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Water levels in large lakes fluctuate in response to climatic cycles. Surface 
observations from rovers have validated past lakes on Mars, following multiple 
studies that inventoried candidate paleolake sites across the planet in satellite 
observations. Attempts to identify martian paleolake highstands, a key metric for 
constructing lake hydrographs, are hampered by few morphological indicators 
of water level discernible in orbital data. Construction of paleolake hydrographs, 
particularly in post-Noachian sites with preserved sedimentary deposits, holds 
tremendous promise for elucidating climate evolution on Mars. We examined 
image and elevation data at three topographic basins with established or 
candidate paleolakes. Drawing upon a terrestrial analog, we demonstrate that 
some depositional paleochannel ridges on Mars may have formed subaqueously 
in lakes. This new insight paves the way for future studies to use this landform in 
detailed lake hydrograph reconstructions.
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 1 Introduction

Despite decades of investigation, the climatic history of Mars is only broadly 
characterized: (1) an early wetter period, with slow degradation and loss of impact craters, 
generally thought to be confined to the Noachian Period and Early Hesperian Epoch; (2) 
development of valley networks and paleolakes around the Noachian/Hesperian boundary; 
and (3) an uncertain transition to the cold, hyperarid desert present today with occasional 
intervals of later fluvial activity (e.g., Sagan et al., 1973; Hartmann, 2005; Howard et al., 2005; 
Carr and Head, 2010 Grant and Wilson, 2011). As lakes (particularly endorheic or closed-
basin lakes) are sensitive to climate variations (e.g., Bradley, 2015), current research seeks 
to use the paleolacustrine record to constrain environmental change on Mars (e.g., Stucky 
de Quay et al., 2021). Although hundreds of former lake sites have been identified across 
the planet (Fassett and Head, 2008; Goudge et al., 2012; 2015), questions persist about the 
duration of standing water, a key constraint on climate conditions.

Most paleolake sites on Mars are identified by converging valley networks 
into a topographic basin, commonly an impact crater (Cabrol and Grin, 1999;
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Fassett and Head, 2008; Goudge et al., 2012; 2015). Roughly half of 
the crater lake sites have an outlet valley that defines the maximum 
lake level at the time of the rim breach (Fassett and Head, 2008). 
Few crater lakes (<25%) have triangular shaped deposits, of either 
alluvial fan or deltaic origin, at the terminus of their inlet valley, 
limiting the cases where lake level is constrained from candidate 
deltaic deposits (e.g., Schon et al., 2012; Palucis et al., 2016). The 
morphological signatures of lake level changes are scarce (Irwin 
and Zimbelman, 2012), a fact that may be partially attributable to 
the extensive erosion on Mars over eons (e.g., Malin and Edgett, 
2001; Edgett et al., 2020) that would remove subtle slope breaks 
associated with wave-cut shorelines as recently modeled by Baran 
and Cardenas (2025). Thus, there are few locations on Mars where 
lake level fluctuations can be determined and used for paleoclimate 
reconstruction.

In this paper, we highlight a terrestrial example of paleochannel 
ridges that we interpret to have been deposited subaqueously 
and are associated with paleolake level. The morphologic and 
sedimentologic attributes of paleochannel ridges at the Lake Coyote 
basin in southern California are described. Building upon this 
example, we assess the premise that some paleochannel ridge forms 
on Mars may mark lake level. We explore this idea through two case 
studies at Phison Patera and Harris crater. 

2 Background: Paleolakes and 
paleoclimate

Lake fluctuations preserved in the terrestrial geologic records 
of enclosed basins are a paleoclimate indicator (Benson and Paillet, 
1989; Menking et al., 2004; Godsey et al., 2005). For over a 
century, geomorphic characterization of lacustrine shorelines in the 
western United States served as the initial approach to paleoclimate 
reconstruction. Two foundational works focused on the largest 
two intermontane paleolakes, Lake Bonneville (e.g., Gilbert, 1890) 
and Lake Lahotan (Russell, 1885). Mapping shoreline movements 
over time establishes lake hydrographs, and by association, insight 
into relatively wet versus dry periods (e.g., Morrison, 1991; Reheis, 
1999). These studies in the American west are representative of 
geomorphic climate studies conducted elsewhere on Earth (e.g., 
Placzek et al., 2006; Holmes and Hoelzmann, 2017; Yang and 
Scuderi, 2017; Fan et al., 2011, and references therein).

On Mars, former paleolacustrine sites are identified by 
locations where valley networks terminate or breach topographic 
basins. The majority of Noachian-aged (>3.7 Ga) terrain is 
dissected by valley networks (Carr, 1995), indicating that climatic 
conditions sustained surface water for periods of time around the 
Noachian/Hesperian boundary. Although both valley networks 
(e.g., Mars Channel Working Group, 1983; Carr, 1996) and 
candidate crater lakes (e.g., Newsom, 1996; Cabrol and Grin, 
1999) were identified in Viking images, our understanding of the 
aqueous history on Mars has greatly expanded with geomorphic 
investigations utilizing high-resolution image and topographic data 
over the last ∼25 years.

Paleolakes are classified by valley network drainage patterns, 
with open-basin lakes characterized by an outlet valley (Fasset 
and Head, 2008), and closed-basin lakes exhibiting no evidence 
of an outlet (Goudge et al., 2012; 2015). Over 400 candidate 

crater lake sites are identified: 210 open-basin lakes catalogued 
in Fassett and Head (2008), and 205 closed lake basins (55 of 
which have fan deposits) as reported in Goudge et al. (2015). 
[These martian crater lake catalogs generally do not consider 
commonplace paleochannel ridges, often called ‘inverted channels,’ 
that are the erosional remnants of channel and deltaic landforms on 
Mars (Malin and Edgett, 2003; Cardenas et al., 2018; Davis et al., 
2016; 2019; Dickson et al., 2021)]. Some open crater lakes are 
linked, forming contiguous crater lake chains mainly on long 
regional slopes and especially in Arabia Terra, but these have subtle 
morphological expression and are likely under-recognized (e.g., 
Fassett and Head, 2008; Davis et al., 2019; Dickeson et al., 2022). 
This observation, that the known martian paleolake inventory may 
be incomplete, is one of the main research drivers for the present
investigation.

In a global survey of martian fan deposits (Wilson et al., 2021; 
Morgan et al., 2022), putative deltas were classified based on a 
distal escarpment that may or may not have exposed stratigraphy, 
although later deflation of fine-grained deposits from the basin 
floor could yield a similar result (Irwin et al., 2005). Fan-deltas, 
landforms with both subaerial and subaqueous deposition, are 
difficult to identify in orbital images as this discrimination is based 
on sedimentologic attributes (e.g., steeply dipping foresets). Few fan 
deposits on Mars have exposed bedding stratigraphy to reinforce 
classification as lacustrine delta deposits in orbital images (e.g., 
Malin and Edgett, 2003; Moore et al., 2003; Irwin et al., 2015; 
Goudge et al., 2017; Fawdon et al., 2018).

Constraining the time sequence of martain lakes is hampered 
by limited morphological evidence. Geomorphic investigations have 
identified former lake levels and determined evolutionary sequences 
in only a few martian lacustrine basins (e.g., Palucis et al., 2016). 
Several of these studies are associated with proposed landing sites 
for Mars missions: the deltaic complex in Eberswalde crater (e.g., 
Malin and Edgett, 2003; Moore et al., 2003; Irwin et al., 2015), at 
least two lake episodes in Holden crater (Grant et al., 2010), and the 
fan complex in southwest Melas basin (Williams and Weitz, 2014; 
Davis et al., 2018). In situ rover investigations at two paleolacustrine 
sites have confirmed that standing water was present at Gale crater 
(Grotzinger et al., 2015) and the Jezero crater (Mangold et al., 
2024). Observations from the Curiosity and Perseverance rovers 
led to formulation of detailed lake histories (Schieber et al., 2020; 
Schieber et al., 2024; Caravaca, 2024; Williams et al., 2023). 

