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In this study, we investigate the cold ions (<70 eV) originated in the high-
latitude ionosphere of the Earth entering the magnetosphere towards the
magnetotail. We analyze measurements from Cluster spacecraft along with
solar irradiance, solar wind (SW), and geomagnetic observations. Two machine
learning models driven by solar irradiance and solar wind measurements are
derived to predict the cold ion flux. With the linear baseline model, we
provide an empirical formula. The nonlinear model (Extra-Trees Regressor) yields
17% better performance. The total cold ion escape rate from the polar cap
ranges between ~1.1-10%* and ~2.7-10%° s7'. The upper limit is comparable
to the neutral escape rate. The results show that spatial location is the most
important predictor. Solar EUV irradiance is also among the top predictors,
followed by the solar wind electric field, the interplanetary magnetic field
(IMF), and solar wind dynamic pressure. These results can help to evaluate
the influence of the stellar wind-magnetospheric interaction on the ion
outflow at Earth-like exoplanets. They indicate the importance of such an
interaction for the atmospheric escape during active geomagnetic conditions.
Stronger outflow from the Northern Hemisphere than from the Southern
Hemisphere hints that the magnetic field strength can impact the amount of
ionospheric outflow.

KEYWORDS

cold ions, ion outflow, atmospheric escape, machine learning, extra trees regression
(ETR)

1 Introduction

Populations of ions characterized by total energies below 100 eV are termed ‘cold’
(Delzanno et al., 2021). Cold ions within the magnetosphere originate mainly from the
ionosphere. The polar cap and the auroral regions are major contributors to ionospheric
escape (Kronberg et al., 2014). The variability in the outflow fluxes and composition is
strongly influenced by solar and magnetospheric activities (Cully et al., 2003). Under certain
conditions, this ionospheric plasma source becomes the predominant plasma contributor
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within the magnetosphere (Chappell et al., 1987; Welling et al.,
2015; Toledo-Redondo et al, 2021). Therefore, ionospheric
the of the

important  component in

outflow impacts dynamics magnetosphere

and is an understanding
geospace dynamics (Kronberg et al., 2021).

Despite their importance, cold populations are amongst the
least explored, mainly due to the challenges of obtaining reliable
measurements (Delzanno et al., 2021). The challenge is caused by
the positive electric charge on the surface of a sunlit spacecraft. Cold
ions with kinetic energies lower than the electric potential energy of
the spacecraft are not reliably detected by the instruments onboard
the spacecraft. Advancements in scientific instrumentation from the
Cluster mission (Escoubet et al., 2001) and methodologies from
recent research have further expanded the possibilities to quantify
the cold plasma population. The Cluster spacecraft have enabled
measurements of the cold ion outflow parameters using in situ
electric field measurements via the “wake technique” (Pedersen etal.,
2008; Engwall et al., 2008; 2009; Lybekk et al., 2012; Li et al,,
2012; Li et al., 2013). New insights into this technique are given by
André et al. (2021). They also demonstrated observations of boom-
induced wake using the MMS mission. A simple linear model for
cold ions based on measurements of the Akebono suprathermal
mass spectrometer with respect to different solar and geomagnetic
parameters was derived by Cully et al. (2003).

In this study, we present linear and ensemble machine learning
(ML) models that predict the outflow of cold ions ( < 70 eV) from
the polar cap region as a function of solar activity and location
parameters. The models can determine important predictors for
the cold ion flux and can help to assess the total outflow rate
under various activity conditions. The Cluster observations and the
technique described in André et al. (2021) are used to obtain the
parameters of the cold ions. Quantification and modeling of cold
ion outflow help reconstruct total atmospheric escape rates. It puts
cold ion outflow in the relative context with neutral particle escape
and escape of ions at higher energies, as well as the escape from
low and middle latitudes on closed magnetic field lines. This could
inform exoplanetary atmospheric modeling studies in evaluating the
importance of ionospheric ion outflow.

