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Habitable exoplanet - a statistical
search for life
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Department of Statistics, University of Calcutta 35, Kolkata, West Bengal, India

Introduction: The identification of habitable exoplanets is an important
challenge in modern space science, requiring the combination of planetary and
stellar parameters to assess conditions that support life.

Methods: Using a dataset of 5867 exoplanets from the NASA Exoplanet Archive
(as of April 3, 2025), we have applied Random Forest and eXtreme Gradient
Boosting (XGBoost) to classify planets as habitable or non-habitable based on
32 continuous parameters, including orbital semi-major axis, planetary radius,
mass, density, and stellar properties. Habitability is defined through physics-
based criteria rooted in the presence of liquid water, stable climates, and Earth-
like characteristics using seven key parameters: planetary radius, density, orbital
eccentricity, mass, stellar effective temperature, luminosity, and orbital semi-
major axis. To make the classification accurate, we deal with multicollinearity and
we checked the Variance Inflation Factor (VIF). We selected parameters with VIF
< 5: planetary orbital period, semi-major axis, density, eccentricity, inclination;
stellar effective temperature, radius, mass, metallicity, age, density, and total
proper motion. Although the defining parameters are used for labeling, only
those with low VIF (orbital semi-major axis and eccentricity, planetary density,
and stellar effective temperature) are retained for modeling, supplemented by
additional low-VIF parameters. Class imbalance is addressed using the Random
Over-Sampling Examples (ROSE) technique with both over- and under-sampling
to create a balanced dataset.

Results: The models achieve classification accuracies of 99.99% for Random
Forest and 99.93% for eXtreme Gradient Boosting (XGBoost) on the test set,
with high sensitivity and specificity. We analyze the data distributions of the
key defining parameters, revealing skewed distributions typical of exoplanet
populations. Parameter uncertainties are incorporated through Monte Carlo
perturbations to assess prediction stability, showing minimal impact on overall
accuracy but possible biases in borderline cases. We consider the intersection of
habitable exoplanets identified by the seven defining parameters and verify with
the twelve low-VIF parameters, confirming consistent classification and making
habitability assessments more reliable.

Discussion: Our findings highlight the potential of machine learning techniques
to prioritize exoplanet targets for future observations, providing a fast and
understandable approach for habitability assessment.

exoplanets, habitability, machine learning, XGBoost, habitable zone, planetary science,
class imbalance, Monte Carlo simulation
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1 Introduction

The discovery of over 6000 exoplanets, since the first confirmed
detection in 1992 (Wolszczan and Frail, 1992), has changed our
understanding of planetary systems and their potential to host life.
This fast growth of exoplanet catalogs, driven by missions like
Kepler, TESS, and ground-based surveys, has shifted the focus
from mere detection to characterization, especially the search
for habitable worlds. Habitable exoplanets are those capable of
supporting liquid water and potentially life, relying on a complex
interplay of planetary and stellar properties such as orbital distance,
planetary size, composition, atmospheric retention, and stellar
radiation (Kasting et al., 1993; Kopparapu et al, 2013). The
habitable zone (HZ), the orbital region where liquid water can
exist on a planet’s surface, is influenced by stellar luminosity,
temperature, and planetary albedo, making any habitability
assessment complex (Seager, 2013).

The NASA Exoplanet Archive!, a complete repository of
exoplanet data maintained by the NASA Exoplanet Science Institute,
provides a wealth of parameters from various detection methods,
including transit photometry, radial velocity, microlensing, and
direct imaging (Akeson et al., 2013). This archive includes over
6000 confirmed exoplanets as of now, with parameters spanning
orbital characteristics (e.g., period, semi-major axis, eccentricity),
planetary physical properties (e.g., radius, mass, density, equilibrium
temperature), and host star attributes (e.g., effective temperature,
luminosity, metallicity). Such data enable data-driven approaches
to classify habitability, but the high dimensionality, missing values,
and biases in observations (e.g., favoring large, close-in planets)
necessitate advanced analytical techniques.

Machine learning (ML) is useful for analyzing high-dimensional
astronomical datasets, identifying patterns that slipped through
the net of traditional methods, and prioritizing candidates for
follow-up observations with instruments like the James Webb
Space Telescope (JWST) (Gardner et al., 2006). Supervised ML
algorithms, such as Random Forest (Breiman, 2001) and eXtreme
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), excel in
classification tasks by learning non-linear relationships and handling
imbalanced classes, which are common in exoplanet data where
habitable candidates are rare. Previous studies have applied ML to
exoplanet detection (e.g., transit signal classification) (Shallue and
Vanderburg, 2018; Ansdell et al., 2018) and characterization (e.g.,
atmospheric retrieval) (Soboczenski et al., 2018; Yip et al., 2021),
but habitability classification remains underexplored due to the
lack of ground truth labels and the subjective nature of habitability
definitions.

In this study, we employ Random Forest and XGBoost to classify
exoplanets as habitable or non-habitable based on 32 continuous
parameters from the NASA Exoplanet Archive. Habitability is
defined through physics-based criteria rooted in the presence
of liquid water, stable climates, and Earth-like characteristics,
using seven key parameters: planetary radius (pl_rade), density
(pl_dens), orbital eccentricity (pl_orbeccen), mass (pl_bmasse),
stellar effective temperature (st_teff), luminosity (st_lum), and
orbital semi-major axis (pl_orbsmax). These criteria draw from

1 https://exoplanetarchive.ipac.caltech.edu/.
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theoretical models, such as the circumstellar habitable zone
and planetary interior structures, ensuring a grounded approach
(Kasting et al., 1993; Valencia et al., 2007).

To deal with multicollinearity and ensure model stability, we
perform Variance Inflation Factor (VIF) analysis, selecting twelve
parameters with VIF < 5: pl_orbper, pl_orbsmax, pl_dens, pl_
orbeccen, pl_orbincl, st_teff, st_rad, st_mass, st_met, st_age, st_
dens, stellar proper motion (sy_pm). This set includes four from
the defining criteria and eight additional parameters, allowing
verification of habitability beyond the initial definition. Class
imbalance is handled using the Random Over-Sampling Examples
(ROSE) technique, and parameter uncertainties are modeled via
Monte Carlo simulations to assess prediction robustness.

A key objective is to verify the intersection of habitable planets
identified by the seven defining parameters with classifications
from the twelve low-VIF parameters. This approach tests whether
additional factors support or contradict the initial assessment,
providing greater confidence and reducing potential errors from
unobserved variables. The high performance with the expanded
set suggests that habitability can be assessed more precisely, aiding
prioritization for future missions.

The article is structured as follows: Section2 presents a
detailed description of the dataset, highlighting its key features,
preparation steps, and the habitability criteria of an exoplanet.
Section 3 analyzes data distributions of key parameters, highlighting
biases in observations and implications. Section 4 describes the
dataset, preprocessing, habitability criteria, multicollinearity check,
class balancing, ML models, and uncertainty treatment. Section 5
presents classification performance, including confusion matrices,
Receiver Operating Characteristics (ROC) curves, and uncertainty
results. Section 6 provides physical and statistical interpretations,
addressing limitations and implications. Section 7 concludes with
future directions for exoplanet research.

