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Neutron stars are extraordinary astrophysical objects with densities close to
and even very far above these in atomic nuclei. Their structure and dynamic
observables are governed by the equation of state (EoS). Due to difficulties in
both theory and experiments, there exist still big uncertainties on the EoS for
neutron stars. From the realistic nucleon—nucleon (NN) interactions fitted to
the experimental NN scattering data, the ab initio calculations based on exact
many-body theory are expected to provide a reliable EoS for neutron stars. In
this mini review, the relativistic Brueckner—Hartree—Fock theory within the full
Dirac space will be introduced, the technical for relieving the angle-averaging
approximations will be addressed, and its description for neutron star properties
will be introduced.
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1 Introduction

Neutron stars serve as natural laboratories for investigating the properties of matter
under extreme densities and strong gravitational fields (Lattimer and Prakash, 2004).
Understanding the properties of dense nuclear matter is essential for describing the structure
and evolution of neutron stars (Burgio et al., 2021; Sedrakian et al., 2023). At the core of
this pursuit lies the nuclear equation of state (EoS), which connects microscopic nuclear
interactions to macroscopic observables such as neutron star masses and radii (Lattimer
and Prakash, 2000; Lattimer and Prakash, 2007; Oertel et al., 2017; Huth et al., 2022).
The EoS essentially encapsulates the relationship between pressure and density in nuclear
matter, determining how matter behaves under the extreme conditions found in neutron star
interiors. In particular, the recent detection of neutron stars with masses exceeding 2 solar
masses and the advent of multi-messenger astronomy have placed stringent constraints on
the EoS, highlighting the necessity of developing and refining theoretical models that are
not only consistent with laboratory nuclear physics data but also aligned with the latest
astrophysical observations (Demorest et al., 2010; Antoniadis et al., 2013; Fonseca et al.,
2016; Arzoumanian et al., 2018; Cromartie et al., 2020; Fonseca et al., 2021; Abbott et al.,
2017; Abbott et al., 2018; Tong et al., 2020; Han et al., 2023).

Over the years, considerable theoretical efforts have been devoted to determining
the EoS of neutron star matter using various nuclear many-body approaches. In general,
these approaches can be categorized into two classes: density functional theories (DFTs)
employing effective nucleon-nucleon (NN) interactions, and ab initio methods based on
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realistic interactions. The effective NN interactions in DFTs, either
non-relativistic or relativistic, are tuned to reproduce the properties
of finite nuclei and nuclear matter around saturation density,
as in the Skyrme (1956), Dechargé and Gogny (1980), and
relativistic mean-field (RMF) models (Ring, 1996; Meng et al.,
2006; Meng, 2016). However, due to weak constraints on the
isovector channels, their predictions for nuclear matter properties,
such as the nuclear symmetry energy at higher densities, remain
uncertain (Li et al., 2008). In contrast, ab initio methods based
on realistic NN interactions stand out for their predictive power,
free from uncertainties associated with adjustable parameters. In
recent years, a growing variety of ab initio methods have been
developed for nuclear many-body studies, including quantum
Monte Carlo (Carlson et al., 2015), coupled-cluster (Hagen et al.,
2014), no-core shell model (Barrett et al., 2013), self-consistent
Green’s function (Dickhoff and Barbieri, 2004), lattice effective
field theory (Lee, 2009; Lahde and Meifiner, 2019; Tong et al.,
2025a; Tong et al., 2025b; Tong et al., 2025¢), in-medium similarity
renormalization group (Hergert et al., 2016), Monte Carlo shell
model (Otsuka et al., 2001; Liu et al., 2012), and Brueckner-
Hartree-Fock (BHF) theory (Shang et al., 2021). Among these, the
relativistic Brueckner-Hartree-Fock (RBHF) theory stands out as
one of the most successful ab initio methods based solely on bare
two-body forces. Benefiting from the relativistic framework-which
is essential at high densities due to the crucial role of Lorentz
covariance, the RBHF theory has been successfully applied to both
finite nuclei (Shen et al., 2016; Shen et al., 2019; Wang et al., 2019)
and dense matter systems such as nuclear matter and neutron stars
(Brockmann and Machleidt, 1990; Sehn et al., 1997; de Jong and
Lenske, 1998; van Dalen et al., 2005; Katayama and Saito, 2013;
Tong et al., 2018; Wang et al., 2020).