2 Methods and observations

In the tenuous plasma environment over the polar cap region, a
spacecraft can be positively charged due to the photoelectric effect.
The spacecraft electric potential, V, is often a few tens of volts. Its
equivalent potential energy is larger than the kinetic energy of cold
ionospheric ions (mainly protons), E;. Since the ions are cold, their
thermal energy is smaller than their kinetic energy, such that:

kT; <E,<eV, (1)
where k is the Boltzmann constant, T; is the ion temperature and
e is the elementary charge, under the condition in Equation 1, an
enhanced plasma wake is formed downstream of the spacecraft. The
enhanced wake can be much larger than the size of the spacecraft
due to scattering of the cold ions by the positive spacecraft potential.
The wake contains almost no cold ions but is filled with cold
electrons. The electric field of the wake lies in the same direction
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as the cold ion flow (Engwall et al., 2006). The wake electric field
can be obtained by comparing the data from the Electric Field
and Wave (EFW) instrument (Gustafsson et al., 2001) with the
data from the Electron Drift Instrument (EDI) (Paschmann et al,,
1997). The EFW instrument obtains the electric field between four
orthogonally mounted probes on 88-m long wire booms. The EDI
infers the electric field by measuring the drift of artificially emitted
electrons as they gyrate back to the spacecraft in the geomagnetic
field. Considering the geometry relation between the bulk velocity of
the cold ion flow and the background magnetic field measured by the
fluxgate magnetometer (FGM) (Balogh et al., 2001), the velocities
parallel- and perpendicular to the magnetic field components, vj and
v, can be derived. For more details on this method, we refer to the
description in Engwall et al. (2009).

Since V, is formed due to the balance between the currents
of photoelectrons emitting from the spacecraft and the electrons
bombarding the spacecraft from background plasma, the density of
cold plasma 7, can be derived from V. as follows:

n,=Ae s 2)
where A and B are depended on spacecraft surface geometry and
solar EUV irradiance. They are determined for different years during
the solar cycle (Lybekk et al., 2012; Pedersen et al., 2008) and may
also be refined for daily solar EUV variations (André et al,, 2015).
Considering the charge neutrality, the ion density, n;, is identical to
the electron density, identified in Equation 2.

Finally, the flux of cold ions along magnetic field lines, j, is
calculated as:

Ji=nvy (3)

Using the method described above and measurements by Cluster
1 and Cluster 3, André et al. (2015) obtained parameters of the cold
ion outflow during the periods between July to November, from
2001-2010, when the satellites remained within the magnetosphere.
The measurements by Cluster 2 and Cluster 4 were not used because
EDI on those spacecraft were not operated. The measurements
during solar minimum of solar cycle 23 (especially in 2008) are
not included in the dataset, because solar EUV irradiance was too
low, causing the EFW probes operating with a fixed bias current
to function improperly. Also measurements of Cluster 3 in 2006
are excluded due to the same reason. Other criteria for the data
selection include: 1) reliable EDI measurements, namely, data with
missing returning-electron-beam signals and other technical issues
were excluded. This led to exclusion of the day side observations as
large gradients in the magnetic field prevent the artificially emitted
electrons to gyrate back properly to the receiver; the EDI error
was incorporated into the total error estimate for cold ion parallel
bulk velocity; 2) spacecraft potential within the range from +8 to
+50V, so that the relation in Lybekk et al. (2012) can be used;
3) wake electric field in the range 2-100 mV/m; 4) magnetic field
not too perpendicular with respect to the spin plane to ensure
reliable calculation of the parallel velocity (Engwall et al., 2009).
Uncertainties of the magnetic field measurements are used for the
total cold ion bulk velocity error estimation, too; 5) reasonable values
of the velocity in the satellite spin plane with small enough relative
errors to ensure the detection in the cold ion energy range.
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FIGURE 1

Number of cold ion flux observations versus flux and time for the period from 2001 to 2011 (top). Zoom-ins for 2001 and 2003 show periods selected
as best candidates for test data (bottom). The orange rectangle indicates the selected test dataset. See more details about the selection in Section 3.

The relative error for ion density A(#;) is generally 20%, as given
in Lybekk et al. (2012). The relative error for the parallel velocity
A(v)) is provided in the dataset from André and Cully (2012). We
combine these errors to obtain the total relative error of the flux,
, as follows:

AG) = \jA<ni>2 +A(y)”

We include the total relative errors as input weights in our

defined in Equation 3

(4)

models, see more details in Section 3.

For more details on this dataset, we refer to the study by
André et al. (2015). Values for the aleatoric uncertainty (mean
relative error) for the training and test dataset are provided
in Table 5. The current dataset contains 320,503 data points
with a 4s spacecraft spin resolution. The distribution of the
number of flux observations versus flux value and time is shown

in Figure 1.

