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Regular Bardeen-like black holes 
in higher-dimensional pure 
Lovelock gravity with nonlinear 
Yang–Mills fields

S. Habib Mazharimousavi*

Department of Physics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, 
Türkiye

Introduction: We construct spherically symmetric, static, and regular Bardeen-
like black hole solutions in the framework of higher-dimensional pure Lovelock 
gravity coupled to nonlinear Yang–Mills (YM) fields. The aim is to generalize 
the notion of regular black holes to higher-curvature gravity theories while 
preserving regularity and asymptotic flatness.
Methods: The gauge fields are modeled using a higher-dimensional Wu–Yang 
ansatz, and the nonlinear YM Lagrangian is designed to reproduce Bardeen-
type configurations known from Einstein gravity. The field equations are solved 
analytically to obtain exact metric functions, and curvature invariants are 
computed to verify the regularity of the spacetime.
Results: The resulting solutions are asymptotically flat and regular at the 
origin, with all curvature invariants remaining finite throughout the spacetime. 
In dimensions N = 2p+ 1, the configurations describe particle-like solutions 
without horizons. For N > 2p+ 1, depending on the model parameters, the 
solutions can represent either regular black holes or particle-like spacetimes. 
Analytic conditions determining the existence and number of horizons are 
derived, allowing for a full classification of the spacetime structure.
Discussion: A detailed thermodynamic analysis is performed by computing 
the Hawking temperature and heat capacity. The phase structure reveals 
regions of thermal stability and the occurrence of first- and second-order 
phase transitions. These findings extend the concept of regular black holes to 
pure Lovelock gravity and emphasize the rich interplay between nonlinearity, 
dimensionality, and gauge dynamics.
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 1 Introduction

One of the most remarkable discoveries in the history of science is the existence 
of black holes. The concept originated from Einstein’s theory of general relativity and 
was first revealed through the mathematical ingenuity of Karl Schwarzschild, who, in 
1916, became the first to solve Einstein’s field equations in vacuum. The solution he 
obtained—now famously known as the Schwarzschild black hole—was named in his 
honor. The Schwarzschild black hole describes a static, spherically symmetric spacetime 
characterized by a single parameter: the mass of the black hole. It features a central
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singularity hidden behind an event horizon. At the time, both 
the singularity and the event horizon were entirely new and 
unexpected features of modern cosmology, revealed through 
the exact solution of Einstein’s equations. Now, more than a 
century since Schwarzschild introduced his solution, physicists are 
still grappling with the physical interpretation of the spacetime 
singularity. It is widely believed that, at the singularity, the 
mass of the black hole collapses under its own gravitational 
pull into a region of infinite curvature. Under such extreme 
conditions, classical physics breaks down, and known physical 
laws become inapplicable. This description is so speculative and 
counterintuitive that some physicists question whether singularities 
truly exist. The leading candidate for resolving this classical 
problem is quantum gravity. In other words, in such high-
energy and small-scale regimes, it becomes necessary to quantize 
the gravitational field, thereby potentially eliminating the need 
to introduce singularities altogether. Unfortunately, a complete 
and consistent formulation of quantum gravity has not yet been 
achieved, although several promising frameworks are under active 
development, most notably string theory and loop quantum gravity 
(Bojowald, 2001; Blanchette et al., 2021). In a different but related 
direction, within classical general relativity coupled to nonlinear 
electrodynamics (NED), there have been attempts to construct 
regular black holes, i.e., black holes whose central regions are 
nonsingular. One of the earliest such solutions is the well-known 
Bardeen black hole (Ba and rdeen, 1968). The original Bardeen 
metric, introduced in Bardeen (1968), is described by the line 
element:

ds2 = −(1− 2Mr2

(r2 + q2)3/2
)dt2 + dr2

(1− 2Mr2

(r2+q2)3/2
)
+ r2dΩ2, (1)

where M and q are constants. Initially, the matter source for this 
solution was unspecified. Later, Ayón-Beato and García (2000) 
proposed a nonlinear electrodynamics Lagrangian to generate the 
Bardeen solution within Einstein gravity (Equation 2)