3 Materials and methods

We used image and topographic data to characterize 
paleochannels at basins with known or possible paleolacustrine 
history: one field site (Lake Coyote, California) and two Mars sites 
(Phison Patera and Harris crater).

A note on nomenclature: In this paper, we will use paleochannel 
or paleochannel ridge to indicate sites where prior work has 
documented the former course of a fluvial system through 
attributes of the sedimentary deposit and/or landform character. 
More specific terminology for paleochannels will be used when 
appropriate (see Section 4.1). 
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3.1 Data sets for Earth: Lake Coyote, CA

Satellite data for the field site in the Californian Mojave 
Desert was examined on Google Earth (Google Earth, 2024). 
In addition, we used aerial high-resolution orthoimagery from 
the USGS EarthExplorer including the Digitial Orthophoto 
Quadrangles (DOQs) originally collected on 01 October 1995: 
Harvard Hill (O3411603.NWS.839561) and Alvord Mountain 
West (O3511659.SWS.839536). Regional meter-scale topographic 
data are from airborne LiDAR (Light Detection And Ranging) 
acquired in August 2017 (accessible at USGS Lidar Explorer https://
www.usgs.gov/tools/lidarexplorer).

Field studies, measurements, and observations at the 
paleochannel ridges were conducted between the years 2014 
and 2016. Photo documentation of paleochannel ridges included 
landscape views and nadir surface images for grain size statistics 
following methods of Bunte and Abt (2001). Topographic surveys of 
paleochannel ridges used the Trimble Pro XRS Differential Global 
Positioning System (DGPS), with 2–4 cm horizontal and vertical 
precision in the acquired elevation data. Elevation measurements 
were used to characterize ridge shape with spot points acquired 
along longitudinal and cross-sectional ridge transects. 

3.2 Data sets for Mars: Phison Patera and 
Harris crater

Images used in this study are from two cameras on board the 
Mars Reconnaissance Orbiter: the High Resolution Imaging Science 
Experiment (HiRISE; 0.25 m/pix; McEwen et al., 2007) and the 
ConTeXt camera (CTX, ∼6 m/pix; Malin et al., 2007) rendered into 
a global mosaic (Dickson et al., 2024; available online through the 
Caltech Murray Lab; https://murray-lab.caltech.edu/CTX).

We also examined multipsectral Thermal Emission Imaging 
System (THEMIS) infrared images (Christensen et al., 2001). 
Decorrelation stretched (DCS) images are produced from THEMIS 
band 9 (center wavelength 12.57 μm), band 6 (10.21 μm) and 
band 3 (7.93 μm) mapped to red, green and blue, respectively. 
These data are advantageous because they illustrate the maximum 
spectral variability within THEMIS data in a 3-band set. THEMIS 
DCS-963 quadrangles are generated according to the procedures 
described in Hill (2022) to have globally consistent colors. These data 
are currently available to the THEMIS science team for validation 
prior to archival for the planetary science community.

Topographic data are from the Mars Global Surveyor Mars 
Orbiter Laser Altimeter (MOLA, Zuber et al., 1992) blended 
with High-Resolution Stereo Camera (HRSC; Neukum et al., 
2004) digital elevation models (DEM, 200 m/pix resolution, ∼10 m 
vertical precision; Fergason et al., 2018; Gwinner, 2010; Kirk et al., 
2021). Where available, we generated high-resolution CTX-DEMs 
(24 m/pix resolution, ∼5 m vertical precision Kirk et al., 2021) using 
the Ames Stereo Pipeline (Beyer et al., 2018; Mayer and Kite, 2016; 
Mayer, 2018). Data products produced during this study are archived 
with the USGS Science Base (Williams et al., 2024).

Geomorphic features mapped in previous studies were also 
incorporated into the JMARS (Christensen et al., 2009) GIS 
database. We used the global map of valley networks (Hynek, 2016). 
Davis et al. (2019) mapped sinuous ridges, interpreted as inverted 

FIGURE 1
Schematic to illustrate our approach to qualitatively evaluate martian 
paleolakes in this study.

channels, in Arabia Terra. In a regional study of the northern 
Hellas basin, Gullikson et al. (2023) mapped fan deposits and 
catchments, valley networks, ridges, fan deposits and catchments. 

3.3 Assessing subaqueous ridge origin 
within two martian basins

We selected two case study locations on Mars with paleochannel 
ridges within closed topographic basins: northern Arabia Terra 
and Harris crater. These sites were selected because they have not 
previously received detailed consideration as lacustrine sites, and 
they have mapped ridges interpreted as raised channels formed 
through topographic inversion. Our approach is described below 
and the workflow is illustrated in Figure 1.

3.3.1 Correlating possible lacustrine shoreline 
landforms

Our primary approach is to compare the elevation of landforms 
that could be associated with a lake. Principally, we examined the 
upper elevation of paleochannel ridges—understanding that their 
surroundings are deflated and they may be exhumed from more 
than the original channel depth—and the termination elevation of 
valley networks.

Where there is downstream longitudinal continuity from valley 
networks to contiguous ridges, this elevation interval records an 
important transition within the system. This zone could correspond 
to conditions that fostered sediment deposition (i.e., slope change, 
lacustrine depositional setting). Another possibility is that this 
interval marks erosion of fluvial deposits (topographic inversion).

These elevations informed evaluation of specific candidate lake 
levels. The goal was to select representative elevations for past lake 
level for comparison with other possible indications of a paleolake 
(e.g., alluvial deposits that are hanging rather than graded to the 
basin floor, a distal slope on a deposit as a possible foreset, and 
topographic benches potentially resulting from wave action). More 
broadly, we also considered the regional setting, including the spatial 
association of putative paleolacustrine deposits (Figure 1).

For this consistency study assessing candidate lake levels we 
adopted an elevation range for coincident values of 30 m based on 
the horizontal resolution of images and the vertical error of the 
DEMs (Gwinner, 2010; Kirk et al., 2021). We considered features 
to be ‘nearby’ when they are within 90 m elevation (threefold the 
criteria for matching the candidate lake level) to account for the scale 
of mapped features (accuracy of feature extents), landform setting 
(e.g., nearshore, onshore, beach, etc.) and landform preservation. 
This approach is consistent with other geomorphic evaluations 
of lake stands on Mars with comparable datasets, for example at 
Gale crater (Palucis et al., 2016). We used the modern topography 
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FIGURE 2
Schematic to delineate paleochannel ridge terminology used in this 
paper. See text description in Section 4.1.

and assume minimal post-deposition landscape modification (e.g., 
regional tilting, faulting, etc.). Due to erosion, ridges may be only 
partially preserved; this incomplete record would result in a lower 
elevation value for the upslope end and a lower concurrence with 
landform elevations at sites around the basin. 

