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In this study, we investigate the cold ions ( < 70 eV) originated in the high-
latitude ionosphere of the Earth entering the magnetosphere towards the 
magnetotail. We analyze measurements from Cluster spacecraft along with 
solar irradiance, solar wind (SW), and geomagnetic observations. Two machine 
learning models driven by solar irradiance and solar wind measurements are 
derived to predict the cold ion flux. With the linear baseline model, we 
provide an empirical formula. The nonlinear model (Extra-Trees Regressor) yields 
17% better performance. The total cold ion escape rate from the polar cap 
ranges between ∼1.1 ⋅ 1024 and ∼2.7 ⋅ 1026 s−1. The upper limit is comparable 
to the neutral escape rate. The results show that spatial location is the most 
important predictor. Solar EUV irradiance is also among the top predictors, 
followed by the solar wind electric field, the interplanetary magnetic field 
(IMF), and solar wind dynamic pressure. These results can help to evaluate 
the influence of the stellar wind-magnetospheric interaction on the ion 
outflow at Earth-like exoplanets. They indicate the importance of such an 
interaction for the atmospheric escape during active geomagnetic conditions. 
Stronger outflow from the Northern Hemisphere than from the Southern 
Hemisphere hints that the magnetic field strength can impact the amount of
ionospheric outflow.

KEYWORDS

cold ions, ion outflow, atmospheric escape, machine learning, extra trees regression 
(ETR) 

 1 Introduction

Populations of ions characterized by total energies below 100 eV are termed ‘cold’ 
(Delzanno et al., 2021). Cold ions within the magnetosphere originate mainly from the 
ionosphere. The polar cap and the auroral regions are major contributors to ionospheric 
escape (Kronberg et al., 2014). The variability in the outflow fluxes and composition is 
strongly influenced by solar and magnetospheric activities (Cully et al., 2003). Under certain 
conditions, this ionospheric plasma source becomes the predominant plasma contributor
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within the magnetosphere (Chappell et al., 1987; Welling et al., 
2015; Toledo-Redondo et al., 2021). Therefore, ionospheric 
outflow impacts the dynamics of the magnetosphere 
and is an important component in understanding 
geospace dynamics (Kronberg et al., 2021).

Despite their importance, cold populations are amongst the 
least explored, mainly due to the challenges of obtaining reliable 
measurements (Delzanno et al., 2021). The challenge is caused by 
the positive electric charge on the surface of a sunlit spacecraft. Cold 
ions with kinetic energies lower than the electric potential energy of 
the spacecraft are not reliably detected by the instruments onboard 
the spacecraft. Advancements in scientific instrumentation from the 
Cluster mission (Escoubet et al., 2001) and methodologies from 
recent research have further expanded the possibilities to quantify 
the cold plasma population. The Cluster spacecraft have enabled 
measurements of the cold ion outflow parameters using in situ
electric field measurements via the “wake technique” (Pedersen et al., 
2008; Engwall et al., 2008; 2009; Lybekk et al., 2012; Li et al., 
2012; Li et al., 2013). New insights into this technique are given by 
André et al. (2021). They also demonstrated observations of boom-
induced wake using the MMS mission. A simple linear model for 
cold ions based on measurements of the Akebono suprathermal 
mass spectrometer with respect to different solar and geomagnetic 
parameters was derived by Cully et al. (2003).

In this study, we present linear and ensemble machine learning 
(ML) models that predict the outflow of cold ions ( < 70 eV) from 
the polar cap region as a function of solar activity and location 
parameters. The models can determine important predictors for 
the cold ion flux and can help to assess the total outflow rate 
under various activity conditions. The Cluster observations and the 
technique described in André et al. (2021) are used to obtain the 
parameters of the cold ions. Quantification and modeling of cold 
ion outflow help reconstruct total atmospheric escape rates. It puts 
cold ion outflow in the relative context with neutral particle escape 
and escape of ions at higher energies, as well as the escape from 
low and middle latitudes on closed magnetic field lines. This could 
inform exoplanetary atmospheric modeling studies in evaluating the 
importance of ionospheric ion outflow. 

2 Methods and observations

In the tenuous plasma environment over the polar cap region, a 
spacecraft can be positively charged due to the photoelectric effect. 
The spacecraft electric potential, Vsc, is often a few tens of volts. Its 
equivalent potential energy is larger than the kinetic energy of cold 
ionospheric ions (mainly protons), Ek. Since the ions are cold, their 
thermal energy is smaller than their kinetic energy, such that:

kTi < Ek < eVsc, (1)

where k is the Boltzmann constant, Ti is the ion temperature and 
e is the elementary charge, under the condition in Equation 1, an 
enhanced plasma wake is formed downstream of the spacecraft. The 
enhanced wake can be much larger than the size of the spacecraft 
due to scattering of the cold ions by the positive spacecraft potential. 
The wake contains almost no cold ions but is filled with cold 
electrons. The electric field of the wake lies in the same direction 

as the cold ion flow (Engwall et al., 2006). The wake electric field 
can be obtained by comparing the data from the Electric Field 
and Wave (EFW) instrument (Gustafsson et al., 2001) with the 
data from the Electron Drift Instrument (EDI) (Paschmann et al., 
1997). The EFW instrument obtains the electric field between four 
orthogonally mounted probes on 88-m long wire booms. The EDI 
infers the electric field by measuring the drift of artificially emitted 
electrons as they gyrate back to the spacecraft in the geomagnetic 
field. Considering the geometry relation between the bulk velocity of 
the cold ion flow and the background magnetic field measured by the 
fluxgate magnetometer (FGM) (Balogh et al., 2001), the velocities 
parallel- and perpendicular to the magnetic field components, v‖ and 
v⊥, can be derived. For more details on this method, we refer to the 
description in Engwall et al. (2009).

Since Vsc is formed due to the balance between the currents 
of photoelectrons emitting from the spacecraft and the electrons 
bombarding the spacecraft from background plasma, the density of 
cold plasma ne can be derived from Vsc as follows:

ne = Ae
−Vsc

B (2)

where A and B are depended on spacecraft surface geometry and 
solar EUV irradiance. They are determined for different years during 
the solar cycle (Lybekk et al., 2012; Pedersen et al., 2008) and may 
also be refined for daily solar EUV variations (André et al., 2015). 
Considering the charge neutrality, the ion density, ni, is identical to 
the electron density, identified in Equation 2.