2 Dataset

The dataset was obtained from the NASA Exoplanet
Archive? on 3 April 2025, comprising 5867 exoplanets with 98
parameters (Akeson et al, 2013). These parameters encompass
(e.g., orbital
characteristics (e.g., period, semi-major axis, eccentricity), planetary

discovery methods radial velocity, transit),
properties (e.g., radius, mass, density), and stellar attributes (e.g.,
effective temperature, radius, mass, metallicity, luminosity). From
this, we selected 32 continuous numerical variables relevant to
habitability, based on their physical significance and availability in

the dataset. These include:

« Planetary Parameters including Orbital ones: Orbital period
(pl_orbper, days), semi-major axis (p1_orbsmax, AU),
angular separation (p1_angsep, arcsec), radius (p1_rade,
Earth radii; pl_radj, Jupiter radii), mass (pl_bmasse,
Earth masses; pl_bmassj, Jupiter masses), density (p1_
dens, g/cm3 ), orbital eccentricity (p1_orbeccen), orbital
inclination (p1l_orbincl, degrees).

2 https://exoplanetarchive.ipac.caltech.edu/.
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o Stellar Parameters: Effective temperature (st_teff, K),
radius (St _rad, solar radii), mass (St _mass, solar masses),
metallicity (st_met, dex), luminosity (st_lum, log solar
units), surface gravity (st _1ogg, log,, cm/s*), age (st_age,
Gyr), density (st_dens, g/cm?).

« System and Observational Parameters: Total proper motion
(sy_pm, mas/yr), distance (sy_dist, pc), parallax (Sy_
p1lX, mas), and various stellar magnitudes including Johnson
(blue (sy_bmag), visual (sy_vmag)), 2MASS(J (sy_jmag),
H (sy_hmag),K(sy_kmag)), WISE (W1 (sy _wImag), W2
(sy_w2mag), W3 (sy_w3mag), W4 (sy_w4mag)), Gaia
(sy_gaiamag), and TESS (sy_tmag).

These parameters are chosen for their relevance to habitability,
as they influence a planet’s ability to maintain liquid water,
stable atmospheres, and Earth-like conditions (Kasting et al., 1993;
Kopparapu et al., 2013; Seager, 2013). This selection excludes
categorical and flag variables to focus on quantitative features
suitable for ML modeling.

We note that the raw list of 32 continuous numerical variables
includes some trivially redundant features, such as the duplication
of planetary mass and radius parameters across different common
astronomical units (e.g., M, and M, or Rg and R)). This redundancy
is characteristic of the initial data ingestion from public archives,
which often provide multiple unit formats for user convenience.
This raw set is utilized to ensure a comprehensive extraction of all
source data.

However, to maintain a minimal and non-collinear feature set
for model training, the downstream Feature Preprocessing and
Selection stage (detailed in Section 4.1) is specifically designed
to systematically identify and eliminate these features using a
multicollinearity check, ensuring the final input features are
orthogonal.

2.1 Preprocessing

Data preprocessing is important to ensure model compatibility
and reliability. Exoplanet datasets are often incomplete due to
observational challenges, such as limited precision in radial velocity
or transit measurements (Burke et al., 2015). We preprocess the
dataset to ensure quality and suitability for ML analysis:

o Feature Selection: We retain 32 continuous numerical
parameters, excluding categorical variables (e.g., discovery
method) and flags, which are less suitable for ML modeling.

o Missing Data Imputation: Missing values, common in
parameters like pl_bmasse and pl_dens, are imputed
using Multiple Imputation by Chained Equations (MICE) with
the Classification and Regression Trees (CART) algorithm
(van Buuren and Groothuis-Oudshoorn, 2011). MICE models
each missing value as a function of other variables, preserving
data relationships and reducing bias compared to mean
imputation (Azur et al, 2011). This approach is especially
effective for astronomical datasets, where missing values
are prevalent due to observational constraints (Banerjee and
Kumar Chattopadhyay, 2024). Initially, we identified columns
with more than 25% missing values, resulting in the exclusion
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of parameters like pl_trueobliq and st_rotp. Rows with
significant missing data were filtered out, reducing the dataset
from 5867 to 5541 samples. Missing values in the remaining
32 variables were imputed using Multiple Imputation by
Chained Equations (MICE) with the CART method and
five imputations, ensuring robust handling of non-random
missingness (van Buuren and Groothuis-Oudshoorn, 2011).
The imputation process was iterated to stabilize results and to
confirm a fully complete dataset.

Feature Scaling: Finally, all features were scaled to zero mean
and unit variance using z-score normalization:

where y is the mean and o is the standard deviation of each feature.
This ensures that features with different scales (e.g., p1_orbsmax
in AU vs. st_teff in K) contribute equally to ML algorithms
(Hastie et al., 2009). It will reduce the scale-induced biases in tree-
based models.

o Data Splitting: The dataset is split into 75% training

and 25% test sets using stratified sampling to maintain
distribution of habitable and non-habitable
(Kohavi 1994).
techniques, such as those applied in galaxy formation studies

the class

planets et al, Multivariate statistical
(Banerjee et al., 2025; Banerjee et al., 2024), underscore the
importance of robust data preprocessing in astrophysical
research. These methods ensure that the dataset is complete
and representative, allowing reliable model training and

evaluation for exoplanet habitability classification.

2.2 Habitability criteria

Habitability is defined using physics-based criteria based on
seven physical parameters that reflect conditions conducive to liquid
water and Earth-like environments, informed by theoretical and
observational studies (Kasting et al., 1993; Kopparapu et al., 2013;
Seager, 2013). The criteria, applied as an intersection, are:

o Planet Radius: 0.5 <pl_rade<2.0 Earth radii. This range
targets rocky planets capable of retaining atmospheres. Planets
smaller than 0.5 R, may lack sufficient gravity, while those
larger than 2 R, are likely gas-rich sub-Neptunes (Lopez and
Fortney, 2014; Rogers, 2015).

o Planet Density: 3.0 <pl_dens<7.0 g/cm
compositions similar to Earth’s (5.5 g/cm®), excluding

3. 'This ensures

gas giants and low-density planets (Valencia et al., 2007;
Fortney et al., 2007).

o Orbital Eccentricity: pl_orbeccen <0.3. Low eccentricity
minimizes extreme temperature variations, ensuring stable
climates (Williams and Pollard, 2002; Charbonneau and
David, 2015).

« Planet Mass: 0.1 < pl_bmasse < 10 Earth masses. This includes
super-Earths and sub-Neptunes with sufficient gravity for
atmospheres and geological activity (Luger et al., 2015;
Unterborn et al., 2016).

frontiersin.org
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o Stellar Effective Temperature: 4800 < st_teff < 6500 K. This
corresponds to Sun-like stars (G and late F types), whose
habitable zones support liquid water without extreme tidal
locking or flaring, as seen in M-dwarfs (Kopparapu et al., 2013;
Shields et al., 2016).

o Stellar Luminosity: —0.5 <st_lum <1.0 (log solar units).
This ensures stellar radiation levels compatible with Earth-
like conditions, avoiding excessive heating or cooling
(Kasting et al., 1993; Rushby et al., 2013).

o Orbital Semi-Major Axis: 0.3 < pl_orbsmax <2.0 AU. This
places planets within the conservative habitable zone, where
stellar insolation supports liquid water:

L/L
Sett = r2®>
with S (effective flux) between 0.36 and 1.11 Earth
flux units (Kopparapu et al, 2013) and r being the planet’s

orbital distance.

These criteria are intersected to label planets as habitable (1) if all
conditions are met, or non-habitable (0) otherwise. The intersection
ensures a strict definition, focusing on Earth-like planets orbiting
Sun-like stars. This strict definition identified 36 habitable planets
out of 5541 exoplanets. This results in a highly imbalanced dataset,
with only a small fraction (0.65%) classified as habitable, reflecting
the rarity of such conditions (Petigura et al., 2013).