3.3.2 Mapping indurated crater fill
Circular features of minimal relief or elevated plateaus are 

common across Arabia Terra. Such features are thought to represent 
the eroded remnants of indurated crater fill deposits and are likely 
remnant paleolake deposits (Davis et al., 2019). In that study, none 
of these features were noted within Phison Patera. Here, we re-
examined the broader Phison Patera region in northeastern Arabia 
Terra to map circular features that are flat or elevated. We mapped 
in an area bounded between 25.5° to 36.5°N latitude, and 38.5°
to 62.0°E longitude. Most of these features have distinct thermal 
infrared spectral signatures that appear purple in the THEMIS DCS-
963 mosaic. We excluded similarly colored areas in DCS-963 within 
craters, as well as irregularly-shaped topographically high features. 
Mapping was conducted at 1,024 pixels per degree. The smallest 
features recorded were 2 km in diameter. 

4 Results: Paleochannel ridges 
associated with paleolakes on Earth

4.1 Background—Polygenetic 
paleochannel ridge formation

The former course of rivers is preserved in a number of ways. 
Paleochannels are the relict fluvial path identified by sedimentary 
deposit and/or landform attributes (e.g., planimetric network 
pattern; Bridge, 1984; 2003; Miall, 1985; Church, 2006; Fielding, 
2007; Hooke and Yorke, 2011; Ashmore, 2013). These deposits can 
be single channel-fill, channel belt or alluvial-valley-fill deposits 
(Hayden and Lamb, 2020). Paleochannel ridges are positive-relief 
features whose origin may be primary (constructional deposit) or 
secondary (inverted-relief landform) fluvial deposits (Figure 2).

Topographic inversion in fluvial systems occurs where 
differential erosion removes the intervening erodible material and 
the relic fluvial channel fills, channel belts or valley fill material 
are preferentially preserved in an elevated state relative to the 

surrounding terrain (Maizels, 1990; Pain and Ollier, 1995; Pain et al., 
2007; Hayden et al., 2019; Zaki et al., 2020; Zhao et al., 2021). 
Such landforms are termed raised channels, inverted valleys, the 
colloquial ‘inverted channels’ (a term that is pervasive in the martian 
literature), or exhumed channels when formerly buried prior to 
topographic inversion (Williams et al., 2007; Cuevas Martínez et al., 
2010; Foix et al., 2012; Cardenas et al., 2020; Korus and Joeckel, 
2023; Clarke et al., 2020; Williams et al., 2009; Williams et al., 
2011). Various processes can cause fluvial deposits to become 
indurated, whether from cementation, armoring by coarse sediment 
or infilling by lava flows (Pain and Ollier, 1995; Pain et al., 2007). 
Subsequent erosion of the channel banks and/or floodplain results in 
topographic inversion, transforming the original low-lying channel 
deposits into an elevated ridge. A recent global inventory of over 
100 raised channels on Earth documents a range of erosion-resistant 
capping materials (Zaki et al., 2021), but all of these landforms have 
a destructive origin.

Primary paleochannel ridges are well documented in the 
literature. Alluvial ridges are near-channel positive-relief regions 
associated with changing river courses due to avulsion (Fisk, 1944; 
Allen, 1965). As a river channel migrates over time, channel belt 
dynamics generate alluvial ridges through overbank deposition 
(Allen, 1965; Bridge and Leeder, 1979; Bridge, 1984; Nicholas et al., 
2018; Slingerland and Smith, 1998). This sediment deposition is 
the river’s store of potential energy (Gearon and Edmonds, 2025). 
Aggradation of the channel beds and banks of rivers form alluvial 
ridges. The most detailed study of alluvial ridges is from the 
modern Mississippi River and more broadly along the coastal 
plain of the northern Gulf of Mexico (Fisk, 1944; 1952; Aslan and 
Blum, 1999; Swartz et al., 2022), and thus the term is generally 
associated with fine-grained sedimentary systems. Alluvial ridges 
are discontinuous landforms that record abandoned river channels 
generated over timescales of centuries to millennia (Fisk, 1944; Blum 
and Price, 1988; Kiss et al., 2022).

In contrast, and of relevance to this work, a newly recognized 
mechanism of primary paleochannel ridge formation is subaqueous 
generation at the interface between a river and a rising lake (Miller et al., 
2018). This is a constructional scenario, wherein the fluvial deposits 
are emplaced in a ridge-form at the time of deposition. Paleochannel 
ridge relief may be enhanced due to secondary erosional processes as 
the lake level falls. In the next section, we describe field observations 
from such a location as an illustration. 

4.2 Terrestrial paleochannel ridges 
associated with paleoshoreline at Lake 
Coyote, CA

Lake Coyote is a playa (∼5 km × 7 km), one of four subbasins 
of Pleistocene Lake Manix in southern California (Figure 3; 
Supplementary Figure S1). Lacustrine phases at Lake Coyote 
occurred at times during the last 25 ka when water in the Mojave 
River breached the 543 -meter-above-sea-level (masl) threshold, 
crossing the Minneola fluvial plain and entering the Coyote 
basin (Meek, 1994). During this time interval, the basin was 
tectonically stable (Miller et al., 2018).

Distributary paleochannel ridges above the Minneola fluvial 
plain were first identified by Hagar (1966). Trenches dug into 
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FIGURE 3
(A) Location map for inverted channels associated with Pleistocene Lake Coyote playa in southern California. Paleochannel ridges are present across 
the area north of Mojave River in the Minneola fluvial plain (dashed white line). White dot marks location of Figure 2. Satellite image date 11/29/2023, 
centered near 35°1.5′ N, 116°37.7′ W, accessed through Google Earth on 12/13/2024. (B) LiDAR shaded relief map with a color-ramp highlighting a 5 m 
elevation range to illustrate eastern and western (E, W) paleochannel ridge form. Miller et al. (2018) established a fluvial sequence (circled numbers) of 
inverted channels stepping basinward. See Supplementary Figure S1 for regional context.

the ridges revealed channel-fill geometry with thicker coarse 
sand deposits at ridge center tapering laterally to the edge 
and sediment composition confirmed provenance (Hagar, 1966; 
Dudsah, 2006). Mojave River deposits contain arkosic sand sourced 
from the California Transverse Ranges, and gravels of plutonic 
rocks and metasedimentary rocks, including distinct rounded 
quartzite (Miller et al., 2018). At the ridge margins, the Mojave 
River deposits interfinger with lacustrine silt deposits. Further, 
stratigraphic sections along the Lake Coyote margin show Mojave 
River sediments (identified by the presence of diagnostic quartzite 
pebbles, the bed load of the Mojave River) buried by thin 
lacustrine deposits (Miller et al., 2018).

The spatial configuration of the ridges is best recognized in 
remotely sensed data. The ridges at Lake Coyote are evident in aerial 
photographs by dark tone (varnished gravel) of ridges in contrast 

to lighter-toned plains, and minor vegetation patterns (sparser on 
crest). Dudsah (2006) mapped two broad paleochannel ridge systems 
(eastern and western). Miller et al. (2018) conducted a detailed map 
of individual ridges in sub-meter topographic data, documenting a 
direct connection to the Mojave River. The eastern set of paleochannel 
ridges have bulbous terminations, whereas the western set end as 
individual radial ridges (Figure 3B). The terminal elevation of the 
western paleochannel ridges merge with an arcuate barrier beach. 