L = 1
2sq2(

√2q2F

1+√2q2F
)

5
2

, (2)

with a magnetic field given by Equation 3

F = P sin θdθ∧ dϕ. (3)

Solving the field equations reveals that M = |q|
2s

 plays the role of 
the ADM mass, particularly due to the asymptotic expansion of the 
metric function in Equation 1

ds2→−(1− 2M
r
+

3Mq2

r3 +O (r
−5))dt2

+ dr2

1− 2M
r
+ 3Mq2

r3 +O (r−5)
+ r2dΩ2, as r→∞. (4)

The absence of a 1/r2 term in the asymptotic expansion in 
Equation 4 implies that the NED model does not reduce to 
Maxwell’s linear theory in the weak-field limit. Nonetheless, the 
parameter q still represents a magnetic monopole, consistent with 
Gauss’s law q = 1

4π
∫S∞F. It is worth noting that the ADM mass 

M = |q|
2s

 arises entirely from the nonlinear self-interaction of the 
electromagnetic field and that there is no separate gravitational mass 
as in the Schwarzschild or Reissner–Nordström black holes. Using 
the Newman–Janis algorithm, Bambi and Modesto extended the 
Bardeen solution to include rotation (Bambi and Modesto, 2013). 
Bardeen black holes in higher dimensions were also studied by Ali 
and Ghosh (2018), where the extended NED Lagrangian takes the 
form

L = N− 2
4sq2 (

√2q2F

1+√2q2F
)

2N−3
N−2

. (5)

The associated magnetic field is given by (Equation 6)

F = (qN−3 sinθN−3

N−4

∏
j=1

sin2 θj)dθN−3 ∧ dθN−2, (6)

and the corresponding line element is provided in Equation 23.
Although the Bardeen regular black hole has been extensively 

studied in various contexts, these works are not directly relevant to 
our present investigation, aside from the general consideration of 
the Bardeen-type solution reviewed above. We, therefore, limit our 
citations to studies that directly inform our current research.

In a separate context, higher-derivative gravity theories, 
particularly the Lovelock theory (Lovelock, 1971), have attracted 
significant attention in the study of higher-dimensional black holes. 
The key features of Lovelock gravity are as follows (Kastor and Mann, 
2006; Cai and Ohta, 2006; Cai et al., 2008) (and the references cited 
in): i) it is the natural extension of general relativity. This is because 
the Lovelock action is built from dimensionally extended Euler 
densities, which generalize the Einstein–Hilbert action in higher 
dimensions. ii) Unlike most higher-derivative gravity theories, 
Lovelock gravity yields equations of motion containing no more 
than second derivatives of the metric, avoiding the pathologies 
usually associated with higher-derivative theories. iii) When 
expanded around flat spacetime, Lovelock gravity is free of ghosts, 
which means it preserves unitarity and avoids instabilities. iv) The 
Lovelock terms (such as the Gauss–Bonnet term) arise naturally 
with positive coefficients as higher-order corrections in superstring 
theory, giving the framework strong theoretical motivation. v) 
Higher curvature terms in Lovelock gravity play a key role in the 
AdS/CFT correspondence and in brane-world physics, where TeV-
scale black holes may be relevant. vi) Lovelock gravity admits black 
hole, black string, and black brane solutions with thermodynamic 
properties that can differ significantly from Einstein gravity, making 
it a fertile ground for exploring quantum gravity effects.