Finally, the flux of cold ions along magnetic field lines, ji, is 
calculated as:

ji = niv‖i (3)

Using the method described above and measurements by Cluster 
1 and Cluster 3, André et al. (2015) obtained parameters of the cold 
ion outflow during the periods between July to November, from 
2001–2010, when the satellites remained within the magnetosphere. 
The measurements by Cluster 2 and Cluster 4 were not used because 
EDI on those spacecraft were not operated. The measurements 
during solar minimum of solar cycle 23 (especially in 2008) are 
not included in the dataset, because solar EUV irradiance was too 
low, causing the EFW probes operating with a fixed bias current 
to function improperly. Also measurements of Cluster 3 in 2006 
are excluded due to the same reason. Other criteria for the data 
selection include: 1) reliable EDI measurements, namely, data with 
missing returning-electron-beam signals and other technical issues 
were excluded. This led to exclusion of the day side observations as 
large gradients in the magnetic field prevent the artificially emitted 
electrons to gyrate back properly to the receiver; the EDI error 
was incorporated into the total error estimate for cold ion parallel 
bulk velocity; 2) spacecraft potential within the range from +8 to 
+50 V, so that the relation in Lybekk et al. (2012) can be used; 
3) wake electric field in the range 2–100 mV/m; 4) magnetic field 
not too perpendicular with respect to the spin plane to ensure 
reliable calculation of the parallel velocity (Engwall et al., 2009). 
Uncertainties of the magnetic field measurements are used for the 
total cold ion bulk velocity error estimation, too; 5) reasonable values 
of the velocity in the satellite spin plane with small enough relative 
errors to ensure the detection in the cold ion energy range.
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FIGURE 1
Number of cold ion flux observations versus flux and time for the period from 2001 to 2011 (top). Zoom-ins for 2001 and 2003 show periods selected 
as best candidates for test data (bottom). The orange rectangle indicates the selected test dataset. See more details about the selection in Section 3.

The relative error for ion density Δ(ni) is generally 20%, as given 
in Lybekk et al. (2012). The relative error for the parallel velocity 
Δ(v‖) is provided in the dataset from André and Cully (2012). We 
combine these errors to obtain the total relative error of the flux, 
defined in Equation 3, as follows:

Δ(ji) = √Δ(ni)
2 +Δ(v‖)

2 (4)

We include the total relative errors as input weights in our 
models, see more details in Section 3.

For more details on this dataset, we refer to the study by 
André et al. (2015). Values for the aleatoric uncertainty (mean 
relative error) for the training and test dataset are provided 
in Table 5. The current dataset contains 320,503 data points 
with a 4s spacecraft spin resolution. The distribution of the 
number of flux observations versus flux value and time is shown
in Figure 1.

2.1 Predictors of cold ion flux

Table 1 lists the predictors evaluated for their relevance to model 
performance. Histograms for the predictors are shown in Figure 2. 
The numbers of events in the histograms generally represent the full 
range of parameter values in the dataset, with only a few outliers 
towards high solar wind and geomagnetic activity.

2.1.1 Predictors related to location in space
In the presented analysis the flux is systematically correlated 

with its respective position within the geocentric solar 
magnetospheric (GSM) coordinate system. The positioning is 
determined by the spatial parameters x, y, z and the radial distance 
from Earth’s center, r, expressed in terms of Earth radii, RE. Figure 3 
illustrates the spatial distribution of the flux within the GSM 

coordinates and corresponding spatial data coverage. In Figure 4 
logarithmic mean values of the cold ion flux are plotted against 
the different value ranges of the features. From these plots, we can 
observe a linear decline of logarithmic cold ion flux with increasing 
distance for r and |x|. This is expected to be due to the diffusion of 
the ions to a large volume. Higher cold ion flux can be identified 
in the Northern Hemisphere from Figures 3, 4. Here, we compare 
regions at x < ∼-5 RE, |y| < ∼5 RE, and |z| > ∼5 RE where we have 
a significant amount of observations according to bottom panels of 
Figure 3. Discussion of the asymmetry can be found in Section 5.

2.1.2 Predictors related to the solar- and 
geomagnetic activity

The indices related to geomagnetic activity include the Auroral 
Electrojet Index (AE), which measures geomagnetic activity in 
the auroral zone (Davis and Sugiura, 1966; Nose et al., 2015); 
the Disturbance Storm Time Index (Dst), which quantifies 
geomagnetic storm strength (Sugiura, 1964); and the planetary 
Kp-index (Matzka et al., 2021), which evaluates disturbances of the 
geomagnetic field at mid-latitudes. Solar activity is indicated by the 
Solar Radio Flux (F10.7), which represents the total emission of the 
sun at a wavelength of 10.7 cm from all sources of the solar disc 
(Tapping, 2013). Physical properties of the solar wind are described 
by ion density nH+,SW, speed vSW, temperature TSW, pressure pSW, as 
well as by the Interplanetary Magnetic Field (IMF) magnitude BIMF
with its components Bx,IMF, By,IMF and Bz,IMF. The solar wind electric 
field y-component is characterized by Ey,SW. We also investigated 
the relationship between the cold ion outflow and the dispersion 
of the SW parameters, namely, their standard deviation, such as 
σ(BIMF), σ(nH+,SW) and σ(vSW). Details on their calculation can be 
found in King and Papitashvili (2005). The corresponding solar 
and geomagnetic parameters are taken from the OMNI-2 dataset 
which combines measurements from different sources, resulting 
in varying temporal resolutions: solar wind (SW) parameters at 
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TABLE 1  Overview of relevant parameters.