The physical rationale for these criteria is rooted in the habitable
zone concept, where liquid water is stable on a planet’s surface
(Kasting et al., 1993). The pl_orbsmax criterion (0.3 < pl_orbsmax <
2.0 AU) places planets within a conservative estimate of the habitable
zone for Sun-like stars, and this range is further informed by the
theoretical calculation of the habitable zone’s semi-major axis (r3y,,)
based on stellar luminosity (L). Thus, the semi-major axis and stellar
luminosity define the habitable zone’s boundaries. The semi-major
axis (ryy) range of a planets orbit within the habitable zone is
calculated as

yz = X [0.95, 137] AU,

§ =

where L is the stellar luminosity (Kopparapu et al., 2013) and L, is
solar luminosity (Kasting et al., 1993). Planetary radius and density
constrain composition, as rocky planets are more likely to support
atmospheres and geological processes (Valencia et al., 2007). Low
eccentricity prevents extreme climate variations, and mass ensures
sufficient gravity for atmospheric retention (Williams and Pollard,
2002). Stellar temperature and luminosity filter for stars with stable,
long-lived habitable zones (Shields et al., 2016). The number of
planets meeting solely the pl_orbsmax range would be higher, the
subsequent application of all other planetary and stellar criteria
significantly reduces this count, leading to the observed 0.65% (36
out of 5541 exoplanets) of classified habitable planets.

3 Distribution study of the key
defining parameters

To provide valuable context for preprocessing choices, model
selection, and physical interpretation of the results, we conducted a
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thorough analysis of the distributions of the key defining parameters:
planetary radius (pl_rade), density (pl_dens), orbital eccentricity
(pl_orbeccen), mass (pl_bmasse), stellar effective temperature
(st_teff), luminosity (st_lum), and orbital semi-major axis (pl_
orbsmax). These distributions were visualized through Figures 1, 2
using histograms with 30 bins, and analyzed for central tendency,
dispersion, skewness, kurtosis, and observational implications.
Figure 1 was plotted on a linear-scale abscissa, where the very wide
swath of empty large abscissa values makes the plots a bit difficult
to interpret. Figure 2 (except panel F) was plotted on a logarithmic-
scale abscissa of base 10 for better understanding. The plots of
stellar luminosity (panel F) do not suffer as much from the defects
in other panels in Figure 1, thus they have remained the same in
Figure 2. In both Figures 1, 2, the parameter mapping is consistently
defined: pl_rade in panel A, pl_dens in panel B, pl_orbeccen in
panel C, pl_bmasse in panel D, st_teff in panel E, st_lum in panel
E and pl_orbsmax in panel G. The dataset, after cleaning, comprises
5541 exoplanets, reflecting a diverse population but biased toward
detection methods like transit and radial velocity, which favor close-
in, large planets (Petigura et al., 2013; Burke et al., 2015).

The planetary radius (pl_rade) distribution is positively skewed
(skewness: 3.2) and leptokurtic (kurtosis: 15), with a mean of
5.8 Earth radii, median of 2.4, standard deviation (SD) of 6.7,
minimum of 0.1, and maximum of 77.34 (panel A of Figures I,
2). The bimodality shows peaks around super-Earths/sub-Neptunes
(1.5-4 R_Earth) and gas giants (~11 R_Earth), consistent with the
radius gap observed in Kepler data, attributed to photo evaporation
stripping atmospheres from sub-Neptunes (Petigura et al., 2018).
This skewness implies that most detected planets are larger than
Earth, biasing against habitable terrestrial worlds and justifying
conservative criteria (0.5-2.0 R_Earth) to focus on rocky candidates.
Analytically, the long tail toward Jupiter-sized planets highlights the
need for scaling in ML to prevent dominance by outliers.

Planet density (pl_dens) exhibits a positively skewed distribution
(skewness: 4.1) and leptokurtic (kurtosis: 22), with mean 2.9 g/ cm?,
median 1.2, SD 3.8, min 0.01, max 2000 (panel B of Figures 1, 2). The
peak at 3-7 g/cm® corresponds to rocky compositions, while lower
densities ( < 1 g/cm’) indicate gas-dominated or puffy atmospheres.
This distribution reflects core accretion models, where high-density
cores form rocky planets, and low-density envelopes characterize
giants (Valencia et al.,, 2007). For habitability, the criteria (3-7 g/ cm?)
target Earth-like densities, excluding inflated hot Jupiters. The high
kurtosis suggests clustering around low densities, an artifact of transit
bias favoring large, low-density planets, which could underestimate
habitable rocky worlds (Rogers, 2015).

Orbital eccentricity (pl_orbeccen) is heavily right-skewed
(skewness: 2.8, kurtosis: 12), with mean 0.15, median 0.08, SD 0.22,
min 0, max 0.95 (panel C of Figures 1, 2). Most values are low ( <
0.2), indicating nearly circular orbits, but outliers reflect dynamical
interactions in multi-planet systems (Williams and Pollard, 2002).
The criteria (<0.3) ensure stable climates, as high eccentricity causes
extreme temperature variations. Analytically, the distribution’s
mode near zero aligns with formation theories in protoplanetary
disks, but detection biases (radial velocity favors high-e) may inflate
the tail, affecting ML by introducing noise in low-e habitable cases.

Planet mass (pl_bmasse) follows a log-normal-like distribution,
positively skewed (skewness: 5.6, kurtosis: 38), with mean 450
Earth masses (~1.4 M_Jup), median 95, SD 1200, min 0.05,
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Histogram and density plots show the overall shape of the distribution of key defining parameters.
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FIGURE 2
Histogram and density plots in logarithmic scale for better understanding the overall shape of the distribution of key defining parameters.

max 9535 (panel D of Figures1, 2). Peaks at sub-Neptune
(~10 M_Earth) and Jupiter masses reflect bifurcation in formation
pathways: core accretion for giants and pebble accretion for
smaller bodies (Pollack et al., 1996). The criteria (0.1-10 M_Earth)
focus on terrestrial to mini-Neptune regimes, excluding massive
giants. The high skewness indicates radial velocity bias toward
massive planets, potentially underrepresenting low-mass habitables,
necessitating imbalance handling in modeling.
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Stellar effective temperature (st_teff) is approximately normal
but slightly left-skewed (skewness: —0.4, kurtosis: 3.5), with mean
5,200 K, median 5,400 K, SD 1,100 K, min 2,500 K, max 57,000 K
(panel E of Figures 1, 2). The peak at 5,000-6,000 K corresponds
to G-K dwarfs, similar to the Sun, favored for stable HZs
(Kopparapu et al., 2013). The criteria (4,800-6,500 K) target this
range, excluding cool M-dwarfs with tidal locking risks and hot F-
stars with short lifetimes. Analytically, the distribution reflects target
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selection biases toward bright, Sun-like stars, implying models may
generalize poorly to M-dwarfs, which host most planets but have
flare activity challenges (Giinther et al., 2020; Charbonneau and
David, 2015).

Stellar luminosity (st_lum) is right-skewed (skewness: 1.8,
kurtosis: 8), with mean 0.6 log solar, median 0.2, SD 1.2, min -3,
max 3.8 (panel F of Figures 1, 2). This distribution’s peak around
solar values reflects the observational bias toward Sun-like (G-type)
stars, with tails extending toward larger, more evolved giant stars
and smaller, cooler M-dwarf stars. While the skewness of 1.8 does
indicate an over-representation of highly luminous stars, this effect
is moderate, and it must be qualified: the sample also contains a
significant number of stars less luminous than the Sun. Criteria (-0.5
to 1.0) were used to ensure moderate radiation levels. This observed
skewness primarily impacts the precision of Habitable Zone (HZ)
calculations for the most luminous outliers.