The Lovelock Lagrangian is constructed as a linear combination 
of dimensionally extended Euler densities

LLov =
[ N−1

2
]

∑
k=0

αkLk, (7)

where αk ≥ 0 are the Lovelock coupling constants, κN = 8πGN is 
the gravitational constant in N dimensions, and [N−1

2
] denotes 

the integer part of N−1
2

. The Lovelock Lagrangian densities Lk
are given by

Lk =
1
2k

δα1β1…αkβk
μ1ν1…μkνk

k

∏
i=1

Rμiνi
αiβi
, (8)
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which corresponds to the Euler densities of a 2k-dimensional 
manifold. Here, in Equation 8, δα1β1…αkβk

μ1ν1…μkνk
 is the generalized 

(antisymmetric) Kronecker delta, defined as (Equation 9)

δα1β1…αkβk
μ1ν1…μkνk

= k!δ[α1
μ1

δβ1
ν1
…δαk

μk
δ βk]

νk
. (9)

In Equation 7, the case k = 0 corresponds to L0 = 1, with 
α0 = − 2Λ representing the cosmological constant. For k = 1, we 
recover L1 = R with α1 = 1, which is the standard Einstein–Hilbert 
Lagrangian. When k = 2, we obtain in Equation 10

L2 = LGB = RαβγδRαβγδ − 4RγδRγδ +R2, (10)

which is the Gauss–Bonnet (GB) Lagrangian, with α2 = αGB
denoting the GB coupling constant. For k > 2, Lk is the higher-
order Lovelock Lagrangian with corresponding coupling constants 
αk. Lovelock theory is the unique higher-order curvature theory that 
preserves second-order field equations, avoiding ghost instabilities 
(Boulware and Deser, 1985; Zwiebach, 1985). For a given order 
p, Lovelock gravity is nontrivial in dimensions N ≥ 2p+ 1, and all 
coefficients αk with k ≤ p may be nonzero in general. In a special 
case, pure Lovelock gravity, introduced by Kastor and Mann (2006) 
[see also (Giribet et al., 2006)], involves only one nonzero term 
αk (1 < k ≤ p) corresponding to a fixed-order k, with or without 
a cosmological constant. Black holes in pure Lovelock gravity 
were constructed by Cai and Ohta (2006), and generalized Vaidya 
spacetimes were explored by Cai et al. (2008). This subclass of 
Lovelock gravity has attracted considerable attention (Chakraborty 
and Dadhich, 2018; Dadhich and Pons, 2013; Dadhich et al., 2013; 
Gannouji and Dadhich, 2014). In this work, we aim to construct 
regular black hole solutions in pure Lovelock gravity powered by a 
nonlinear Yang–Mills (YM) field. To this end, we propose a specific 
nonlinear YM model and use the standard higher-dimensional 
Wu–Yang ansatz (Wu et al., 1969; Yasskin, 1975; Mazharimousavi 
and Halilsoy, 2008) for the YM potential, leading to a Bardeen-
like regular black hole configuration. Let us add that the Lovelock 
action uses Euler densities, which inherently maintain an Einstein-
like structure in field equations and consequently the structure of 
regular black holes. 

2 Pure Gauss–Bonnet nonlinear YM 
theory

We begin with the action

I = 1
2κN
∫dN x√−g(LLov +L) , (11)

where LLov is the Lovelock Lagrangian given in Equation 7 and L is 
the nonlinear YM Lagrangian, given by

L = − 1
ωN−2

αF
2N−3

4

(1+ βF
N−2

4 )
2N−3
N−2

, (12)

where α > 0 and β > 0 are real positive constants, ωN−2 =
2π

N−1
2

Γ( N−1
2
)
, and

F = γpqFp
μνFqμν, (13)

is the Yang–Mills field strength invariant. We add that the 
Yang–Mills field possesses energy and momentum, quantified by 
its stress–energy tensor. This tensor serves as the source term 
in Einstein’s equations, meaning that the field itself generates 
gravitational curvature. Consequently, Yang–Mills fields can 
produce structures like black holes, wormholes, and shape the 
evolution of the cosmos.