Parameter Unit Description

x, y∗, z, r† RE GSM coordinates and radial distance

B∗x,IMF, B∗y,IMF, B†z,IMF nT IMF components

BIMF, σ(BIMF)∗ nT IMF magnitude and its standard deviation

T†SW K Solar wind temperature

n†H+,SW, σ(nH+,SW)∗ cm−3 Solar wind hydrogen ion density and its standard deviation

pSW nPa Solar wind dynamic pressure

v∗SW, σ(vSW)∗ km/s Solar wind speed and its standard deviation

Ey,SW mV/m Solar wind electric field (y component)

F10.7 sfu Solar radio flux at 10.7 cm

AE† nT Auroral Electrojet index

Dst† nT Disturbance Storm Time index

Kp† — Planetary K-index

⇒ log (j) s−1cm−2 ⇒ Target-variable: Log. cold ion flux

Parameters marked with †were excluded from both models based on multicollinearity analysis and decision to use only parameters related to solar activity. Parameters marked with∗were 
excluded only from the linear baseline model (see Section 3).

1-min resolution, F10.7 index at daily resolution, the Dst and AE
indices at hourly resolution, and Kp index at 3-h resolution. The 
histograms in Figure 2 exhibit that most of the data were collected 
during solar/geomagnetic quiet times.

Figure 5 shows the Pearson correlation coefficients between 
the relevant features and the cold ion flux. These coefficients can 
range from −1 to 1, where values closer to −1 indicate a strong 
negative linear correlation, values closer to 1 represent a strong 
positive linear correlation, and values near 0 signify little to no 
linear correlation. Positional features x, z, and radial distance r
exhibit the highest Pearson correlations with the flux, with values 
reaching up to 0.44. Among the features of solar and geomagnetic 
activity, AE, Kp, and Dst exhibit the highest correlation with 
the cold ion flux. These are followed by positive correlations 
with BIMF, Ey,SW and pSW. However, many relationships between 
cold ion flux and its predictors are nonlinear, as indicated by 
the relatively low values for the Pearson correlation coefficient
(see Figure 5).

The cold ion flux does not show clear relations with the 
SW velocity, in contrast to, for example, for ∼100 keV proton 
flux observed by Kronberg et al. (2020). However, it shows 
strong increase with the electric field in duskward direction, 
Ey,SW, see Figure 4. The increase in flux is also seen to be correlated 
with negative Bz,IMF, indicating that the IMF topology is a more 
important factor in triggering the outflow than vSW. A dramatic 
growth of the flux is observed with the negative Bx,IMF and duskward 
By,IMF components. These imply that the orientation and magnitude 
of the IMF play a significant role in generation of ion outflow. An 
enhancement in the cold-ion flux is observed on average with an 

increase in the variance of SW parameters such as σ(BIMF) and 
σ(nH+,SW) but not for σ(vSW). 

3 Model derivation

Here we derive two distinct ML models. For the first approach 
we use a linear regression (LR) model in order to provide a user-
friendly empirical formula to predict the flux of cold ions below 
70 eV. For the second approach, we select a nonlinear ML algorithm, 
which captures nonlinear patterns in the data while improving 
predictive accuracy. 

3.1 Data separation into test and training 
sets

The dataset is divided using a ”leave-one-year-out” test 
separation strategy based on an analysis of yearly data distribution 
and coverage consistency shown in Figure 1. Specifically, data from 
year 2003 constituted about 19% of the total dataset, aligning well 
with conventional test set sizes of 20% of total data. The proportion 
of data points within other years corresponds to either far more 
or far less than conventional 20% of total data. Another sizing-
based candidate is the 2001 data: it accounts for roughly 18% 
of the data but its temporal coverage is less uniform than that 
of 2003 (see Figure 1). Therefore, we choose 2003 as our test set 
to minimize biases stemming from the temporal data coverage. All 
remaining data is used for the training. Since time is not explicitly 
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FIGURE 2
Histograms of observed events for different predictor parameters provided in Table 1. Orange vertical lines mark zero values along the x-axis.

included as a predictor in the model we are not using the last 20% of 
data as the test set to ensure that the training data span both solar-
minimum and solar-maximum phases. Although this simple split 
may yield lower performance compared to other splitting strategies, 
it creates ”unseen” test dataset conditions. 

3.2 Uncertainty quantification and 
implementation

We evaluate different uncertainties associated with the 
predictive models. These include point estimates of prediction 
errors, aleatoric uncertainty arising from data variability, epistemic 

uncertainty due to model construction, and ensemble uncertainty 
specific to ensemble-based methods. 

3.2.1 Point estimates of model predictions
To assess the performance during training, validation and 

evaluation processes, we use classical metrics to provide aggregated 
point estimates of prediction accuracy: the mean squared error 
(MSE), the root mean squared error (RMSE), the R2-score, the 
Pearson correlation, the Symmetric Mean Absolute Percentage Error 
(SMAPE), and the Symmetric Signed Percentage Bias (SSPB). To 
assess the model improvement of the nonlinear ML model over 
the linear model, we use the MSE based Skill-score (MSESS). 
For a detailed metrics description, we refer to the papers by 
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FIGURE 3
The heatmaps illustrate the spatial distribution of the average logarithmic cold ion flux- (left column) and the counts of data points per bin (right 
column) in the xz (top) and yz (bottom) GSM planes. The Earth is shown as a circle, where the white half corresponds to the day side and the black half 
to the night side. Only bins with minimum 20 data points are shown. The bin size is 1RE × 1RE.

(Morley et al., 2018; Swiger et al., 2022). While these metrics quantify 
prediction errors, they do not reflect variability or uncertainty 
inherent of predictions. 

3.2.2 Aleatoric (data) uncertainty
In Equation 4, we derived combined relative errors δ(ji) for 

each data point. We implement these relative errors directly into the 
modeling framework as normalized sample weights ŵi:

ŵi =
Δ(ji)
−1

∑n
i=1

Δ(ji)
−1
. (5)

The weights are applied into the fitting function of the 
models during the training process, helping to prioritize data 
points with lower relative errors. Additionally, we incorporate the 

weights from Equation 5 into evaluation metrics (MSE and R2-
score), implementing observational uncertainties within the model’s 
performance assessment. 

