lovelock gravity play a key role in the
AdS/CFT correspondence and in brane-world physics, where TeV-
scale black holes may be relevant. vi) Lovelock gravity admits black
hole, black string, and black brane solutions with thermodynamic
properties that can differ significantly from Einstein gravity, making
it a fertile ground for exploring quantum gravity effects.

The Lovelock Lagrangian is constructed as a linear combination
of dimensionally extended Euler densities

[]
Z akﬁk,

k=0

‘CLov = (7)

where «; >0 are the Lovelock coupling constants, iy = 871Gy is

the gravitational constant in N dimensions, and [—] denotes

the integer part of !, The Lovelock Lagrangian densities Ly

are given by

0‘1/31 oy
2k .“1"1 HiVk

‘Ck = (8)

1%,
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which corresponds to the Euler densities of a 2k-dimensional
Py 0By
6!4 V1l HiVi
(antisymmetric) Kronecker delta, defined as (Equation 9)

Ey By -y k|6[“1 6611

HiVie Vi

manifold. Here, in Equation 8, is the generalized

B
8,18, 9)

In Equation 7, the case k=0 corresponds to L, =1, with
&y = — 2/ representing the cosmological constant. For k=1, we
= R with «; = 1, which is the standard Einstein-Hilbert
Lagrangian. When k = 2, we obtain in Equation 10

recover £,

Ly=Lgp=RP Ry 5~ 4R°R 5+ R, (10)
which is the Gauss-Bonnet (GB) Lagrangian, with a,=ag
denoting the GB coupling constant. For k> 2, £, is the higher-
order Lovelock Lagrangian with corresponding coupling constants
ay.. Lovelock theory is the unique higher-order curvature theory that
preserves second-order field equations, avoiding ghost instabilities
(Boulware and Deser, 1985; Zwiebach, 1985). For a given order
p»> Lovelock gravity is nontrivial in dimensions N >2p + 1, and all
coefficients o, with k < p may be nonzero in general. In a special
case, pure Lovelock gravity, introduced by Kastor and Mann (2006)
[see also (Giribet et al., 2006)], involves only one nonzero term
o (1 <k<p) corresponding to a fixed-order k, with or without
a cosmological constant. Black holes in pure Lovelock gravity
were constructed by Cai and Ohta (2006), and generalized Vaidya
spacetimes were explored by Cai et al. (2008). This subclass of
Lovelock gravity has attracted considerable attention (Chakraborty
and Dadhich, 2018; Dadhich and Pons, 2013; Dadhich et al., 2013;
Gannouji and Dadhich, 2014). In this work, we aim to construct
regular black hole solutions in pure Lovelock gravity powered by a
nonlinear Yang-Mills (YM) field. To this end, we propose a specific
nonlinear YM model and use the standard higher-dimensional
Wu-Yang ansatz (Wu et al., 1969; Yasskin, 1975; Mazharimousavi
and Halilsoy, 2008) for the YM potential, leading to a Bardeen-
like regular black hole configuration. Let us add that the Lovelock
action uses Euler densities, which inherently maintain an Einstein-
like structure in field equations and consequently the structure of
regular black holes.

2 Pure Gauss—Bonnet nonlinear YM
theory

We begin with the action

I= Ljdl\]x\/:g(ﬁLm/"'ﬁ)’ (11)
2Ky

where £; , is the Lovelock Lagrangian given in Equation 7 and L is
the nonlinear YM Lagrangian, given by

2N-3

1 aF 1

L-- — (12)
On-2 (1 + [3}' L )
#
where a > 0 and 8 > 0 are real positive constants, wy_, = rz(" =T) and
2
F =Yg P, (13)
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is the Yang-Mills field strength invariant. We add that the
Yang-Mills field possesses energy and momentum, quantified by
its stress—energy tensor. This tensor serves as the source term
in Einstein’s equations, meaning that the field itself generates
gravitational curvature. Consequently, Yang-Mills fields can
produce structures like black holes, wormholes, and shape the
evolution of the cosmos.