The RBHF theory provides a self-consistent framework to
study the nuclear many-body problem by combining Dirac
phenomenology with the in-medium scattering equation. In this
approach, the interaction between two nucleons in the nuclear
medium is described by the in-medium scattering matrix G,
obtained by summing ladder diagrams with a realistic NN
potential. The effective single-particle potential is derived from
G matrix, which in turn modifies the nucleon spinors via the
Dirac equation, thereby closing the self-consistent loop. To simplify
RBHF calculations, earlier studies adopted the average center
of mass (c. m.) momentum approximation for computing the
binding energy (Brueckner et al., 1968; Alonso and Sammarruca,
2003; Sammarruca et al., 2012; Sammarruca, 2014). With modern
computational capabilities, this approximation can be avoided.
Recent work derived exact analytic expressions for the angular
integration over the c. m. momentum, with a focus on asymmetric
nuclear matter (Tong et al., 2018). A significant contribution to the
saturation properties was found when treating the total momentum
exactly, underscoring its impact on higher-order quantities in both
the energy of symmetric matter and the symmetry energy. Another
key challenge in RBHF theory is the self-consistent extraction of
the nucleon single-particle potential from the in-medium G matrix,
where symmetry arguments dictate its decomposition into scalar
and vector components (Serot and Walecka, 1986). Traditional
approaches include the momentum-independence approximation
(Brockmann and Machleidt, 1990), which neglects momentum
dependence and fails to capture the correct isospin dependence of
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the single-particle potential in asymmetric nuclear matter (Ulrych
and Miither, 1997; Schiller and Miither, 2001), and the projection
method (Horowitz and Serot, 1987; Nuppenau et al., 1989; Gross-
Boelting et al., 1999), which retains momentum dependence but
is limited to positive-energy states (PESs). Notably, these methods
yield contradictory predictions for the isospin dependence of the
single-particle potential (Ulrych and Miither, 1997). Recently, a fully
self-consistent RBHF framework in the full Dirac space has been
developed (Wang et al., 2021), where the Lorentz structure and
momentum dependence are determined without approximations.
This advance resolves the long-standing discrepancy and provides
a unique description of isospin effects in nuclear matter. As
a result, the RBHF theory in the full Dirac space has been
successfully and systematically applied to diverse nuclear systems,
including the nuclear matter (Wang et al., 2022a; Wang et al,
2022b; Qu et al., 2023; Wang et al,, 2023; Wang et al, 2024;
Qin et al,, 2025; Huang et al., 2025), the properties of 208p}y with
a liquid droplet model (Tong et al., 2023), neutron star properties
(Tong et al, 2022; Wang et al., 2022¢; Qu et al., 2025; Laskos-
Patkos et al., 2025), optical potential for proton-nucleus scattering
(Qin et al.,, 2024), and in-medium nucleon-nucleon cross sections
(Wang et al., 2025).

In this review, we summarize these recent advances in RBHF
theory formulated in the full Dirac space and their implications for
the physics of dense matter and neutron stars.

2 Relativistic Brueckner—Hartree—Fock
theory and neutron stars

In the RBHF theory, nucleons within the nuclear medium
are treated as dressed particles due to their interactions with
surrounding nucleons. The single-particle motion of these nucleons
is described by the Dirac equation

[a-p+/3(M+U)]u(p,s):EPu(p,s), (1)

where a and B are the Dirac matrices, M is the nucleon mass, pand E,
are the momentum and the single-particle energy, and s denotes the
spin. According to the translational and rotational invariance, time-
reversal invariance, hermiticity, and parity conservation, the single-
particle potential ¢/ can be decomposed in its Lorentz form (Serot
and Walecka, 1986)

