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Neutron stars are extraordinary astrophysical objects with densities close to 
and even very far above these in atomic nuclei. Their structure and dynamic 
observables are governed by the equation of state (EoS). Due to difficulties in 
both theory and experiments, there exist still big uncertainties on the EoS for 
neutron stars. From the realistic nucleon–nucleon (NN) interactions fitted to 
the experimental NN scattering data, the ab initio calculations based on exact 
many-body theory are expected to provide a reliable EoS for neutron stars. In 
this mini review, the relativistic Brueckner–Hartree–Fock theory within the full 
Dirac space will be introduced, the technical for relieving the angle-averaging 
approximations will be addressed, and its description for neutron star properties 
will be introduced.
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 1 Introduction

Neutron stars serve as natural laboratories for investigating the properties of matter 
under extreme densities and strong gravitational fields (Lattimer and Prakash, 2004). 
Understanding the properties of dense nuclear matter is essential for describing the structure 
and evolution of neutron stars (Burgio et al., 2021; Sedrakian et al., 2023). At the core of 
this pursuit lies the nuclear equation of state (EoS), which connects microscopic nuclear 
interactions to macroscopic observables such as neutron star masses and radii (Lattimer 
and Prakash, 2000; Lattimer and Prakash, 2007; Oertel et al., 2017; Huth et al., 2022). 
The EoS essentially encapsulates the relationship between pressure and density in nuclear 
matter, determining how matter behaves under the extreme conditions found in neutron star 
interiors. In particular, the recent detection of neutron stars with masses exceeding 2 solar 
masses and the advent of multi-messenger astronomy have placed stringent constraints on 
the EoS, highlighting the necessity of developing and refining theoretical models that are 
not only consistent with laboratory nuclear physics data but also aligned with the latest 
astrophysical observations (Demorest et al., 2010; Antoniadis et al., 2013; Fonseca et al., 
2016; Arzoumanian et al., 2018; Cromartie et al., 2020; Fonseca et al., 2021; Abbott et al., 
2017; Abbott et al., 2018; Tong et al., 2020; Han et al., 2023).

Over the years, considerable theoretical efforts have been devoted to determining 
the EoS of neutron star matter using various nuclear many-body approaches. In general, 
these approaches can be categorized into two classes: density functional theories (DFTs) 
employing effective nucleon-nucleon (NN) interactions, and ab initio methods based on
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realistic interactions. The effective NN interactions in DFTs, either 
non-relativistic or relativistic, are tuned to reproduce the properties 
of finite nuclei and nuclear matter around saturation density, 
as in the Skyrme (1956), Dechargé and Gogny (1980), and 
relativistic mean-field (RMF) models (Ring, 1996; Meng et al., 
2006; Meng, 2016). However, due to weak constraints on the 
isovector channels, their predictions for nuclear matter properties, 
such as the nuclear symmetry energy at higher densities, remain 
uncertain (Li et al., 2008). In contrast, ab initio methods based 
on realistic NN interactions stand out for their predictive power, 
free from uncertainties associated with adjustable parameters. In 
recent years, a growing variety of ab initio methods have been 
developed for nuclear many-body studies, including quantum 
Monte Carlo (Carlson et al., 2015), coupled-cluster (Hagen et al., 
2014), no-core shell model (Barrett et al., 2013), self-consistent 
Green’s function (Dickhoff and Barbieri, 2004), lattice effective 
field theory (Lee, 2009; Lähde and Meißner, 2019; Tong et al., 
2025a; Tong et al., 2025b; Tong et al., 2025c), in-medium similarity 
renormalization group (Hergert et al., 2016), Monte Carlo shell 
model (Otsuka et al., 2001; Liu et al., 2012), and Brueckner-
Hartree-Fock (BHF) theory (Shang et al., 2021). Among these, the 
relativistic Brueckner-Hartree-Fock (RBHF) theory stands out as 
one of the most successful ab initio methods based solely on bare 
two-body forces. Benefiting from the relativistic framework–which 
is essential at high densities due to the crucial role of Lorentz 
covariance, the RBHF theory has been successfully applied to both 
finite nuclei (Shen et al., 2016; Shen et al., 2019; Wang et al., 2019) 
and dense matter systems such as nuclear matter and neutron stars 
(Brockmann and Machleidt, 1990; Sehn et al., 1997; de Jong and 
Lenske, 1998; van Dalen et al., 2005; Katayama and Saito, 2013; 
Tong et al., 2018; Wang et al., 2020).