2.1 Predictors of cold ion flux

Table 1 lists the predictors evaluated for their relevance to model
performance. Histograms for the predictors are shown in Figure 2.
The numbers of events in the histograms generally represent the full
range of parameter values in the dataset, with only a few outliers
towards high solar wind and geomagnetic activity.

2.1.1 Predictors related to location in space

In the presented analysis the flux is systematically correlated
with solar
magnetospheric (GSM) coordinate system. The positioning is

its respective position within the geocentric

determined by the spatial parameters x, y, z and the radial distance

from Earth’s center, r, expressed in terms of Earth radii, Rg. Figure 3
illustrates the spatial distribution of the flux within the GSM
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coordinates and corresponding spatial data coverage. In Figure 4
logarithmic mean values of the cold ion flux are plotted against
the different value ranges of the features. From these plots, we can
observe a linear decline of logarithmic cold ion flux with increasing
distance for r and |x|. This is expected to be due to the diffusion of
the ions to a large volume. Higher cold ion flux can be identified
in the Northern Hemisphere from Figures 3, 4. Here, we compare
regions at x < ~-5 Ry, |y| < ~5 R, and |z| > ~5 Ry where we have
a significant amount of observations according to bottom panels of
Figure 3. Discussion of the asymmetry can be found in Section 5.

2.1.2 Predictors related to the solar- and
geomagnetic activity

The indices related to geomagnetic activity include the Auroral
Electrojet Index (AE), which measures geomagnetic activity in
2015);
the Disturbance Storm Time Index (Dst), which quantifies

the auroral zone (Davis and Sugiura, 1966; Nose et al,

geomagnetic storm strength (Sugiura, 1964); and the planetary
Kp-index (Matzka et al., 2021), which evaluates disturbances of the
geomagnetic field at mid-latitudes. Solar activity is indicated by the
Solar Radio Flux (F,,), which represents the total emission of the
sun at a wavelength of 10.7 cm from all sources of the solar disc
(Tapping, 2013). Physical properties of the solar wind are described
by ion density n H*SW> speed vgyy, temperature Tgy, pressure pgy > as
well as by the Interplanetary Magnetic Field (IMF) magnitude By
with its components By 1y, By, v and B, g The solar wind electric
field y-component is characterized by E, g. We also investigated
the relationship between the cold ion outflow and the dispersion
of the SW parameters, namely, their standard deviation, such as

0(Bpyp)» 0(ny+ sy) and o(vgy). Details on their calculation can be
found in King and Papitashvili (2005). The corresponding solar
and geomagnetic parameters are taken from the OMNI-2 dataset
which combines measurements from different sources, resulting

in varying temporal resolutions: solar wind (SW) parameters at
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TABLE 1 Overview of relevant parameters.

10.3389/fspas.2025.1646575

Parameter Unit ‘ Description

%y z 0" Ry GSM coordinates and radial distance

Bl e Bynaes Bl nT IMF components

Biyigs 0(Biye)” nT IMF magnitude and its standard deviation
T;W K Solar wind temperature

n;l*,SW’ (M sw)” cm™ Solar wind hydrogen ion density and its standard deviation
Psw nPa Solar wind dynamic pressure

Ve 0(Vsw)” km/s Solar wind speed and its standard deviation
E, sw mV/m Solar wind electric field (y component)
Fyy; sfu Solar radio flux at 10.7 cm

AE" nT Auroral Electrojet index

Dst' nT Disturbance Storm Time index

Kp' — Planetary K-index

= log(j) slem™ = Target-variable: Log. cold ion flux

Parameters marked with twere excluded from both models based on multicollinearity analysis and decision to use only parameters related to solar activity. Parameters marked withxwere

excluded only from the linear baseline model (see Section 3).

1-min resolution, F),, index at daily resolution, the Dst and AE
indices at hourly resolution, and Kp index at 3-h resolution. The
histograms in Figure 2 exhibit that most of the data were collected
during solar/geomagnetic quiet times.

Figure 5 shows the Pearson correlation coefficients between
the relevant features and the cold ion flux. These coefficients can
range from -1 to 1, where values closer to —1 indicate a strong
negative linear correlation, values closer to 1 represent a strong
positive linear correlation, and values near 0 signify little to no
linear correlation. Positional features x, z, and radial distance r
exhibit the highest Pearson correlations with the flux, with values
reaching up to 0.44. Among the features of solar and geomagnetic
activity, AE, Kp, and Dst exhibit the highest correlation with
the cold ion flux. These are followed by positive correlations
with By, E,sw and pg,. However, many relationships between
cold ion flux and its predictors are nonlinear, as indicated by
the relatively low values for the Pearson correlation coefficient
(see Figure 5).