3.2.3 Epistemic (model construction) uncertainty
The epistemic uncertainty captures variability in model 

prediction due to limited training data. To estimate this type of 
uncertainty, we implement bootstrapping, a method involving 
1,000 providing sufficient number of variations) training subsets 
generated from the original dataset by sampling with replacement. 
Models are repeatedly trained on these subsets, and their predictions 
yield distributions from which mean predictions and standard 
deviations are derived. The bootstrapping mean prediction 
represents the overall model estimate, while the corresponding 
standard deviation reflects epistemic uncertainty. This provides us a 
measure of model sensitivity to changes in training data, quantifying 
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FIGURE 4
Relationships between the mean cold ion flux and the predictors listed in Table 1. The original range of values for each parameter is divided into 10 
bins. The mean flux is computed within each bin, provided that the number of data points in the bin exceeds a minimum threshold of 20. The 
transparent blue regions represent the interquartile range (IQR), defined as the range between the 25th and 75th percentiles of the flux values within 
each bin. Orange vertical lines indicate the zero crossing on the x-axis.

an uncertainty estimation associated with the model building 
process itself, dependent on the number of bootstrap samples
(Weinberger and Sridharan, 2018). 

3.2.4 Ensemble and predictor uncertainty 
(Extra-Trees Regressor model)

For the final model, which is later selected to be Extra-
Trees Regressor, the ensemble uncertainty is evaluated by 
examining prediction variability across the ensemble’s individual 
decision trees. For each observed data point, we calculate the 
mean and the standard deviation of predictions generated by 
all trees in the ensemble. Ensemble variability serves as a 
measure of the internal consistency and robustness of the model
predictions.

The uncertainty contribution of the predictors are assessed using 
the bootstrapping approach. For each resampled dataset, the ETR 
model is trained and the resulting feature importances are extracted. 

From the distributions, we compute the empirical 95% confidence 
intervals to quantify the variability and robustness of the estimated 
feature contributions. 

3.3 Multicollinearity Analysis and initial 
feature selection

Multicollinearity among the features can distort coefficient 
estimates, reduce interpretability, and degrade model performance 
by inflating parameter variance. Linear models are sensitive to highly 
correlated predictors. As a measure of linear association, the Pearson 
correlation coefficient and the Variance Inflation Factor (VIF) help 
to address this problem. VIF quantifies how much the variance of a 
coefficient is inflated due to multicollinearity with other predictors, 
with values above 5 indicating critical multicollinearity (Shrestha, 
2020). Strong pairwise Pearson correlations, defined as those 
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FIGURE 5
The matrix shows the Pearson correlation coefficients between potential predictors and cold ion flux, log (j) (left column) rounded to the 
second decimal.

exceeding 0.7, can be identified between x and r, nH+,SW and pSW, vSW
and TSW, AE and Kp, and Bz,IMF and Ey,SW, see Figure 5. Additionally, 
several features exhibited VIF values exceeding the threshold of 5: 
Ey,SW, Bz,IMF, pSW, nH+,SW, r and Kp. Based on these results, r was 
excluded from the model due to its redundancy with x, as it has 
lower correlation with cold ion flux and a higher VIF. nH+,SW was 
excluded in favor of pSW because of its lower correlation with the ion 
flux and redundancy as pSW ∝ nH+,SW. TSW was excluded in favor 
of vSW, as SW velocity is more often used in description of the solar 
wind energy input. Bz,IMF was excluded because of lower correlation 
with the flux than Ey,SW. While the parameters are connected via 
E×B, we also reduce redundancy for the model. Geomagnetic 
activity index Kp was removed due to its lower resolution compared
to AE.

For the remaining parameters, the highest Pearson coefficients 
are below 0.7 and no VIF values exceeded 5. With this, we resolved 
multicollinearity while preserving the most relevant relationships. 
Most excluded features are indirectly captured by retained ones. 
Following this process, we excluded the five parameters, marked 
by † in Table 1. For both models, we take this remaining feature 
selection as the basis and individually refine it in both cases, see 
Section 3.5 and 4.

3.4 Linear regression baseline model

For the first approach, we use multivariate Linear Regression 
(Neter et al., 1996) by fitting a linear equation to the data that 
estimates the relationship between a dependent variable, the cold ion 
flux, and multiple independent variables. The model is fitted using 
the ordinary least squares (OLS) method, which minimizes the sum 
of squared residuals to achieve the best linear fit through the data. 
To derive comparable feature importances for the feature selection 
process, the model is first trained with predictors, normalized using 
standard scaler (Pedregosa et al., 2011). Model coefficients derived 
from normalized input features indicate the relative significance and 
contributions of individual input features for the models output.

We further refine the selection of the predictors done in 
Section 3.3 by assessing the performance of the model before and 
after an exclusion. We use KFold cross-validation (CV), where the 
training data is split into 5 different subsets. In each step, the model 
is trained on four subsets and validated on the remaining one. This 
process provides a fair comparison of a model’s performance across 
varying data subsets of the original training data. For the linear 
model we use absolute values for z because of the nonlinear relation 
with the ion flux, seen in Figure 4.
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TABLE 2  Cross-validation performance metrics (mean ± standard 
deviation) for nonlinear regression models with default settings.

Model MSE R2-score Pearson

ExtraTreesRegressor (ETR) 0.17± 0.05 0.37± 0.11 0.66± 0.03

RandomForestRegressor (RF) 0.23± 0.07 0.15± 0.14 0.51± 0.05

LightGBM (LGBM) 0.19± 0.04 0.31± 0.08 0.59± 0.05

Gradient Boosting (GB) 0.17± 0.02 0.35± 0.04 0.62± 0.04

Multi Layer Perceptron (MLP) 0.29± 0.08 −0.04± 0.16 0.51± 0.06

First, we exclude the remaining geomagnetic indices Dst and 
AE from the feature set. Across the different folds, MSE has shown 
only a slight increase. In this way, we derive a model that evaluates 
the flux based on solar input, avoiding the consequences of solar 
wind-magnetosphere interactions, such as geomagnetic activity. 
This allows application of the model to exoplanets where we do 
not measure the magnetic disturbance at the surface. After, we 
iteratively remove y, vSW, σ(vSW), σ(nH+,SW), Bx,IMF, By,IMF, and 
σ(BIMF), which exhibited the lowest scaled coefficients. This leads to 
slight improvement of the cross-validation performance. The final 
set of predictors for the linear model is listed as parameters without 
any symbols such as ∗ or † in Table 1.