The nonlinear YM Lagrangian Equation 12 is the YM analog 
of the higher-dimensional Bardeen-type nonlinear electrodynamics 
(NED) model proposed by Ali and Ghosh (2018) (see Equation 5). 
Except for N = 4, where both Lagrangians coincide, they differ in 
other dimensions. It is worth noting that both Lagrangians partially 
satisfy the conditions imposed by Shabad and Usov (2011), which 
arise from the requirements of causality and unitarity principles. 
These conditions are listed in Equation 14

LF < 0, LFF ≥ 0, andLF + 2FLFF ≤ 0. (14)

The Yang–Mills field two-form strength is given by

Fp = dAp + 1
2σ

cp
qrAq ∧Ar, (15)

where in Equation 15 Ap denotes the non-Abelian Yang–Mills one-
form potential, cp

qr is the structure constant of the gauge group G,
which has (N−1)(N−2)

2
 generators, and σ is the coupling constant. The 

gauge potential can be written as Ap = Ap
μdxμ, and we choose the 

gauge group G = SO (N− 1). Variation of the action (in Equation 11) 
with respect to Ap

μ yields the Yang–Mills field equations

d(⋆FpLF) +
1
σ

cp
qrLFAp ∧⋆Fq = 0, (16)

where ⋆Fp is the Hodge dual of Fp, and LF = ∂L/∂F . Varying the 
action in Equation 11 with respect to the metric gμν leads to the 
Einstein–Lovelock–Yang–Mills field equations:

[ N−1
2
]

∑
k=0

αkGν(k)
μ = κNTν

μ, (17)

where the energy–momentum tensor of the Yang–Mills field is given 
by Equation 18

Tν
μ =

1
2
(Lδν

μ − 4LFγpqFp
μλFqνλ) (18)

and the Lovelock tensors are (Equations 19, 20)

Gν(k)
μ =

k

∑
i=0

1
2i+1 δα1β1…αiβi

μ1ν1…μiνi

i

∏
s=1

Rμsνs
αsβs
, k ≥ 1 (19)

and

Gν(0)
μ =
(N− 1) (N− 2)

6
Λδν

μ. (20)

The non-Abelian gauge potential A(m) follows the generalized 
Wu–Yang ansatz (Mazharimousavi and Halilsoy, 2008)

Ap = Q
r2 cp

ijx
idxj, 2 ≤ j+ 1 ≤ i ≤ N− 1, 1 ≤ p ≤

(N− 1) (N− 2)
2

(21)

where, in Equation 21 Q is the gauge charge and

r2 = δijx
ixj, (22)
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with i and j running over spatial coordinates in Equation 22. The 
metric of the static, spherically symmetric N-dimensional spacetime 
is taken to be

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dΩ2

N−2, (23)

where

dΩ2
N−2 = dθ2

1 +
N−2

∑
i=2
(

i−1

∏
j=1

sin2 θj)dθ2
i , (24)

is the metric on the unit (N− 2)-sphere, with 0 < θN−2 ≤ 2π and 0 <
θi ≤ π for 1 ≤ i ≤ N− 3 in Equation 24. The generalized Wu–Yang 
ansatz satisfies the Yang–Mills Equation 16 provided that σ = Q. A 
detailed calculation yields (Equations 25, 26)

F = (
N− 3) (N− 2)Q2

r4 , (25)

and

γpq (F
p
θiλ

Fqθiλ) = 1
(N− 2)

F , for 1 ≤ i ≤ N− 3. (26)

Accordingly, the energy–momentum tensor simplifies to

Tν
μ =

L
2

diag[1,1,1− 4
N− 2

FLF
L
,…,1− 4

N− 2
FLF
L
], (27)

where in Equation 27 we introduced Equation 28

FLF
L
= 2N− 3

4
1

1+ βF
N−2

4

. (28)

To proceed, we introduce the function ψ (r) via the ansatz 
(Equation 29)

f (r) = 1− r2 ψ (r) , (29)

which transforms the tt-component of the Einstein–Lovelock–Yang–
Mills field Equation 17 into (Equation 30)

[ N−1
2
]

∑
k=0
̃αkψk =

2κNM (r)
(N− 2)ωN−2rN−1 , (30)

where the rescaled Lovelock coefficients are defined as ̃αk =
2k
∏
i=3
(N− i)αk for k ≥ 2, ̃α1 = 1, and ̃α0 =

α0
(N−1)(N−2)