U(p) =Us(p) +y°Uy (p) +y - pUy (p). 2

The quantities Ug(p), Uy(p), and Uy (p) are the scalar potential,
timelike, and spacelike parts of the vector potential respectively
with p = |p| the magnitude of nucleon momentum. p = p/|p| is the
unit vector. By using the following effective quantities in Equations
3a-3c:

P = p+pUy(p), (3a)
My = M+Us(p), (3b)
E; = E,—Uy(p), (30)
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the solution of Equation 1 leads to the in-medium positive-energy
spinor u(p,s) and negative-energy spinor v(p,s)

E M|
u@.9)= \——1| op° |x (4a)
My | s
EP+MP
* * a.p*
v(p.s) = Yup.s) =\t | B+ My |y, (4b)
2M;, .

where y is the spin wave function.
The Dirac equation can be solved exactly once the
single-particle potentials are determined. To this end, three

matrix elements of U(p) in the full Dirac space are
introduced,
o E v
() = M(P,I/Z)U(P)M(P,1/2)=Us(P)+M* Uy (p) + WUV(‘D)’
P P
(5a)
o P E,
2P = v 1/ DU P up:1/2) = 75 Us (p)+ 75 Uy (), (5b)
P 14
E :
()= (/DU V(P /D) = ~Us (p) + ~= Uy () + 2 Uy (p).
P P
(5¢)
After obtaining =*(p), X 7F(p), and X (p), single-

particle potentials in Equation 2 can be determined uniquely

through
() -2 (p)
e (62
E, 3% (p)+2(p) p°
_ = \WTe WP e+
Uy (p) = M > M;Z ) (6b)
Tt B,
Uy (p) = M 3 + M;Z ®. (6¢)
This approach avoids approximations in the Dirac

space with PESs only. The matrix elements =**(p), Z7*(p),
and X (p)
up the effective two-body interaction G matrix with all
in the Hartree-Fock

can be calculated alternatively by summing

the nucleons inside the Fermi sea

approximation

ke dSPl M;,

T (p) = Zjo @' E, @@,1/2)a(p's")IGH (W) lu(p,1/2)u(p',s'), (7a)

—+ ke dSP’ My = (! Y| O (]
=)= Zj G B UEEIE T W12 u(p' ). (7D)

P
4

—_ ke dSP’ M;’ 5 (! JY|O-tt rot
()= zju o E F@1/2)a(p',s) G (W lvip,1/2)u(p',s). (7¢)

In Equations 7a-7¢, the anti-symmetrized G matrix is
expressed with G, where the +-signs in the superscript denote
the positive- or negative-energy states. W is the starting energy
which equals to the total single-particle energies in the initial
states.
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The G matrix is obtained by solving the in-medium Thompson
equation (Brockmann and Machleidt, 1990)

Pk
G(q'.qIP,W)=V(q'.qIP) + j Py V(q',kIP)
7T

M M kP
Pk pk Q(k,P) Gk qlP, W),
EP+kEP—k W —Ep,—Ep_ +ic€

(8)

where P = %(k1 + k) is half the total momentum and k = %(k1 -k,)
is the relative momentum of the two interacting nucleons with
momenta k; and k,. The initial, intermediate, and final relative
momenta of the two nucleons scattering in nuclear matter are
denoted by g, k, and q', respectively. V is derived from a realistic NN
interaction. Here we introduced the one-boson-exchange potential
(OBEP) as an example (Machleidt, 1989), which has been well
constrained by experimental data on both NN bound states and
scattering observables. The NN scattering in the nuclear medium is
restricted with the Pauli operator in Equation 9:

L,
0,

|P+k|,|P—k| > kg,

otherwise.

Q(k,P) = { ©)

The inclusion of an infinitesimal i¢ term in the denominator is
necessary when the startingenergy W = Ep_ ;. + Ep_; approachesapole
within the continuous choice. The RBHF equations were solved self-
consistently for symmetric nuclear matter in the full Dirac space within
the continuous choice for the single-particle potential (Wang et al.,
2022a). The resulting single-particle energy and Dirac mass exhibit
smooth continuity across the Fermi surface. Equation 1, Equations
6a-6¢, Equations 7a-7c¢, Equation 8 constitute a coupled system that
has to be solved in a self-consistent way.

