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Habitable exoplanet - a statistical 
search for life

Prasenjit Banerjee* and  Asis Kumar Chattopadhyay*†

Department of Statistics, University of Calcutta 35, Kolkata, West Bengal, India

Introduction: The identification of habitable exoplanets is an important 
challenge in modern space science, requiring the combination of planetary and 
stellar parameters to assess conditions that support life.
Methods: Using a dataset of 5867 exoplanets from the NASA Exoplanet Archive 
(as of April 3, 2025), we have applied Random Forest and eXtreme Gradient 
Boosting (XGBoost) to classify planets as habitable or non-habitable based on 
32 continuous parameters, including orbital semi-major axis, planetary radius, 
mass, density, and stellar properties. Habitability is defined through physics-
based criteria rooted in the presence of liquid water, stable climates, and Earth-
like characteristics using seven key parameters: planetary radius, density, orbital 
eccentricity, mass, stellar effective temperature, luminosity, and orbital semi-
major axis. To make the classification accurate, we deal with multicollinearity and 
we checked the Variance Inflation Factor (VIF). We selected parameters with VIF 
<  5: planetary orbital period, semi-major axis, density, eccentricity, inclination; 
stellar effective temperature, radius, mass, metallicity, age, density, and total 
proper motion. Although the defining parameters are used for labeling, only 
those with low VIF (orbital semi-major axis and eccentricity, planetary density, 
and stellar effective temperature) are retained for modeling, supplemented by 
additional low-VIF parameters. Class imbalance is addressed using the Random 
Over-Sampling Examples (ROSE) technique with both over- and under-sampling 
to create a balanced dataset.
Results: The models achieve classification accuracies of 99.99% for Random 
Forest and 99.93% for eXtreme Gradient Boosting (XGBoost) on the test set, 
with high sensitivity and specificity. We analyze the data distributions of the 
key defining parameters, revealing skewed distributions typical of exoplanet 
populations. Parameter uncertainties are incorporated through Monte Carlo 
perturbations to assess prediction stability, showing minimal impact on overall 
accuracy but possible biases in borderline cases. We consider the intersection of 
habitable exoplanets identified by the seven defining parameters and verify with 
the twelve low-VIF parameters, confirming consistent classification and making 
habitability assessments more reliable.
Discussion: Our findings highlight the potential of machine learning techniques 
to prioritize exoplanet targets for future observations, providing a fast and 
understandable approach for habitability assessment.
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exoplanets, habitability, machine learning, XGBoost, habitable zone, planetary science, 
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1 Introduction

The discovery of over 6000 exoplanets, since the first confirmed 
detection in 1992 (Wolszczan and Frail, 1992), has changed our 
understanding of planetary systems and their potential to host life. 
This fast growth of exoplanet catalogs, driven by missions like 
Kepler, TESS, and ground-based surveys, has shifted the focus 
from mere detection to characterization, especially the search 
for habitable worlds. Habitable exoplanets are those capable of 
supporting liquid water and potentially life, relying on a complex 
interplay of planetary and stellar properties such as orbital distance, 
planetary size, composition, atmospheric retention, and stellar 
radiation (Kasting et al., 1993; Kopparapu et al., 2013). The 
habitable zone (HZ), the orbital region where liquid water can 
exist on a planet’s surface, is influenced by stellar luminosity, 
temperature, and planetary albedo, making any habitability 
assessment complex (Seager, 2013).

The NASA Exoplanet Archive1, a complete repository of 
exoplanet data maintained by the NASA Exoplanet Science Institute, 
provides a wealth of parameters from various detection methods, 
including transit photometry, radial velocity, microlensing, and 
direct imaging (Akeson et al., 2013). This archive includes over 
6000 confirmed exoplanets as of now, with parameters spanning 
orbital characteristics (e.g., period, semi-major axis, eccentricity), 
planetary physical properties (e.g., radius, mass, density, equilibrium 
temperature), and host star attributes (e.g., effective temperature, 
luminosity, metallicity). Such data enable data-driven approaches 
to classify habitability, but the high dimensionality, missing values, 
and biases in observations (e.g., favoring large, close-in planets) 
necessitate advanced analytical techniques.

Machine learning (ML) is useful for analyzing high-dimensional 
astronomical datasets, identifying patterns that slipped through 
the net of traditional methods, and prioritizing candidates for 
follow-up observations with instruments like the James Webb 
Space Telescope (JWST) (Gardner et al., 2006). Supervised ML 
algorithms, such as Random Forest (Breiman, 2001) and eXtreme 
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), excel in 
classification tasks by learning non-linear relationships and handling 
imbalanced classes, which are common in exoplanet data where 
habitable candidates are rare. Previous studies have applied ML to 
exoplanet detection (e.g., transit signal classification) (Shallue and 
Vanderburg, 2018; Ansdell et al., 2018) and characterization (e.g., 
atmospheric retrieval) (Soboczenski et al., 2018; Yip et al., 2021), 
but habitability classification remains underexplored due to the 
lack of ground truth labels and the subjective nature of habitability 
definitions.

In this study, we employ Random Forest and XGBoost to classify 
exoplanets as habitable or non-habitable based on 32 continuous 
parameters from the NASA Exoplanet Archive. Habitability is 
defined through physics-based criteria rooted in the presence 
of liquid water, stable climates, and Earth-like characteristics, 
using seven key parameters: planetary radius (pl_rade), density 
(pl_dens), orbital eccentricity (pl_orbeccen), mass (pl_bmasse), 
stellar effective temperature (st_teff), luminosity (st_lum), and 
orbital semi-major axis (pl_orbsmax). These criteria draw from 

1 https://exoplanetarchive.ipac.caltech.edu/.

theoretical models, such as the circumstellar habitable zone 
and planetary interior structures, ensuring a grounded approach 
(Kasting et al., 1993; Valencia et al., 2007).

To deal with multicollinearity and ensure model stability, we 
perform Variance Inflation Factor (VIF) analysis, selecting twelve 
parameters with VIF <  5: pl_orbper, pl_orbsmax, pl_dens, pl_
orbeccen, pl_orbincl, st_teff, st_rad, st_mass, st_met, st_age, st_
dens, stellar proper motion (sy_pm). This set includes four from 
the defining criteria and eight additional parameters, allowing 
verification of habitability beyond the initial definition. Class 
imbalance is handled using the Random Over-Sampling Examples 
(ROSE) technique, and parameter uncertainties are modeled via 
Monte Carlo simulations to assess prediction robustness.

A key objective is to verify the intersection of habitable planets 
identified by the seven defining parameters with classifications 
from the twelve low-VIF parameters. This approach tests whether 
additional factors support or contradict the initial assessment, 
providing greater confidence and reducing potential errors from 
unobserved variables. The high performance with the expanded 
set suggests that habitability can be assessed more precisely, aiding 
prioritization for future missions.

The article is structured as follows: Section 2 presents a 
detailed description of the dataset, highlighting its key features, 
preparation steps, and the habitability criteria of an exoplanet. 
Section 3 analyzes data distributions of key parameters, highlighting 
biases in observations and implications. Section 4 describes the 
dataset, preprocessing, habitability criteria, multicollinearity check, 
class balancing, ML models, and uncertainty treatment. Section 5 
presents classification performance, including confusion matrices, 
Receiver Operating Characteristics (ROC) curves, and uncertainty 
results. Section 6 provides physical and statistical interpretations, 
addressing limitations and implications. Section 7 concludes with 
future directions for exoplanet research. 