The cold ion flux does not show clear relations with the
SW velocity, in contrast to, for example, for ~100keV proton
flux observed by Kronberg et al. (2020). However, it shows
strong increase with the electric field in duskward direction,
E, sw» see Figure 4. The increase in flux is also seen to be correlated
with negative B, \p, indicating that the IMF topology is a more
important factor in triggering the outflow than vg,. A dramatic
growth of the flux is observed with the negative B, 1,z and duskward
B, iy components. These imply that the orientation and magnitude
of the IMF play a significant role in generation of ion outflow. An
enhancement in the cold-ion flux is observed on average with an

Frontiers in Astronomy and Space Sciences

increase in the variance of SW parameters such as o(Bpyp) and
o(ny sy) but not for o(vgy).

3 Model derivation

Here we derive two distinct ML models. For the first approach
we use a linear regression (LR) model in order to provide a user-
friendly empirical formula to predict the flux of cold ions below
70 eV. For the second approach, we select a nonlinear ML algorithm,
which captures nonlinear patterns in the data while improving
predictive accuracy.

3.1 Data separation into test and training
sets

The dataset is divided using a ”leave-one-year-out” test
separation strategy based on an analysis of yearly data distribution
and coverage consistency shown in Figure 1. Specifically, data from
year 2003 constituted about 19% of the total dataset, aligning well
with conventional test set sizes of 20% of total data. The proportion
of data points within other years corresponds to either far more
or far less than conventional 20% of total data. Another sizing-
based candidate is the 2001 data: it accounts for roughly 18%
of the data but its temporal coverage is less uniform than that
of 2003 (see Figure 1). Therefore, we choose 2003 as our test set
to minimize biases stemming from the temporal data coverage. All
remaining data is used for the training. Since time is not explicitly

frontiersin.org
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Histograms of observed events for different predictor parameters provided in Table 1. Orange vertical lines mark zero values along the x-axis

included as a predictor in the model we are not using the last 20% of
data as the test set to ensure that the training data span both solar-
minimum and solar-maximum phases. Although this simple split
may yield lower performance compared to other splitting strategies,
it creates "unseen” test dataset conditions.

3.2 Uncertainty quantification and
implementation

We evaluate different uncertainties associated with the

uncertainty due to model construction, and ensemble uncertainty
specific to ensemble-based methods.

3.2.1 Point estimates of model predictions

To assess the performance during training, validation and
evaluation processes, we use classical metrics to provide aggregated
point estimates of prediction accuracy: the mean squared error
(MSE), the root mean squared error (RMSE), the R2-score, the
Pearson correlation, the Symmetric Mean Absolute Percentage Error
(SMAPE), and the Symmetric Signed Percentage Bias (SSPB). To
assess the model improvement of the nonlinear ML model over

predictive models. These include point estimates of prediction  the linear model, we use the MSE based Skill-score (MSESS).

errors, aleatoric uncertainty arising from data variability, epistemic
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The heatmaps illustrate the spatial distribution of the average logarithmic cold ion flux- (left column) and the counts of data points per bin (right
column) in the xz (top) and yz (bottom) GSM planes. The Earth is shown as a circle, where the white half corresponds to the day side and the black half
to the night side. Only bins with minimum 20 data points are shown. The bin size is 1R x 1R;.

(Morleyetal.,, 2018; Swiger et al., 2022). While these metrics quantify
prediction errors, they do not reflect variability or uncertainty
inherent of predictions.

3.2.2 Aleatoric (data) uncertainty

In Equation 4, we derived combined relative errors 4(j;) for
each data point. We implement these relative errors directly into the
modeling framework as normalized sample weights w;:

AG) !

w; = nL,l ®)
218G

The weights are applied into the fitting function of the

models during the training process, helping to prioritize data

points with lower relative errors. Additionally, we incorporate the
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weights from Equation 5 into evaluation metrics (MSE and R2-
score), implementing observational uncertainties within the model’s
performance assessment.