Mapped ridges are widespread across the Minneola fluvial 
plain, covering an area of ∼115 km2. These landforms vary in 
size (Supplementary Figure S2), with ridges ranging from 10–30 m 
wide, and segments extending in length from a few meters to 
over a kilometer. The ridges exhibit low relief, generally less 
than 1 m, with a very shallow northerly slope (∼0.11°) along 
their crest (Supplementary Figure S2).
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FIGURE 4
Paleochannel ridges adjacent to Lake Coyote, California, are barely discernible at the site due to low relief and minor grain size variations in the surface 
material. Photo along ridge axis (yellow line) shows sparse gravel concentrated on topographic high and decreasing grain size towards the lowlands. 
Distance between dashed white lines is ∼10 m. Inset: Trench shows gravel monolayer over unconsolidated fine-grained sediment (sand to silt), inferred 
lacustrine deposit. Image location is marked on Figure 3A and is near 34.96071°N, 116.68867°W (9/18/24).

Due to their subtle topographic form, the ridges are difficult 
to recognize from surface expression in the field. A monolayer of 
clasts blankets the surface of the Minneola fluvial plain, with grain 
size varying with topography (Figure 4). Gravel is concentrated 
on the ridge crest, while finer-grained sediment is present in the 
lowlands. At the ridge apex, the maximum grain size reaches coarse 
gravel (2 cm), in contrast to the topographic lows where the coarsest 
fraction is fine gravel (0.5 cm). Correspondingly, median grain 
size also differed: D50 = 0.9 cm at the crest and D50 = 0.2 cm in 
the trough. These gravelly fluvial deposits are thin (a veneer) and 
superpose earlier lacustrine deposits composed of silt-to sand-size 
grains. In general, ridge sediments are unconsolidated sediments 
and weakly cemented by halite salt, making them easily excavated by 
hand. Locally, ridges have soil present beneath the gravel pavement 
that can reach 5 cm thickness and is well indurated with calcium 
carbonate.

4.3 Interpretation: Terrestrial paleochannel 
ridges associated with paleoshoreline at 
Lake Coyote, CA

In a preliminary United States Geological Survey (USGS) 
geologic map, Dudsah (2006) outlined three working hypotheses 
for the Lake Coyote paleochannel ridge origin with reference 
to analog sites: 1) differential erosion of Mojave River channel 
deposits (raised channels similar to the gravel-capped exhumed river 
channel systems in Oman; Maizels, 1990), 2) fluvial deposition in a 
low gradient aggrading system (potentially akin to the Australian 
Lake Eyre; Lang et al., 2004), or 3) a mixture of both destructive and 
constructive processes (e.g., a combination of hypotheses 1 and 2).

Observations support both destructive and constructional 
processes (favoring model 3), which highlights the complex history 
preserved in the Lake Coyote paleochannel ridges. Importantly, 
these two paleochannel ridge types are gravel-capped ridges 
that are indistinguishable in undisturbed surface observations. 
Clast armoring by river-transported gravels protected finer-grained 
sediment in this deflated landscape. Thus, the gravel-capped ridges 
are interpreted as raised channels, differentially eroded stream 
channel deposits, with the low-lying finer grain deposits between 

ridge crests interpreted as marsh and floodplain deposits (Hagar, 
1966; Dudsah, 2006; Miller et al., 2018). However, at the lake margin 
the geomorphic and sedimentologic signature of streams interacting 
is consistent with constructional channel deposition (e.g., gravel-
capped subaqueous ridge).

The Lake Coyote site is noteworthy for the positive-relief 
geomorphic expression of the stream-to-lake margin with 
two varieties of constructional subaqueous ridges. The eastern 
paleochannel ridges end very close to the maximum Lake 
Manix highstand (543 masl at 24.5 ka; Figure 3B), potential 
evidence that the river flowed into standing water (Dudsah, 2006; 
Miller et al., 2018). Miller et al. (2018) proposed that rivers entering 
the Coyote basin encountered a rapidly rising lake such that river 
deposits were buried by lacustrine sediments as water levels rose, a 
situation they suggested inhibited delta formation.

In contrast, the western paleochannel ridges are interpreted 
as constructional channels whose sediment was reworked to form 
an arcuate barrier beach. Paleochannel ridge elevation matches 
the barrier beach at an altitude of ∼541 masl. In this area, 
Miller et al. (2018) documented river channel position moved 
progressively eastward from stratigraphic relationships of the radial 
ridges and confirmed by radiometric dating (Figure 3B). They 
propose that wave action and lake currents along the beach 
transported north-flowing bed load away (along shore), explaining 
the source of gravel sediment and overall shape of the arcuate
barrier beach.

Lake cycles were initially constrained by geomorphic mapping 
to establish a relative sequence. In situ stratigraphic sections 
and radiometric dating of lacustrine shells were then used to 
establish an absolute chronology (Oviatt, 1997; Miller et al., 
2018). These data allowed Miller et al. (2018) to identify six lake 
cycles spanning ∼5 ka, with an associated fluvial sequence as the 
paleochannel ridges progressively stepped basinward (Figure 3B). 
Radiometric ages differentiate depositional phases for individual 
radial ridges (‘spokes’) at the end of the western paleochannel ridges, 
and the apparent distributary configuration of ridges is a time-
integrated pattern. The eastern paleochannel ridges formed first, 
followed by sequential radial ridge accretion along the western 
lake margin (Figure 3B). The paleochannel ridges record a time 
sequence of river channel switching.

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2025.1666811
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org


Williams et al. 10.3389/fspas.2025.1666811

FIGURE 5
Location map of two case study sites are marked with stars. Global 
map with latitude extent from 50° to −55°. Image Credit: National 
Geographic Society/MSSS/MOLA Science Team/JPL/NASA.

Lake Coyote had a minimum fill time of 30 years based on 
estimated river discharge rates, but the integrated regional climate-
hydrological record indicates sustained lake stands with duration 
of several hundred years (Wells et al., 2003; Miller et al., 2018). 
This highstand longevity argues against paleochannel deposits 
occasionally drowned by the lake, and supports the river-lake 
confluence model.

Lake hydrographs are often compared to other paleoclimate 
records to infer information on regional or global trends. 
Reheis et al. (2015) compared the Lake Manix hydrograph 
with ice core, marine and spleothem paleoclimate records. They 
documented three highstands for Lake Manix that coincide with 
known climate events (abbreviated here as Henrich events: H2, 
H3 and H4). Supplementary Figure S3 shows the reconstructed 
lake level curve for Late Pleistocene Lake Manix. The subaqueous 
paleochannel sequence at Lake Coyote corresponds to the most 
recent warming period, occurring after the H2 event. 

5 Results: Assessing paleochannel 
ridges associated with paleolakes on 
Mars

Martian paleochannel ridges are commonly identified in images 
by planform morphology, tonal contrast and shadows cast by ridge 
walls, rather than by relief or cross-sectional form in topographic 
data (Pain et al., 2007; Williams et al., 2013; Davis et al., 2016; 
Dickson et al., 2021; Davis et al., 2025). They are significantly larger 
than the potential analog Lake Coyote landforms described here, 
with widths of hundreds of meters to a few kilometers. This size 
disparity is in part due to the limited image coverage at meter-scale 
or smaller resolution, inhibiting detection of comparably scaled 
landforms on Mars. In addition, Mars has experienced several cycles 
of deposition and erosion, evidenced in part by filled and excavated 
impact craters across the planet (e.g., Malin and Edgett, 2000; 2001; 
Day et al., 2016; Grotzinger et al., 2015; Edgett et al., 2020). As 
a result, martian paleochannels, especially smaller ones, are likely 
missing due to overprinting by burial or removal by erosion. These 
factors promote a preservation bias of larger landforms.

Using the Lake Coyote analog as a framework to 
consider new martian paleolake sites, we examined two 
closed basins with previously identified paleochannel ridges 
for the purposes of assessing the former presence of a lake 
(Figure 5; Supplementary Figure S4).