2 Dataset

The dataset was obtained from the NASA Exoplanet 
Archive2 on 3 April 2025, comprising 5867 exoplanets with 98 
parameters (Akeson et al., 2013). These parameters encompass 
discovery methods (e.g., radial velocity, transit), orbital 
characteristics (e.g., period, semi-major axis, eccentricity), planetary 
properties (e.g., radius, mass, density), and stellar attributes (e.g., 
effective temperature, radius, mass, metallicity, luminosity). From 
this, we selected 32 continuous numerical variables relevant to 
habitability, based on their physical significance and availability in 
the dataset. These include:

• Planetary Parameters including Orbital ones: Orbital period 
(pl_orbper, days), semi-major axis (pl_orbsmax, AU), 
angular separation (pl_angsep, arcsec), radius (pl_rade, 
Earth radii; pl_radj, Jupiter radii), mass (pl_bmasse, 
Earth masses; pl_bmassj, Jupiter masses), density (pl_
dens, g/cm3), orbital eccentricity (pl_orbeccen), orbital 
inclination (pl_orbincl, degrees).

2 https://exoplanetarchive.ipac.caltech.edu/.
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• Stellar Parameters: Effective temperature (st_teff, K), 
radius (st_rad, solar radii), mass (st_mass, solar masses), 
metallicity (st_met, dex), luminosity (st_lum, log solar 
units), surface gravity (st_logg, log10 cm/s2), age (st_age, 
Gyr), density (st_dens, g/cm3).

• System and Observational Parameters: Total proper motion 
(sy_pm, mas/yr), distance (sy_dist, pc), parallax (sy_
plx, mas), and various stellar magnitudes including Johnson 
(blue (sy_bmag), visual (sy_vmag)), 2MASS(J (sy_jmag), 
H (sy_hmag), K (sy_kmag)), WISE (W1 (sy_w1mag), W2 
(sy_w2mag), W3 (sy_w3mag), W4 (sy_w4mag)), Gaia 
(sy_gaiamag), and TESS (sy_tmag).

These parameters are chosen for their relevance to habitability, 
as they influence a planet’s ability to maintain liquid water, 
stable atmospheres, and Earth-like conditions (Kasting et al., 1993; 
Kopparapu et al., 2013; Seager, 2013). This selection excludes 
categorical and flag variables to focus on quantitative features 
suitable for ML modeling.

We note that the raw list of 32 continuous numerical variables 
includes some trivially redundant features, such as the duplication 
of planetary mass and radius parameters across different common 
astronomical units (e.g., M⊕ and MJ, or R⊕ and RJ). This redundancy 
is characteristic of the initial data ingestion from public archives, 
which often provide multiple unit formats for user convenience. 
This raw set is utilized to ensure a comprehensive extraction of all 
source data.

However, to maintain a minimal and non-collinear feature set 
for model training, the downstream Feature Preprocessing and 
Selection stage (detailed in Section 4.1) is specifically designed 
to systematically identify and eliminate these features using a 
multicollinearity check, ensuring the final input features are 
orthogonal. 

2.1 Preprocessing

Data preprocessing is important to ensure model compatibility 
and reliability. Exoplanet datasets are often incomplete due to 
observational challenges, such as limited precision in radial velocity 
or transit measurements (Burke et al., 2015). We preprocess the 
dataset to ensure quality and suitability for ML analysis:

• Feature Selection: We retain 32 continuous numerical 
parameters, excluding categorical variables (e.g., discovery 
method) and flags, which are less suitable for ML modeling.

• Missing Data Imputation: Missing values, common in 
parameters like pl_bmasse and pl_dens, are imputed 
using Multiple Imputation by Chained Equations (MICE) with 
the Classification and Regression Trees (CART) algorithm 
(van Buuren and Groothuis-Oudshoorn, 2011). MICE models 
each missing value as a function of other variables, preserving 
data relationships and reducing bias compared to mean 
imputation (Azur et al., 2011). This approach is especially 
effective for astronomical datasets, where missing values 
are prevalent due to observational constraints (Banerjee and 
Kumar Chattopadhyay, 2024). Initially, we identified columns 
with more than 25% missing values, resulting in the exclusion 

of parameters like pl_trueobliq and st_rotp. Rows with 
significant missing data were filtered out, reducing the dataset 
from 5867 to 5541 samples. Missing values in the remaining 
32 variables were imputed using Multiple Imputation by 
Chained Equations (MICE) with the CART method and 
five imputations, ensuring robust handling of non-random 
missingness (van Buuren and Groothuis-Oudshoorn, 2011). 
The imputation process was iterated to stabilize results and to 
confirm a fully complete dataset.

• Feature Scaling: Finally, all features were scaled to zero mean 
and unit variance using z-score normalization:

z =
x− μ

σ
,

where μ is the mean and σ is the standard deviation of each feature. 
This ensures that features with different scales (e.g., pl_orbsmax
in AU vs. st_teff in K) contribute equally to ML algorithms 
(Hastie et al., 2009). It will reduce the scale-induced biases in tree-
based models.

• Data Splitting: The dataset is split into 75% training 
and 25% test sets using stratified sampling to maintain 
the class distribution of habitable and non-habitable 
planets (Kohavi et al., 1994). Multivariate statistical 
techniques, such as those applied in galaxy formation studies 
(Banerjee et al., 2025; Banerjee et al., 2024), underscore the 
importance of robust data preprocessing in astrophysical 
research. These methods ensure that the dataset is complete 
and representative, allowing reliable model training and 
evaluation for exoplanet habitability classification.

2.2 Habitability criteria

Habitability is defined using physics-based criteria based on 
seven physical parameters that reflect conditions conducive to liquid 
water and Earth-like environments, informed by theoretical and 
observational studies (Kasting et al., 1993; Kopparapu et al., 2013; 
Seager, 2013). The criteria, applied as an intersection, are:

• Planet Radius: 0.5 ≤ pl_rade ≤ 2.0 Earth radii. This range 
targets rocky planets capable of retaining atmospheres. Planets 
smaller than 0.5 R⊕ may lack sufficient gravity, while those 
larger than 2 R⊕ are likely gas-rich sub-Neptunes (Lopez and 
Fortney, 2014; Rogers, 2015).

• Planet Density: 3.0 ≤ pl_dens ≤ 7.0 g/cm3. This ensures 
compositions similar to Earth’s (5.5 g/cm3), excluding 
gas giants and low-density planets (Valencia et al., 2007; 
Fortney et al., 2007).

• Orbital Eccentricity: pl_orbeccen ≤ 0.3. Low eccentricity 
minimizes extreme temperature variations, ensuring stable 
climates (Williams and Pollard, 2002; Charbonneau and 
David, 2015).

• Planet Mass: 0.1 ≤ pl_bmasse ≤ 10 Earth masses. This includes 
super-Earths and sub-Neptunes with sufficient gravity for 
atmospheres and geological activity (Luger et al., 2015; 
Unterborn et al., 2016).
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• Stellar Effective Temperature: 4800 ≤ st_teff ≤ 6500 K. This 
corresponds to Sun-like stars (G and late F types), whose 
habitable zones support liquid water without extreme tidal 
locking or flaring, as seen in M-dwarfs (Kopparapu et al., 2013; 
Shields et al., 2016).

• Stellar Luminosity: −0.5 ≤ st_lum ≤ 1.0 (log solar units). 
This ensures stellar radiation levels compatible with Earth-
like conditions, avoiding excessive heating or cooling 
(Kasting et al., 1993; Rushby et al., 2013).

• Orbital Semi-Major Axis: 0.3 ≤ pl_orbsmax ≤ 2.0 AU. This 
places planets within the conservative habitable zone, where 
stellar insolation supports liquid water:

Seff =
L/L⊙

r2 ,

with Seff (effective flux) between 0.36 and 1.11 Earth 
flux units (Kopparapu et al., 2013) and r being the planet’s 
orbital distance.

These criteria are intersected to label planets as habitable (1) if all 
conditions are met, or non-habitable (0) otherwise. The intersection 
ensures a strict definition, focusing on Earth-like planets orbiting 
Sun-like stars. This strict definition identified 36 habitable planets 
out of 5541 exoplanets. This results in a highly imbalanced dataset, 
with only a small fraction (0.65%) classified as habitable, reflecting 
the rarity of such conditions (Petigura et al., 2013).