After the solution of G matrix and the calculation of single-
particle potentials converge, the binding energy per nucleon in
nuclear matter can be calculated using

ke dBp M

E/A= 1L ZJ F_i L

P s 0 (2”) Ep

I ka d’p Jké dp' My My
+ —_—

2p 5o 2n)°

(@(p.s)ly-p+Mu(p,s)) -M

(10)

o (2m)? E_; E;,
x (i (p,s)a(p',s") IGW) [u(p,s)u(p'.s")),

where p denotes the total density of nucleons.

It should also be noted that the calculation of the binding energy
yields a three dimension integrals over the c. m. momentum P and
relative momentum q. The three-dimensional integrals over the
c. m. momentum P are numerically challenging. Normally,
the widely used averaged c.m.momentum approximation
in Equation 11 is adopted (Brueckner et al., 1968; Alonso
and Sammarruca, 2003),

k k
J Fd3k1J " #k,P20 (g - LIk, — k)
0 0

av

(11)

ke o (ko : ‘
JO d k1J0 0 (g L1k, ~k, )

It does not depend on the direction and this value is
usually applied in the G-matrix in Equation 10. By relieving this
approximation and deriving the exact expressions of the angular
integrations of the momentum P within RBHF theory, the exact
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results has been calculated in Ref. Tong et al. (2018), especially for
the case of asymmetric nuclear matter. For the calculations in the
full Dirac space, the exact evaluation of P and its integral during the
iteration are also performed.

One of the motivations for developing a microscopic and
fully relativistic theory of dense nuclear matter is its application
to neutron star. The neutron star matter here is assumed to be
composed of nucleons and leptons (mainly electrons and muons),
while neglecting possible phase transitions or the appearance of
exotic degrees of freedom at densities above nuclear saturation. The
matter is considered to be in beta equilibrium and charge neutrality,
leading to the following equilibrium conditions for the chemical
potentials of the nucleons and leptons in Equation 12:

Uy =ty —Hp W, =H, (12)

where p,, 4 oy and y, denote the chemical potentials of electrons,
muons, protons, and neutrons, respectively. Charge neutrality is
maintained in Equation 13:

Pp = Pet Py (13)
where PpPes and p, are the number densities of protons, electrons,
and muons, respectively. The energy density of the beta equilibrium
nuclear matter is then obtained as
e=p[E(pa)[A+Y,M,+(1-Y,)M,]| +¢,+

£, (14)

u

where Y; = p,/p (i = e, 4, p, n) are the equilibrium particle fractions.
The chemical potential for each particle i is given in Equation 15:

_d¢fp
ooy,

1

Ui (15)

For a given density p, the particle fractions Y; are determined by
solving the equilibrium conditions and charge neutrality, allowing
the calculation of the energy density ¢ using Equation 14. The
pressure P is then derived from Equation 16:

a1/p) "op

This yields the EoS of beta equilibrium nuclear matter in the
form of P(e).

Once the EoS in the form P(e¢) is obtained, the mass and
radius of a cold, spherically symmetric, static, and relativistic
star can be described by the Tolman-Oppenheimer-Volkov (TOV)
equations (Oppenheimer and Volkoff, 1939; Tolman, 1939),

:_a(S/P) _ oe (16)

dP(r) [P +e(M][M(r)+ 47r°P(r)]
dr rlr—2M ()]

, (17a)

dM (r)
dr

where P(r) is the pressure at neutron star radius r, M(r) is the total

= 4m’e(r), (17b)

neutron star mass inside a sphere of radius . Besides the masses and
radii, another key property of neutron stars is their dimensionless
tidal deformability (Damour et al., 1992; Hinderer, 2008; Flanagan
and Hinderer, 2008), denoted by A. This quantity characterizes
the star’s response to an external tidal field and is defined in
Equation 18:

A= %kzc-? (18)
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C = M/R is the compactness parameter, where M is the neutron star
mass and R is the radius and they are determined from the following
two conditions: P(R) =0 and M = M(R). k, is the second love
number quantifying the tidal response of the star in Equation 19,