5.1 Case study 1: Phison Patera, Mars

Arabia Terra is the northern extent of the martian 
ancient cratered highlands and is noteworthy for the relative 
scarcity of valley networks compared to other Noachian-era 
terrains (Hynek et al., 2010). Fluvial systems in Arabia Terra 
were active between the mid-Noachian to Early Hesperian 
(Davis et al., 2018). With the recognition that some martain fluvial 
systems are preserved as topographic highs due to differential 
erosion (e.g., Dickson et al., 2021), paleochannel ridges help bridge 
the gaps in some valley networks and expand the record of surface 
runoff on Mars.

In Arabia Terra, Davis et al. (2016) mapped a contiguous 
pattern of fluvial landforms showing negative-relief valleys 
transitioning to positive-relief ridges (‘inverted channels’). This 
morphological transition was interpreted as crossing an erosional 
boundary, reflecting a complex history of burial and exhumation 
(Davis et al., 2016; 2018).

Northeastern Arabia Terra has long been recognized as the site 
of an extensive mantle up to several hundred meters thick that 
covers the ancient Noachian cratered terrain (Moore, 1990; Fassett 
and Head, 2007; Zabrusky et al., 2012). The horizontally layered 
mantle is thought to be a regional aeolian, dust or pyroclastic 
deposit that has been extensively denuded to form scabby or 
‘etched’ terrain (Edgett, 2005; Hynek and Di Achille, 2017), with an 
estimated original etched unit thickness of ∼800 m at Phison Patera 
(Zabrusky et al., 2012). Davis et al. (2019) demonstrated the high 
correlation (∼80%) of paleochannel ridges and the former extent of 
etched terrain in Arabia Terra. They suggested that the blanketing 
etched terrain may have protected the paleochannels from erosion 
such that the low-relief ridges visible today are the final stages of 
the significant deflation experienced across Arabia Terra. With this 
history of burial and erosion, the Phison Patera paleochannel ridges 
are exhumed channels.

Phison Patera is a topographic basin located in northeastern 
Arabia Terra, centered near 30°N, 48°E (Figure 6). [The International 
Astronomical Union name is for an albedo feature originally 
mapped by Antoniadi (1930)]. Identified as a quasi-circular 
depression in MOLA data by Frey et al. (2002) and dated to the 
Early Noachian, it is an eroded composite impact basin. As a 
large regional sink, valley networks incise the perimeter but lack 
triangular deposits at their termini. Davis et al. (2019) first proposed 
this site as a candidate paleolake based on transitions from valley to 
exhumed channels terminating within a ∼400 km-diameter closed 
basin (∼105 km2). This location is not included in martian crater lake 
databases (Fassett and Head, 2008; Goudge et al., 2012).

To evaluate a possible paleolake at the Phison Patera basin, we 
considered morphological evidence for consistency with standing 
water at this site. First, we assessed candidate lake levels based on 
the transition zone between valleys and exhumed channels. Second, 
we examined the spatial distribution of indurated crater fill that are 
likely remnant paleolake deposits, as described in Section 3.3.2. 

5.1.1 Fluvial morphological transition
Seven fluvial systems terminate within the Phison Patera basin. 

These systems are characterized by an inlet valley network that 
connects downslope with a curvilinear ridge, interpreted as a 
paleochannel subjected to topographic inversion (Davis et al., 2019). 
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FIGURE 6
(A) Context map of Phison Patera is shown in blended MOLA/HRSC 
DEM (Fergason et al., 2018) overlain on CTX basemap centered at 
30.0°N, 47.5°E. Lines are mapped valley networks (cyan) from Hynek 
(2016) and ridges interpreted as paleochannel ridges (yellow 
lines) from Davis et al. (2019). (B) Subscene enlargement to illustrate 
shallow lowlands (arrows) at heads of valley networks entering the 
basin from the southwest.

The exhumed channels maintain the full breadth of their feeder 
valley (widths of 1–2 km) at the transition and extend several 
tens of kilometers into the basin (Figure 7). Paleochannel ridge 
planform ranges from straight to modestly sinuous, with some 
cases splitting downslope (Figures 7A,C). Ridge width is relatively 
consistent along course and is typically a few hundred meters. 
Boulders are observed on the ridge surfaces (Figures 7B,E). The 
cross-sectional shape of the ridges appears to be flat-topped, and the 
ridge relief appears modest (Figure 7C).

Supplementary Table S1 reports the elevation range between the 
termination point of the mapped valley network (Hynek, 2016) and 
the onset elevation of the paleochannel ridge aligned with that valley 
(mapped by Davis et al., 2019). In cases where the features mapped 
by these researcher overlap, that elevation range was recorded. 
The elevation interval between these landforms may record lake 
highstands.

Two candidate lake levels were identified through this exercise 
with matching elevations (<30 m; Supplementary Figure S5). 
(Broadening the elevation range to <90 m did not add locations.) 
Four fluvial systems had overlapping elevation ranges with matching 
values for the paleochannel ridges. A representative candidate 
lake level of −1,300 m for this group is illustrated in Figure 8A 
and Supplementary Figure S6, covering an area of ∼80,000 km2. A 
higher candidate lake level at −900 m (Figure 8B) coincides with 
two other fluvial systems in the southern portion of the basin. This 

candidate lake level covers an area of ∼135,000 km2. One fluvial 
system, #5, had an elevation range for the valley-to-ridge transition 
at approximately −750 m, which could represent the maximum 
lake level.

5.1.2 Paleolake morphology
Indurated crater fill was mapped regionally in the area 

surrounding Phison Patera (bounds 24.5°–36.5°N; 38.5° to 62.0°E). 
Note that Davis et al. (2019) did not mark any indurated crater fill at 
this location, although they did note occurrences throughout Arabia 
Terra (see their Figures 1, 6). This difference may be due to the 
subtle expression of these features in visible-wavelength images (e.g., 
HiRISE, CTX), as there is minimal tonal difference relative to the 
surrounding terrain. However, the thermal and spectral signature 
of indurated crater fill permits rapid identification of these distinct 
rounded landforms in the THEMIS DCS-963 mosaic (Figure 9).

Eighty-eight indurated crater fill features were identified 
(Supplementary Table S2). A subset of the mapped area is illustrated 
in Figure 9B to show the spatial association of features within 
the proposed Phison Patera paleolake site. Thirty-four mapped 
indurated crater fill features are clustered together, and very few (n = 
4) are located on the adjacent terrain outside of the basin (Figure 9). 

5.1.3 Interpretation: Phison Patera, Mars
The case for a hypothesized lake at Phison Patera is strengthened 

by the commonality of valley network to ridge transitions 
associated with two evaluated highstand elevations (Figure 8; 
Supplementary Figure S5). We interpret the continuity of the valley 
network to paleochannel ridge transition as a contemporaneously 
formed system responding to lake level, rather than marking an 
erosional boundary as previously suggested. The strongest case is 
for a lake level at −1,300 m, with four fluvial systems spanning at 
least half the basin circumference meeting the elevation criteria. The 
close elevation agreement in ridge onset despite the range in distance 
from the basin edge (referenced to −900 m; Figure 8B) is suggestive 
of a river encountering a lake, and a more likely explanation than 
aeolian erosion coinciding with an elevation contour. Reinforcing 
this interpretation is the concentration of indurated crater fill within 
this topographic basin (Figure 9) that is likely remnant paleolake 
deposits similar to those identified in the vicinity by Davis et al. 
(2019). Together, these morphological landforms are consistent with 
a paleolake (Table 1). Evidence for the maximum lake level (−900 m) 
is limited (only two matches), and we categorized it as plausible 
to convey that a high lake is possible but not well recorded in the 
landscape.