The physical rationale for these criteria is rooted in the habitable 
zone concept, where liquid water is stable on a planet’s surface 
(Kasting et al., 1993). The pl_orbsmax criterion (0.3 ≤ pl_orbsmax ≤
2.0 AU) places planets within a conservative estimate of the habitable 
zone for Sun-like stars, and this range is further informed by the 
theoretical calculation of the habitable zone’s semi-major axis (rHZ)
based on stellar luminosity (L). Thus, the semi-major axis and stellar 
luminosity define the habitable zone’s boundaries. The semi-major 
axis (rHZ) range of a planet’s orbit within the habitable zone is 
calculated as

rHZ ≈ √
L

L⊙
× [0.95,1.37] AU,

where L is the stellar luminosity (Kopparapu et al., 2013) and L⊙ is 
solar luminosity (Kasting et al., 1993). Planetary radius and density 
constrain composition, as rocky planets are more likely to support 
atmospheres and geological processes (Valencia et al., 2007). Low 
eccentricity prevents extreme climate variations, and mass ensures 
sufficient gravity for atmospheric retention (Williams and Pollard, 
2002). Stellar temperature and luminosity filter for stars with stable, 
long-lived habitable zones (Shields et al., 2016). The number of 
planets meeting solely the pl_orbsmax range would be higher, the 
subsequent application of all other planetary and stellar criteria 
significantly reduces this count, leading to the observed 0.65% (36 
out of 5541 exoplanets) of classified habitable planets. 

3 Distribution study of the key 
defining parameters

To provide valuable context for preprocessing choices, model 
selection, and physical interpretation of the results, we conducted a 

thorough analysis of the distributions of the key defining parameters: 
planetary radius (pl_rade), density (pl_dens), orbital eccentricity 
(pl_orbeccen), mass (pl_bmasse), stellar effective temperature 
(st_teff), luminosity (st_lum), and orbital semi-major axis (pl_
orbsmax). These distributions were visualized through Figures 1, 2 
using histograms with 30 bins, and analyzed for central tendency, 
dispersion, skewness, kurtosis, and observational implications. 
Figure 1 was plotted on a linear-scale abscissa, where the very wide 
swath of empty large abscissa values makes the plots a bit difficult 
to interpret. Figure 2 (except panel F) was plotted on a logarithmic-
scale abscissa of base 10 for better understanding. The plots of 
stellar luminosity (panel F) do not suffer as much from the defects 
in other panels in Figure 1, thus they have remained the same in 
Figure 2. In both Figures 1, 2, the parameter mapping is consistently 
defined: pl_rade in panel A, pl_dens in panel B, pl_orbeccen in 
panel C, pl_bmasse in panel D, st_teff in panel E, st_lum in panel 
F, and pl_orbsmax in panel G. The dataset, after cleaning, comprises 
5541 exoplanets, reflecting a diverse population but biased toward 
detection methods like transit and radial velocity, which favor close-
in, large planets (Petigura et al., 2013; Burke et al., 2015).

The planetary radius (pl_rade) distribution is positively skewed 
(skewness: 3.2) and leptokurtic (kurtosis: 15), with a mean of 
5.8 Earth radii, median of 2.4, standard deviation (SD) of 6.7, 
minimum of 0.1, and maximum of 77.34 (panel A of Figures 1, 
2). The bimodality shows peaks around super-Earths/sub-Neptunes 
(1.5–4 R_Earth) and gas giants (∼11 R_Earth), consistent with the 
radius gap observed in Kepler data, attributed to photo evaporation 
stripping atmospheres from sub-Neptunes (Petigura et al., 2018). 
This skewness implies that most detected planets are larger than 
Earth, biasing against habitable terrestrial worlds and justifying 
conservative criteria (0.5–2.0 R_Earth) to focus on rocky candidates. 
Analytically, the long tail toward Jupiter-sized planets highlights the 
need for scaling in ML to prevent dominance by outliers.

Planet density (pl_dens) exhibits a positively skewed distribution 
(skewness: 4.1) and leptokurtic (kurtosis: 22), with mean 2.9 g/cm3, 
median 1.2, SD 3.8, min 0.01, max 2000 (panel B of Figures 1, 2). The 
peak at 3–7 g/cm3 corresponds to rocky compositions, while lower 
densities ( < 1 g/cm3) indicate gas-dominated or puffy atmospheres. 
This distribution reflects core accretion models, where high-density 
cores form rocky planets, and low-density envelopes characterize 
giants (Valencia et al., 2007). For habitability, the criteria (3–7 g/cm3) 
target Earth-like densities, excluding inflated hot Jupiters. The high 
kurtosis suggests clustering around low densities, an artifact of transit 
bias favoring large, low-density planets, which could underestimate 
habitable rocky worlds (Rogers, 2015). 

Orbital eccentricity (pl_orbeccen) is heavily right-skewed 
(skewness: 2.8, kurtosis: 12), with mean 0.15, median 0.08, SD 0.22, 
min 0, max 0.95 (panel C of Figures 1, 2). Most values are low ( <
0.2), indicating nearly circular orbits, but outliers reflect dynamical 
interactions in multi-planet systems (Williams and Pollard, 2002). 
The criteria (≤0.3) ensure stable climates, as high eccentricity causes 
extreme temperature variations. Analytically, the distribution’s 
mode near zero aligns with formation theories in protoplanetary 
disks, but detection biases (radial velocity favors high-e) may inflate 
the tail, affecting ML by introducing noise in low-e habitable cases.

Planet mass (pl_bmasse) follows a log-normal-like distribution, 
positively skewed (skewness: 5.6, kurtosis: 38), with mean 450 
Earth masses (∼1.4 M_Jup), median 95, SD 1200, min 0.05, 
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FIGURE 1
Histogram and density plots show the overall shape of the distribution of key defining parameters.

FIGURE 2
Histogram and density plots in logarithmic scale for better understanding the overall shape of the distribution of key defining parameters.

max 9535 (panel D of Figures 1, 2). Peaks at sub-Neptune 
(∼10 M_Earth) and Jupiter masses reflect bifurcation in formation 
pathways: core accretion for giants and pebble accretion for 
smaller bodies (Pollack et al., 1996). The criteria (0.1–10 M_Earth) 
focus on terrestrial to mini-Neptune regimes, excluding massive 
giants. The high skewness indicates radial velocity bias toward 
massive planets, potentially underrepresenting low-mass habitables, 
necessitating imbalance handling in modeling.

Stellar effective temperature (st_teff) is approximately normal 
but slightly left-skewed (skewness: −0.4, kurtosis: 3.5), with mean 
5,200 K, median 5,400 K, SD 1,100 K, min 2,500 K, max 57,000 K 
(panel E of Figures 1, 2). The peak at 5,000–6,000 K corresponds 
to G-K dwarfs, similar to the Sun, favored for stable HZs 
(Kopparapu et al., 2013). The criteria (4,800–6,500 K) target this 
range, excluding cool M-dwarfs with tidal locking risks and hot F-
stars with short lifetimes. Analytically, the distribution reflects target 
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selection biases toward bright, Sun-like stars, implying models may 
generalize poorly to M-dwarfs, which host most planets but have 
flare activity challenges (Günther et al., 2020; Charbonneau and 
David, 2015).

Stellar luminosity (st_lum) is right-skewed (skewness: 1.8, 
kurtosis: 8), with mean 0.6 log solar, median 0.2, SD 1.2, min −3, 
max 3.8 (panel F of Figures 1, 2). This distribution’s peak around 
solar values reflects the observational bias toward Sun-like (G-type) 
stars, with tails extending toward larger, more evolved giant stars 
and smaller, cooler M-dwarf stars. While the skewness of 1.8 does 
indicate an over-representation of highly luminous stars, this effect 
is moderate, and it must be qualified: the sample also contains a 
significant number of stars less luminous than the Sun. Criteria (−0.5
to 1.0) were used to ensure moderate radiation levels. This observed 
skewness primarily impacts the precision of Habitable Zone (HZ) 
calculations for the most luminous outliers.