To derive a predictive formula which can be used with unscaled 
input data, the model is retrained using the final set of unscaled 
features. The performance is evaluated on the test dataset from 
2003. The corresponding metrics are provided in Table 3 and 
discussed in Section 4.1. 

3.5 Nonlinear model selection

To determine the best performing model for cold ion flux, we 
evaluate five different ML methods other than linear regression: 
Extra-Trees Regressor (ETR) (Geurts et al., 2006), Random 
Forest (Breiman, 2001), Gradient Boosting (Friedman, 2001), 
Light Gradient Boosting (Ke et al., 2017) (all four ensemble 
models), and Multi Layer Perceptron (Rumelhart et al., 1986) 
(neural network). Here we use the models by default settings in 
combination with the KFold CV. Table 2 presents the CV results 
obtained for each evaluated model. Among the models, ETR 
consistently demonstrates the lowest mean CV-MSE (0.17) and 
the highest Pearson correlation coefficient (66%). Other models 
exhibit higher mean CV-MSE and lower correlation. Given these 
results, we select the ETR method to derive a non-linear model
for the cold ion flux.

3.6 Extra-trees regressor ensemble model

ETR is a tree based ensemble algorithm. Using bagging, it 
averages the output of all decision trees (estimators) in the ensemble. 

Compared to the Random-Forest-Regressor, this method introduces 
additional randomness by selecting the split thresholds within the 
decision trees randomly rather than calculating the best feature value 
threshold. This makes ETR less computationally expensive and also 
less prone to overfitting. The algorithm selects a random subset 
of features for each split and trains each tree on the full dataset 
without bootstrapping. This method is also useful for interpreting 
the contribution of each individual feature for the predictions 
such as evaluation of feature importance based on reduction in 
impurities (Breiman, 2001).

Although the ETR model is not sensitive to multicollinearity, 
the same feature set as in Section 3.3 is used for consistency across 
both models. This set is further refined by assessing changes in 
predictive performance via CV before and after each removal. 
We first exclude the remaining geomagnetic indices Dst and AE
from the feature set, as for the linear model (Section 3.4). This 
resulted in CV performance improvement: both, mean Pearson 
correlation and mean R2-score increased by 1% while mean MSE 
remained the same. Subsequently, we attempt further exclusion 
by removing the least important features from the model. This 
exclusion resulted in a performance decline, reflected by an increase 
in the mean CV MSE and decrease in both mean R2-and the 
Pearson correlation coefficients. Consequently, we decided against 
further feature reduction. The final set of features comprises of 
13 predictors, as those with ∗ or without any symbol, listed
in Table 1.

We optimize the hyperparameters of the model 
using Optuna (Akiba et al., 2019), employing a Tree-structured 
Parzen Estimator (TPE) sampler to efficiently explore a parameter 
space. The optimization process runs for 500 trials, where each 
trial evaluates a certain hyperparameter configuration. To assess 
model performance and generalization, we apply 5-fold CV 
without shuffle, preserving temporal structure by splitting the 
training data into five sequential subsets. We optimize four 
key hyperparameters. The number of estimators controls the 
number of decision trees in the ensemble, where a higher count 
generally improves and stabilize the performance but increases 
computational cost. Here we define a range from 20 to 100. The 
tree depth is constrained between 5 and 25 to prevent excessive 
growth of the trees. The minimum number of samples required 
for a leaf node (between 12 and 40) and the minimum number 
of samples required for an internal node (between 13 and 40) 
ensure that splits only occur when there is a sufficient number 
of samples available. By constraining the model from growing 
pure leaves, we prevent it from overfitting the training data. 
After the hyperparameter optimization process, we get a final 
configuration with 77 estimators, a maximum tree depth of 13, a 
minimum of 37 samples per leaf, and a minimum of 40 samples
per split.

Once the features are selected and the optimal 
hyperparameters are identified, the final model is trained 
on the complete training dataset and applied to the test set
from 2003 to assess its generalization performance. The metrics 
are listed in Table 4 and discussed in Section 4.2.
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TABLE 3  Training and test performance-metrics for the linear model.

Set Mean MAE MSE RMSE R2 Pearson SMAPE (%) SSPB (%)

Training 5.5 0.32 0.16 0.40 0.42 0.64 6.02 −0.35

Test 5.36 0.37 0.19 0.44 0.40 0.65 6.74 −2.34

TABLE 4  Training and test performance metrics for the Extra-Trees Regressor (ETR) model.

Set Mean MAE MSE RMSE R2 Pearson SMAPE (%) SSPB (%)

Training 5.49 0.16 0.05 0.21 0.84 0.91 3.04 −0.25

Test 5.32 0.32 0.16 0.40 0.50 0.75 6.10 −2.93

4 Results

4.1 Linear regression results

We derive a predictive formula for the cold ion flux using 
unscaled features in units provided in Table 1:

log10 (j) = 6.16 ⋅ 10−2 ⋅ x− 2.90 ⋅ 10−2 ⋅ |z| + 3.18 ⋅ 10−3 ⋅ F10.7

+ 7.14 ⋅ 10−2 ⋅ pSW + 4.41 ⋅ 10−2 ⋅Ey,SW + 1.19 ⋅ 10−2 ⋅BIMF

+ 5.35 (6)

The comparison of training and test performance (see Table 3) 
shows only slight differences, meaning that the model does not 
have an overfitting problem. On the test set we obtain a predicted 
mean logarithmic flux value of 5.36 cm−2s−1 with RMSE/MAE 
of 0.44/0.37 cm−2s−1. This indicates, that the RMSE difference 
between the predicted and the measured values is reasonable. 
The R2-scores of ∼40% suggests that a significant portion of the 
variance remains unexplained by the model. The Pearson correlation 
coefficients of ∼65% shows a significant positive correlation between 
predicted and observed values of cold ion flux. We observe an 
increase of the Pearson correlation coefficient and a decrease of 
the R2-score for the test dataset compared to training dataset. 
The differences are within expected statistical fluctuations. Such 
behavior can be related to the simplicity of the approach and the 
random variability in the data. This aligns with the bias-variance 
tradeoff, where simpler models tend to have higher bias but lower 
variance, which leads to comparable performance on both training 
and test datasets (Hastie et al., 2001). The SMAPE value indicates 
that, on average, the predictions deviate from the true value by ∼6% 
and ∼7%. Low values of the SSPB for both training and test sets 
suggest that the model generalizes.