3.2.3 Epistemic (model construction) uncertainty

The epistemic uncertainty captures variability in model
prediction due to limited training data. To estimate this type of
uncertainty, we implement bootstrapping, a method involving
1,000 providing sufficient number of variations) training subsets
generated from the original dataset by sampling with replacement.
Models are repeatedly trained on these subsets, and their predictions
yield distributions from which mean predictions and standard
deviations are derived. The bootstrapping mean prediction
represents the overall model estimate, while the corresponding
standard deviation reflects epistemic uncertainty. This provides us a
measure of model sensitivity to changes in training data, quantifying
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Relationships between the mean cold ion flux and the predictors listed in Table 1. The original range of values for each parameter is divided into 10
bins. The mean flux is computed within each bin, provided that the number of data points in the bin exceeds a minimum threshold of 20. The
transparent blue regions represent the interquartile range (IQR), defined as the range between the 25th and 75th percentiles of the flux values within

each bin. Orange vertical lines indicate the zero crossing on the x-axis.

an uncertainty estimation associated with the model building
process itself, dependent on the number of bootstrap samples
(Weinberger and Sridharan, 2018).

3.2.4 Ensemble and predictor uncertainty
(Extra-Trees Regressor model)

For the final model, which is later selected to be Extra-
Trees Regressor, the ensemble uncertainty is evaluated by
examining prediction variability across the ensemble’s individual
decision trees. For each observed data point, we calculate the
mean and the standard deviation of predictions generated by
all trees in the ensemble. Ensemble variability serves as a
measure of the internal consistency and robustness of the model
predictions.

The uncertainty contribution of the predictors are assessed using
the bootstrapping approach. For each resampled dataset, the ETR
model is trained and the resulting feature importances are extracted.
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From the distributions, we compute the empirical 95% confidence
intervals to quantify the variability and robustness of the estimated
feature contributions.

3.3 Multicollinearity Analysis and initial
feature selection

Multicollinearity among the features can distort coefficient
estimates, reduce interpretability, and degrade model performance
by inflating parameter variance. Linear models are sensitive to highly
correlated predictors. As a measure of linear association, the Pearson
correlation coefficient and the Variance Inflation Factor (VIF) help
to address this problem. VIF quantifies how much the variance of a
coeflicient is inflated due to multicollinearity with other predictors,
with values above 5 indicating critical multicollinearity (Shrestha,
2020). Strong pairwise Pearson correlations, defined as those
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exceeding 0.7, can be identified between x and , 11+ gy and payy> Vsw
and Ty, AEand Kp,and B, ;i and E, sy, see Figure 5. Additionally,
several features exhibited VIF values exceeding the threshold of 5:
E, sw> Boive Pswo M+ swo  and Kp. Based on these results, r was
excluded from the model due to its redundancy with x, as it has
lower correlation with cold ion flux and a higher VIE. ny, g was
excluded in favor of pg;,, because of its lower correlation with the ion
flux and redundancy as pg,;, o 1. sw. Tsw was excluded in favor
of vy, as SW velocity is more often used in description of the solar
wind energy input. B, 1z was excluded because of lower correlation
with the flux than E g, While the parameters are connected via
Ex B, we also reduce redundancy for the model. Geomagnetic
activity index Kp was removed due to its lower resolution compared
to AE.

For the remaining parameters, the highest Pearson coefficients
are below 0.7 and no VTF values exceeded 5. With this, we resolved
multicollinearity while preserving the most relevant relationships.
Most excluded features are indirectly captured by retained ones.
Following this process, we excluded the five parameters, marked
by t in Table 1. For both models, we take this remaining feature
selection as the basis and individually refine it in both cases, see
Section 3.5 and 4.
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3.4 Linear regression baseline model

For the first approach, we use multivariate Linear Regression
(Neter et al., 1996) by fitting a linear equation to the data that
estimates the relationship between a dependent variable, the cold ion
flux, and multiple independent variables. The model is fitted using
the ordinary least squares (OLS) method, which minimizes the sum
of squared residuals to achieve the best linear fit through the data.
To derive comparable feature importances for the feature selection
process, the model is first trained with predictors, normalized using
standard scaler (Pedregosa et al., 2011). Model coefficients derived
from normalized input features indicate the relative significance and
contributions of individual input features for the models output.

We further refine the selection of the predictors done in
Section 3.3 by assessing the performance of the model before and
after an exclusion. We use KFold cross-validation (CV), where the
training data is split into 5 different subsets. In each step, the model
is trained on four subsets and validated on the remaining one. This
process provides a fair comparison of a model’s performance across
varying data subsets of the original training data. For the linear
model we use absolute values for z because of the nonlinear relation
with the ion flux, seen in Figure 4.
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TABLE 2 Cross-validation performance metrics (mean + standard
deviation) for nonlinear regression models with default settings.