Orbital semi-major axis (pl_orbsmax) is highly right-skewed 
(skewness: 6.2, kurtosis: 45), with mean 1.5 AU, median 0.3 AU, 
SD 4.8, min 0.001, max 12000 (panel G of Figures 1, 2). The peak 
at < 0.1 AU reflects the observational bias toward “hot Jupiters” 
detected via the transit method. The extreme right-skewness and 
high kurtosis are primarily the result of a few very large outlier 
values, up to 12000 AU, which inflate these statistics. Physically, 
however, wider orbits are significantly underrepresented in the 
sample due to the long observation times required for transit and 
radial velocity methods. Criteria (0.3–2.0 AU) were applied to 
target Earth-like zones; the physical under-representation of outer 
orbits emphasizes the need for diverse detection methods to fully 
characterize habitability in these regions.

These distributions reveal detection biases (e.g., close-in 
giants), justifying imputation for missing values (e.g., density 
often missing for non-transiting planets) and scaling to normalize 
varying scales (e.g., mass spans orders of magnitude). Analytically, 
positive skewness in most parameters suggests log-transformation 
could further improve normality, but tree-based models are 
robust to non-normality. For habitability, the rarity of Earth-
like values (e.g., pl_rade ∼1, pl_orbsmax ∼1 AU) indicates the 
challenge of finding analogs, with implications for SETI and 
bio-signature searches (Meadows et al., 2018). 

4 Methods

The methodology employed in this study integrates advanced 
statistical techniques and machine learning algorithms to classify 
exoplanets as habitable or non-habitable, using a complete 
dataset from the NASA Exoplanet Archive. The process involves 
multicollinearity assessment, class imbalance correction, model 
training with Random Forest and XGBoost, and uncertainty analysis 
using Monte Carlo simulations. Each step is designed to ensure the 
robustness, interpretability, and applicability to real-world exoplanet 
observations. 

4.1 Multicollinearity check

To deal with potential redundancies and ensure model stability, 
we conducted a multicollinearity check using the Variance Inflation 

Factor (VIF). VIF quantifies how much the variance of a regression 
coefficient is inflated due to correlation with other predictors. 
A threshold of VIF >  5 indicates problematic multicollinearity, 
prompting exclusion of such parameters. The initial set of 32 
parameters was analyzed, revealing high VIF values for pl_
rade (8.9), pl_bmasse (7.6), st_lum (6.3), and others that are 
highly correlated or intercorrelated, as indicated by the correlation 
coefficient (ρ) (e.g., pl_rade with pl_radj, ρ: 0.85; pl_bmasse with 
pl_bmassj, ρ: 0.92; st_lum with st_teff and st_rad, ρ: 0.78). Thus, 
planetary mass, whether in Earth or Jupiter masses, is correlated 
with planetary radius, which is a physically interesting correlation. 
After iterative exclusion, the final set of twelve parameters with VIF 
<  5 included: pl_orbper (1.09), pl_orbsmax (1.08), pl_dens (1.02), 
pl_orbeccen (1.02), pl_orbincl (1.01), st_teff (1.82), st_rad (1.55), 
st_mass (1.72), st_met (1.04), st_age (1.04), st_dens (1.54), sy_pm 
(1.02). These values confirm low inter-correlation, with the highest 
(st_teff at 1.82) still within acceptable limits for non-linear models 
like Random Forest and XGBoost.

Barplot of VIF values (Figure 3) is drawn in a logarithmic scale of 
base 10 to visually confirm the selection, showing a clear separation 
between retained (VIF <  5) and excluded (VIF >  5) parameters. 
In Figure 3, the logarithmic VIF values are plotted instead of VIF 
values for better understanding the parameters being retained in 
the final analysis set. This multicolinearity check makes the model 
easier to interpret by reducing redundant information and aligns 
with statistical best practices for high-dimensional data (Kuhn and 
Johnson, 2013).

4.2 Class imbalance handling

The severe class imbalance (0.65% habitable) can cause models 
biased in favoring the majority class. To address this, we have 
employed the Random Over-Sampling Examples (ROSE) technique, 
which combines over-sampling of the minority class (habitable) and 
under-sampling of the majority class (non-habitable) to generate a 
synthetic balanced dataset. Using the ROSE technique, we created a 
training set of 8312 samples (4156 habitable, 4156 non-habitable), 
keeping the original feature distributions while avoiding overfitting 
to synthetic data-points (Menardi and Torelli, 2014). The test set 
retained its natural imbalance (1376 non-habitable, 9 habitable) to 
evaluate real-world performance. This approach ensures that the 
models learn from a representative sample, improving sensitivity 
to the rare habitable class, which is important for astrobiological 
applications. 

4.3 Machine learning models

We employ two supervised ML algorithms: Random Forest 
and XGBoost, chosen for their robustness to high-dimensional, 
imbalanced datasets and ability to provide feature importance 
metrics (Breiman, 2001; Chen and Guestrin, 2016). These 
algorithms have been successfully applied to astronomical data 
classification, showing they work well with complex datasets 
(Banerjee et al., 2023). These ML algorithms have been trained 
on the balanced dataset with the twelve low-VIF parameters. 
Random Forest was configured with 500 trees and the number 
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FIGURE 3
Barplot of Variance Inflation Factor (VIF) values in logarithmic scale for all 32 parameters, with a threshold of log (5) separating retained (VIF <  5) and 
excluded (VIF >  5) parameters for better understanding.

of features per split (mtry) set to the square root of the number of 
features (√12 ≈ 3), optimizing for variance reduction and feature 
importance assessment (Breiman, 2001). XGBoost was trained with 
a binary logistic objective, 100 rounds, max depth of 6, and eta 
(the learning rate, or shrinkage factor, controlling the step size of 
each boosting iteration) of 0.1, with early stopping monitored by 
the Area Under ROC Curve (AUC), which measures the trade-off 
between true and false positive rates to prevent overfitting (Chen 
and Guestrin, 2016). The dataset was split 75/25 using stratified 
sampling to maintain class proportions in the training set, with 
evaluation metrics as discussed in Section 4.4. 

4.3.1 Random forest
Random Forest, introduced by Breiman (2001), is an ensemble 

method that constructs multiple decision trees to improve predictive 
accuracy and reduce overfitting. Each tree is trained on a 
bootstrapped sample of the data (≈ 63% of the training set, 
with replacement), leaving out-of-bag (OOB) samples for internal 
validation (Wolpert, 1992). At each node, a random subset 
of features (typically √p, where p is the number of features) 
is considered for splitting, decorrelating trees and enhancing 
robustness (Hastie et al., 2009). The final prediction is obtained by 
majority voting across trees for classification tasks:

ŷ =mode{ht (x)}
T
t=1,

where ht(x) is the prediction of the t-th tree, and T = 500 is the 
number of trees. The Gini impurity, used to evaluate splits, measures 
node purity:

Gini = 1−
1

∑
k=0

p2
k,

where pk is the proportion of class k (habitable or non-habitable) at 
the node (Louppe et al., 2013). Random Forest’s strengths include:

• Robustness to Noise: Bagging and feature randomization 
handles overfitting, ideal for noisy exoplanet data (Breiman, 
2001).

• OOB Error: Provides an unbiased estimate of generalization 
error without a separate validation set (Wolpert, 1992).

• Feature Importance: Shows how much each feature matters 
via mean decrease in Gini impurity, aiding physical 
interpretation (Louppe et al., 2013).

The algorithm’s robustness comes from:

• Bagging: Bootstrap aggregating reduces variance by averaging 
predictions across diverse trees.