The RBHF theory provides a self-consistent framework to 
study the nuclear many-body problem by combining Dirac 
phenomenology with the in-medium scattering equation. In this 
approach, the interaction between two nucleons in the nuclear 
medium is described by the in-medium scattering matrix G, 
obtained by summing ladder diagrams with a realistic NN
potential. The effective single-particle potential is derived from 
G matrix, which in turn modifies the nucleon spinors via the 
Dirac equation, thereby closing the self-consistent loop. To simplify 
RBHF calculations, earlier studies adopted the average center 
of mass (c. m.) momentum approximation for computing the 
binding energy (Brueckner et al., 1968; Alonso and Sammarruca, 
2003; Sammarruca et al., 2012; Sammarruca, 2014). With modern 
computational capabilities, this approximation can be avoided. 
Recent work derived exact analytic expressions for the angular 
integration over the c. m. momentum, with a focus on asymmetric 
nuclear matter (Tong et al., 2018). A significant contribution to the 
saturation properties was found when treating the total momentum 
exactly, underscoring its impact on higher-order quantities in both 
the energy of symmetric matter and the symmetry energy. Another 
key challenge in RBHF theory is the self-consistent extraction of 
the nucleon single-particle potential from the in-medium G matrix, 
where symmetry arguments dictate its decomposition into scalar 
and vector components (Serot and Walecka, 1986). Traditional 
approaches include the momentum-independence approximation 
(Brockmann and Machleidt, 1990), which neglects momentum 
dependence and fails to capture the correct isospin dependence of 

the single-particle potential in asymmetric nuclear matter (Ulrych 
and Müther, 1997; Schiller and Müther, 2001), and the projection 
method (Horowitz and Serot, 1987; Nuppenau et al., 1989; Gross-
Boelting et al., 1999), which retains momentum dependence but 
is limited to positive-energy states (PESs). Notably, these methods 
yield contradictory predictions for the isospin dependence of the 
single-particle potential (Ulrych and Müther, 1997). Recently, a fully 
self-consistent RBHF framework in the full Dirac space has been 
developed (Wang et al., 2021), where the Lorentz structure and 
momentum dependence are determined without approximations. 
This advance resolves the long-standing discrepancy and provides 
a unique description of isospin effects in nuclear matter. As 
a result, the RBHF theory in the full Dirac space has been 
successfully and systematically applied to diverse nuclear systems, 
including the nuclear matter (Wang et al., 2022a; Wang et al., 
2022b; Qu et al., 2023; Wang et al., 2023; Wang et al., 2024; 
Qin et al., 2025; Huang et al., 2025), the properties of 208Pb with 
a liquid droplet model (Tong et al., 2023), neutron star properties 
(Tong et al., 2022; Wang et al., 2022c; Qu et al., 2025; Laskos-
Patkos et al., 2025), optical potential for proton-nucleus scattering 
(Qin et al., 2024), and in-medium nucleon-nucleon cross sections
(Wang et al., 2025).

In this review, we summarize these recent advances in RBHF 
theory formulated in the full Dirac space and their implications for 
the physics of dense matter and neutron stars.