. The mass function 
M (r) is given by

M (r) = ωN−2∫
r

0
(r′)N−2ρ(r′)dr′, (31)

where in Equation 31

ρ (r) = −Tt
t, (32)

is the energy density (Equation 32). The explicit form of M (r)
is given by

M (r) =
α(N− 2)

N−1
4 (N− 3)

N−1
4 Q

N−1
2

2β (N− 1)(1+ βQ
N−2

2 (N−2)
N−2

4 (N−3)
N−2

4

rN−2 )
N−1
N−2

. (33)

Assuming that the ADM energy/mass arises purely from the 
Yang–Mills interaction, the total energy/mass is defined by (from 
Equation 33)

M = lim
r→∞

M (r) , (34)

which Equation 34 yields (Equation 35)

M =
α(N− 2)

N−1
4 (N− 3)

N−1
4 Q

N−1
2

2β (N− 1)
. (35)

Finally, from Equation 30, the function ψ (r) satisfies the 
algebraic equation

[ N−1
2
]

∑
k=0
̃αkψk =

2κNM

(N− 2)ωN−2rN−1(1+ β Q
N−2

2 ((N−2)(N−3))
N−2

4

rN−2 )
N−1
N−2

. (36)

 

3 Pure lovelock theory

Although Equation 36 is valid in the general Lovelock 
framework, we now focus on the pure Lovelock theory of order 
p, in which all coupling constants vanish, except for ̃αp, i.e., ̃αk≠p =
0. In this case, the equation simplifies to (Equation 37)

̃αpψp =
2κNM

(N− 2)ωN−2rN−1(1+ βQ
N−2

2 ((N−2)(N−3))
N−2

4

rN−2 )
N−1
N−2

, (37)

whose solution is given by (Equation 38)

ψ (r) =

{{{{{
{{{{{
{

±
μ

r
N−1−2p

p (1+ ζ
rN−2 )

N−1
(N−2)p

, for p even,

μ

r
N−1−2p

p (1+ ζ
rN−2 )

N−1
(N−2)p

, for p odd,
(38)

and consequently the metric function becomes

f (r) =

{{{{{
{{{{{
{

1∓
μ

r
N−1−2p

p (1+ ζ
rN−2 )

N−1
(N−2)p

, for p even,

1−
μ

r
N−1−2p

p (1+ ζ
rN−2 )

N−1
(N−2)p

, for p odd,
(39)

where in Equation 39 the new parameters are defined as (Equations 
40, 41)

μ = (
2κNM
(N− 2) ̃αpωN−2

)
1
p
, (40)

ζ = βQ
N−2

2 (N− 2)
N−2

4 (N− 3)
N−2

4 , (41)

and the expression is valid for p ≤ [N−1
2
]. In the asymptotic region 

(r→∞), the metric function behaves as Equation 42

lim
r→∞

f (r) →
{{{{
{{{{
{

1∓
μ

r
N−1−2p

p

, for p even,

1−
μ

r
N−1−2p

p

, for p odd,
(42)
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while near the origin (r→ 0) it yields (Equation 43)

lim
r→0

f (r) →
{{{
{{{
{

1∓ r2

ℓ2 , for p even,

1− r2

ℓ2 , for p odd,
(43)

with the effective cosmological constant defined as Equation 44
1
ℓ2 =

μ

ζ
N−1
(N−2)p

. (44)

Therefore, the solution is asymptotically flat and regular at the 
origin. An explicit calculation of the curvature invariants confirms 
that all spacetime scalars remain finite and regular everywhere, 
indicating that the spacetime is indeed regular throughout. 