• Random Feature Selection: At each split, a random subset of 
features (typically √p, where p is the number of features) is 
considered, decorrelating trees (Breiman, 2001).

We configure the model with 500 trees, tuning the number of 
features per split (mtry) via 5-fold cross-validation. Performance 
is evaluated using out-of-bag (OOB) error, which uses data not 
included in each tree’s bootstrap sample to estimate generalization 
error (Wolpert, 1992). Feature importance is computed using 
the mean decrease in Gini impurity, reflecting each feature’s 
contribution to classification accuracy (Louppe et al., 2013). 

4.3.2 XGBoost
XGBoost (Extreme Gradient Boosting), developed by Chen 

et al. (Chen and Guestrin, 2016), is a gradient boosting approach 
that builds sequential decision trees to optimize a loss function 
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with gradient descent and incorporating regularization to prevent 
overfitting (Chen and Guestrin, 2016).

Unlike Random Forest’s parallel trees, XGBoost constructs trees 
iteratively, with each tree correcting errors of the previous ones. For 
binary classification, the logistic loss function is:

L = −
n

∑
i=1
[yi log(ŷi) + (1− yi) log(1− ŷi)] +Ω,

where yi is the true label (the known outcome or value that 
the model is trying to predict for a given data point), ŷi is the 
predicted probability, and Ω is a regularization term, which acts 
as a complexity penalty applied to the structure and magnitude of 
the newly added tree ft, promoting generalization and preventing 
overfitting (Friedman, 2001).

Specifically, Ω is structured to penalize both the number of 
terminal nodes and the magnitude of the leaf weights (wj):

Ω( ft) = γT+ 1
2

λ
T

∑
j=1

w2
j + α

T

∑
j=1
|wj|,

where T is the number of leaf nodes, γ is the penalty for tree 
complexity, and λ and α are the coefficients for the L2 and L1 
penalties, respectively. The L2 penalty (λ) shrinks the leaf weights 
towards zero to ensure solution robustness, while the L1 penalty (α)
promotes sparsity by driving less significant weights to exactly zero, 
performing implicit feature selection.

The final prediction ŷi is the sum of the predictions from all T
trees in the ensemble:

ŷi =
T

∑
t=1

ft (xi) ,

where ft is the t-th tree, and T = 100 is the number of trees. Key 
features include:

• Gradient Boosting: Each tree fits the negative gradient of the 
loss, correcting residual errors (Friedman, 2001).

• Regularization (Complexity Control): The explicit inclusion 
of L1 and L2 penalties in the objective function controls the 
complexity of the decision trees, which is essential for avoiding 
overfitting in high-dimensional datasets (Chen and Guestrin, 
2016).

• Handling Imbalanced Data: XGBoost adjusts weights 
for minority class samples, improving performance on 
imbalanced data (Chen et al., 2004).

• Scalability: Optimized for sparse data, suitable for 
exoplanet datasets with missing values post-MICE 
imputation (van Buuren and Groothuis-Oudshoorn, 2011).

XGBoost’s ability to handle imbalanced data and provide feature 
importance via gain (improvement in loss function) makes it ideal 
for our task (Chen and Guestrin, 2016). We configure XGBoost 
with a logistic objective, tuning parameters (max depth = 6, 
learning rate = 0.1, number of rounds = 100) via 5-fold cross-
validation. Performance is assessed using the Area Under the 
Receiver Operating Characteristic Curve (AUC), which measures 
the trade-off between true and false positive rates (Fawcett, 2006). 

4.4 Model evaluation

The performance of the Random Forest and XGBoost models is 
evaluated using a suite of metrics designed to assess classification 
accuracy, agreement, and discriminative ability, especially in the 
context of the highly imbalanced exoplanet dataset (0.65% habitable 
planets). Each metric is grounded in statistical theory and justified 
for its relevance to the task of identifying rare habitable planets 
among a majority of non-habitable ones. The metrics are computed 
separately for the training set (4156 exoplanets) and test set (1385 
exoplanets), with confusion matrices providing detailed insights into 
classification outcomes (Lundberg and Lee, 2017). 

4.4.1 Confusion matrix
The confusion matrix summarizes classification outcomes in a 2x2 table:

It provides a detailed breakdown of correct and incorrect 
predictions, enabling computation of all above metrics (Kohavi et al., 
1994). For our imbalanced dataset, the confusion matrix highlights 
the model’s performance on the rare habitable class, where false 
negatives (missed habitable planets) are especially costly (He and 
Garcia, 2009). 

4.4.2 Accuracy
Accuracy measures the proportion of correct predictions across 

both classes (habitable and non-habitable):

Accuracy = TP+TN
TP+TN+ FP+ FN

,

where TP (true positives) is the number of habitable planets 
correctly classified, TN (true negatives) is the number of non-
habitable planets correctly classified, FP (false positives) is the 
number of non-habitable planets misclassified as habitable, and FN 
(false negatives) is the number of habitable planets misclassified 
as non-habitable (Kohavi et al., 1994). Accuracy is intuitive but 
can be misleading in imbalanced datasets, as a model predicting 
only the majority class (non-habitable) could achieve high accuracy 
despite failing to identify any habitable planets (He and Garcia, 
2009). For our dataset, with only 0.65% habitable planets, high 
accuracy is expected due to the dominance of non-habitable planets, 
necessitating additional metrics to evaluate performance on the 
rare class (Petigura et al., 2013). 

4.4.3 Cohen’s kappa
Cohen’s kappa measures classification agreement beyond 

what would be expected by chance, making it robust for 
imbalanced datasets:

κ =
Po −Pe

1−Pe
,

where Po is the observed agreement (accuracy), and Pe is the 
expected agreement under random classification, calculated from 
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marginal probabilities of each class (Cohen, 1960). Kappa ranges 
from −1 (complete disagreement) to 1 (perfect agreement), with 
0 indicating chance-level performance. In our context, kappa is 
important for assessing whether the model correctly identifies 
habitable planets beyond random guessing, given the extreme 
class imbalance (Landis and Koch, 1977). A kappa value above 
0.6 indicates substantial agreement, while above 0.8 indicates 
almost perfect agreement, providing a reliable measure of model 
robustness (Landis and Koch, 1977). 

4.4.4 Sensitivity and specificity
Sensitivity (true positive rate) measures the proportion of 

habitable planets correctly classified:

Sensitivity = TP
TP+ FN

,

while specificity (true negative rate) measures the proportion of 
non-habitable planets correctly classified:

Specificity = TN
TN+ FP

.

Sensitivity is crucial for our task, as missing habitable planets 
(false negatives) is costly when prioritizing targets for follow-up 
observations with telescopes like JWST (Gardner et al., 2006). 
Specificity ensures that non-habitable planets are not misclassified 
as habitable, reducing observational resource waste (Altman and 
Bland, 1994). In imbalanced datasets, high specificity is easier 
to achieve due to the majority class, but low sensitivity is 
common unless the model is tuned for the minority class (He and 
Garcia, 2009). 

4.4.5 Receiver operating characteristic (ROC) and 
area under the curve (AUC)

The ROC curve plots the true positive rate (TPR or sensitivity) 
against the false positive rate (FPR or 1 - specificity) at various 
classification thresholds (Fawcett, 2006). The AUC quantifies the 
model’s ability to discriminate between classes, ranging from 0.5 
(random guessing) to 1 (perfect discrimination). For a binary 
classifier, the ROC curve is defined by:

TPR (θ) =
TP (θ)

TP+ FN
, FPR (θ) =

FP (θ)
TN+ FP

,

where θ is the threshold for classifying a planet as habitable (Hand 
and Till, 2001). AUC is especially valuable for imbalanced datasets, 
as it evaluates performance across all thresholds, unlike accuracy, 
which depends on a single threshold (Bradley, 1997). An AUC 
close to 1 indicates that the model can effectively distinguish 
habitable from non-habitable planets, important for prioritizing rare 
candidates (Fawcett, 2006). 