Figure 6 visualizes the discrepancies between the measured 
and the predicted cold ion flux values. The predictions are 
somewhat dispersed, suggesting a model fit that is moderately 
accurate. The distribution of predicted values indicates a systematic 
underprediction of high flux values and overprediction of low flux 
values, particularly towards the extremes. This effect suggests a 
“regression-to-the-mean” behavior, where the model struggles to 
capture the full range of variability in the data.

For the test set, the model captures the overall trend in the 
data. However, it fails to reproduce the bimodal nature of the test 
data distribution, as shown in the gray histograms in Figure 6. The 
discrepancy between the measured and predicted values hints to 
the model’s difficulties in learning and generalizing more intricate 
nonlinear relationships present in the data. 

4.2 Extra-trees-regression results

The ETR model shows a notable improvement in performance 
compared to the LR model (see Table 4). The RMSE/MAE value 
of 0.40/0.32 cm−2s−1 is lower than that of the LR model and is 
relatively low compared to the mean logarithmic ion flux value of 
5.45 cm−2s−1. The R2-score of 50% suggests that the ETR model 
explains the half of the variance in the data. The Pearson correlation 
coefficient of 75% indicates a reasonably strong linear relationship 
between predictions and observations. The SMAPE of the test 
predictions (6%) indicates high accuracy of prediction. The ability 
of the ETR model to generalize to unknown data is demonstrated by 
comparing the values in the training and test metrics, which are not 
too far apart.

Unlike the linear model, which tends to underpredict high 
flux values and overpredict low flux values, the ETR model better 
predicts variability in the data. This is reflected by a reduced 
“regression-to-the-mean-effect”, although it tends to underpredict 
on the test set (well seen in Figure 7) and indicated by the SSPB 
of −2.9%. Additionally, the model reproduces the bimodal shape 
of the test data distribution (see gray histogram), which was not 
well predicted by the LR model. Overall, the improved metrics 
indicate that the ETR model is more effective in learning nonlinear 
relationships in the data.

The feature importance ranking of the ETR model is illustrated 
in Figure 8. With significant offset the importance ranking in 
predicting the cold ion flux is led by location parameters x and 
z followed by F10.7. After comes y. The next in ranking are 
features characterising the solar wind: Ey,SW, By,SW, BIMF, pSW, 
vSW, and Bx,SW. Variance-related parameters provide the least 
contribution to the model’s predictions but still help to improve 
the performance. More details on physical mechanisms behind the 
selected parameters is in Section 5.
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FIGURE 6
Comparison of measured and LR model predicted cold ion flux, for both training and test datasets. The color bars represent the number of flux values 
within each bin shown in the plots. The marginal histograms show the distribution of the flux values for both the predicted (vertical) and observed 
(horizontal) data. A good model predicts most of the fluxes along the white dashed diagonal, namely, closely matching the measurements.

FIGURE 7
The two plots compare the measured and ETR model predicted cold ion flux values for both the training and test datasets. The format is the 
same as in Figure 6.

Figure 9 demonstrates the predictions of the ETR model 
during quiet (Dst > − 30 nT) and disturbed geomagnetic activity 
(Dst ≥ −30 nT) on the 2003 test dataset. The model tends to 
underpredict flux values during disturbed geomagnetic activity, with 
most flux values falling below the white dashed line in Figure 9. 
For quiet geomagnetic times, overprediction of low flux values 
and underprediction of mid and high flux values is seen. 
Performance of the model for quiet conditions exhibits Pearson 
coefficient of 71%, an R2-Score of 47% and a MSE of 0.16. 
Under disturbed conditions, the prediction performance improves 
according to the Pearson correlation of 79%, while MSE and 
R2-Score values remain the same. The difference in the Pearson 

correlation may arise from the different data distributions and 
from the fact, that disturbed cases correspond to only 20% of total
test data.

Overall, the Pearson correlation coefficient on the whole 2003 
test dataset, seen in Table 4, lies between the results for quiet and 
disturbed cases. This reflects, that the ETR model provides reliable 
results under varying geomagnetic conditions. 

4.3 Model comparison and uncertainties

As shown in Table 5, the ETR model exhibits slightly higher 
epistemic uncertainty estimates than the LR model. This is expected 
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FIGURE 8
ETR model feature importance values. The length of the orange error bars corresponds to 95% confidence intervals.

FIGURE 9
The ETR model predictions for 2003 test data, for quiet (left) and disturbed (right) geomagnetic activity, based on Dst levels. The format is the 
same as in Figure 6.

because fully deterministic models, such as LR, account less for 
the variability inherent in the data. Ensemble models such as ETR 
aggregate multiple estimators and, therefore, capture a wider range 
of possible values. Additionally, the ensemble uncertainties in the 
ETR model are higher than the epistemic uncertainties estimated 
through bootstrapping. This indicates that the variability introduced 
by combining diverse predictors in the ensemble contributes to the 
overall uncertainty. However, the aleatoric uncertainty is the highest, 
if comparing it with epistemic and ensemble uncertainties.

We assess the performance improvement of the ETR model 
compared to the linear baseline model on the unused 2003 test 
dataset. We use the MSE skill-score (MSESS). This metric provides 
a quantification of improvement in terms of prediction errors over 
the linear baseline model (Wheatcroft, 2019). The results show that 
the ETR model outperforms the linear baseline model in predicting 
cold ion flux by reducing the prediction error for unseen data by 

17%. For both, Pearson correlation and R2-score we observe an 
improvement of 10%. 

5 Discussion

5.1 Model performance

Our models show relatively good performance (Pearson scores 
of 0.65 and 0.75 for the LR and ETR models). Limitations in 
performance may be due to limited data or the rough data 
splitting method. However, this splitting strategy may better reflect 
model generalization across distinct conditions. Both LR and 
ETR models suffer from “regression-to-the-mean effect”, which 
results in underprediction of high values and overprediction of the 
low values. Still, the relative contribution of aleatoric uncertainty 
is significantly higher than that of epistemic and ensemble 
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TABLE 5  Mean cold ion flux values and their specific uncertainties for 
training and test datasets for LR and ETR models.