Model MSE R2-score  Pearson
ExtraTreesRegressor (ETR) 0.17 £0.05 0.37+0.11 0.66 +0.03
RandomForestRegressor (RF) 0.23+0.07 0.15+0.14 0.51+0.05
LightGBM (LGBM) 0.19+0.04 0.31+0.08 0.59£0.05
Gradient Boosting (GB) 0.17+0.02 0.35+0.04 0.62+0.04
Multi Layer Perceptron (MLP) 0.29+0.08 -0.04+0.16 0.51+0.06

First, we exclude the remaining geomagnetic indices Dst and
AE from the feature set. Across the different folds, MSE has shown
only a slight increase. In this way, we derive a model that evaluates
the flux based on solar input, avoiding the consequences of solar
wind-magnetosphere interactions, such as geomagnetic activity.
This allows application of the model to exoplanets where we do
not measure the magnetic disturbance at the surface. After, we
iteratively remove y, vgy, 0(Vsw), o(fgssw)s Bypvpr Bywe and
0(Byyr)> which exhibited the lowest scaled coeflicients. This leads to
slight improvement of the cross-validation performance. The final
set of predictors for the linear model is listed as parameters without
any symbols such as * or f in Table 1.

To derive a predictive formula which can be used with unscaled
input data, the model is retrained using the final set of unscaled
features. The performance is evaluated on the test dataset from
2003. The corresponding metrics are provided in Table 3 and
discussed in Section 4.1.

3.5 Nonlinear model selection

To determine the best performing model for cold ion flux, we
evaluate five different ML methods other than linear regression:
Extra-Trees Regressor (ETR) (Geurts et al, 2006), Random
Forest (Breiman, 2001), Gradient Boosting (Friedman, 2001),
Light Gradient Boosting (Ke et al, 2017) (all four ensemble
models), and Multi Layer Perceptron (Rumelhart et al., 1986)
(neural network). Here we use the models by default settings in
combination with the KFold CV. Table 2 presents the CV results
obtained for each evaluated model. Among the models, ETR
consistently demonstrates the lowest mean CV-MSE (0.17) and
the highest Pearson correlation coefficient (66%). Other models
exhibit higher mean CV-MSE and lower correlation. Given these
results, we select the ETR method to derive a non-linear model
for the cold ion flux.

3.6 Extra-trees regressor ensemble model

ETR is a tree based ensemble algorithm. Using bagging, it
averages the output of all decision trees (estimators) in the ensemble.
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Compared to the Random-Forest-Regressor, this method introduces
additional randomness by selecting the split thresholds within the
decision trees randomly rather than calculating the best feature value
threshold. This makes ETR less computationally expensive and also
less prone to overfitting. The algorithm selects a random subset
of features for each split and trains each tree on the full dataset
without bootstrapping. This method is also useful for interpreting
the contribution of each individual feature for the predictions
such as evaluation of feature importance based on reduction in
impurities (Breiman, 2001).

Although the ETR model is not sensitive to multicollinearity,
the same feature set as in Section 3.3 is used for consistency across
both models. This set is further refined by assessing changes in
predictive performance via CV before and after each removal.
We first exclude the remaining geomagnetic indices Dst and AE
from the feature set, as for the linear model (Section 3.4). This
resulted in CV performance improvement: both, mean Pearson
correlation and mean R2-score increased by 1% while mean MSE
remained the same. Subsequently, we attempt further exclusion
by removing the least important features from the model. This
exclusion resulted in a performance decline, reflected by an increase
in the mean CV MSE and decrease in both mean R2-and the
Pearson correlation coefficients. Consequently, we decided against
further feature reduction. The final set of features comprises of
13 predictors, as those with # or without any symbol, listed
in Table 1.