3.1 N = 2p+ 1 represents only a particle 
model

As previously discussed, for a given Lovelock order p, the 
spacetime dimension N must exceed a critical value defined by Np =
2p+ 1, which ensures [

Np−1
2
] = p. Explicitly, this yields the following: 

p = 1 requires N ≥ 3; p = 2 requires N ≥ 5; p = 3 requires N ≥ 7, and 
in general, for any p, we require N ≥ 2p+ 1. From Equation 39, it 
follows that for N = Np = 2p+ 1, the metric function simplifies to

f (r) =

{{{{{
{{{{{
{

1∓
μ

(1+ ζ
r2p−1 )

2
2p−1

, for p even,

1−
μ

(1+ ζ
r2p−1 )

2
2p−1

, for p odd,
(45)

where the parameters ζ and μ are given by Equations 46, 47
ξ = βQ

2p−1
2 (2p− 1)

2p−1
4 (2p− 2)

2p−1
4 , (46)

and

μ = (
κNα

2β (2p− 1) ̃αpω2p−1
)

1
p
√(2p− 1) (2p− 2)Q. (47)

From Equation 45, it is evident that, for even p, limr→∞ f (r) →
1∓ μ, for odd p, limr→∞ f (r) → 1− μ, and for both cases, 
limr→0 f (r) → 1. Now consider the derivative of the metric function 
(Equation 48)

d f (r)
dr
=

{{{{{{{
{{{{{{{
{

∓
2μζ

r2p(1+ ζ
r2p−1 )

2p+1
2p−1

, for p even,

−
2μζ

r2p(1+ ζ
r2p−1 )

2p+1
2p−1

, for p odd,
(48)

 which has no zeros for r > 0. This implies that the spacetime 
described by Equation 45 does not admit horizons and therefore 
corresponds to a regular particle-like model. This interpretation is 
valid for the negative branch of even p, and for odd p, provided that 
μ < 1, ensuring f (r) > 0 everywhere. In Figure 1, we plot the metric 
function f (r) versus r for representative values of the parameters. In 
the left panel, the negative branch is shown for p = 2,3,4,5,6, and 7. 
In the right panel, the positive branch is plotted for even p = 2,4,6, 
and 8. The results illustrate that the gravitational influence of the 
particle is significant only in the vicinity of the origin and quickly 
saturates, becoming constant at large distances.

3.2 N > 2p+ 1 represents both black hole 
and particle models

Unlike the case N = 2p+ 1, where the solutions represent only 
particle-like configurations for all p, Equation 39 with N > 2p+ 1
can describe either black holes or particle-like models. In both the 
positive and negative branches, the spacetime is asymptotically flat, 
and the metric function satisfies f (0) = 1. The derivative of the 
metric function is given by Equation 49

d f (r)
dr
=

{{{{{{{{
{{{{{{{{
{

±
μ((N− 1− 2p) rN−2 − 2pζ)

pr
(N−3)p+N−1

p (1+ ζ
r2p−1 )

(N−2)p+N−1
(N−2)p

, for p even,

μ((N− 1− 2p) rN−2 − 2pζ)

pr
(N−3)p+N−1

p (1+ ζ
r2p−1 )

(N−2)p+N−1
(N−2)p

, for p odd,

.

(49)

This derivative admits a critical point, defined by df(r)
dr
= 0, 

which occurs at

rc = (
2pζ

N− 1− 2p
)

1
N−2
. (50)

At this radius (Equation 50), the positive branch reaches a 
maximum, and the negative branch reaches a minimum. For the 
negative branch, the solution represents a regular particle model if 
f (rc) > 0, an extremal black hole if f (rc) = 0, with a double horizon 
at r+ = rc, and a black hole with two distinct horizons if f (rc) < 0. 
Explicit evaluation of f (r) at the critical point yields

f (rc) = 1− μ(
N− 1− 2p

2pζ
)

N−1−2p
p(N−2)
(

2p
N− 1
)

N−1
(N−2)p
. (51)

This provides an analytical criterion for distinguishing between 
black hole and particle-like solutions. Substituting the definitions of 
μ and ζ in terms of the original parameters, we obtain Equation 52

f (rc) = 1−(
κNα

αpωN−2
)

1
p (N− 2)

p−2
2p √N− 3

β
2N−3−2p
p(N−2) (N− 1)

2N−3
(N−2)p

(N− 1− 2p)
N−1−2p
p(N−2) (2p)

2
N−2 Q.

(52)

Depending on the sign of this expression, if i) f (rc) < 0, the 
solution describes a black hole with two horizons, ii) f (rc) = 0, 
an extremal black hole with a double horizon, and iii) f (rc) > 0, 
a regular particle-like spacetime. For the positive branch, which is 
only valid for even p, no such restriction applies, and the solution 
always corresponds to a regular particle model. 