The Phison Patera paleolake ranks in the top 5% of martian 
crater lakes by area (Goudge et al., 2015) and broadens the 
extent of widespread aqueous systems across Arabia Terra. It is 
comparable in size to the largest paleolakes in the region (e.g., 
Cassini, Tikhonravov, and Antoniadi craters; Fassett and Head, 
2008). Additionally, the Phison Patera basin is located immediately 
northeast of the longest crater lake chain system identified to 
date on Mars: the Naktong-Scamander-Mamers (NSM) system 
extends ∼5,000 km in length and has a ∼2.4 × 106 km2 catchment 
(Irwin et al., 2005; Fassett and Head, 2008; Davis et al., 2019). The 
Phison Patera area differs from the integrated NSM system as it 
is rimmed by relatively short, single-thread valleys that apparently 
drained shallow lowlands (Figure 6B). A regional groundwater 
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FIGURE 7
Examples of ridges in Phison Patera. (A) Subscene of CTX mosaic illustrating valley network to paleochannel ridge transition. Location is basinward 
from #1 in Figure 8A, near 32.21°N, 45.99°E. (B) High resolution subscene showing boulders on ridge surface. (HiRISE PSP_005355_2125). (C) Anaglyph 
subscene to show modest ridge relief (estimated <10 m). (HiRISE PSP_005355_2125 and ESP_084304_2125. Image credit: 
NASA/JPL-Caltech/UArizona). (D) Sinuosity of ridge varies along course in this example located basinward from #3 in Figure 8A. Subscene of CTX 
mosaic near 28.95°N, 46.18°E. (E) High resolution subscene showing boulders on ridge surface. (HiRISE ESP_037674_2090). Illumination is from the 
upper left in all panels.

system, as inferred for this area by Fassett and Head (2008), was 
likely a source of water to lakes especially in the lower elevations and 
for deep craters with few inlet valleys.

The geologic setting is consistent with finite periods of regional 
flooding. Single-stem to anabranching valleys incise into the terrain 
and mantle (Figure 6), and locally divert around the ejecta blanket 
of young impact craters. The highly erodible mantle (etched unit) 
is inferred to be fine-grained, possibly dust-size (Moore, 1990), and 
would be readily subjected to aeolian deflation as well as transported 
in flows as suspended load. Mapped paleochannel ridges extend well 
into the basin center (e.g., #3 and #4 in Figure 8A), an indication of 
the high energy transport capacity.

We speculate that the paleochannel ridges here are 
constructional in nature, possibly formed due to hyperpycnal flows 

(Lamb et al., 2010). To explain the presence of boulders on ridge tops 
(Figure 7B), we point to recent studies that show subaqueous debris 
flows can transport boulders over substantial distances (∼10 km) 
in submarine canyons (Talling et al., 2010). Such events may be 
generated by seismic activity (Ribó et al., 2024) which could be 
impact events on Mars. 

5.2 Case study 2: Harris crater, Mars

The plains northeast of Hellas Planitia have drawn a lot of 
research interest due to the diversity of interior deposits within 
crater basins. Martian alluvial fans are geographically restricted, 
with one regional cluster of megafans (10–40 km radial length) 
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FIGURE 8
Candidate lake levels at Phison Patera, Mars. Color ramp used for 
MOLA elevation is stretched to a 200 m interval centered around 
possible water level (yellow band is ∼30 m elevation range) at (A)
−1,300 m elevation and (B) −900 m elevation. Lines in all panels are 
from Hynek (2016) mapping of valley networks (light blue lines) and 
Davis et al. (2019) mapping of ridges interpreted as paleochannel 
ridges (yellow lines). White arrows mark locations where the transition 
from valley network to paleochannel ridge coincides with the possible 
lake level illustrated. Yellow numbers correspond 
to ID# in Supplementary Table S1.

present within craters in Southwesten Tyrrhena Terra, including 
Harris crater (Moore and Howard, 2005; Wilson et al., 2021). Very 
few (N = 2) of the intracrater fans in this region are interpreted 
to be deltaic (e.g., Wilson et al., 2021). Nevertheless, multiple 
closed basin lakes are identified in this region, all of which lack 
a triangular fan deposit (Goudge et al., 2015). Some craters have 
layered sedimentary deposits (Malin and Edgett, 2000) containing 
hydrated minerals that are thought to be lacustrine in origin (Ansan 
and Mangold, 2004; Wilson et al., 2007).

Harris crater has a diameter of 82 km and is located at ∼ 21.9°S, 
66.8°E (Figure 10). The Harris impact event occurred between Early 
Hesperian and Early Amazonian (∼3.7 to ∼3.3 Ga) and is part of a 
fresher class of craters thought to postdate the main era of valley 
network activity (Mangold et al., 2012). Gullikson et al. (2023) 
mapped water-related landforms in the northern region of Hellas 
Planitia, including at Harris crater (Figure 10). Five intracrater 
fans at Harris crater were previously interpreted as alluvial fans 

FIGURE 9
(A) White oval outlines the regional concentration of indurated rimless 
crater fill features (black dots). Within the area shown only four 
indurated crater fill features are mapped outside of the proposed 
paleolake site (yellow circles). Basemap is THEMIS DCS-963 mosaic 
overlain on THEMIS daytime infrared global mosaic (Edwards et al., 
2011 ab) with mapped valley networks (blue lines) from Hynek et al. 
(2010). Center of figure is near 30.0°N, 47.5°E (B) Subscene of THEMIS 
DCS-963 to illustrate the purplish color of rimless round features 
interpreted as indurated crater fill. Figures created through JMARS: 
NASA/JPL-Caltech/Arizona State University.

(Figure 11; Williams et al., 2011; Anderson et al., 2023; Wilson et al., 
2021). In this study, we evaluate if there was lacustrine overprinting 
of the original alluvial deposits.

5.2.1 Assessment of candidate lake levels at 
Harris crater

We evaluated two candidate lake levels based on onset elevation 
of paleochannel ridges and assessed the consistency with elevations 
at which valley networks terminate (Supplementary Figure S7). 
Paleochannel ridges were mapped on the southern and northeastern 
fans by Gullikson et al. (2023); yellow lines on Figure 10). These 
ridges have relief of <10 m (Supplementary Figure S8). On the 
southern alluvial fan, isolated paleochannel ridges originate mid-
fan and are not associated with negative-relief valleys (Figure 11B). 
These linear paleochannel ridges are few in number and parallel to 
each other. On the northeastern alluvial fan complex, paleochannel 
ridges initiating at the fan apex and in some cases are continuous 
from valley networks in the wall catchment. Paleochannel ridges 
radiate downslope in bifurcating segments ∼200 m long, for a 
total distance of ∼15 km. Williams et al. (2011) identified three 
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TABLE 1  Summary of observations and evaluation of martian candidate lake levels.

Site Lake level 
(m)

Landform 
match 

(<30 m)1

Landform 
nearby 
(<90 m)

Region Region Region Evaluation

Phison Patera
−900 2 VN—PR —

Paleolake deposits Ponding spillover —
Plausible

−1,300 4 VN—PR — Likely

Harris Crater
−1900 3 VN 3 VN —

Evaporite minerals
Desiccation 

polygons

Unlikely

−2,200 4 PR 4 VN Alluvial fan scarp Plausible

1VN = valley network, PR = paleochannel ridge.