2 Relativistic Brueckner–Hartree–Fock 
theory and neutron stars

In the RBHF theory, nucleons within the nuclear medium 
are treated as dressed particles due to their interactions with 
surrounding nucleons. The single-particle motion of these nucleons 
is described by the Dirac equation

[α ⋅ p+ β (M+U)]u (p, s) = Epu (p, s) , (1)

where α and β are the Dirac matrices, M is the nucleon mass, p and Ep
are the momentum and the single-particle energy, and s denotes the 
spin. According to the translational and rotational invariance, time-
reversal invariance, hermiticity, and parity conservation, the single-
particle potential U  can be decomposed in its Lorentz form (Serot 
and Walecka, 1986)

U (p) = US (p) + γ0U0 (p) + γ ⋅ p̂UV (p) . (2)

The quantities US(p), U0(p), and UV(p) are the scalar potential, 
timelike, and spacelike parts of the vector potential respectively 
with p = |p| the magnitude of nucleon momentum. p̂ = p/|p| is the 
unit vector. By using the following effective quantities in Equations 
3a–3c:

p∗ = p+ p̂UV (p) , (3a)

M∗p = M+US (p) , (3b)

E∗p = Ep −U0 (p) , (3c)
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the solution of Equation 1 leads to the in-medium positive-energy 
spinor u(p, s) and negative-energy spinor v(p, s)

u (p, s) = √
E∗p +M∗p

2M∗p
[[

[

1
σ ⋅ p∗

E∗p +M∗p

]]

]

χs, (4a)

v (p, s) = γ5u (p, s) = √
E∗p +M∗p

2M∗p
[[

[

σ ⋅ p∗

E∗p +M∗p
1

]]

]

χs, (4b)

where χs is the spin wave function.
The Dirac equation can be solved exactly once the 

single-particle potentials are determined. To this end, three 
matrix elements of U(p) in the full Dirac space are
introduced,

Σ++ (p) = ū (p,1/2)U (p)u (p,1/2) = US (p) +
E∗p
M∗p

U0 (p) +
p∗

M∗p
UV (p) ,

(5a)

Σ−+ (p) = ̄v (p,1/2)U (p)u (p,1/2) =
p∗

M∗p
U0 (p) +

E∗p
M∗p

UV (p) , (5b)

Σ−− (p) = ̄v (p,1/2)U (p)v (p,1/2) = −US (p) +
E∗p
M∗p

U0 (p) +
p∗

M∗p
UV (p) .

(5c)

After obtaining Σ++(p), Σ−+(p), and Σ−−(p), single-
particle potentials in Equation 2 can be determined uniquely
through

US (p) =
Σ++ (p) −Σ−− (p)

2
, (6a)

U0 (p) =
E∗p
M∗p

Σ++ (p) +Σ−− (p)
2

−
p∗

M∗p
Σ−+ (p) , (6b)

UV (p) = −
p∗

M∗p

Σ++ (p) +Σ−− (p)
2

+
E∗p
M∗p

Σ−+ (p) . (6c)

This approach avoids approximations in the Dirac 
space with PESs only. The matrix elements Σ++(p), Σ−+(p), 
and Σ−−(p) can be calculated alternatively by summing 
up the effective two-body interaction G matrix with all 
the nucleons inside the Fermi sea in the Hartree-Fock
approximation

Σ++ (p) = ∑
s′
∫

kF

0

d3p′

(2π)3
M∗p′
E∗p′
⟨ ̄u (p,1/2) ̄u(p′, s′) |Ḡ++++ (W) |u (p,1/2)u(p′, s′)⟩, (7a)

Σ−+ (p) = ∑
s′
∫

kF

0

d3p′

(2π)3
M∗p′
E∗p′
⟨ ̄v (p,1/2) ̄u(p′, s′) |Ḡ−+++ (W) |u (p,1/2)u(p′, s′)⟩, (7b)

Σ−− (p) = ∑
s′
∫

kF

0

d3p′

(2π)3
M∗p′
E∗p′
⟨ ̄v (p,1/2) ̄u(p′, s′) |Ḡ−+−+ (W) |v (p,1/2)u(p′, s′)⟩. (7c)

In Equations 7a–7c, the anti-symmetrized G matrix is 
expressed with Ḡ, where the ±-signs in the superscript denote 
the positive- or negative-energy states. W is the starting energy 
which equals to the total single-particle energies in the initial
states.