4.4.6 Precision-recall curve
The precision-recall curve plots precision (positive predictive 

value) against recall (sensitivity):

Precision = TP
TP+ FP

, Recall = TP
TP+ FN

.

Precision measures the proportion of planets predicted as 
habitable that are actually habitable, while recall is equivalent 
to sensitivity (Davis and Goadrich, 2006). The precision-recall 

curve is more informative than the ROC curve for imbalanced 
datasets, as it focuses on the minority class (habitable planets) 
(Saito and Rehmsmeier, 2015). A high area under the precision-
recall curve indicates that the model achieves high precision without 
sacrificing recall, essential for identifying true habitable planets 
while minimizing false positives (Davis and Goadrich, 2006). In our 
case, low precision is expected due to the rarity of habitable planets, 
making this metric important for assessing model performance on 
the positive class (Petigura et al., 2013). 

4.4.7 F1-score
For classification tasks involving potentially imbalanced classes, 

standard accuracy can be misleading (Sokolova and Lapalme, 
2009). In this study, we aim to classify planets into two primary 
categories (e.g., “Potentially Habitable” vs. “Non-Habitable”). Given 
that the number of positive examples (potentially habitable planets) 
is expected to be significantly smaller than the negative examples, 
the dataset is inherently imbalanced.

To provide a robust and representative measure of model 
performance, the F1-Score is employed as the primary evaluation 
metric. The F1-Score is the harmonic mean of precision and recall, 
offering a single score that balances both concerns.

The F1-Score is formally defined by the equation:

F1− Score = 2× Precision×Recall
Precision+Recall

where:

• Precision is the ratio of correctly predicted positive 
observations to the total predicted positive observations 
( TruePositives

TruePositives+FalsePositives
). High precision means the model 

makes few false-positive errors.
• Recall (Sensitivity) is the ratio of correctly predicted 

positive observations to all observations in the actual class 
( TruePositives

TruePositives+FalseNegatives
). High recall means the model misses 

few positive observations.

By using the harmonic mean, the F1-Score penalizes models 
that favor one metric over the other. A high F1-Score indicates that 
the model exhibits both high precision (minimizing false alarms 
about habitability) and high recall (maximizing the identification of 
all truly potentially habitable planets), making it an ideal balanced 
metric for assessing the success of the classification model. 

4.5 Uncertainty treatment

To assess the stability of predictions under realistic measurement 
uncertainties, we conducted Monte Carlo simulations with 1000 
iterations. Each iteration perturbed the twelve input features with 
Gaussian noise based on typical observational errors: pl_orbper 
(5%), pl_orbsmax (5%), pl_dens (25%), pl_orbeccen (5%), pl_
orbincl (5%), st_teff (2%), st_rad (5%), st_mass (20%), st_met (10%), 
st_age (20%), st_dens (20%), sy_pm (10%). These uncertainties 
reflect instrument precision from missions like Kepler and radial 
velocity surveys (Burke et al., 2015; Rogers, 2015). For each 
perturbed dataset, the habitability label was recalculated based on 
the original criteria, and the Random Forest and XGBoost models 
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were retrained. Performance metrics were averaged across iterations 
to quantify stability and identify possible biases. This approach 
allows us to evaluate how errors in parameter estimation propagate 
to classification outcomes, serving as a strong test of model reliability 
under real-world conditions. 

5 Results

This section presents the classification performance of Random 
Forest and XGBoost on the exoplanet dataset, analyzing training 
and test set results separately to assess model robustness and 
generalization.

The preprocessing steps resulted in a cleaned dataset with no 
missing values after imputation using MICE. The dataset was filtered 
to include only the twelve parameters with VIF <  5: pl_orbper (VIF 
= 1.09), pl_orbsmax (VIF = 1.08), pl_dens (VIF = 1.02), pl_orbeccen 
(VIF = 1.02), pl_orbincl (VIF = 1.01), st_teff (VIF = 1.82), st_rad 
(VIF = 1.55), st_mass (VIF = 1.72), st_met (VIF = 1.04), st_age (VIF 
= 1.04), st_dens (VIF = 1.54), sy_pm (VIF = 1.02). These values 
indicate low multicollinearity, ensuring stable regression coefficients 
if used in linear models and reducing redundancy in tree-based 
models like Random Forest and XGBoost. High VIF parameters 
excluded include pl_rade (correlated with pl_radj and pl_bmasse), 
pl_bmasse (correlated with pl_bmassj), st_lum (correlated with st_
teff and st_rad), among others, as they inflate variance and could lead 
to unreliable feature importance.

The dataset comprises 5541 exoplanets after preprocessing. The 
habitability labeling identified 36 habitable planets out of 5541 
(almost 0.65% of the whole dataset), confirming severe imbalance. 
After applying ROSE with both over- and under-sampling, the 
balanced training set comprised 8312 samples (4156 habitable, 
4156 non-habitable), while the test set remained unbalanced at 
1385 samples (1376 non-habitable, 9 habitable) to reflect real-
world distributions. Performance metrics include accuracy, kappa, 
sensitivity, specificity, ROC, and precision-recall curves, with 
confusion matrices for detailed insights. 

5.1 Random forest results

The Random Forest model, trained on the balanced dataset with 
the twelve parameters, achieved an out-of-bag (OOB) error rate 
of 0.01%, showing very good internal validation. On the test set, 
it yielded an accuracy of 99.93% (95% CI: 0.9969–1.0000, Kappa 
= 0.9408). The confusion matrix for the test set is obtained as:

Model performance was evaluated using standard metrics 
derived from the confusion matrix, including two measures of 
overall correctness. Accuracy is defined as the raw proportion of all 
correct classifications:

Accuracy = TP+TN
TP+TN+ FP+ FN

In contrast, Balanced Accuracy is calculated as the arithmetic 
mean of class-specific sensitivities (Sensitivity and Specificity):

BalancedAccuracy = 1
2
( TP

TP+ FN
+ TN

TN+ FP
)

This provides a more robust measure of performance in 
imbalanced datasets by weighting the success on the positive 
and negative classes equally. A critical baseline for comparison is 
the No Information Rate (NIR), which is the proportion of the 
majority class in the dataset. This represents the maximum accuracy 
achievable by a trivial classifier that predicts the prevalent class for 
all instances. To confirm the model’s predictive superiority over this 
baseline, a one-sided binomial test is performed against the null 
hypothesis that the true accuracy (Acc) is no greater than the NIR 
(H0:Accuracy ≤NIR). The resulting p-value (Acc >  NIR) reflects 
the probability of observing the current model accuracy if the true 
underlying performance were only the NIR, allowing for statistical 
validation that the model performs significantly better than chance. 
Additionally, McNemar’s test is utilized to assess the symmetry of the 
model’s errors by testing the null hypothesis that the number of False 
Positives is equal to the number of False Negatives (H0:FP = FN).

The confusion matrix revealed 1376 true negatives, 8 true 
positives, 0 false positive, and 1 false negative. Sensitivity (recall for 
habitable class) was 0.8889, specificity 1.0000, positive predictive 
value (precision) 1.0000, F1 score of 0.9474, and negative predictive 
value 0.9993. The balanced accuracy of 0.9444 shows the model 
can correctly classify for almost 94.44% times, on an average, for 
both classes despite the test set imbalance. The no information 
rate (accuracy of always predicting non-habitable) is 0.9935, 
and the p-value (Acc >  NIR) <  0.0012 confirms significantly 
better performance. McNemar’s test p-value = 1.0000 indicates no 
significant difference in error types.

Variable importance, measured by mean decrease in Gini 
impurity, highlights pl_orbsmax as the top contributor, followed by 
st_teff and pl_dens, aligning with their roles in defining the habitable 
zone and planetary composition. 