The nonlinear YM Lagrangian Equation 12 is the YM analog
of the higher-dimensional Bardeen-type nonlinear electrodynamics
(NED) model proposed by Ali and Ghosh (2018) (see Equation 5).
Except for N = 4, where both Lagrangians coincide, they differ in
other dimensions. It is worth noting that both Lagrangians partially
satisfy the conditions imposed by Shabad and Usov (2011), which
arise from the requirements of causality and unitarity principles.
These conditions are listed in Equation 14

L]_-<0, l:]_-]_-ZO,andL}-+2}—£}-]:SO (14)
The Yang-Mills field two-form strength is given by
FP—dAP+2—cP AINAT, (15)

where in Equation 15 A? denotes the non-Abelian Yang-Mills one-
form potential, CZ, is the structure constant of the gauge group G,
which has w generators, and ¢ is the coupling constant. The
gauge potential can be written as Af = A‘de", and we choose the
gauge group G = SO (N — 1). Variation of the action (in Equation 11)
with respect to Aﬁ yields the Yang-Mills field equations
A(*FPLy)+ 2 L AP A+F1 =0 (16)
o
where «F? is the Hodge dual of Ff, and £ » = 0L/dF. Varying the
action in Equation 11 with respect to the metric g,, leads to the

Einstein-Lovelock-Yang-Mills field equations:

S
Z (XkG;( ) =
k=0

where the energy-momentum tensor of the Yang—Mills field is given

17)

by Equation 18

T, = (w ALy, Fo P (18)
and the Lovelock tensors are (Equations 19, 20)
® _ v 1 ufra
W "‘1 - s
Gy Z it Ouyy, -y, HR b’ k=1 (19)
and
voy (N-1)(N-2)
G, = — Ag,. (20)

The non-Abelian gauge potential A™ follows the generalized
Wu-Yang ansatz (Mazharimousavi and Halilsoy, 2008)

o N-1)(N-2
Angc‘;x’de,ZSj+lsiSN—l,ISPS% (21)
where, in Equation 21 Q is the gauge charge and
P = Sijxixj, (22)
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with i and j running over spatial coordinates in Equation 22. The
metric of the static, spherically symmetric N-dimensional spacetime
is taken to be

2 d7'2 2
_— 4+ 2d0?,, 2
ds® = —f(r)di* + o Q. , (23)
where
N-2 /i-1
Ao}, =de;+ ) (nsin2 9j> de?, (24)
i=2 \ j=1

is the metric on the unit (N —2)-sphere, with 0 < 8y_, <27 and 0 <

0; <m for 1 <i<N-3 in Equation 24. The generalized Wu-Yang

ansatz satisfies the Yang-Mills Equation 16 provided that o= Q. A
detailed calculation yields (Equations 25, 26)
N-3)(N-2)Q’

£ (N-)(N-2Q 05)

1’4

and

GA 1 .
ypq(ngAFq' ): (N—2)]:’ for1<i<N-3. (26)

Accordingly, the energy-momentum tensor simplifies to

L 4 FLg 4 FLx
T, = =diag|1,1,1 - S , 27
HT3 mg[ N-2 L N-2 L @7)
where in Equation 27 we introduced Equation 28
FL _
F _ 2N-3 1 (28)

£ 4 1+ﬂ}'¥.

To proceed, we introduce the function y(r) via the ansatz
(Equation 29)

f)=1-ry(r), (29)

which transforms the tt-component of the Einstein-Lovelock-Yang-
Mills field Equation 17 into (Equation 30)

(] 2 M(
-k M ()
go eyt = 2o (30)

where the rescaled Lovelock coefficients are defined as & =
2%k

[T(N-i)ay fork>2,d =1,and &, =
M (r) is given by

o .
Toe The mass function

M(r) = wN,Zj;(r’)N’Zp(r’)dr’, (31)

where in Equation 31

p(r)=-T, (32)
is the energy density (Equation 32). The explicit form of M(r)
is given by
N-2)T(N-3)7 Q%
My GN-DTW-37Q )

N2

BT -0 -y \ V2
2BN-1(1+
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Assuming that the ADM energy/mass arises purely from the
Yang-Mills interaction, the total energy/mass is defined by (from
Equation 33)

M = lim M(r), (34)
r—00
which Equation 34 yields (Equation 35)
N-2)T(N-3)7 Q=
V=) TN-3)7Q )

2B(N-1)