FIGURE 10
Context map for Harris crater, an ∼80 km diameter crater located northeast of Hellas Planitia, at ∼ 21.9°S, 66.8°E. Gullikson et al. (2023) mapped fans 
(purple) and catchments (green), valley networks (blue lines) and paleochannel ridges (yellow lines).

depositional units that included fluvial processes and a late-stage, 
boulder-rich debris (Figure 11A).

First, we used the maximum paleochannel ridge elevation 
on the southwestern fans (−2,200 m; lower white arrow in 
Figure 12A), covering an area of ∼2,140 km2. This elevation 
is consistent for two paleochannel ridges (Figure 11B), and it 
matches (<30 m) a few paleochannel ridges that originate on 
the mid-fan of the northeastern alluvial fan (green arrow in 
Figure 12A). Also this elevation is near (<90 m) four valley network 
terminations on the western crater wall (pink arrows in Figure 12A; 
Supplementary Figure S9). One alluvial fan deposit with a terminal 
scarp (orange arrow in Figure 12A) could be additional evidence of 
a shoreline, however, multiple escarpments on the crater floor cross 
contours and have an ambiguous origin.

Second, using the elevation of the northeastern alluvial fan 
apices (−1900 m; white arrow Figure 12B) establishes the maximum 
lake area and depth (2,680 km2, 1,400 m). This elevation was 
selected as an upper bound test. This potential water level 
corresponds to the termination of several valley networks on 
the northeastern and southern side of Harris crater, matching 

three and near three inlets (blue and pink arrows, respectively,
in Figure 12B). 

5.2.2 Interpretation: Harris crater, Mars
We propose that the Harris crater ridges may be preservation 

of paleochannels with two disparate origins, but both associated 
with a low-energy. depositional setting. The northeast fan is 
composed of heavily deflated alluvial fan deposits where wind 
erosion has removed finer-grained sediment producing networks of 
superposed distributary channels preserved in inverted relief (e.g., 
raised channels; Figure 11A). In contrast, we suggest the southern 
alluvial fan distal ridges are sublacustrine (Figure 11B), forming 
in positive relief mid-fan associated with a paleolake, similar to 
the origin of subaqeuous ridges at Lake Coyote, CA. Consistent 
with deposition at the river-to-lake transition, there are boulder 
deposits locally present on the paleochannel ridges (Figure 11C), 
although limited meter-scale images of the southern alluvial fan 
restrict detection of coarse sediment. Potentially, the northeast 
mid-fan ridges (green arrow in Figure 12A) also formed by this 
mechanism and overprinted a partially submerged northeastern 
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FIGURE 11
Examples of alluvial fan surfaces in Harris crater from CTX global mosaic (Dickson et al., 2024). (A) Harris crater’s northeastern fan has multiple lobes, 
as mapped by Williams et al. (2011). Numbers denote the depositional sequence. There is a tonal difference between the dark lobe 1 and the lighter 
lobe 2, in addition to cross-cutting relationships to distinguish the lobes. The third deposit is boulder-rich and interpreted as a late-stage debris flow.
(B) The distal reaches of the southwestern fan has linear ridges (orange arrows) downslope from the −2,200 m contour (dashed yellow line) and not 
associated with broad valleys (blue arrows). These ridges are interpreted as subaqueously formed paleochannels. White deposits at upper right could 
be evaporite salts, which are commonly bright in CTX images. (C) Boulders are present in places on ridge. (D) Light-toned polygonal pattern on crater 
floor is consistent with desiccation cracks. (A, B) are subscenes of CTX global mosaic, and (C, D) are subscenes of HiRISE ESP_018527_1575.

alluvial fan, but this interpretation cannot be distinguished from 
eroded telescoping alluvial fan deposits in the available data. 
Supplementary evidence of a paleolake at Harris crater includes: 1) 
light-toned deposits on a crater floor (Figure 11B) that has a chloride 
spectral signature (Bickel et al., 2024), consistent with evaporite 
deposits (Osterloo et al., 2008; 2010; Hynek et al., 2015); and 2) 
topographic benches that could be lake terraces, although further 
work is needed to refine this interpretation.

Differences in the alluvial fans on the north and south side 
of Harris crater reflect their respective source regions. Because 
the northeastern rim of Harris crater coincides with a pre-existing 
crater rim (Figure 10), the Harris impact event may have reworked 
those upturned rocks resulting in a catchment comprised of highly 

erodible material. Poorly integrated drainage within the catchment 
suggests relatively coarse grain size in fan deposits, and supports the 
interpretation of clast armored raised channels in the northeastern 
alluvial fan complex. In contrast, the catchment for the southern fan 
is bedrock of the Harris crater rim. Valley networks are integrated in 
the southern catchment (Figure 10), suggesting comminution and 
a range of sediment sizes available for transport. A fining downfan 
sequence may have supported the retention of impact craters in fan 
deposits (Figure 11B). Late-stage flows across this fan surface could 
have encountered rising water in a lake, generating distal linear 
ridges on the margins of the southern fan (Figure 11B).

We speculate that groundwater may have been a source of 
water helping to stabilize lake level at Harris crater. Figure 11D 
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FIGURE 12
Candidate lake levels at Harris crater, Mars. Color ramp used for CTX DEM elevation is stretched to a 200 m interval centered around possible water 
level (yellow band is ∼30 m elevation range). Shoreline elevation is defined at white open arrows for two cases (−2,200 m in (A), and −1900 m in (B). 
Solid arrows mark features that are close in elevation to the candidate lake level: valley network inlets at consistent (<30 m) elevations have blue arrows 
and nearby elevations (<90 m) have pink arrows, and in (A), green arrows marks paleochannel ridges that originate mid-fan at an elevation close to the 
evaluated −2,200 m shoreline, and orange arrow marks fan with terminal scarp. Lines in all panels are from Gullikson et al. (2023) mapping of valley 
networks (light blue lines) and ridges interpreted as raised channels (yellow lines).

illustrates 50–100 m wide polygonal crack patterns on the crater 
floor reminiscent of shrinkage polygons formed through desiccation 
(El Maarry et al., 2010). Their perimeter is characterized by paired 
ridges bounding a crack, a configuration similar to groundwater 
upwelling exploiting desiccation polygons at the Great Salt Lake, 
Utah (Vanden Berg, 2019). Global-scale hydrological models show 
groundwater upwelling at this location is only associated with 
a wet hydrological regime (Andrews-Hanna and Lewis, 2011), 
suggesting that if groundwater were present at Harris crater it either 
resulted from local conditions, or global-scale processes occasionally 
persisted well past the Noachian era.

In the synthesis of observations, we find the higher candidate 
lake level (−1900 m) an unlikely marker of a paleolake at Harris 
crater because there is insufficient ancillary morphology to suggest 
water levels ever reached this maximum height and it is difficult to 
fit within a landform development sequence (Table 1). The valley 
network terminations associated with this elevation lack terminal 
triangular deposits; rather these inlets may have been buried with 
intracrater fill, possibly lacustrine deposits associated with a lower 
lake level. In sum, there is weak evidence to support a −1900 m 
lake level.