The G matrix is obtained by solving the in-medium Thompson 
equation (Brockmann and Machleidt, 1990)

G(q′,q|P,W) = V(q′,q|P) +∫ d3k
(2π)3

V(q′,k|P)

×
M∗P+kM∗P−k
E∗P+kE∗P−k

Q (k,P)
W−EP+k −EP−k + iϵ

G (k,q|P,W) ,

(8)

where P = 1
2
(k1 + k2) is half the total momentum and k = 1

2
(k1 − k2)

is the relative momentum of the two interacting nucleons with 
momenta k1 and k2. The initial, intermediate, and final relative 
momenta of the two nucleons scattering in nuclear matter are 
denoted by q,k, and q′, respectively. V is derived from a realistic NN
interaction. Here we introduced the one-boson-exchange potential 
(OBEP) as an example (Machleidt, 1989), which has been well 
constrained by experimental data on both NN bound states and 
scattering observables. The NN scattering in the nuclear medium is 
restricted with the Pauli operator in Equation 9:

Q (k,P) = {
1, |P + k|, |P − k| > kF,
0, otherwise.

(9)

The inclusion of an infinitesimal iϵ term in the denominator is 
necessary when the starting energy W = EP+k +EP−k approaches a pole 
within the continuous choice. The RBHF equations were solved self-
consistently for symmetric nuclear matter in the full Dirac space within 
the continuous choice for the single-particle potential (Wang et al., 
2022a). The resulting single-particle energy and Dirac mass exhibit 
smooth continuity across the Fermi surface. Equation 1, Equations 
6a–6c, Equations 7a–7c, Equation 8 constitute a coupled system that 
has to be solved in a self-consistent way. 

After the solution of G matrix and the calculation of single-
particle potentials converge, the binding energy per nucleon in 
nuclear matter can be calculated using

E/A = 1
ρ
∑

s
∫

kF

0

d3p
(2π)3

M∗p
E∗p
⟨ ̄u (p, s) |γ ⋅ p+M|u (p, s)⟩ −M

+ 1
2ρ
∑
s,s′
∫

kF

0

d3p
(2π)3
∫

k′F

0

d3p′

(2π)3
M∗p
E∗p

M∗p′
E∗p′

× ⟨ū (p, s) ̄u(p′, s′) |Ḡ (W) |u (p, s)u(p′, s′)⟩,

(10)

where ρ denotes the total density of nucleons.
It should also be noted that the calculation of the binding energy 

yields a three dimension integrals over the c. m. momentum P and 
relative momentum q. The three-dimensional integrals over the
c. m. momentum P are numerically challenging. Normally, 
the widely used averaged c. m. momentum approximation 
in Equation 11 is adopted (Brueckner et al., 1968; Alonso 
and Sammarruca, 2003),

P2
av =
∫

kF

0
d3k1∫

kF

0
d3k2P2δ(q− 1

2
|k1 − k2|)

∫
kF

0
d3k1∫

kF

0
d3k2δ(q− 1

2
|k1 − k2|)

. (11)

It does not depend on the direction and this value is 
usually applied in the G-matrix in Equation 10. By relieving this 
approximation and deriving the exact expressions of the angular 
integrations of the momentum P within RBHF theory, the exact 
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results has been calculated in Ref. Tong et al. (2018), especially for 
the case of asymmetric nuclear matter. For the calculations in the 
full Dirac space, the exact evaluation of P and its integral during the 
iteration are also performed.