Orbital semi-major axis (pl_orbsmax) is highly right-skewed
(skewness: 6.2, kurtosis: 45), with mean 1.5 AU, median 0.3 AU,
SD 4.8, min 0.001, max 12000 (panel G of Figures 1, 2). The peak
at <0.1 AU reflects the observational bias toward “hot Jupiters”
detected via the transit method. The extreme right-skewness and
high kurtosis are primarily the result of a few very large outlier
values, up to 12000 AU, which inflate these statistics. Physically,
however, wider orbits are significantly underrepresented in the
sample due to the long observation times required for transit and
radial velocity methods. Criteria (0.3-2.0 AU) were applied to
target Earth-like zones; the physical under-representation of outer
orbits emphasizes the need for diverse detection methods to fully
characterize habitability in these regions.

These distributions reveal detection biases (e.g., close-in
giants), justifying imputation for missing values (e.g., density
often missing for non-transiting planets) and scaling to normalize
varying scales (e.g., mass spans orders of magnitude). Analytically,
positive skewness in most parameters suggests log-transformation
could further improve normality, but tree-based models are
robust to non-normality. For habitability, the rarity of Earth-
like values (e.g., pl_rade ~1, pl_orbsmax ~1 AU) indicates the
challenge of finding analogs, with implications for SETI and
bio-signature searches (Meadows et al., 2018).

4 Methods

The methodology employed in this study integrates advanced
statistical techniques and machine learning algorithms to classify
exoplanets as habitable or non-habitable, using a complete
dataset from the NASA Exoplanet Archive. The process involves
multicollinearity assessment, class imbalance correction, model
training with Random Forest and XGBoost, and uncertainty analysis
using Monte Carlo simulations. Each step is designed to ensure the
robustness, interpretability, and applicability to real-world exoplanet
observations.

4.1 Multicollinearity check

To deal with potential redundancies and ensure model stability,
we conducted a multicollinearity check using the Variance Inflation
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Factor (VIF). VIF quantifies how much the variance of a regression
coeflicient is inflated due to correlation with other predictors.
A threshold of VIF > 5 indicates problematic multicollinearity,
prompting exclusion of such parameters. The initial set of 32
parameters was analyzed, revealing high VIF values for pl_
rade (8.9), pl_bmasse (7.6), st_lum (6.3), and others that are
highly correlated or intercorrelated, as indicated by the correlation
coeflicient (p) (e.g., pl_rade with pl_radj, p: 0.85; pl_bmasse with
pl_bmassj, p: 0.92; st_lum with st_teff and st_rad, p: 0.78). Thus,
planetary mass, whether in Earth or Jupiter masses, is correlated
with planetary radius, which is a physically interesting correlation.
After iterative exclusion, the final set of twelve parameters with VIF
< 5included: pl_orbper (1.09), pl_orbsmax (1.08), pl_dens (1.02),
pl_orbeccen (1.02), pl_orbincl (1.01), st_teff (1.82), st_rad (1.55),
st_mass (1.72), st_met (1.04), st_age (1.04), st_dens (1.54), sy_pm
(1.02). These values confirm low inter-correlation, with the highest
(st_teff at 1.82) still within acceptable limits for non-linear models
like Random Forest and XGBoost.

Barplot of VIF values (Figure 3) is drawn in a logarithmic scale of
base 10 to visually confirm the selection, showing a clear separation
between retained (VIF < 5) and excluded (VIF > 5) parameters.
In Figure 3, the logarithmic VIF values are plotted instead of VIF
values for better understanding the parameters being retained in
the final analysis set. This multicolinearity check makes the model
easier to interpret by reducing redundant information and aligns
with statistical best practices for high-dimensional data (Kuhn and
Johnson, 2013).

4.2 Class imbalance handling

The severe class imbalance (0.65% habitable) can cause models
biased in favoring the majority class. To address this, we have
employed the Random Over-Sampling Examples (ROSE) technique,
which combines over-sampling of the minority class (habitable) and
under-sampling of the majority class (non-habitable) to generate a
synthetic balanced dataset. Using the ROSE technique, we created a
training set of 8312 samples (4156 habitable, 4156 non-habitable),
keeping the original feature distributions while avoiding overfitting
to synthetic data-points (Menardi and Torelli, 2014). The test set
retained its natural imbalance (1376 non-habitable, 9 habitable) to
evaluate real-world performance. This approach ensures that the
models learn from a representative sample, improving sensitivity
to the rare habitable class, which is important for astrobiological
applications.

4.3 Machine learning models

We employ two supervised ML algorithms: Random Forest
and XGBoost, chosen for their robustness to high-dimensional,
imbalanced datasets and ability to provide feature importance
Chen and Guestrin, 2016). These
algorithms have been successfully applied to astronomical data

metrics (Breiman, 2001;

classification, showing they work well with complex datasets
(Banerjee et al., 2023). These ML algorithms have been trained
on the balanced dataset with the twelve low-VIF parameters.
Random Forest was configured with 500 trees and the number
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FIGURE 3

Barplot of Variance Inflation Factor (VIF) values in logarithmic scale for all 32 parameters, with a threshold of log (5) separating retained (VIF < 5) and

of features per split (Nt ry) set to the square root of the number of
features (V12 = 3), optimizing for variance reduction and feature
importance assessment (Breiman, 2001). XGBoost was trained with
a binary logistic objective, 100 rounds, max depth of 6, and eta
(the learning rate, or shrinkage factor, controlling the step size of
each boosting iteration) of 0.1, with early stopping monitored by
the Area Under ROC Curve (AUC), which measures the trade-off
between true and false positive rates to prevent overfitting (Chen
and Guestrin, 2016). The dataset was split 75/25 using stratified
sampling to maintain class proportions in the training set, with
evaluation metrics as discussed in Section 4.4.

4.3.1 Random forest

Random Forest, introduced by Breiman (2001), is an ensemble
method that constructs multiple decision trees to improve predictive
accuracy and reduce overfitting. Each tree is trained on a
bootstrapped sample of the data (= 63% of the training set,
with replacement), leaving out-of-bag (OOB) samples for internal
1992). At each node, a random subset
of features (typically +/p, where p is the number of features)

validation (Wolpert,
is considered for splitting, decorrelating trees and enhancing
robustness (Hastie et al., 2009). The final prediction is obtained by
majority voting across trees for classification tasks:

7=mode{h, (x)}_,,
where h,(x) is the prediction of the ¢-th tree, and T'=500 is the
number of trees. The Gini impurity, used to evaluate splits, measures
node purity:

1
Gini=1-) pf,

k=0
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where p, is the proportion of class k (habitable or non-habitable) at
the node (Louppe et al., 2013). Random Forest’s strengths include:

« Robustness to Noise: Bagging and feature randomization
handles overfitting, ideal for noisy exoplanet data (Breiman,
2001).

o OOB Error: Provides an unbiased estimate of generalization
error without a separate validation set (Wolpert, 1992).

« Feature Importance: Shows how much each feature matters
via mean decrease in Gini impurity, aiding physical
interpretation (Louppe et al., 2013).

The algorithm’s robustness comes from:

« Bagging: Bootstrap aggregating reduces variance by averaging
predictions across diverse trees.

« Random Feature Selection: At each split, a random subset of
features (typically +/p, where p is the number of features) is
considered, decorrelating trees (Breiman, 2001).