5.2 XGBoost results

XGBoost, with hyperparameters optimized for AUC, showed 
a training AUC progression from 0.9954 at iteration 1 to 1.0000 
by iteration 99, demonstrating rapid convergence. On the test 
set, accuracy was 99.93% (95% CI: 0.9960–1.0000, Kappa = 
0.947). The confusion matrix for the test set is obtained as:

The confusion matrix indicated 1375 true negatives, 9 true 
positives, 1 false positive, and 0 false negative. Sensitivity was 
1.0000, specificity 0.9993, positive predictive value 0.9000, negative 
predictive value 1.0000, F1 score of 0.9996, and balanced accuracy 
0.9996. The p-value (Acc >  NIR) = 0.0012 confirms superiority 
over the baseline. McNemar’s test p-value = 1.0000 suggests 
balanced errors.
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FIGURE 4
XGBoost ROC curve.

FIGURE 5
XGBoost precision-recall curve.

The ROC curve (Figure 4) exhibits an AUC close to 1, indicating 
perfect discrimination. The precision-recall curve (Figure 5) 
shows high precision across recall levels, crucial for the 
rare habitable class. The AUC for the precision-recall
curve is 0.9.

5.3 Uncertainty analysis results

To assess the robustness and stability of the model’s 
classifications, especially for high-risk predictions, we conducted 
a simulation-based uncertainty analysis. This involved making 
multiple independent prediction runs (implied by number of 
simulations, e.g., 100 times, here) for each instance in the test set. For 
every instance, we calculated prob1 (p), defined as the proportion of 
runs that resulted in a prediction of class “1” (habitable). This value 
serves as an empirical estimate of the prediction probability for the 
habitable class. A high “p” (near 1) or a low “p” (near 0) indicates a 
stable, consistent classification. To quantify prediction instability, we 
derived the Uncertainty Score using the variance of a Bernoulli trial: 
UncertaintyScore = p× (1− p). This score is maximized at p = 0.5, 
representing maximum ambiguity, and tends toward zero for highly 
consistent predictions (i.e., p→ 0 or p→ 1). The resulting boxplot 
visualizes the distribution of this Uncertainty Score, stratified by the 
Actual Habitability Class (0 = Not Habitable, 1 = Habitable), allowing 
us to compare how consistently the model predicts instances that 
are actually habitable versus those that are not.

Monte Carlo simulations with 1000 perturbations yielded 
an average accuracy of 99.7% ± 0.2% for Random Forest and 
99.5% ± 0.3% for XGBoost. Standard deviations in sensitivity and 
specificity were low ( < 0.01), indicating robustness. However, in 
5% of runs, borderline planets (e.g., with pl_orbsmax near 2.0 AU) 
flipped classification due to perturbations, highlighting sensitivity to 
measurement errors in semi-major axis (5% uncertainty) and mass 
(20%). From Figure 6, we can observe that the median uncertainty 
score for class ‘1’ is slightly higher than for class “0”. Figure 7 shows 
that instances with a true label of “1” have a wider spread in their “p” 
values, indicating more variable predictions under the influence of 
measurement error. These plots suggest the model classifications for 
habitable planets are sensitive to input uncertainty.

5.4 Intersection and verification results

The seven defining parameters identified 36 habitable planets. 
Verification with the twelve low-VIF parameters classified all 36 
identically, with no discrepancies. This intersection confirms that 
additional parameters like st_rad and sy_pm support the habitability 
assessment without contradicting the defining criteria, helping avoid 
false positives caused from unobserved factors. 

6 Discussion

6.1 Physical interpretation of selected 
parameters

The twelve parameters with VIF <  5 provide a complete yet 
non-redundant view of habitability. Orbital period (pl_orbper) 
relates to dynamical stability and seasonal variations, influencing 
climate through orbital resonance effects (Kopparapu et al., 
2013). Semi-major axis (pl_orbsmax) defines the habitable 
zone, where stellar flux allows liquid water; values 0.3–2.0 AU 
correspond to Earth-like insolation for Sun-like stars (Kasting et al., 
1993). Density (pl_dens) distinguishes rocky (3–7 g/cm3) from 
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FIGURE 6
Box-plot showing the prediction of uncertainty by actual 
habitability class.

FIGURE 7
Prediction stability and bias visualization.

gaseous planets, essential for surface gravity and atmosphere 
retention (Valencia et al., 2007). Eccentricity (pl_orbeccen) < 0.3 
ensures stable temperatures, preventing extreme climate swings
(Williams and Pollard, 2002).

Orbital inclination (pl_orbincl) affects transit detectability 
and potential for tidal locking, impacting habitability around 
M-dwarfs (Barnes, 2017). Stellar effective temperature (st_teff) 

4800–6500 K mimics G-type stars, balancing UV radiation and 
energy output (Seager, 2013). Stellar radius (st_rad) and mass (st_
mass) determine luminosity and lifetime; larger radii may extend 
habitable zones but shorten stellar life (Kasting et al., 1993). 
Metallicity (st_met) influences planetary formation, with metal-
rich stars favoring rocky planets (Fischer and Valenti, 2005). Stellar 
age (st_age) affects evolutionary stage and flare activity, important 
for long-term habitability (Meadows et al., 2018). Stellar density 
(st_dens) proxies internal structure, correlating with magnetic 
fields protecting atmospheres (Rogers, 2015). Proper motion (sy_
pm) indicates galactic environment, potentially affecting cosmic 
ray exposure (Petigura et al., 2013).

The exclusion of other parameters (e.g., pl_insol, st_lum) 
suggests correlations with the selected features. For example, 
insolation flux is derived from pl_orbsmax and st_lum, reducing 
its independent contribution. The stellar temperature (st_teff)
fundamentally influences stellar luminosity (st_lum). In the 
context of the Habitable Zone, st_lum and the planet’s maximum 
orbital distance (pl_orbsmax) are highly interdependent because 
pl_orbsmax is, by definition, determined by the st_lum required 
for liquid water. This high correlation justifies excluding st_lum to 
prevent multicollinearity in a feature set. However, retaining st_teff
is valuable because it provides unique information about the star’s 
spectral energy distribution (i.e., its color), which independently 
influences a planet’s atmospheric chemistry and habitability 
(e.g., through greenhouse forcing and cloud properties) in ways 
pl_orbsmax alone cannot account for. The model’s dependence 
on pl_orbsmax and pl_orbper in the reduced set implies that, 
for the purpose of classification within our defined criteria, the 
information contained in stellar temperature and luminosity is 
sufficiently represented by their influence on the planet’s orbital 
characteristics within the habitable zone. Future investigations 
could explore scenarios where st_teff and st_lum become more 
important, especially for diverse stellar types beyond Sun-like stars 
or in assessing finer details of habitability.

These parameters, while including four from the defining set, 
incorporate additional factors that could modulate habitability, 
such as stellar evolution (age, density) and observational 
context (proper motion), providing a more clear overall
assessment. 

6.2 Statistical findings and analysis

The near-perfect accuracies (99.93% for both the techniques: 
Random Forest and XGBoost) come from the models’ ability to 
capture non-linear relationships in the low-VIF set. Random Forest’s 
bagging reduces variance, with low OOB error (0.01%) indicating 
generalization (Breiman, 2001). XGBoost’s gradient boosting 
optimizes for AUC, achieving perfect training convergence. 
Moreover, Kappa increases from 0.9408 in Random Forest to 
0.947 in XGBoost, suggesting minor overfitting for Random Forest 
addressed by regularization (Chen and Guestrin, 2016).