One of the motivations for developing a microscopic and 
fully relativistic theory of dense nuclear matter is its application 
to neutron star. The neutron star matter here is assumed to be 
composed of nucleons and leptons (mainly electrons and muons), 
while neglecting possible phase transitions or the appearance of 
exotic degrees of freedom at densities above nuclear saturation. The 
matter is considered to be in beta equilibrium and charge neutrality, 
leading to the following equilibrium conditions for the chemical 
potentials of the nucleons and leptons in Equation 12:

μp = μn − μe, μμ = μe, (12)

where μe, μμ, μp, and μn denote the chemical potentials of electrons, 
muons, protons, and neutrons, respectively. Charge neutrality is 
maintained in Equation 13:

ρp = ρe + ρμ, (13)

where ρp,ρe, and ρμ are the number densities of protons, electrons, 
and muons, respectively. The energy density of the beta equilibrium 
nuclear matter is then obtained as

ε = ρ[E (ρ,α)/A+YpMp + (1−Yp)Mn] + εe + εμ, (14)

where Yi = ρi/ρ (i = e, μ, p, n) are the equilibrium particle fractions. 
The chemical potential for each particle i is given in Equation 15:

μi =
∂ε/ρ
∂Yi
. (15)

For a given density ρ, the particle fractions Yi are determined by 
solving the equilibrium conditions and charge neutrality, allowing 
the calculation of the energy density ε using Equation 14. The 
pressure P is then derived from Equation 16:

P = −
∂ (ε/ρ)
∂ (1/ρ)
= ρ ∂ε

∂ρ
− ε. (16)

This yields the EoS of beta equilibrium nuclear matter in the 
form of P(ε).

Once the EoS in the form P(ε) is obtained, the mass and 
radius of a cold, spherically symmetric, static, and relativistic 
star can be described by the Tolman-Oppenheimer-Volkov (TOV) 
equations (Oppenheimer and Volkoff, 1939; Tolman, 1939),

dP (r)
dr
= −
[P (r) + ε (r)] [M (r) + 4πr3P (r)]

r [r− 2M (r)]
, (17a)

dM (r)
dr
= 4πr2ε (r) , (17b)

where P(r) is the pressure at neutron star radius r, M(r) is the total 
neutron star mass inside a sphere of radius r. Besides the masses and 
radii, another key property of neutron stars is their dimensionless 
tidal deformability (Damour et al., 1992; Hinderer, 2008; Flanagan 
and Hinderer, 2008), denoted by Λ. This quantity characterizes 
the star’s response to an external tidal field and is defined in
Equation 18:

Λ = 2
3

k2C−5. (18)

C =M/R is the compactness parameter, where M is the neutron star 
mass and R is the radius and they are determined from the following 
two conditions: P(R) = 0 and M =M(R). k2 is the second love 
number quantifying the tidal response of the star in Equation 19,

k2 =
8C5

5
(1− 2C)2 [2− yR + 2C(yR − 1)] × {6C[2− yR +C(5yR − 8)]

+ 4C3 [13− 11yR +C(3yR − 2) + 2C2 (1+ yR)]

+3(1− 2C)2 [2− yR + 2C(yR − 1)] ln (1− 2C)}−1,
(19)

where yR = y(R) characterizes the response of the metric 
perturbation to the external tidal field at the stellar surface, and 
it can be calculated by solving the following differential equation,

r
dy (r)

dr
+ y2 (r) + y (r)F (r) + r2Q (r) = 0, (20)

with

F (r) = [1−
2M (r)

r
]
−1
{1− 4πr2 [ε (r) − P (r)]} , (21a)

Q (r) =
{
{
{

4π[

[
5ε (r) + 9P (r) +

ε (r) + P (r)
∂P
∂ε
(r)
]

]
− 6

r2

}
}
}
×[1−

2M (r)
r
]
−1

−[
2M (r)

r2 + 2× 4πrP (r)]
2
×[1−

2M (r)
r
]
−2
. (21b)

The differential Equation 20 can be integrated together with 
the TOV equations with the boundary condition y(0) = 2. In 
addition to tidal deformability, the rotational properties of 
neutron stars also provide crucial insights into their internal 
structure. The moment of inertia is calculated within the slow-
rotation approximation (Hartle, 1967; Hartle and Thorne, 1968), 
where the frequency Ω of a uniformly rotating neutron star is 
significantly lower than the Kepler frequency at the equator. 
In this approximation, the moment of inertia I of a uniformly 
rotating, axially symmetric neutron star is given in Equation 22;
Fattoyev and Piekarewicz (2010).