Finally, from Equation 30, the function w(r) satisfies the
algebraic equation

£
Z ‘ikv/( = ZKNM N-1°

N-2 N2y ML (36)
P e

N2

3 Pure lovelock theory

Although Equation 36 is valid in the general Lovelock
framework, we now focus on the pure Lovelock theory of order
P> in which all coupling constants vanish, except for o?p, ie., o'ck*p =
0. In this case, the equation simplifies to (Equation 37)

. 2Kk M
ay’ = - — (7
- Q7 (WN-2)(N-3)) T \N=2
(N-2)wy 1(1 + ‘3w+z>
whose solution is given by (Equation 38)
U
— N1 N fOI'p even,
roe ( 1+ %) ~-2p
v = u (38)
N-1-2p N forp odd,
r P (1 + r"’é) (N-2)p
and consequently the metric function becomes
1 N-1-2p £ 1 > fOI’p even,
ror ( 1+ %) ™-2p
= v (39)
1- N-1-2p N1 > fOI’p odd,
ro¢ (1 + rNé ) -2

where in Equation 39 the new parameters are defined as (Equations
40, 41)

2K M ;
= = 40
¢ <(N_2)&pr—2> o
(=BQT (N-2) T (N-3)7, (41)

and the expression is valid for p < [%] In the asymptotic region
(r — 00), the metric function behaves as Equation 42

U

N-1-2p >
lim f(r) — rr (42)
e s , forpodd,

1F

for p even,

N-1-2p
r r
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while near the origin (r — 0) it yields (Equation 43)

15 ﬁz , for p even,
lim f(r) — ¢ (43)
e . forpodd
1- e—z 5 or p odd,
with the effective cosmological constant defined as Equation 44
i.£ (44)
2 N-1
& oo

Therefore, the solution is asymptotically flat and regular at the
origin. An explicit calculation of the curvature invariants confirms
that all spacetime scalars remain finite and regular everywhere,
indicating that the spacetime is indeed regular throughout.

3.1 N=2p+1represents only a particle
model

As previously discussed, for a given Lovelock order p, the
spacetime dimension N must exceed a critical value defined by N, =
2p + 1, which ensures [ ? ] = p. Explicitly, this yields the following:
p = 1requires N> 3; p = 2 requires N > 5; p = 3 requires N > 7, and
in general, for any p, we require N > 2p + 1. From Equation 39, it
follows that for N = N, = 2p + 1, the metric function simplifies to

1¥F + , for peven,
foy-] ()T (45)
1- > , for podd,
where the parameters { and y are given by Equations 46, 47
£=BQT 2p-1)F 2p-2)°F, (46)

and
1

>’7 2-D2p-2Q (@)

Ko
2p(2p- D a0y, |

X

From Equation 45, it is evident that, for even p, lim,_, f(r) —
1¥u, for odd p, lim, , f(r) = 1-pu, and for both cases,
lim,_,, f(r) — 1. Now consider the derivative of the metric function
(Equation 48)

2
¥ S o) for p even,
4o _ | (s )™ (49)
dr ~ 2u
—ve fOI'p Odd,
=
12p<1 + F) 4

which has no zeros for > 0. This implies that the spacetime
described by Equation 45 does not admit horizons and therefore
corresponds to a regular particle-like model. This interpretation is
valid for the negative branch of even p, and for odd p, provided that
y < 1, ensuring f(r) > 0 everywhere. In Figure 1, we plot the metric
function f(r) versus r for representative values of the parameters. In
the left panel, the negative branch is shown for p = 2,3,4,5,6,and 7.
In the right panel, the positive branch is plotted for even p = 2,4,6,
and 8. The results illustrate that the gravitational influence of the
particle is significant only in the vicinity of the origin and quickly
saturates, becoming constant at large distances.
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3.2 N > 2p +1 represents both black hole
and particle models

Unlike the case N =2p + 1, where the solutions represent only
particle-like configurations for all p, Equation 39 with N>2p+1
can describe either black holes or particle-like models. In both the
positive and negative branches, the spacetime is asymptotically flat,
and the metric function satisfies f(0) = 1. The derivative of the
metric function is given by Equation 49

. u((N=1-2p) "2 = 2p()