We configure the model with 500 trees, tuning the number of
features per split (mtry) via 5-fold cross-validation. Performance
is evaluated using out-of-bag (OOB) error, which uses data not
included in each tree’s bootstrap sample to estimate generalization
error (Wolpert, 1992). Feature importance is computed using
the mean decrease in Gini impurity, reflecting each feature’s
contribution to classification accuracy (Louppe et al., 2013).

4.3.2 XGBoost

XGBoost (Extreme Gradient Boosting), developed by Chen
etal. (Chen and Guestrin, 2016), is a gradient boosting approach
that builds sequential decision trees to optimize a loss function
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with gradient descent and incorporating regularization to prevent
overfitting (Chen and Guestrin, 2016).

Unlike Random Forest’s parallel trees, XGBoost constructs trees
iteratively, with each tree correcting errors of the previous ones. For
binary classification, the logistic loss function is:

L= _;[yi log (7,) + (1-y,)log(1-7,)] +Q,

where y, is the true label (the known outcome or value that
the model is trying to predict for a given data point), y,; is the
predicted probability, and Q is a regularization term, which acts
as a complexity penalty applied to the structure and magnitude of
the newly added tree f,, promoting generalization and preventing
overfitting (Friedman, 2001).

Specifically, Q is structured to penalize both the number of
terminal nodes and the magnitude of the leaf weights (w):

T T
1
Q(f,) =yT+ 5A2wf+a2lel.
I= =

where T is the number of leaf nodes, y is the penalty for tree
complexity, and A and « are the coefficients for the L2 and L1
penalties, respectively. The L2 penalty (1) shrinks the leaf weights
towards zero to ensure solution robustness, while the L1 penalty («)
promotes sparsity by driving less significant weights to exactly zero,
performing implicit feature selection.

The final prediction j, is the sum of the predictions from all T
trees in the ensemble:

T
)A/i:z.ft(xi)’

where f, is the t-th tree, and T'= 100 is the number of trees. Key
features include:

Gradient Boosting: Each tree fits the negative gradient of the
loss, correcting residual errors (Friedman, 2001).

Regularization (Complexity Control): The explicit inclusion
of L1 and L2 penalties in the objective function controls the
complexity of the decision trees, which is essential for avoiding
overfitting in high-dimensional datasets (Chen and Guestrin,
2016).

o Handling Imbalanced Data: XGBoost adjusts weights
for minority class samples, improving performance on
imbalanced data (Chen et al., 2004).

Scalability: Optimized for sparse data,
exoplanet with missing values

suitable for
post-MICE
imputation (van Buuren and Groothuis-Oudshoorn, 2011).

datasets

XGBoost’s ability to handle imbalanced data and provide feature
importance via gain (improvement in loss function) makes it ideal
for our task (Chen and Guestrin, 2016). We configure XGBoost
with a logistic objective, tuning parameters (max depth = 6,
learning rate = 0.1, number of rounds = 100) via 5-fold cross-
validation. Performance is assessed using the Area Under the
Receiver Operating Characteristic Curve (AUC), which measures
the trade-off between true and false positive rates (Fawcett, 2006).
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4.4 Model evaluation

The performance of the Random Forest and XGBoost models is
evaluated using a suite of metrics designed to assess classification
accuracy, agreement, and discriminative ability, especially in the
context of the highly imbalanced exoplanet dataset (0.65% habitable
planets). Each metric is grounded in statistical theory and justified
for its relevance to the task of identifying rare habitable planets
among a majority of non-habitable ones. The metrics are computed
separately for the training set (4156 exoplanets) and test set (1385
exoplanets), with confusion matrices providing detailed insights into
classification outcomes (Lundberg and Lee, 2017).

4.4.1 Confusion matrix

The confusion matrix summarizes classification outcomes in a 2x2 table:

Predicted
Non-Habitable (0) Habitable (1)
Actual Non-Habitable (0) TN FP
Habitable (1) FN TP

It provides a detailed breakdown of correct and incorrect
predictions, enabling computation of all above metrics (Kohavi et al.,
1994). For our imbalanced dataset, the confusion matrix highlights
the model’s performance on the rare habitable class, where false
negatives (missed habitable planets) are especially costly (He and
Garcia, 2009).

4.4.2 Accuracy
Accuracy measures the proportion of correct predictions across
both classes (habitable and non-habitable):

Accuracy = — 1 P+TN
Y TP IN<FP+EN’

where TP (true positives) is the number of habitable planets
correctly classified, TN (true negatives) is the number of non-
habitable planets correctly classified, FP (false positives) is the
number of non-habitable planets misclassified as habitable, and FN
(false negatives) is the number of habitable planets misclassified
as non-habitable (Kohavi et al., 1994). Accuracy is intuitive but
can be misleading in imbalanced datasets, as a model predicting
only the majority class (non-habitable) could achieve high accuracy
despite failing to identify any habitable planets (He and Garcia,
2009). For our dataset, with only 0.65% habitable planets, high
accuracy is expected due to the dominance of non-habitable planets,
necessitating additional metrics to evaluate performance on the
rare class (Petigura et al,, 2013).

4.4.3 Cohen's kappa

Cohen’s kappa measures classification agreement beyond
what would be expected by chance, making it robust for
imbalanced datasets:

where P, is the observed agreement (accuracy), and P, is the
expected agreement under random classification, calculated from
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marginal probabilities of each class (Cohen, 1960). Kappa ranges
from —1 (complete disagreement) to 1 (perfect agreement), with
0 indicating chance-level performance. In our context, kappa is
important for assessing whether the model correctly identifies
habitable planets beyond random guessing, given the extreme
class imbalance (Landis and Koch, 1977). A kappa value above
0.6 indicates substantial agreement, while above 0.8 indicates
almost perfect agreement, providing a reliable measure of model
robustness (Landis and Koch, 1977).

444 Sensitivity and specificity
Sensitivity (true positive rate) measures the proportion of
habitable planets correctly classified:

Sensitivity = TP
- TP+FN’

while specificity (true negative rate) measures the proportion of
non-habitable planets correctly classified:

s TN
Specificity = TN+ FP"

Sensitivity is crucial for our task, as missing habitable planets
(false negatives) is costly when prioritizing targets for follow-up
observations with telescopes like JWST (Gardner et al., 2006).
Specificity ensures that non-habitable planets are not misclassified
as habitable, reducing observational resource waste (Altman and
Bland, 1994). In imbalanced datasets, high specificity is easier
to achieve due to the majority class, but low sensitivity is
common unless the model is tuned for the minority class (He and
Garcia, 2009).

4.4.5 Receiver operating characteristic (ROC) and
area under the curve (AUC)

The ROC curve plots the true positive rate (TPR or sensitivity)
against the false positive rate (FPR or 1 - specificity) at various
classification thresholds (Fawcett, 2006). The AUC quantifies the
model’s ability to discriminate between classes, ranging from 0.5
(random guessing) to 1 (perfect discrimination). For a binary
classifier, the ROC curve is defined by:

TP (6)
TP+FN’

FP(0)

TPR(®) = TN+ P’

FPR(6) =
where 0 is the threshold for classifying a planet as habitable (Hand
and Till, 2001). AUC is especially valuable for imbalanced datasets,
as it evaluates performance across all thresholds, unlike accuracy,
which depends on a single threshold (Bradley, 1997). An AUC
close to 1 indicates that the model can effectively distinguish
habitable from non-habitable planets, important for prioritizing rare
candidates (Fawcett, 2006).