ROSE balancing was crucial; without it, a naive classifier 
achieves 99.35% accuracy by predicting all non-habitable, as well 
as the F1-score would be 0 for habitable class. Post-ROSE, F1-score 
spikes to 0.95, as well as the classifier achieves an accuracy of 99.93%, 
demonstrating improved minority recall (Menardi and Torelli, 
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2014). The confusion matrices show minimal errors: Random 
Forest’s one false negative (habitable planet misclassified as non-
habitable) or XGBoost’s one false positive (non-habitable planet 
misclassified as habitable) may arise from parameter overlaps near 
boundaries.

VIF selection eliminated redundancies, e.g., excluding pl_rade 
(VIF > 5 due to correlation with pl_bmasse, ρ ∼ 0.8), preventing 
inflated importance (Kuhn and Johnson, 2013). The low VIFs ( < 2) 
ensure orthogonal features, enhancing interpretability.

Uncertainty simulations reveal robustness, with standard 
deviation in accuracy < 0.4%. These simulations also reveal 
analytical bias: positive errors in pl_orbsmax (e.g., underestimation 
in distance) could falsely classify hot planets as habitable, while 
mass overestimation might mislabel rocky planets as gaseous. 
Density uncertainties (25%) have the highest impact, flipping ∼2%
of cases, emphasizing the need for precise transit/radial velocity 
measurements (Burke et al., 2015). Compared to the literature, our 
error models align with typical uncertainties (e.g., Kepler precision 
∼5% for radius) (Rogers, 2015).

The intersection verification clearly shows that the defining 
parameters’ habitability is not contradicted by additional factors, 
reducing false positives. Statistically, perfect agreement suggests 
the twelve parameters capture sufficient variance, with potential 
for dimensionality reduction via Principal Component Analysis 
(PCA) in future.

We have defined a habitable exoplanet as one that 
simultaneously satisfies all of our selected physical criteria. The 
number of physical parameters under consideration are seven, 
namely: pl_rade, pl_dens, pl_orbeccen, pl_bmasse, st_teff, st_lum, 
pl_orbsmax. It is expected that if we classify the data based on these 
seven parameters then we will get an almost 100% correct decision. 
Our hypothesis is that the habitability assessment, based on these 
seven physical criteria, may be compromised by the unexamined 
effects of other parameters, meaning some identified exoplanets 
might not genuinely be habitable. To verify the robustness and 
independence of our initial seven-parameter habitability criteria, 
we rigorously tested the initial classification against an expanded 
feature set. The new, twelve-parameter set was specifically curated 
to minimize multicollinearity and introduce crucial physical 
characteristics that were absent in the initial model, such as stellar 
system properties and orbital dynamics (e.g., pl_orbincl, st_age, 
and sy_pm). The expanded set includes: pl_orbsmax, pl_dens, 
pl_orbeccen, st_teff, pl_orbincl, pl_orbper, st_rad, st_mass, st_met, 
st_age, st_dens, and sy_pm. The resulting observation is highly 
significant: when we repeated the classification using all twelve 
features, the outcome was identical - all planets retained their 
original classification. This finding provides crucial scientific 
validation that the habitability constraints imposed by the original 
seven parameters are not arbitrary. Instead, they appear to be so 
strongly rooted in the fundamental physics of the system that the 
addition of secondary, non-redundant parameters does not alter the 
final habitability assessment. Therefore, this analysis allows us to 
conclude with significantly greater confidence that the habitability 
status derived from the original seven parameters is consistent and 
reliable. For new exoplanet discoveries where the full complement of 
twelve parameters is known, this dual consistency offers a validated, 
high-confidence classification. 

6.3 Limitations

Limitations of the study include conservative criteria excluding 
subsurface habitables (Yang et al., 2013), synthetic data bias 
from ROSE potentially overfitting noise (Chawla et al., 2002), 
and a static dataset missing recent discoveries like TOI-
700 d (Gilbert et al., 2020). Analytically, imbalance techniques 
may not generalize to unknown distributions, and VIF threshold 
< 5 is arbitrary—sensitivity analysis with VIF < 3 yielded similar 
results but fewer parameters. A formal evaluation of imputation 
effectiveness through simulating missing data in a complete subset 
was not performed in this study, future work could incorporate such 
an analysis to quantitatively assess the accuracy of MICE imputation, 
especially for important habitability parameters. 

6.4 Implications

The high performance of our models, achieving accuracies 
exceeding 99% with twelve low-VIF parameters, has huge 
implications for astrobiology and exoplanet science. This approach 
not only demonstrates the efficacy of machine learning in classifying 
habitability but also indicates its role in prioritizing observational 
targets amid the vast exoplanet catalog. By verifying the intersection 
of habitable planets identified through the seven defining parameters 
with classifications from the expanded set, our approach handles 
potential errors from unobserved factors, making habitability 
assessments more reliable. This is especially significant in a 
field where detection biases favor large, close-in planets, often 
overlooking Earth-like candidates in the habitable zone (HZ)—the 
orbital region where liquid water can exist on a planet’s surface. 

7 Conclusion

This study demonstrates that Random Forest and XGBoost 
classify exoplanet habitability with accuracies exceeding 99% 
using twelve low-VIF parameters, verified through intersection 
with seven defining criteria. ROSE handles imbalance, ensuring 
high F1-scores, while Monte Carlo simulations confirm stability 
under uncertainties, though borderline biases warrant caution. The 
selected parameters provide an overall, non-redundant assessment, 
reinforcing habitability beyond definitions. Analytically, this reduces 
false positives and enhances confidence for new discoveries. Future 
work could incorporate atmospheric data, adaptive imbalance 
methods, and dynamic datasets to refine models, helping the search 
for life with telescopes like JWST.

The significance of this study lies in its contribution to the 
quantitative evaluation of planetary habitability, a measure central 
to astrobiology that characterizes a planet’s potential to develop and 
sustain life-supporting environments. Traditional assessments rely 
on simplistic HZ definitions, but our ML pipeline captures non-
linear interactions among parameters like orbital eccentricity and 
stellar metallicity, which influence climate stability and atmospheric 
retention. For instance, the inclusion of stellar age and density in 
the low-VIF set allows modeling of evolutionary effects, such as 
flare activity in young stars that could strip atm, thereby refining 
habitability predictions beyond static models. This analytical depth
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is crucial for identifying the class of exoplanets with the most Earth-
like characteristics and HZ placements, as evidenced by studies 
estimating 45 candidates based on atmospheric composition.

The importance of our work extends to guiding future space 
missions and resource allocation. With telescopes like JWST and 
ARIEL focused on characterizing exoplanet atmospheres, our 
models can prioritize targets such as those in the HZ of Sun-like 
stars, which require long observation periods to confirm multiple 
orbits. By using only twelve parameters, the approach minimizes 
data requirements, making it feasible for preliminary screenings of 
new discoveries from TESS or PLATO, where incomplete datasets 
are common. This efficiency is vital in an era of data overflow, where 
over 6000 exoplanets demand rapid triage for bio-signature searches, 
such as oxygen or methane detection.

Furthermore, the study’s emphasis on uncertainty treatment via 
Monte Carlo simulations highlights its significance in addressing 
observational limitations. Exoplanet parameters often carry errors 
from transit timing or radial velocity measurements, and our 
analysis shows how these propagate to classification biases, 
especially for borderline HZ planets. This robustness testing is 
important for interdisciplinary applications, connecting statistics 
and planetary science to inform geophysical models of exoplanet 
interiors, which are key to understanding formation, evolution, and 
long-term habitability.

Overall, this research advances the scientific forum on exoplanet 
futures by providing a computationally efficient, interpretable 
tool that complements traditional methods. Its importance is 
amplified in the search for life, where identifying habitable 
candidates could pivot humanity’s understanding of our place in 
the universe, encouraging worldwide collaboration in astrobiology 
and potentially yielding breakthroughs in detecting extraterrestrial 
environments conducive to life. By elongating the scope from 
detection to detailed habitability profiling, our study paves the way 
for targeted missions that could confirm Earth-like worlds, turning 
speculative astrobiology into empirical science.
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