4 Thermal stability of the black hole 
solution

In standard GR, spherically symmetric black holes (such as 
the Schwarzschild black hole) exhibit negative heat capacity. This 
implies that they are thermodynamically unstable. This is because 
they lose their mass through Hawking radiation that results in an 
increasing temperature, leading to faster evaporation. As discussed 
by D’Agostino et al. (2024), although modified gravity theories 
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FIGURE 1
The left panel shows the negative branch of the metric function f (r) in Equation 45 as a function of r for N = 2p+ 1 with p = 2,3,…,7. The right panel 
displays the positive branch of the metric function Equation 45 for p = 2,4,6,8.

FIGURE 2
The metric function f (x), given in Equation 59, is plotted as a function 
of x for p = 2 and N = 10, and various values of μ0 incremented in equal 
steps. The extremal black hole solution serves as the boundary 
separating particle-like configurations from black hole solutions.

can partially alleviate the negative heat capacity problem for 
specific black hole masses and parameter choices, they do not 
provide a universal solution. The thermodynamic instability of 
spherically symmetric black holes remains a robust feature of GR, 
and its resolution likely requires more radical changes to gravity 
or the inclusion of quantum effects. In this section, we investigate 
the thermal stability of the black hole solution described by

FIGURE 3
The scaled Hawking temperature is plotted as a function of x+ for p =
2, with various values of N ranging from 6 to 11. The temperature 
vanishes for the extremal black hole and is positive for black holes 
with two distinct horizons. Negative values of the temperature are 
unphysical, indicating that no black hole exists with an event horizon 
smaller than that of the extremal case.

Equation 53

f (r) = 1−
μ

r
N−1−2p

p (1+ ζ
rN−2 )

N−1
(N−2)p

, (53)

where f (rc) satisfies f (rc) ≤ 0, as given in Equation 51. This should 
be noted that the thermodynamics of regular and singular black 
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FIGURE 4
In the left panel, the scaled heat capacity is plotted as a function of x+ for p = 2 and N = 6. The right panel presents a zoomed-in view, showing both the 
scaled heat capacity and the scaled Hawking temperature. The Type-I and Type-II transition points are clearly indicated on the plots.

holes are the same because black hole thermodynamics depends only 
on the event horizon geometry, not on whether the interior contains 
a singularity. The differences between them show up in stability and 
detailed phase transitions, but not in the universal laws. Without loss 
of generality, we express our analysis in terms of the parameters μ, ζ, 
N, and p. For the black hole scenario, the event horizon f (r+) = 0. As 
previously discussed, this equation admits two horizons if f (rc) <
0 and a degenerate (double) horizon if f (rc) = 0, where f (rc) is 
defined in Equation 51. Solving f (r) = 0 for μ at the horizon gives

μ = r
N−1−2p

p
+ (1+

ζ
rN−2
+
)

N−1
(N−2)p
. (54)

Using Equation 54, the Hawking temperature associated with 
the black hole is calculated to be

TH =
f′ (r+)

4π
=
(N− 1− 2p) rN−2

+ − 2pζ

4πprN−1
+ (1+

ζ
rN−2
+
)
. (55)

Moreover, using the Wald entropy for the black holes in Lovelock 
(Jacobson and Myers, 1993; Myers and Simon, 1988; Camanho and 
Edelstein, 2013; Wang et al., 2016)

S = A
4

p ̃αp
N− 2

N− 2p
1

r2(p−1)
+

, (56)

where in Equation 56 A = rN−2
+ ωN−2 is the black hole 

area, we find Equation 57

S =
(N− 2)p ̃αpωN−2

4 (N− 2p)
rN−2p
+ . (57)

Finally, the heat capacity of the black hole is defined by

C = TH
∂S

∂TH
=
−p ̃αpωN−2r2N−2p−2

+ [N− 1− 2p− 2pζ
rN−2
+
](1+ ζ

rN−2
+
)

4[1− ζ(N−3)
rN−2
+
](N− 1− 2p) rN−2

+ + 8pζ[N− 1+ ζ
rN−2
+
]
.