4.4.6 Precision-recall curve
The precision-recall curve plots precision (positive predictive
value) against recall (sensitivity):

TP

Recall = ———.
A TP EN

. TP
Precision = ———,
TP +FP
Precision measures the proportion of planets predicted as
habitable that are actually habitable, while recall is equivalent
to sensitivity (Davis and Goadrich, 2006). The precision-recall
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curve is more informative than the ROC curve for imbalanced
datasets, as it focuses on the minority class (habitable planets)
(Saito and Rehmsmeier, 2015). A high area under the precision-
recall curve indicates that the model achieves high precision without
sacrificing recall, essential for identifying true habitable planets
while minimizing false positives (Davis and Goadrich, 2006). In our
case, low precision is expected due to the rarity of habitable planets,
making this metric important for assessing model performance on
the positive class (Petigura et al., 2013).

4.4.7 Fl-score

For classification tasks involving potentially imbalanced classes,
standard accuracy can be misleading (Sokolova and Lapalme,
2009). In this study, we aim to classify planets into two primary
categories (e.g., “Potentially Habitable” vs. “Non-Habitable”). Given
that the number of positive examples (potentially habitable planets)
is expected to be significantly smaller than the negative examples,
the dataset is inherently imbalanced.

To provide a robust and representative measure of model
performance, the F1-Score is employed as the primary evaluation
metric. The F1-Score is the harmonic mean of precision and recall,
offering a single score that balances both concerns.

The F1-Score is formally defined by the equation:

Precision x Recall

F1 —Score =2 x —
Precision + Recall

where:

o Precision is the ratio of correctly predicted positive

observations to the total predicted positive observations
TruePositives

. High precision means the model
TruePositives+False Positives ) gh p

makes few false-positive errors.
o Recall (Sensitivity) is the ratio of correctly predicted

positive observations to all observations in the actual class
TruePositives

— — ). High recall means the model misses
True Positives+False Negatives

few positive observations.

By using the harmonic mean, the F1-Score penalizes models
that favor one metric over the other. A high F1-Score indicates that
the model exhibits both high precision (minimizing false alarms
about habitability) and high recall (maximizing the identification of
all truly potentially habitable planets), making it an ideal balanced
metric for assessing the success of the classification model.

4.5 Uncertainty treatment

To assess the stability of predictions under realistic measurement
uncertainties, we conducted Monte Carlo simulations with 1000
iterations. Each iteration perturbed the twelve input features with
Gaussian noise based on typical observational errors: pl_orbper
(5%), pl_orbsmax (5%), pl_dens (25%), pl_orbeccen (5%), pl_
orbincl (5%), st_teff (2%), st_rad (5%), st_mass (20%), st_met (10%),
st_age (20%), st_dens (20%), sy_pm (10%). These uncertainties
reflect instrument precision from missions like Kepler and radial
velocity surveys (Burke et al, 2015; Rogers, 2015). For each
perturbed dataset, the habitability label was recalculated based on
the original criteria, and the Random Forest and XGBoost models
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were retrained. Performance metrics were averaged across iterations
to quantify stability and identify possible biases. This approach
allows us to evaluate how errors in parameter estimation propagate
to classification outcomes, serving as a strong test of model reliability
under real-world conditions.

5 Results

This section presents the classification performance of Random
Forest and XGBoost on the exoplanet dataset, analyzing training
and test set results separately to assess model robustness and
generalization.

The preprocessing steps resulted in a cleaned dataset with no
missing values after imputation using MICE. The dataset was filtered
to include only the twelve parameters with VIF < 5: pl_orbper (VIF
=1.09), pl_orbsmax (VIF = 1.08), pl_dens (VIF = 1.02), pl_orbeccen
(VIF = 1.02), pl_orbincl (VIF = 1.01), st_teff (VIF = 1.82), st_rad
(VIF = 1.55), st_mass (VIF = 1.72), st_met (VIF = 1.04), st_age (VIF
= 1.04), st_dens (VIF = 1.54), sy_pm (VIF = 1.02). These values
indicate low multicollinearity, ensuring stable regression coeflicients
if used in linear models and reducing redundancy in tree-based
models like Random Forest and XGBoost. High VIF parameters
excluded include pl_rade (correlated with pl_radj and pl_bmasse),
pl_bmasse (correlated with pl_bmassj), st_lum (correlated with st_
teffand st_rad), among others, as they inflate variance and could lead
to unreliable feature importance.

The dataset comprises 5541 exoplanets after preprocessing. The
habitability labeling identified 36 habitable planets out of 5541
(almost 0.65% of the whole dataset), confirming severe imbalance.
After applying ROSE with both over- and under-sampling, the
balanced training set comprised 8312 samples (4156 habitable,
4156 non-habitable), while the test set remained unbalanced at
1385 samples (1376 non-habitable, 9 habitable) to reflect real-
world distributions. Performance metrics include accuracy, kappa,
sensitivity, specificity, ROC, and precision-recall curves, with
confusion matrices for detailed insights.

5.1 Random forest results

The Random Forest model, trained on the balanced dataset with
the twelve parameters, achieved an out-of-bag (OOB) error rate
of 0.01%, showing very good internal validation. On the test set,
it yielded an accuracy of 99.93% (95% CI: 0.9969-1.0000, Kappa
= 0.9408). The confusion matrix for the test set is obtained as:

Predicted
0
Actual 0 1376 0
1 1 8

Model performance was evaluated using standard metrics
derived from the confusion matrix, including two measures of
overall correctness. Accuracy is defined as the raw proportion of all
correct classifications:

TP + TN

Accuracy= —M
Y TP+ TN+FP+FN
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In contrast, Balanced Accuracy is calculated as the arithmetic
mean of class-specific sensitivities (Sensitivity and Specificity):
Balanced Accuracy = 1 (l + A)
2\TP+FN TN+FP

This provides a more robust measure of performance in
imbalanced datasets by weighting the success on the positive
and negative classes equally. A critical baseline for comparison is
the No Information Rate (NIR), which is the proportion of the
majority class in the dataset. This represents the maximum accuracy
achievable by a trivial classifier that predicts the prevalent class for
all instances. To confirm the model’s predictive superiority over this
baseline, a one-sided binomial test is performed against the null
hypothesis that the true accuracy (Acc) is no greater than the NIR
(Hy:Accuracy < NIR). The resulting p-value (Acc > NIR) reflects
the probability of observing the current model accuracy if the true
underlying performance were only the NIR, allowing for statistical
validation that the model performs significantly better than chance.
Additionally, McNemar's test is utilized to assess the symmetry of the
model’s errors by testing the null hypothesis that the number of False
Positives is equal to the number of False Negatives (H,:FP = FN).

The confusion matrix revealed 1376 true negatives, 8 true
positives, 0 false positive, and 1 false negative. Sensitivity (recall for
habitable class) was 0.8889, specificity 1.0000, positive predictive
value (precision) 1.0000, F1 score of 0.9474, and negative predictive
value 0.9993. The balanced accuracy of 0.9444 shows the model
can correctly classify for almost 94.44% times, on an average, for
both classes despite the test set imbalance. The no information
rate (accuracy of always predicting non-habitable) is 0.9935,
and the p-value (Acc > NIR) < 0.0012 confirms significantly
better performance. McNemar’s test p-value = 1.0000 indicates no
significant difference in error types.

Variable importance, measured by mean decrease in Gini
impurity, highlights pl_orbsmax as the top contributor, followed by
st_teffand pl_dens, aligning with their roles in defining the habitable
zone and planetary composition.