We the of the
using Optuna (Akiba et al., 2019), employing a Tree-structured

optimize hyperparameters model
Parzen Estimator (TPE) sampler to efficiently explore a parameter
space. The optimization process runs for 500 trials, where each
trial evaluates a certain hyperparameter configuration. To assess
model performance and generalization, we apply 5-fold CV
without shuffle, preserving temporal structure by splitting the
training data into five sequential subsets. We optimize four
key hyperparameters. The number of estimators controls the
number of decision trees in the ensemble, where a higher count
generally improves and stabilize the performance but increases
computational cost. Here we define a range from 20 to 100. The
tree depth is constrained between 5 and 25 to prevent excessive
growth of the trees. The minimum number of samples required
for a leaf node (between 12 and 40) and the minimum number
of samples required for an internal node (between 13 and 40)
ensure that splits only occur when there is a sufficient number
of samples available. By constraining the model from growing
pure leaves, we prevent it from overfitting the training data.
After the hyperparameter optimization process, we get a final
configuration with 77 estimators, a maximum tree depth of 13, a
minimum of 37 samples per leaf, and a minimum of 40 samples
per split.

features selected and

Once the the optimal

hyperparameters are identified, the final model is trained

are
on the complete training dataset and applied to the test set

from 2003 to assess its generalization performance. The metrics
are listed in Table 4 and discussed in Section 4.2.
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TABLE 3 Training and test performance-metrics for the linear model.

10.3389/fspas.2025.1646575

Set Mean MAE MSE RMSE R? Pearson SMAPE (%) SSPB (%)
Training 5.5 0.32 0.16 0.40 0.42 0.64 6.02 -0.35
Test 5.36 0.37 0.19 0.44 0.40 0.65 6.74 -2.34

TABLE 4 Training and test performance metrics for the Extra-Trees Regressor (ETR) model.
Set Mean MAE MSE RMSE R? Pearson SMAPE (%) ’ SSPB (%)
Training 5.49 0.16 0.05 0.21 0.84 0.91 3.04 -0.25
Test 5.32 0.32 0.16 0.40 0.50 0.75 6.10 -2.93

4 Results For the test set, the model captures the overall trend in the

4.1 Linear regression results

We derive a predictive formula for the cold ion flux using
unscaled features in units provided in Table I:

log,, (j) =6.16-107%-x—2.90- 1072+ |2| +3.18 107> - F10.7
+7.14-1072 poy + 4411072 E gy +1.19- 1072 By
+5.35 (6)

The comparison of training and test performance (see Table 3)
shows only slight differences, meaning that the model does not
have an overfitting problem. On the test set we obtain a predicted
mean logarithmic flux value of 5.36 cm™s™ with RMSE/MAE
of 0.44/0.37 cm™2s™'. This indicates, that the RMSE difference
between the predicted and the measured values is reasonable.
The R2-scores of ~40% suggests that a significant portion of the
variance remains unexplained by the model. The Pearson correlation
coefficients of ~65% shows a significant positive correlation between
predicted and observed values of cold ion flux. We observe an
increase of the Pearson correlation coefficient and a decrease of
the R2-score for the test dataset compared to training dataset.
The differences are within expected statistical fluctuations. Such
behavior can be related to the simplicity of the approach and the
random variability in the data. This aligns with the bias-variance
tradeoff, where simpler models tend to have higher bias but lower
variance, which leads to comparable performance on both training
and test datasets (Hastie et al., 2001). The SMAPE value indicates
that, on average, the predictions deviate from the true value by ~6%
and ~7%. Low values of the SSPB for both training and test sets
suggest that the model generalizes.

Figure 6 visualizes the discrepancies between the measured
and the predicted cold ion flux values. The predictions are
somewhat dispersed, suggesting a model fit that is moderately
accurate. The distribution of predicted values indicates a systematic
underprediction of high flux values and overprediction of low flux
values, particularly towards the extremes. This effect suggests a
“regression-to-the-mean” behavior, where the model struggles to
capture the full range of variability in the data.
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data. However, it fails to reproduce the bimodal nature of the test
data distribution, as shown in the gray histograms in Figure 6. The
discrepancy between the measured and predicted values hints to
the model’s difficulties in learning and generalizing more intricate
nonlinear relationships present in the data.

4.2 Extra-trees-regression results

The ETR model shows a notable improvement in performance
compared to the LR model (see Table 4). The RMSE/MAE value
of 0.40/0.32 cm™s™" is lower than that of the LR model and is
relatively low compared to the mean logarithmic ion flux value of
5.45 cm™%s7!. The R2-score of 50% suggests that the ETR model
explains the half of the variance in the data. The Pearson correlation
coefficient of 75% indicates a reasonably strong linear relationship
between predictions and observations. The SMAPE of the test
predictions (6%) indicates high accuracy of prediction. The ability
of the ETR model to generalize to unknown data is demonstrated by
comparing the values in the training and test metrics, which are not
too far apart.