Uncertainty Set LR model ETR model

True Mean
Training 5.49 5.49

Test 5.45 5.45

Predictive Mean (PM)
Training 5.50 5.49

Test 5.36 5.32

Bootstrapping Mean (BM)
Training 5.50 5.49

Test 5.36 5.32

Epistemic Uncertainty 
(relative to BM)

Training 0.18% 0.36%

Test 0.19% 0.75%

Ensemble Uncertainty 
(relative to PM)

Training — 1.82%

Test — 6.32%

Aleatoric Mean Uncertainty 
(relative)

Training 32% 32%

Test 33% 33%

TABLE 6  Parameters for low-, mid (median)- and high-activity levels 
used to calculate outward fluence with Formula 6, depicted in Figure 10.

Parameter Low activity Median High activity

x (RE) 0 0 0

y (RE) 0 0 0

|z| (RE) 4 4 4

BxIMF (nT) 0 0 0

By,IMF (nT) 0 0 0

BIMF (nT) 1.4 2 10

F10.7 (sfu) 70 137 280

Ey,SW (mV/m) 0.4 0.9 8

pSW (nPa) 0.2 2 10

vSW (km/s) 260 421 800

σ(BIMF) (nT) 0.1 0.3 3

σ(nSW  (cm−3) 0.1 0.5 6

σ(VSW  (km/s) 2 6 30

uncertainties (see Table 5), indicating that limited measurement 
precision is a major source of model uncertainty. Although ML 
models offer powerful tools for uncovering relationships in data, 
they have limitations. The significance and causality of identified 
features must be considered cautiously when interpreting the 

model’s results. ML results do not uncover causal chains in physical 
processes but suggest statistical relationships that must be validated 
through physical understanding and further empirical investigation. 

5.2 Effects of various parameters on the 
ion outflow flux

The ETR model identifies spatial variables x and z as the most 
important predictors of the cold ion flux in the magnetosphere. 
The flux of cold ions decreases with the radial distance due 
to the diffusion of particles to a larger volume. Higher flux is 
observed in the Northern Hemisphere, as seen from Figure 3. This 
can be explained by the higher ionospheric downward Poynting 
flux in the Northern Hemisphere according to Yu et al. (2024). 
Electromagnetic energy that creates a downward Poynting flux 
controls the ion outflow (Kronberg et al., 2014). The asymmetry 
may also be related to the weaker magnetic field in this Hemisphere 
and, consequently, higher electron precipitation. This results in 
stronger ion outflow; see (Li et al., 2020) for more details. Higher 
electron precipitation leads to stronger ionospheric conductance 
(Baumjohann and Treumann, 1996). Indeed, regions with a 
weaker magnetic field are associated with stronger ionospheric 
conductance, as shown in the study by Fang (2025). In contrast, 
a study by Liu et al. (2024) shows that auroral intensity, 
which is correlated with ion outflow (Kronberg et al., 2014), 
is weaker in regions with weaker magnetic field. Therefore, the 
effect of the Earth’s magnetic field on the cold ion outflow is 
not necessarily straightforward and needs to be addressed in 
future studies.

Solar EUV irradiance, indicated by the F10.7-index, is the most 
significant factor (after x and z) affecting ion outflows according to 
ETR model (see Figure 8). Solar irradiance changes the ionization 
rate in the ionosphere modifying the ionospheric density and 
temperature, and, therefore, the escape rate of the ions (André et al., 
2015). A significant correlation was also shown by (Cully et al., 2003; 
André et al., 2015; Li et al., 2017).

Geomagnetic activity indices such as AE and Dst and Kp have 
the highest linear correlations with the ion outflow, after x and z (see 
Figure 5). Geomagnetic activity associated with enhanced charged 
particle and Poynting flux precipitation leads to the increased ion 
outflow (Kronberg et al., 2014). Significant correlation of the cold 
ion outflow with geomagnetic activity is well aligned with the 
results for geomagnetic storms by (Cully et al., 2003; Li et al., 
2012; Li et al., 2013; Goldstein et al., 2018), and for geomagnetic 
substorms by (Øieroset et al., 1999).

Our goal is to model the outflow based on causal drivers 
of Sun–Earth interaction (e.g., solar wind parameters) rather 
than indices of geomagnetic activity, which represent coupled 
magnetosphere–ionosphere system responses and may both 
influence and be influenced by ion outflow. This approach also 
makes it easier or even possible to apply our results to other planets 
where magnetic activity cannot yet be measured at the surface. We 
tried LR and ETR models with geomagnetic parameters, but their 
performance on the training dataset was not significantly better than 
that of the model driven just by solar parameters.

For the solar wind drivers, we note that Ey,SW, By,IMF, BIMF
and pSW show the highest contribution to the ETR model 
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FIGURE 10
Total escape rate profiles of cold ions ( < 70 eV) from the dipole polar cap area for three activity levels, with a maximum outflow range of 1.1 ⋅ 1024 to 
2.7 ⋅ 1026 ions/s, shown as a function of solar EUV irradiance (left) and solar wind pressure (right).

(Figure 8). These parameters (excluding By,IMF) are also used in 
the LR model and exhibit the highest linear correlations (Figure 4). 
This demonstrates consistency between the models. Enhanced 
magnetospheric convection, indicated by Ey,SW, is a known driver 
for ion outflow (Yau and Andre, 1997). Bz,IMF was not included 
as a model input because it is strongly correlated with Ey,SW =
−Vx,SW ⋅Bz,IMF. In Figure 4 one can notice strong enhancement 
of the outflow for negative Bz,IMF and, respectively, positive Ey,SW. 
This magnetic field configuration is effective for the reconnection. 
In Figure 4 one can also see slight increase of the outflow with 
increase of positive Bz,IMF. This can be explained by reconnection at 
high latitudes. The reconnection rate also depends on the magnetic 
field magnitude (Liu et al., 2025). It leads to consequent effective 
magnetosphere-ionosphere coupling. By,IMF defines the location of 
magnetic reconnection at the magnetopause. The charged particle 
and Poynting flux generated in this region follow the magnetic field 
lines and affect the location of the ion outflow in the ionosphere 
(Liao et al., 2010; Luo et al., 2017). Stronger ion outflow is observed 
for positive values of By,IMF (Figure 4). The asymmetry agrees with 
the observations by (Howarth and Yau, 2008; Liao et al., 2010; 
Li et al., 2013) and may reflect larger convection electric field at the 
dusk side (Howarth and Yau, 2008).