Based on our analysis, a paleolake at Harris crater is plausible 
(−2,200 m level) but is a non-unique model that fits available data. 
An evolutionary scenario at Harris crater could be subdivided into 
three periods by depositional environment. Phase 1 involved alluvial 
fan aggradation emplacing the bulk of sediment by volume within 
the basin, including lobes 1 and 2 of the northeast fan complex 
(Figure 11A). Phase 2 was a transgressive lake period. Lake level 
may have reached −2,200 m (Figure 12A), based on consistency of 
paleoshoreline indicators, phase 3 returned to alluvial processes, 

including the debris flow deposits in lobe 3 of the northeast 
fan complex, but it involved far less material mobilized than in 
phase 1. This depositional sequence—early alluvial sedimentation, 
intermediate lacustrine deposition, late-stage alluvial activity—is 
consistent with superposition relationships at Harris crater. 

6 Discussion

6.1 Terrestrial subaqueous ridges

6.1.1 Lake Coyote paleochannel ridges
The Minneola fluvial plain gravel-capped paleochannel ridges 

have a composite origin (Hagar, 1966; Dudsah, 2006; Miller, 2018). 
Although Lake Coyote paleochannel ridges extend >15 km from the 
Mojave River, it is only the distal ∼3 km spanning ∼5 m elevation 
that are interpreted as subaqueously formed paleochannel ridges. 
Most of the paleochannel ridges on the Minneola floodplain (∼80% 
by length) are raised channels, formed via differential erosion 
of Mojave River deposits. Critically, this example illustrates that 
paleochannel ridges can be a lake margin landform.

The case for subaqueous paleochannel ridge formation at 
the river to lake confluence is substantiated at Lake Coyote 
by multiple pieces of evidence that are difficult to identify or 
not detectible in existing data for Mars. The interpretation was 
founded on the sedimentology: interfingered fluvial gravels and 
lacustrine silt deposits with shallow water fossils (Anodonta shells). 
The paleochannel ridge planform at the lake margin is varied, 
from the eastern bulbous terminations to the western complex of 
radial ridges merging with an arcuate barrier beach (Figure 3B). 
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Superposition or stacking patterns of the ridges may not be 
resolved in topographic data and were only identified through facies 
contacts in excavated trenches combined with radiocarbon dates. 
Furthermore, the Lake Coyote paleochannel ridges merge with 
lakeshore landforms, an example of compound landforms where 
fluvio-lacustrine depositional settings meet. Absent ground truth, 
similar planimetric patterns in remotely sensed data may suggest 
alternative interpretations, such as raised channels or distributary 
paleochannels. 

6.1.2 Terrestrial paleochannel ridges and 
paleolakes

Most raised channels (‘inverted channels’) recognized on Earth 
formed in depositional settings where channel deposits could 
become more resistant than surrounding materials (e.g., enhanced 
cementation, deposition of coarse clasts). Some studies have noted 
raised channels located near past lakes. Sites include paleolake 
Tushka in Egypt (Maxwell et al., 2010), Lake Bonneville in Utah 
(Oviatt et al., 2003), Lake Manix in California (Miller et al., 2018), 
the Qaidam Basin in China (e.g., Li et al., 2025), and the salars in the 
Chilean Atacama Desert (Morgan et al., 2014). However, very few 
published studies have specifically linked raised channel locations 
directly to lacustrine shorelines, and these are associated with clast-
armored raised channels. It is unknown whether other types of 
inverted channels may also be linked to paleoshorelines.

In addition to the subaqueous paleochannel ridges at Lake 
Coyote (Miller et al., 2018), we are aware of only one other example 
of raised channels associated with a specific lake level. Williams et al. 
(2021) proposed that gravel-capped ridges at Salar de Llamara in the 
Chilean Atacama Desert may correspond to a paleoshoreline. These 
Atacama clast-armored ridges are virtually indistinguishable from 
the Lake Coyote raised channels in surface observations. Both are 
examples of unconsolidated, clast-armored raised channels.

Unfortunately, this type of raised channel (clast-armored) is 
not readily identifiable in remotely sensed data. In fact, two 
types of paleochannel ridges are present at Salar de Llamara, 
but they appear nearly identical in satellite images. Most of 
the paleochannel ridges are gravel-capped, but some are sulfate-
cemented (Morgan et al., 2014; Williams et al., 2021). Where 
junctions are preserved, the gravel-capped paleochannel ridges 
exhibit a distributary (downslope branching) planimetric pattern, 
whereas the sulfate-capped paleochannel ridges have a contributory 
pattern (downslope merging). Differentiating the two varieties could 
also be possible using high resolution (decimeter-scale) topographic 
data based on cross-sectional shape: gravel-armored inverted 
channels exhibit a rounded shape, in contrast to the rectangular form 
of cemented paleochannel ridges (e.g., Williams et al., 2021).

Clast-armored raised channels (i.e., with differential resistance 
provided only by grain size rather than cementation) are rarely 
documented in the terrestrial literature. In the global inventory of 
Zaki et al. (2021), clast-armored raised channels constitute <5% 
of cases, and are found in hyperarid settings. Although there are 
few examples of this variety, there are cases of clast-armored ridges 
that formed well removed from lacustrine settings, such as in low 
stream order river tributaries (e.g., Marchetti et al., 2012). Thus, this 
landform type is not diagnostic of a lacustrine depositional setting. 

6.2 Subaqueous ridges on Mars

Drawing upon a terrestrial analog, we demonstrate that some 
depositional ridges on Mars may have formed subaqueously in 
lakes. This new insight paves the way for future studies to 
use this landform in detailed lake hydrograph reconstructions. 
On Mars, consistency tests were passed in evaluating two case 
studies, substantiating the plausibility of subaqueously-formed 
ridges. We examined commonalities between paleochannel ridge 
onset elevation and termination points of valley networks to assess 
possible paleolake levels within topographic basins. Additional 
morphological evidence of paleolake deposits was present at both 
sites: indurated crater fill at Phison Patera, evaporite salts and 
desiccation polygons at Harris crater. Our two examined sites 
differ in physical scale and energy setting, raising the prospect 
for considering constructional paleochannel ridges in detailed 
geologic studies.

We find the case for a paleolake at Phison Patera stronger 
than the one at Harris crater and acknowledge that the available 
data does not support a unique interpretation (Table 1). Critically, 
both sites retain a valid alternative explanation, namely the original 
raised channel hypothesis. A subaqueous ridge origin for some 
ridges at the studied locations is a reasonable interpretation with 
a comparable level of confidence as previous findings with the 
available observational evidence. Future work could further evaluate 
paleolake feasibility through three-dimensional modeling of fluvial 
and groundwater inputs. Mineralogical signatures of salts in spectral 
data, especially if localized to the basin, would further corroborate a 
paleolake interpretation.

This proof-of-concept study provides a basis for examining the 
formation setting of other martian paleochannel ridges, especially 
in cases where they converge within a topographic basin as would 
be consistent with a subaqueous origin. Geomorphic mapping is a 
way to synthesize the geologic context. Factors to consider include 
the relationship of paleochannel ridges to modern topography, 
the regional drainage pattern, the spatial distribution of water-
formed minerals, and the presence of lacustrine landforms (e.g., 
deltas, barrier beaches, lake terraces, layered sedimentary deposits, 
shrinkage polygons, etc.).

Recognition of paleochannel ridges as lake level indicators 
would critically inform 1) identification of additional paleolake 
sites, especially in degraded terrains, and 2) future hydrograph 
reconstruction through constraints on lake extent and 
water level sequence. The significance of this finding is 
that it introduces a new shoreline-associated landform for 
reconstructing lake-level fluctuations, a tool for deepening our 
understanding of hydrology and habitability on Mars. By assessing 
paleochannel ridges as shoreline indicators, new insights into 
the regional and/or global martian climate oscillations can
be probed.
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