I = 8π
3
∫

R

0
r4e−ν(r)

ω̄ (r)
Ω

ϵ (r) + P (r)

√1− 2M (r)/r
dr. (22)

Here, ν(r) is a radially-dependent metric function 
defined in Equation 23:

ν (r) = 1
2

ln(1− 2M
R
)−∫

R

r

M (x) + 4πx3P (x)
x2 [1− 2M (x)/x]

dx. (23)

The frame-dragging angular velocity ω̄ represents the angular 
velocity of the fluid as measured in a local inertial reference 
frame, which is usually expressed through the dimensionless relative 
frequency ω̃ ≡ ω̄/Ω, which satisfies the following second-order 
differential equation in Equation 24:

d
dr
[r4j (r)

dω̃ (r)
dr
]+ 4r3 dj (r)

dr
ω̃ (r) = 0, (24)

where j(r) = e−ν(r)√1− 2M(r)/r for r ≤ R. The relative frequency ω̃(r)
is subject to the boundary conditions

ω̃′ (0) = 0, ω̃ (R) + R
3

ω̃′ (R) = 1. (25)
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It should be noted that, under the slow-rotation approximation, 
the moment of inertia is independent of the stellar frequency Ω.

The quadrupole moment characterizes the degree of rotational 
deformation of the neutron star away from spherical symmetry (Yagi 
and Yunes, 2013). It can be computed by numerically solving for the 
interior and exterior gravitational field of a neutron star in a slow-
rotation (Hartle, 1967; Hartle and Thorne, 1968) and a small-tidal-
deformation approximation (Hinderer, 2008; Hinderer et al., 2010). 
To explore the universal dimensionless moment of inertia-tidal 
deformability-quadrupole moment (I–Love–Q) relations, which 
are nearly independent of the EoS, we introduce the following 
quantities in Equation 26:

̄I ≡ I
M3 , Q̄ ≡ − QM

(IΩ)2
. (26)

In addition, to describe the rapidly rotating and axisymmetric 
neutron star configurations in general relativity, the stellar matter is 
treated as a perfect fluid, characterized by the energy-momentum 
tensor in Equation 27:

Tμν = (ε+ P)uμuν − gμνP, (27)

where ε, P, and uμ are the energy density, pressure, and fluid’s 
four-velocity, respectively. The Einstein field equations are solved 
assuming an axisymmetric and stationary spacetime with the metric 
in Equation 28:

ds2 = −eγ+ρdt2 + e2α (dr2 + r2dθ2) + eγ−ρr2 sin2 θ(dϕ−ωdt)2, (28)

where the metric potentials γ,ρ,α, and ω are functions of the radial 
coordinates r and the polar angle θ. For numerical calculations, we 
utilize the RNS code (Stergioulas and Friedman, 1995; Paschalidis 
and Stergioulas, 2017) for rapidly rotating neutron stars. 

3 Neutron star mass and radius

In this review, we have focused on recent advances in the study 
of neutron star properties based on RBHF theory formulated in the 
full Dirac space.

Figure 1 from Ref. Qu et al. (2025) illustrates the gravitational 
mass of both static and rotating neutron stars as a function of their 
equatorial radius. The left panel presents results for fixed spin ratios, 
χ ≡ f/ fK = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, while the right panel displays 
cases with fixed spin frequencies, f = 0, 400, 600, 800, 1,000 Hz, 
and the Keplerian limit f = fK. For a given spin ratio or frequency, 
the gravitational mass decreases with increasing equatorial radius, 
but rises as the rotation rate increases, reflecting the additional 
centrifugal support provided by rotation. These results highlight 
the capability of RBHF theory to consistently describe both static 
and rapidly rotating neutron stars within the same microscopic 
framework. For the Bonn A potential, the static case yields a 
radius of 10.93 km at the maximum mass. In contrast, at the 
Keplerian frequency, the radius expands to 13.84 km, representing 
a 26.2% increase. In addition to the EoS obtained with the Bonn A 
potential, results based on the Bonn B and C potentials (Brockmann 
and Machleidt, 1990) are also presented. Overall, the mass–radius 
relations derived from these three parameterizations of realistic NN
interactions exhibit very similar patterns, regardless of whether the 