5
k, :%(1 -20) [2=yg+2C(yg = 1)] x{6C[2 = yp + C(5y;, - 8)]

+4C° [13 - 11y, + C(3y, —2) +2C* (1 +yy)]
+3(1-2C)% [2 -y, +2C(yp—1)]In(1 - 20)} Y,
(19)

where y, =y(R) characterizes the response of the metric
perturbation to the external tidal field at the stellar surface, and
it can be calculated by solving the following differential equation,

VdZir) +y* (N +y(NF(r)+rQ(r) =0, (20)
with L
E(r)= [1— ﬂrm] {1-4n[e(n-P(M]},  (21a)
e(N+P() | 6 2M (1) 17!
Q(r)={4ﬂ|i5$(r)+9P(r)+W‘|_?}X[l_ ; }
- [2M(r) +2 ><47-n'P(r)]2 X [1 - 2Mr(r) ]72, (21b)

The differential Equation 20 can be integrated together with
the TOV equations with the boundary condition y(0)=2. In
addition to tidal deformability, the rotational properties of
neutron stars also provide crucial insights into their internal
structure. The moment of inertia is calculated within the slow-
rotation approximation (Hartle, 1967; Hartle and Thorne, 1968),
where the frequency Q of a uniformly rotating neutron star is
significantly lower than the Kepler frequency at the equator.
In this approximation, the moment of inertia I of a uniformly
rotating, axially symmetric neutron star is given in Equation 22;
Fattoyev and Piekarewicz (2010).

_sn

1 JRr4e"”(’) oin) (r) —((r) +P() dr. (22)
3 Jo @ ioame
Here, v(r) is a radially-dependent metric function
defined in Equation 23:
R M (x) + 4mx’P
v(r):lln<1—y)—j M x. (23)
2 R r 2 [1-2M(x) /x]

The frame-dragging angular velocity @ represents the angular
velocity of the fluid as measured in a local inertial reference
frame, which is usually expressed through the dimensionless relative
frequency @ = @/Q), which satisfies the following second-order
differential equation in Equation 24:

[0 552 +ar

where j(r) = e \T=2M(r)/r for r < R. The relative frequency @(r)
is subject to the boundary conditions

4
dr

dj(r)
dr

da(r)
dr

@(r)=0, (24)

@ (0)=0, @(R)+ éaﬂ (R)=1. (25)

frontiersin.org


https://doi.org/10.3389/fspas.2025.1666331
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Tong et al.

It should be noted that, under the slow-rotation approximation,
the moment of inertia is independent of the stellar frequency Q.

The quadrupole moment characterizes the degree of rotational
deformation of the neutron star away from spherical symmetry (Yagi
and Yunes, 2013). It can be computed by numerically solving for the
interior and exterior gravitational field of a neutron star in a slow-
rotation (Hartle, 1967; Hartle and Thorne, 1968) and a small-tidal-
deformation approximation (Hinderer, 2008; Hinderer et al., 2010).
To explore the universal dimensionless moment of inertia-tidal
deformability-quadrupole moment (I-Love-Q) relations, which
are nearly independent of the EoS, we introduce the following
quantities in Equation 26:

QM

I Q) .

1 _
v

(26)

In addition, to describe the rapidly rotating and axisymmetric
neutron star configurations in general relativity, the stellar matter is
treated as a perfect fluid, characterized by the energy-momentum
tensor in Equation 27:

T = (e+P)utu’ — g"'P, (27)

where ¢, P, and u* are the energy density, pressure, and fluid’s
four-velocity, respectively. The Einstein field equations are solved
assuming an axisymmetric and stationary spacetime with the metric
in Equation 28:

ds? = —e"*Pde + & (dr* + *d6?) + ¢’ P’ sin® 0(dg — wdt)?,  (28)

where the metric potentials y, p, «, and w are functions of the radial
coordinates r and the polar angle 6. For numerical calculations, we
utilize the RNS code (Stergioulas and Friedman, 1995; Paschalidis
and Stergioulas, 2017) for rapidly rotating neutron stars.