SW dynamic pressure affects the dynamics of the magnetosphere 
by additional stress on the magnetic field lines at the day 
side. One of the possible effects is that pSW also facilitates 
magnetic reconnection (Kim et al., 2024). A positive correlation 
between ion outflow and SW dynamic pressure was also 
reported by Cully et al. (2003).

We examined whether the SW turbulence proxies, such as 
σ(BIMF), σ(nH+,SW), and σ(vSW), are correlated with the cold ion 
outflow. SW turbulence can be transported to the magnetosphere 
(Gilder et al., 2020) and can enhance energy transfer to the 
magnetosphere (Echim et al., 2021). Figure 4 indeed indicates 
an enhancement of the cold ion flux with increasing turbulence 
of σ(BIMF) and σ(nH+,SW), but not for σ(vSW). The positive 
relation with σ(BIMF) was also found by Cully et al. (2003). 
However, these parameters are of secondary importance in the 
ETR model, although the exclusion of these parameters led to a 
slight decrease in performance.

5.3 Estimation of the cold ion escape rate

The user-friendly linear empirical model in Formula 6 can help 
us evaluate the total escape rate from the polar cap depending on 
the variation of solar irradiance and SW dynamic pressure in order 
to compare their impact. In comparison, the ETR model, while 
more accurate overall, is less suited for isolating and interpreting the 
impact of individual parameters. We estimate the polar cap area at 
the geocentric distance of ∼4 RE, as the lowest observations were 
at this altitude. The edge of the polar cap at this distance can be 
determined from the first open field lines from the geomagnetic 
equator for all magnetic longitudes using the Tsyganenko T01 
model (Tsyganenko, 2002). The total polar cap area is integrated 
over all parts of the sphere at different magnetic longitudes. The 
area was calculated for three activity levels: low, median and high 
(see Table 6). To run the T01 model, we used pSW, By,IMF and 
Bz,IMF = −Ey,SW/vSW. Furthermore, the Dst index was taken as 
0, -22 and −170 nT for each activity, respectively. This resulted 
in polar cap areas of 0.61 ⋅ 1015, 0.84 ⋅ 1015 and 1.33 ⋅ 1015 m2, 
for low, median and high activity, respectively. Note that in case 
the Dst index is not available, a simple geometric formula of 
the polar cap area can be used for a rougher estimation. The 
values of the input parameters in Formula 6 are listed in Table 6. 
For each activity level, we vary either F10.7 or pSW. The results 
are shown in Figure 10. We can see that the solar irradiance 
and the SW pressure strongly modulate the outward fluence. 
This means that the contribution of stellar wind-magnetosphere 
coupling along with the stellar irradiance has to be considered in 
modeling the ion outflow at Earth and Earth-like exoplanets. The 
LR model can help estimate the influence of such an interaction 
on the ion outflow at exoplanets. The outward fluence varies over 
approximately three orders of magnitude, from ∼1.1× 1024 to ∼2.7×
1026 ions/s, with median value ∼7× 1024. The fluences estimated 
in previous studies, such as, ∼0.2-1× 1026 ions/s by André and 
Cully (2012) and an upper limit of ∼3× 1026 ions/s for 10–30 eV 
oxygen from Strangeway et al. (2005), are similar to the high activity 
values predicted by our model. The upper limit is comparable 
with the atmospheric neutral hydrogen escape related to Jeans
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process for the solar maximum, which is ∼6× 1026 ions/s and the 
charge-exchange escape of neutrals for the solar minimum ∼6× 1026

ions/s (Gronoff et al., 2020). However, the estimated escape rate is 
only a part of the total ion outflow from the polar cap. To evaluate 
the total outflow rate, particles with energies above 70 eV and ion 
species other than hydrogen must also be considered. This means 
that the contribution of the cold ion outflow in the total atmospheric 
escape, according to LR, is not negligible during active solar wind 
conditions. The fluence values for the ETR model are ∼4.9× 1024, 
∼6.1× 1024 and ∼2× 1025 for low, median, and high activity levels, 
respectively. The values are lower than those derived by the LR model 
and in previous studies. This may be due to the tendency of the ETR 
model to underpredict high flux values, as shown in Figure 7. 

6 Conclusions and outlook

In this work we used Cluster measurements to derive models 
for cold ion outflow. We developed a linear model with empirical 
formula and a more accurate nonlinear ensemble model to 
predict cold ion flux in the magnetospheric lobes for particles 
emanating from Earth’s ionosphere. The models use solar activity 
parameters as predictors. The spatial variables x and z are the 
most important predictors for the cold ion flux. The flux decreases 
with altitude, an expected effect due to ion diffusion into a larger 
volume, and a north-south asymmetry is observed. According 
to the ETR model, solar EUV irradiance, indicated by F10.7, is 
the most significant solar activity parameter. Among the solar 
wind drivers, Ey,SW, By,IMF, BIMF and pSW show mainly the 
highest linear correlations with the cold ion flux and highest 
contribution as predictors to the nonlinear model. The importance 
of these parameters indicates the effectiveness of the solar-
wind-magnetopshere-ionosphere coupling and of reconnection in 
triggering cold ion outflow. We estimate the total escape rate 
range of cold ions ( < 70 eV) from the polar cap to be between 
∼1.1× 1024 ions/s and ∼2.7× 1026 ions/s, which is comparable to 
the neutral escape for the high activity. To estimate the total ion 
outflow, contributions from higher energies must be included. The 
derived linear model can help to scale the influence of the stellar 
wind magnetospheric interaction on the ion outflow at Earth-like 
exoplanets.

In future studies, we plan to extend the database of cold ion 
fluxes, to include additional input parameters such as temporal 
history, solar wind energy, X-ray flux, magnetopause location, and 
terrestrial magnetic field. We will also consider more advanced 
feature engineering for the linear baseline model.
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