(58)

By introducing the rescaled variables r = r0x and μ = μ0r
N−1−2p

p

0
with ζ = rN−2

0  the metric function becomes

f (x) = 1−
μ0

x
N−1−2p

p (1+ 1
xN−2 )

N−1
(N−2)p

. (59)

Accordingly, the Hawking temperature (Equation 55) and 
heat capacity (Equation 58) are given by

TH =
(N− 1− 2p) − 2p

xN−2
+

4πpr0x+ (1+
1

xN−2
+
)

(60)

and

C =
−p ̃αpωN−2rN−2p

0 x2N−2p−2
+ [N− 1− 2p− 2p

xN−2
+
](1+ 1

xN−2
+
)

4[1− N−3
xN−2
+
](N− 1− 2p)xN−2

+ + 8p[N− 1+ 1
xN−2
+
]
. (61)

In Figure 2, we plot f (x) as a function of x for N = 10 and p =
2, using different values of μ0. This behavior is generic and holds for 
other values of N > 2p+ 1 and p. Furthermore, Figure 3 displays the 
scaled Hawking temperature 4πr0TH (Equation 60) as a function of 
x+ for p = 2 and N = 6,7,…,11. Negative values of the temperature 
indicate non-black-hole configurations and must be discarded. A 
zero temperature corresponds to an extremal black hole. In all 
considered dimensions, the temperature initially increases with
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x+, reaches a maximum at the Type-II transition point, and then 
decreases to zero as x+ increases further. This implies that, as the 
black hole grows from its extremal size, its temperature increases 
to a peak before cooling as it becomes large. The Type-II transition 
also marks the point at which the heat capacity diverges, as shown 
in Figure 4 (Equation 61). In the left panel of Figure 4, we plot 
the scaled heat capacity 4

rN−2p
0 ̃αpωN−2

C versus x+ for N = 6 and p =

2. The vertical line indicates the Type-II transition radius, where 
the heat capacity increases significantly from +∞ to −∞. The 
right panel presents a zoomed-in view of both 4

rN−2p
0 ̃αpωN−2

C and 

4πr0TH as functions of x+, highlighting the Type-I transition point 
(where both C and TH vanish) and the Type-II transition point 
(where C diverges and TH is maximized). A black hole is thermally 
stable if it has positive heat capacity and a well-defined (i.e., 
positive) Hawking temperature. Therefore, the black hole is stable 
only when its size lies between the Type-I and Type-II transition
points. 

5 Conclusion

In this work, we have derived a new class of regular black 
hole solutions in higher-dimensional pure Lovelock gravity, sourced 
by a nonlinear Yang–Mills field. The solutions generalize the 
Bardeen black hole in four dimensions and exhibit rich physical 
behavior depending on the dimension N and Lovelock order p. 
Specifically, in the critical dimension N = 2p+ 1, the solutions 
describe horizonless, particle-like spacetimes. For N > 2p+ 1, both 
black hole and particle-like configurations emerge, depending 
on whether the metric function admits horizons. We obtained 
analytic criteria that distinguish between these possibilities. We 
further investigated the thermodynamic properties of the black 
holes, including their Hawking temperature and heat capacity. 
The analysis revealed the existence of two critical points: a 
lower (Type-I) transition point associated with extremal black 
holes and an upper (Type-II) transition point where the heat 
capacity diverges. Between these points, the black hole is thermally 
stable. Our results not only contribute to the understanding 
of regular black holes in higher-curvature gravity theories but 
also demonstrate the compatibility of nonlinear gauge fields with 
horizon-regular solutions. These findings offer a useful framework 
for exploring singularity resolution in classical gravity and may 
serve as a foundation for further investigations in quantum gravity
models.
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