3 Neutron star mass and radius

In this review, we have focused on recent advances in the study
of neutron star properties based on RBHF theory formulated in the
full Dirac space.

Figure 1 from Ref. Qu et al. (2025) illustrates the gravitational
mass of both static and rotating neutron stars as a function of their
equatorial radius. The left panel presents results for fixed spin ratios,
X= f/fK =0.0,0.2,0.4,0.6,0.8, and 1.0, while the right panel displays
cases with fixed spin frequencies, f=0, 400, 600, 800, 1,000 Hz,
and the Keplerian limit f= f;. For a given spin ratio or frequency,
the gravitational mass decreases with increasing equatorial radius,
but rises as the rotation rate increases, reflecting the additional
centrifugal support provided by rotation. These results highlight
the capability of RBHF theory to consistently describe both static
and rapidly rotating neutron stars within the same microscopic
framework. For the Bonn A potential, the static case yields a
radius of 10.93 km at the maximum mass. In contrast, at the
Keplerian frequency, the radius expands to 13.84 km, representing
a 26.2% increase. In addition to the EoS obtained with the Bonn A
potential, results based on the Bonn B and C potentials (Brockmann
and Machleidt, 1990) are also presented. Overall, the mass-radius
relations derived from these three parameterizations of realistic NN
interactions exhibit very similar patterns, regardless of whether the
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stars are static or rotating. This robust consistency across different
rotation rates suggests that the influence of rotational dynamics on
the mass-radius relation is relatively insensitive to the specific details
of the underlying interactions governing the EoS. Specifically, the
maximum masses for y = 0.0,0.2,0.4,0.6, and 0.8 are 2.43, 2.46, 2.52,
2.63, and 2.80M,, and the corresponding central energy densities
are g, = 2.26,2.25,2.21,2.12, and 2.00 x 10'® g/cm?, respectively. In
particular, the maximum mass for rotating configurations M, ., can
reach up to 2.93M,, which is 20.6% higher than the static result
Moy = 2.43M,,

Specifically, the radii of a canonical neutron star with mass
1.4M, in the static case are calculated to be R, , =11.98, 12.17,
and 12.32 km for the Bonn A, B, and C potential, respectively.
The smallest radius predicted by the Bonn A potential implies
that the RBHF calculations with this potential yields the softest
EoS. This softness is attributed to the weakest tensor force in the
Bonn A potential, which leads to the strongest attraction between
nucleons. These differences underscore the sensitivity of neutron
star properties to the underlying NN interactions and emphasize
the importance of accurately modeling these interactions to predict
astrophysical observables. Further discussions on the tensor force
effects in nuclear matter, derived from realistic NN interactions, can
be found in Ref. Wang et al. (2024). Moreover, the other results for
neutron star radii shown in Ref. Tong et al. (2022) are also consistent
with various empirical and observational constraints.

4 Universal relations

In the multimessenger era, the tidal deformability A of neutron
stars has emerged as a crucial astrophysical constraint. The neutron
star tidal deformabilties at 1.4M, from the RBHF theory in full
Dirac space are given as A144MO = 376,405,433 for Bonn A, B, C,
respectively (Tong et al., 2022). Notably, the Bonn A potential
predicts smaller A, 4, values compared to Bonn B and C. This
trend can be understood through the stiffness of the EoS: for
a given neutron star mass, a softer symmetry energy results in
more compact stellar configurations, leading to both smaller radii
and reduced tidal deformabilities. These theoretical predictions
can be contextualized with current observational constraints. The
initial estimation for tidal deformability A 45, has an upper bound
Ay 4p, <800 (Abbott et al,, 2017) from the observation of binary
neutron star (BNS) merger event GW170817. Subsequent revised
analysis from LIGO and Virgo collaborations narrowed this to
Ay gy, = 190350 (Abbott et al., 2018). Importantly, the results from
three potentials fall within these observational bounds, with the
Bonn A results exhibiting the closest agreement with the central
values inferred from GW170817.