+ —— , forpeven,
(N=-3)p+N-1 ( (N=2)p+N-1
dftrny | pr * (l+ W) (~N-2p
dr u((N=1-2p) ™2 =2p0)
. —— , forpodd,
(N-3)p+N-1 (N-2)p+N-1
pr v (1+ %) -2
(49)
This derivative admits a critical point, defined by % =0,
which occurs at
1
2 N2
r0:<—N f%p) . (50)

At this radius (Equation 50), the positive branch reaches a
maximum, and the negative branch reaches a minimum. For the
negative branch, the solution represents a regular particle model if
f(r.) >0, an extremal black hole if f(r,) = 0, with a double horizon
at r, = r,, and a black hole with two distinct horizons if f(r.) < 0.
Explicit evaluation of f(r) at the critical point yields

N-1- 2]7 N-1-2p N-1

> p(N-2) < >(N—z)p
2p¢ '

This provides an analytical criterion for distinguishing between

2p

N1 (51)

7t =1-(

black hole and particle-like solutions. Substituting the definitions of
wand {in terms of the original parameters, we obtain Equation 52

>}>

Depending on the sign of this expression, if i) f(r.) <0, the

N-1-2p 2

(N—-1-2p) P82 (2p) N2 Q.

P2
(N-2)2 VN-3
2N-3-2p N3

ﬁ P(N-2) (N —1) N-2p

ON

o) =1-(

ApWN-2

(52)

solution describes a black hole with two horizons, ii) f(r.) =0,
an extremal black hole with a double horizon, and iii) f(r.) >0,
a regular particle-like spacetime. For the positive branch, which is
only valid for even p, no such restriction applies, and the solution
always corresponds to a regular particle model.

4 Thermal stability of the black hole
solution

In standard GR, spherically symmetric black holes (such as
the Schwarzschild black hole) exhibit negative heat capacity. This
implies that they are thermodynamically unstable. This is because
they lose their mass through Hawking radiation that results in an
increasing temperature, leading to faster evaporation. As discussed
by D’Agostino et al. (2024), although modified gravity theories
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FIGURE 1

The left panel shows the negative branch of the metric function f(r) in Equation 45 as a function of r for N =2p +1 with p =2,3,...,7. The right panel
displays the positive branch of the metric function Equation 45 for p = 2,4,6,8.

2
p=8
18 a=1
. B=1
0=0.1
o =1
P
1.6
p=6
S(r)
1.4+
p=4
1.2
p=2
1 T T T T 1
0 2 6 8 10
r

f(x) 054 \\ // s
\/
dWN
1 2 3 4 5 6
X
_0'5A
10 =2.9300

—1-

FIGURE 2

The metric function f(x), given in Equation 59, is plotted as a function
of x for p=2and N =10, and various values of u, incremented in equal
steps. The extremal black hole solution serves as the boundary
separating particle-like configurations from black hole solutions.

can partially alleviate the negative heat capacity problem for
specific black hole masses and parameter choices, they do not
provide a universal solution. The thermodynamic instability of
spherically symmetric black holes remains a robust feature of GR,
and its resolution likely requires more radical changes to gravity
or the inclusion of quantum effects. In this section, we investigate
the thermal stability of the black hole solution described by
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FIGURE 3

The scaled Hawking temperature is plotted as a function of x, for p =
2, with various values of N ranging from 6 to 11. The temperature
vanishes for the extremal black hole and is positive for black holes
with two distinct horizons. Negative values of the temperature are
unphysical, indicating that no black hole exists with an event horizon
smaller than that of the extremal case.

Equation 53

f) =1

roe (1+L)m

N-2

(53)

where f(r,) satisfies f(r.) <0, as given in Equation 51. This should
be noted that the thermodynamics of regular and singular black
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301 /
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FIGURE 4
In the left panel, the scaled heat capacity is plotted as a function of x, for p =2 and N = 6. The right panel presents a zoomed-in view, showing both the
scaled heat capacity and the scaled Hawking temperature. The Type-I and Type-II transition points are clearly indicated on the plots.