stars are static or rotating. This robust consistency across different 
rotation rates suggests that the influence of rotational dynamics on 
the mass–radius relation is relatively insensitive to the specific details 
of the underlying interactions governing the EoS. Specifically, the 
maximum masses for χ = 0.0,0.2,0.4,0.6, and 0.8 are 2.43, 2.46, 2.52, 
2.63, and 2.80M⊙, and the corresponding central energy densities 
are εc = 2.26,2.25,2.21,2.12, and 2.00× 1015 g/cm3, respectively. In 
particular, the maximum mass for rotating configurations Mmax, can 
reach up to 2.93M⊙, which is 20.6% higher than the static result 
MTOV = 2.43M⊙.

Specifically, the radii of a canonical neutron star with mass 
1.4M⊙ in the static case are calculated to be R1.4 = 11.98, 12.17, 
and 12.32 km for the Bonn A, B, and C potential, respectively. 
The smallest radius predicted by the Bonn A potential implies 
that the RBHF calculations with this potential yields the softest 
EoS. This softness is attributed to the weakest tensor force in the 
Bonn A potential, which leads to the strongest attraction between 
nucleons. These differences underscore the sensitivity of neutron 
star properties to the underlying NN interactions and emphasize 
the importance of accurately modeling these interactions to predict 
astrophysical observables. Further discussions on the tensor force 
effects in nuclear matter, derived from realistic NN interactions, can 
be found in Ref. Wang et al. (2024). Moreover, the other results for 
neutron star radii shown in Ref. Tong et al. (2022) are also consistent 
with various empirical and observational constraints. 

4 Universal relations

In the multimessenger era, the tidal deformability Λ of neutron 
stars has emerged as a crucial astrophysical constraint. The neutron 
star tidal deformabilties at 1.4M⊙ from the RBHF theory in full 
Dirac space are given as Λ1.4M⊙ = 376,405,433 for Bonn A, B, C, 
respectively (Tong et al., 2022). Notably, the Bonn A potential 
predicts smaller Λ1.4M⊙  values compared to Bonn B and C. This 
trend can be understood through the stiffness of the EoS: for 
a given neutron star mass, a softer symmetry energy results in 
more compact stellar configurations, leading to both smaller radii 
and reduced tidal deformabilities. These theoretical predictions 
can be contextualized with current observational constraints. The 
initial estimation for tidal deformability Λ1.4M⊙  has an upper bound 
Λ1.4M⊙ <800 (Abbott et al., 2017) from the observation of binary 
neutron star (BNS) merger event GW170817. Subsequent revised 
analysis from LIGO and Virgo collaborations narrowed this to 
Λ1.4M⊙ = 190+390

−120 (Abbott et al., 2018). Importantly, the results from 
three potentials fall within these observational bounds, with the 
Bonn A results exhibiting the closest agreement with the central 
values inferred from GW170817.

Beyond tidal deformability, universal relations among neutron 
star observables offer an additional, largely EoS-independent avenue 
for cross-checking theoretical models against observations. Figure 2 
examines the EoSs derived from RBHF theory in the full Dirac space, 
with the projection method, and the momentum-independence 
approximation with Bonn potentials–in light of the universal
I-Love-Q relations (Wang et al., 2022c). The I-Love and Q-Love are 
illustrated in the top panels of Figure 2. The I-Q relations can also 
be found in Ref. Wang et al. (2022c). Along each curve, the mass 
or compactness serves as the single varying parameter, increasing 
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FIGURE 1
The gravitational mass M as a function of the equatorial radii Req. Six cases are presented for (left panel) fixed spin ratios, χ = 0 (static), 0.2, 0.4, 0.6, 0.8, 
and 1.0 (Keplerian sequence), and (right panel) fixed spin frequencies, f = 0,400,600,800,1000 Hz, as well as f = fK. The results are obtained using 
EoSs from RBHF calculations in the full Dirac space, based on the Bonn A (solid lines), B (dashed lines), and C (dotted lines) potentials. Figures 
taken from Qu et al. (2025).