Beyond tidal deformability, universal relations among neutron
star observables offer an additional, largely EoS-independent avenue
for cross-checking theoretical models against observations. Figure 2
examines the EoSs derived from RBHF theory in the full Dirac space,
with the projection method, and the momentum-independence
approximation with Bonn potentials-in light of the universal
I-Love-Q relations (Wang et al., 2022c¢). The I-Love and Q-Love are
illustrated in the top panels of Figure 2. The I-Q relations can also
be found in Ref. Wang et al. (2022¢). Along each curve, the mass
or compactness serves as the single varying parameter, increasing
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taken from Qu et al. (2025).

The gravitational mass M as a function of the equatorial radii R.,. Six cases are presented for (left panel) fixed spin ratios, y = 0 (static), 0.2, 0.4, 0.6, 0.8,
and 1.0 (Keplerian sequence), and (right panel) fixed spin frequencies, f=0,400,600,800,1000 Hz, as well as f = f. The results are obtained using
EoSs from RBHF calculations in the full Dirac space, based on the Bonn A (solid lines), B (dashed lines), and C (dotted lines) potentials. Figures
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FIGURE 2

(Top panel) The universal /-Love (left) and Q-Love (right) relations for slowly-rotating neutron stars, calculated using EoSs derived from the RBHF
theory. Different theoretical approaches are distinguished by colors: full Dirac space (red), projection method (green), and momentum-independence
approximation (gray). The Bonn potentials are represented by symbols: A (squares), B (circles), and C (triangles). Each data set corresponds to a specific
combination of method (color) and potential (symbol). The solid curves show the fitted results by using Equation 29. (Bottom) Corresponding absolute
fractional differences between the numerical results and the fits. Figures taken from (Wang et al.,, 2022¢).
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towards the left in the plots. The universal relations are found to
hold with high accuracy across different EoSs. Owing to their weak
dependence on the specific EoS, a single empirical fit (black solid
curves) can be applied, given by the functional form (Yagi and
Yunes, 2017):

Iny,=a;+b; Inx; + ¢(Inx)? +d,(Inx;)® +e,(Inx,)*,  (29)

where the fitting coeflicients are summarized in Table4 of
Wang et al. (2022¢). These coefficients closely agree with those
obtained in Ref. Yagi and Yunes (2017), based on a broad ensemble of
EoSs. The bottom panels of Figure 2 present the absolute fractional
deviations between the data and the fit, which remain below 1% over
the entire mass range examined. The universal relation between T
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and the tidal deformability A enables the inference of the moment of
inertia for a 1.4M, neutron star, I; 4., from the tidal deformability
Ay 4y, measured in the GW170817 event. The updated analysis
from the LIGO and Virgo Collaborations reports Ay 4y, = 190*3%

(Abbott et al., 2018), corresponding to I} 4, = 10.30*37;, as shown
in the left panel of Figure 2. Using the relation I = I/M?, this yields

I, 4y, = 1221032 x 10%°g cm”.

5 Summary and perspectives

We have reviewed recent developments in RBHF theory
within the full Dirac space, with particular emphasis on their
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implications for the properties of dense nuclear matter and
neutron stars. This relativistic ab initio calculations enhance the
internal consistency of relativistic many-body calculations and
represent a significant advancement in the microscopic description
of dense matter under extreme conditions. Further progress
in the RBHF theory is anticipated through the inclusion of
higher-order many-body correlations, in particular by extending
beyond the two-hole-line expansion currently employed in standard
RBHF theory. The incorporation of three-hole-line contributions
and other higher-order terms is essential for achieving a more
complete and quantitatively accurate description of in-medium
nuclear interactions at supranuclear densities. In parallel, while a
leading order and next-to-leading order covariant chiral nuclear
forces have recently been applied within RBHF calculations under
the momentum-independence approximation (Zou et al., 2024;
Zou et al,, 2025b; Zou et al,, 2025a; Zheng et al., 2025; Shen et al,,
2025), a natural next step is to implement the high-fidelity chiral
nuclear forces (Ren et al., 2018; Lu et al., 2022) in the full Dirac
space. Such an extension would enable a more consistent and
comprehensive treatment of relativistic effects, thereby improving
the predictive power of relativistic ab initio calculations for the EoS
and neutron star properties.
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