holes are the same because black hole thermodynamics depends only
on the event horizon geometry, not on whether the interior contains
a singularity. The differences between them show up in stability and
detailed phase transitions, but not in the universal laws. Without loss
of generality, we express our analysis in terms of the parameters g, ¢,
N, and p. For the black hole scenario, the event horizon f(r,) = 0. As
previously discussed, this equation admits two horizons if f(r,) <
0 and a degenerate (double) horizon if f(r.) =0, where f(r,) is
defined in Equation 51. Solving f(r) = 0 for u at the horizon gives

¢

N-1
1+—=

(N-2)p
)

Using Equation 54, the Hawking temperature associated with
the black hole is calculated to be

£

4

(54)

(N-1-2p)rN2-2p¢

4np#‘”(1+'}fz)

T, = (55)

Moreover, using the Wald entropy for the black holes in Lovelock
(Jacobson and Myers, 1993; Myers and Simon, 1988; Camanho and
Edelstein, 2013; Wang et al., 2016)

A N-2 1

PN (56)

where in Equation 56 A=r2wy, is the black hole
area, we find Equation 57

(N=2)p&y0y-5 Ny

GRS o
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Finally, the heat capacity of the black hole is defined by

oTy 4[ “;if’](N 1-2p)rV2 +8p([N 1+r§2
(58)

By introducing the rescaled variables r = ryx and p = p,r, *
with (= rgf_z the metric function becomes

Ho

f=1- (59)

N-1-2p
X P

N-1

1+ L) N-2p

Accordingly, the Hawking temperature (Equation 55) and
heat capacity (Equation 58) are given by

(N- I_ZP) fvz
TH—— (60)
4nprox, (1+x“>
and
—porwNzrgIZPxiszz[N 1- ] 1+ 2)
C= . (61)

—

4[1— | N-1-2p) 2+8p[N L+ z]

In Figure 2, we plot f(x) as a function of x for N=10 and p =
2, using different values of y. This behavior is generic and holds for
other values of N > 2p + 1 and p. Furthermore, Figure 3 displays the
scaled Hawking temperature 47, Tp; (Equation 60) as a function of
x, forp=2and N=6,7,...,11. Negative values of the temperature
indicate non-black-hole configurations and must be discarded. A
zero temperature corresponds to an extremal black hole. In all

considered dimensions, the temperature initially increases with
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x,, reaches a maximum at the Type-II transition point, and then
decreases to zero as x, increases further. This implies that, as the
black hole grows from its extremal size, its temperature increases
to a peak before cooling as it becomes large. The Type-II transition
also marks the point at which the heat capacity diverges, as shown
in Figure 4 (Equation 61). In the left panel of Figure 4, we plot

the scaled heat capacity ﬁc versus x, for N=6 and p=

Ty OpWN
2. The vertical line indicates the Type-II transition radius, where
the heat capacity increases significantly from +co to —co. The

right panel presents a zoomed-in view of both W%C and

XpWN_2

47r, Ty as functions of x,, highlighting the Type-I transition point
(where both C and Ty vanish) and the Type-II transition point
(where C diverges and Ty; is maximized). A black hole is thermally
stable if it has positive heat capacity and a well-defined (i.e.,
positive) Hawking temperature. Therefore, the black hole is stable
only when its size lies between the Type-I and Type-II transition
points.

5 Conclusion

In this work, we have derived a new class of regular black
hole solutions in higher-dimensional pure Lovelock gravity, sourced
by a nonlinear Yang-Mills field. The solutions generalize the
Bardeen black hole in four dimensions and exhibit rich physical
behavior depending on the dimension N and Lovelock order p.
Specifically, in the critical dimension N=2p+1, the solutions
describe horizonless, particle-like spacetimes. For N > 2p + 1, both
black hole and particle-like configurations emerge, depending
on whether the metric function admits horizons. We obtained
analytic criteria that distinguish between these possibilities. We
further investigated the thermodynamic properties of the black
holes, including their Hawking temperature and heat capacity.
The analysis revealed the existence of two critical points: a
lower (Type-I) transition point associated with extremal black
holes and an upper (Type-II) transition point where the heat
capacity diverges. Between these points, the black hole is thermally
stable. Our results not only contribute to the understanding
of regular black holes in higher-curvature gravity theories but
also demonstrate the compatibility of nonlinear gauge fields with
horizon-regular solutions. These findings offer a useful framework
for exploring singularity resolution in classical gravity and may
serve as a foundation for further investigations in quantum gravity
models.
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