5.2 XGBoost results

XGBoost, with hyperparameters optimized for AUC, showed
a training AUC progression from 0.9954 at iteration 1 to 1.0000
by iteration 99, demonstrating rapid convergence. On the test
set, accuracy was 99.93% (95% CI: 0.9960-1.0000, Kappa =
0.947). The confusion matrix for the test set is obtained as:

Predicted
i
Actual 0 1375 1
1 0 9

The confusion matrix indicated 1375 true negatives, 9 true
positives, 1 false positive, and 0 false negative. Sensitivity was
1.0000, specificity 0.9993, positive predictive value 0.9000, negative
predictive value 1.0000, F1 score of 0.9996, and balanced accuracy
0.9996. The p-value (Acc > NIR) = 0.0012 confirms superiority
over the baseline. McNemar’s test p-value =
balanced errors.

1.0000 suggests
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FIGURE 4
XGBoost ROC curve.
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FIGURE 5
XGBoost precision-recall curve.

The ROC curve (Figure 4) exhibits an AUC close to 1, indicating
perfect discrimination. The precision-recall curve (Figure 5)
shows high precision across recall levels, crucial for the
habitable The AUC for the
curve is 0.9.

rare class. precision-recall
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5.3 Uncertainty analysis results

To assess the robustness and stability of the model’s
classifications, especially for high-risk predictions, we conducted
a simulation-based uncertainty analysis. This involved making
multiple independent prediction runs (implied by number of
simulations, e.g., 100 times, here) for each instance in the test set. For
every instance, we calculated prob, (p), defined as the proportion of
runs that resulted in a prediction of class “1” (habitable). This value
serves as an empirical estimate of the prediction probability for the
habitable class. A high “p” (near 1) or a low “p” (near 0) indicates a
stable, consistent classification. To quantify prediction instability, we
derived the Uncertainty Score using the variance of a Bernoulli trial:
Uncertainty Score = p x (1 — p). This score is maximized at p = 0.5,
representing maximum ambiguity, and tends toward zero for highly
consistent predictions (i.e., p — 0 or p — 1). The resulting boxplot
visualizes the distribution of this Uncertainty Score, stratified by the
Actual Habitability Class (0 = Not Habitable, 1 = Habitable), allowing
us to compare how consistently the model predicts instances that
are actually habitable versus those that are not.

Monte Carlo simulations with 1000 perturbations yielded
an average accuracy of 99.7% + 0.2% for Random Forest and
99.5% + 0.3% for XGBoost. Standard deviations in sensitivity and
specificity were low ( < 0.01), indicating robustness. However, in
5% of runs, borderline planets (e.g., with pl_orbsmax near 2.0 AU)
flipped classification due to perturbations, highlighting sensitivity to
measurement errors in semi-major axis (5% uncertainty) and mass
(20%). From Figure 6, we can observe that the median uncertainty
score for class ‘1 is slightly higher than for class “0”. Figure 7 shows

« »

p
values, indicating more variable predictions under the influence of

that instances with a true label of “1” have a wider spread in their

measurement error. These plots suggest the model classifications for
habitable planets are sensitive to input uncertainty.

5.4 Intersection and verification results

The seven defining parameters identified 36 habitable planets.
Verification with the twelve low-VIF parameters classified all 36
identically, with no discrepancies. This intersection confirms that
additional parameters like st_rad and sy_pm support the habitability
assessment without contradicting the defining criteria, helping avoid
false positives caused from unobserved factors.

6 Discussion

6.1 Physical interpretation of selected
parameters

The twelve parameters with VIF < 5 provide a complete yet
non-redundant view of habitability. Orbital period (pl_orbper)
relates to dynamical stability and seasonal variations, influencing
climate through orbital resonance effects (Kopparapu et al,
2013). Semi-major axis (pl_orbsmax) defines the habitable
zone, where stellar flux allows liquid water; values 0.3-2.0 AU
correspond to Earth-like insolation for Sun-like stars (Kasting et al.,
1993). Density (pl_dens) distinguishes rocky (3-7 g/cm3) from
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Prediction Uncertainty by Actual Habitability Class
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FIGURE 6
Box-plot showing the prediction of uncertainty by actual
habitability class.
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FIGURE 7
Prediction stability and bias visualization.

gaseous planets, essential for surface gravity and atmosphere
retention (Valencia et al., 2007). Eccentricity (pl_orbeccen) < 0.3
ensures stable temperatures, preventing extreme climate swings
(Williams and Pollard, 2002).

Orbital inclination (pl_orbincl) affects transit detectability
and potential for tidal locking, impacting habitability around
M-dwarfs (Barnes, 2017). Stellar effective temperature (st_teff)
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4800-6500 K mimics G-type stars, balancing UV radiation and
energy output (Seager, 2013). Stellar radius (st_rad) and mass (st_
mass) determine luminosity and lifetime; larger radii may extend
habitable zones but shorten stellar life (Kasting et al., 1993).
Metallicity (st_met) influences planetary formation, with metal-
rich stars favoring rocky planets (Fischer and Valenti, 2005). Stellar
age (st_age) affects evolutionary stage and flare activity, important
for long-term habitability (Meadows et al., 2018). Stellar density
(st_dens) proxies internal structure, correlating with magnetic
fields protecting atmospheres (Rogers, 2015). Proper motion (sy_
pm) indicates galactic environment, potentially affecting cosmic
ray exposure (Petigura et al., 2013).

The exclusion of other parameters (e.g., pl_insol, st_lum)
suggests correlations with the selected features. For example,
insolation flux is derived from pl_orbsmax and st_lum, reducing
its independent contribution. The stellar temperature (st_teff)
fundamentally influences stellar luminosity (st_lum). In the
context of the Habitable Zone, st_lum and the planets maximum
orbital distance (pl_orbsmax) are highly interdependent because
pl_orbsmax is, by definition, determined by the st_lum required
for liquid water. This high correlation justifies excluding st_lum to
prevent multicollinearity in a feature set. However, retaining st_teff
is valuable because it provides unique information about the star’s
spectral energy distribution (i.e., its color), which independently
influences a planets atmospheric chemistry and habitability
(e.g., through greenhouse forcing and cloud properties) in ways
pl_orbsmax alone cannot account for. The model’s dependence
on pl_orbsmax and pl_orbper in the reduced set implies that,
for the purpose of classification within our defined criteria, the
information contained in stellar temperature and luminosity is
sufficiently represented by their influence on the planets orbital
characteristics within the habitable zone. Future investigations
could explore scenarios where st_teff and st_lum become more
important, especially for diverse stellar types beyond Sun-like stars
or in assessing finer details of habitability.

These parameters, while including four from the defining set,
incorporate additional factors that could modulate habitability,
such as stellar evolution (age, density) and observational
context (proper motion), providing a more clear overall
assessment.

6.2 Statistical findings and analysis

The near-perfect accuracies (99.93% for both the techniques:
Random Forest and XGBoost) come from the models’ ability to
capture non-linear relationships in the low-VIF set. Random Forest’s
bagging reduces variance, with low OOB error (0.01%) indicating
generalization (Breiman, 2001). XGBoosts gradient boosting
optimizes for AUC, achieving perfect training convergence.
Moreover, Kappa increases from 0.9408 in Random Forest to
0.947 in XGBoost, suggesting minor overfitting for Random Forest
addressed by regularization (Chen and Guestrin, 2016).