FIGURE 2
(Top panel) The universal I-Love (left) and Q-Love (right) relations for slowly-rotating neutron stars, calculated using EoSs derived from the RBHF 
theory. Different theoretical approaches are distinguished by colors: full Dirac space (red), projection method (green), and momentum-independence 
approximation (gray). The Bonn potentials are represented by symbols: A (squares), B (circles), and C (triangles). Each data set corresponds to a specific 
combination of method (color) and potential (symbol). The solid curves show the fitted results by using Equation 29. (Bottom) Corresponding absolute 
fractional differences between the numerical results and the fits. Figures taken from (Wang et al., 2022c).

towards the left in the plots. The universal relations are found to 
hold with high accuracy across different EoSs. Owing to their weak 
dependence on the specific EoS, a single empirical fit (black solid 
curves) can be applied, given by the functional form (Yagi and 
Yunes, 2017):

lnyi = ai + bi lnxi + ci(lnxi)
2 + di(lnxi)

3 + ei(lnxi)
4, (29)

where the fitting coefficients are summarized in Table 4 of 
Wang et al. (2022c). These coefficients closely agree with those 
obtained in Ref. Yagi and Yunes (2017), based on a broad ensemble of 
EoSs. The bottom panels of Figure 2 present the absolute fractional 
deviations between the data and the fit, which remain below 1% over 
the entire mass range examined. The universal relation between ̄I

and the tidal deformability Λ enables the inference of the moment of 
inertia for a 1.4M⊙ neutron star, ̄I1.4M⊙, from the tidal deformability 
Λ1.4M⊙  measured in the GW170817 event. The updated analysis 
from the LIGO and Virgo Collaborations reports Λ1.4M⊙ = 190+390

−120
(Abbott et al., 2018), corresponding to ̄I1.4M⊙ = 10.30+3.39

−2.10, as shown 
in the left panel of Figure 2. Using the relation ̄I = I/M3, this yields 
I1.4M⊙ = 1.22+0.40

−0.25 × 1045g cm2. 

5 Summary and perspectives

We have reviewed recent developments in RBHF theory 
within the full Dirac space, with particular emphasis on their
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implications for the properties of dense nuclear matter and 
neutron stars. This relativistic ab initio calculations enhance the 
internal consistency of relativistic many-body calculations and 
represent a significant advancement in the microscopic description 
of dense matter under extreme conditions. Further progress 
in the RBHF theory is anticipated through the inclusion of 
higher-order many-body correlations, in particular by extending 
beyond the two-hole-line expansion currently employed in standard 
RBHF theory. The incorporation of three-hole-line contributions 
and other higher-order terms is essential for achieving a more 
complete and quantitatively accurate description of in-medium 
nuclear interactions at supranuclear densities. In parallel, while a 
leading order and next-to-leading order covariant chiral nuclear 
forces have recently been applied within RBHF calculations under 
the momentum-independence approximation (Zou et al., 2024; 
Zou et al., 2025b; Zou et al., 2025a; Zheng et al., 2025; Shen et al., 
2025), a natural next step is to implement the high-fidelity chiral 
nuclear forces (Ren et al., 2018; Lu et al., 2022) in the full Dirac 
space. Such an extension would enable a more consistent and 
comprehensive treatment of relativistic effects, thereby improving 
the predictive power of relativistic ab initio calculations for the EoS 
and neutron star properties.
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