ROSE balancing was crucial; without it, a naive classifier
achieves 99.35% accuracy by predicting all non-habitable, as well
as the F1-score would be 0 for habitable class. Post-ROSE, F1-score
spikes to 0.95, as well as the classifier achieves an accuracy of 99.93%,
demonstrating improved minority recall (Menardi and Torelli,
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2014). The confusion matrices show minimal errors: Random
Forests one false negative (habitable planet misclassified as non-
habitable) or XGBoost’s one false positive (non-habitable planet
misclassified as habitable) may arise from parameter overlaps near
boundaries.

VIF selection eliminated redundancies, e.g., excluding pl_rade
(VIF >5 due to correlation with pl_bmasse, p ~ 0.8), preventing
inflated importance (Kuhn and Johnson, 2013). The low VIFs ( < 2)
ensure orthogonal features, enhancing interpretability.

Uncertainty simulations reveal robustness, with standard
deviation in accuracy <0.4%. These simulations also reveal
analytical bias: positive errors in pl_orbsmax (e.g., underestimation
in distance) could falsely classify hot planets as habitable, while
mass overestimation might mislabel rocky planets as gaseous.
Density uncertainties (25%) have the highest impact, flipping ~2%
of cases, emphasizing the need for precise transit/radial velocity
measurements (Burke et al., 2015). Compared to the literature, our
error models align with typical uncertainties (e.g., Kepler precision
~5% for radius) (Rogers, 2015).

The intersection verification clearly shows that the defining
parameters’ habitability is not contradicted by additional factors,
reducing false positives. Statistically, perfect agreement suggests
the twelve parameters capture sufficient variance, with potential
for dimensionality reduction via Principal Component Analysis
(PCA) in future.

We have defined a habitable exoplanet as one that
simultaneously satisfies all of our selected physical criteria. The
number of physical parameters under consideration are seven,
namely: pl_rade, pl_dens, pl_orbeccen, pl_bmasse, st_teff, st_lum,
pl_orbsmax. It is expected that if we classify the data based on these
seven parameters then we will get an almost 100% correct decision.
Our hypothesis is that the habitability assessment, based on these
seven physical criteria, may be compromised by the unexamined
effects of other parameters, meaning some identified exoplanets
might not genuinely be habitable. To verify the robustness and
independence of our initial seven-parameter habitability criteria,
we rigorously tested the initial classification against an expanded
feature set. The new, twelve-parameter set was specifically curated
to minimize multicollinearity and introduce crucial physical
characteristics that were absent in the initial model, such as stellar
system properties and orbital dynamics (e.g., pl_orbincl, st_age,
and sy_pm). The expanded set includes: pl_orbsmax, pl_dens,
pl_orbeccen, st_teff, pl_orbincl, pl_orbper, st_rad, st_mass, st_met,
st_age, st_dens, and sy_pm. The resulting observation is highly
significant: when we repeated the classification using all twelve
features, the outcome was identical - all planets retained their
original classification. This finding provides crucial scientific
validation that the habitability constraints imposed by the original
seven parameters are not arbitrary. Instead, they appear to be so
strongly rooted in the fundamental physics of the system that the
addition of secondary, non-redundant parameters does not alter the
final habitability assessment. Therefore, this analysis allows us to
conclude with significantly greater confidence that the habitability
status derived from the original seven parameters is consistent and
reliable. For new exoplanet discoveries where the full complement of
twelve parameters is known, this dual consistency offers a validated,
high-confidence classification.
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6.3 Limitations

Limitations of the study include conservative criteria excluding
subsurface habitables (Yang et al, 2013), synthetic data bias
from ROSE potentially overfitting noise (Chawla et al., 2002),
and a static dataset missing recent discoveries like TOI-
700d (Gilbert et al, 2020). Analytically, imbalance techniques
may not generalize to unknown distributions, and VIF threshold
<5 is arbitrary—sensitivity analysis with VIF < 3 yielded similar
results but fewer parameters. A formal evaluation of imputation
effectiveness through simulating missing data in a complete subset
was not performed in this study, future work could incorporate such
an analysis to quantitatively assess the accuracy of MICE imputation,
especially for important habitability parameters.

6.4 Implications

The high performance of our models, achieving accuracies
exceeding 99% with twelve low-VIF parameters, has huge
implications for astrobiology and exoplanet science. This approach
not only demonstrates the efficacy of machine learning in classifying
habitability but also indicates its role in prioritizing observational
targets amid the vast exoplanet catalog. By verifying the intersection
of habitable planets identified through the seven defining parameters
with classifications from the expanded set, our approach handles
potential errors from unobserved factors, making habitability
assessments more reliable. This is especially significant in a
field where detection biases favor large, close-in planets, often
overlooking Earth-like candidates in the habitable zone (HZ)—the
orbital region where liquid water can exist on a planet’s surface.

7 Conclusion

This study demonstrates that Random Forest and XGBoost
classify exoplanet habitability with accuracies exceeding 99%
using twelve low-VIF parameters, verified through intersection
with seven defining criteria. ROSE handles imbalance, ensuring
high F1-scores, while Monte Carlo simulations confirm stability
under uncertainties, though borderline biases warrant caution. The
selected parameters provide an overall, non-redundant assessment,
reinforcing habitability beyond definitions. Analytically, this reduces
false positives and enhances confidence for new discoveries. Future
work could incorporate atmospheric data, adaptive imbalance
methods, and dynamic datasets to refine models, helping the search
for life with telescopes like JWST.

The significance of this study lies in its contribution to the
quantitative evaluation of planetary habitability, a measure central
to astrobiology that characterizes a planet’s potential to develop and
sustain life-supporting environments. Traditional assessments rely
on simplistic HZ definitions, but our ML pipeline captures non-
linear interactions among parameters like orbital eccentricity and
stellar metallicity, which influence climate stability and atmospheric
retention. For instance, the inclusion of stellar age and density in
the low-VIF set allows modeling of evolutionary effects, such as
flare activity in young stars that could strip atm, thereby refining
habitability predictions beyond static models. This analytical depth
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is crucial for identifying the class of exoplanets with the most Earth-
like characteristics and HZ placements, as evidenced by studies
estimating 45 candidates based on atmospheric composition.

The importance of our work extends to guiding future space
missions and resource allocation. With telescopes like JWST and
ARIEL focused on characterizing exoplanet atmospheres, our
models can prioritize targets such as those in the HZ of Sun-like
stars, which require long observation periods to confirm multiple
orbits. By using only twelve parameters, the approach minimizes
data requirements, making it feasible for preliminary screenings of
new discoveries from TESS or PLATO, where incomplete datasets
are common. This efficiency is vital in an era of data overflow, where
over 6000 exoplanets demand rapid triage for bio-signature searches,
such as oxygen or methane detection.

Furthermore, the study’s emphasis on uncertainty treatment via
Monte Carlo simulations highlights its significance in addressing
observational limitations. Exoplanet parameters often carry errors
from transit timing or radial velocity measurements, and our
analysis shows how these propagate to classification biases,
especially for borderline HZ planets. This robustness testing is
important for interdisciplinary applications, connecting statistics
and planetary science to inform geophysical models of exoplanet
interiors, which are key to understanding formation, evolution, and
long-term habitability.

Overall, this research advances the scientific forum on exoplanet
futures by providing a computationally efficient, interpretable
tool that complements traditional methods. Its importance is
amplified in the search for life, where identifying habitable
candidates could pivot humanity’s understanding of our place in
the universe, encouraging worldwide collaboration in astrobiology
and potentially yielding breakthroughs in detecting extraterrestrial
environments conducive to life. By elongating the scope from
detection to detailed habitability profiling, our study paves the way
for targeted missions that could confirm Earth-like worlds, turning
speculative astrobiology into empirical science.
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