Unlike the linear model, which tends to underpredict high
flux values and overpredict low flux values, the ETR model better
predicts variability in the data. This is reflected by a reduced
“regression-to-the-mean-effect”, although it tends to underpredict
on the test set (well seen in Figure 7) and indicated by the SSPB
of —2.9%. Additionally, the model reproduces the bimodal shape
of the test data distribution (see gray histogram), which was not
well predicted by the LR model. Overall, the improved metrics
indicate that the ETR model is more effective in learning nonlinear
relationships in the data.

The feature importance ranking of the ETR model is illustrated
in Figure 8. With significant offset the importance ranking in
predicting the cold ion flux is led by location parameters x and
z followed by F,,,. After comes y. The next in ranking are
features characterising the solar wind: E, gy, B,sw> Bives Psw»
Vsw> and B, q. Variance-related parameters provide the least
contribution to the model’s predictions but still help to improve
the performance. More details on physical mechanisms behind the
selected parameters is in Section 5.

frontiersin.org


https://doi.org/10.3389/fspas.2025.1646575
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Doepke et al. 10.3389/fspas.2025.1646575

25000 -
— 4068 1187
T
o 3051 890
' 6
g
2 "
3 2034 593 S
L 3
25
|
& 1017 296
|
4 B
5 6 0 4 5 6 0 10000 0
Training: log. Flux [cm—25~1] Test: log. Flux [cm—2571]

FIGURE 6
Comparison of measured and LR model predicted cold ion flux, for both training and test datasets. The color bars represent the number of flux values

within each bin shown in the plots. The marginal histograms show the distribution of the flux values for both the predicted (vertical) and observed
(horizontal) data. A good model predicts most of the fluxes along the white dashed diagonal, namely, closely matching the measurements

25000- 5000

—| | | 1231
q 5919 923
£6
Q
= ")
5 €
= 3946 615 S
L 0o
o @]
o5 5
|
& 1973 307
|_
[AN]

v."/' , 4 ," , 0
44 5 6 025000 0 5 6 0 10000
Training: log. Flux [cm~2s571] Test: Log. Flux [cm~2571]

FIGURE 7
The two plots compare the measured and ETR model predicted cold ion flux values for both the training and test datasets. The format is the

same as in Figure 6

Figure 9 demonstrates the predictions of the ETR model  correlation may arise from the different data distributions and
during quiet (Dst > —30 nT) and disturbed geomagnetic activity ~ from the fact, that disturbed cases correspond to only 20% of total
(Dst>-30 nT) on the 2003 test dataset. The model tends to  test data.
underpredict flux values during disturbed geomagnetic activity, with Overall, the Pearson correlation coefficient on the whole 2003
test dataset, seen in Table 4, lies between the results for quiet and
disturbed cases. This reflects, that the ETR model provides reliable

results under varying geomagnetic conditions.

most flux values falling below the white dashed line in Figure 9.
For quiet geomagnetic times, overprediction of low flux values
and underprediction of mid and high flux values is seen.
Performance of the model for quiet conditions exhibits Pearson
coefficient of 71%, an R2-Score of 47% and a MSE of 0.16. 4.3 Model Comparison and uncertainties
Under disturbed conditions, the prediction performance improves

according to the Pearson correlation of 79%, while MSE and As shown in Table 5, the ETR model exhibits slightly higher
R2-Score values remain the same. The difference in the Pearson  epistemic uncertainty estimates than the LR model. This is expected
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same as in Figure 6

because fully deterministic models, such as LR, account less for
the variability inherent in the data. Ensemble models such as ETR
aggregate multiple estimators and, therefore, capture a wider range
of possible values. Additionally, the ensemble uncertainties in the
ETR model are higher than the epistemic uncertainties estimated
through bootstrapping. This indicates that the variability introduced
by combining diverse predictors in the ensemble contributes to the
overall uncertainty. However, the aleatoric uncertainty is the highest,
if comparing it with epistemic and ensemble uncertainties.

We assess the performance improvement of the ETR model
compared to the linear baseline model on the unused 2003 test
dataset. We use the MSE skill-score (MSESS). This metric provides
a quantification of improvement in terms of prediction errors over
the linear baseline model (Wheatcroft, 2019). The results show that
the ETR model outperforms the linear baseline model in predicting

cold ion flux by reducing the prediction error for unseen data by
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17%. For both, Pearson correlation and R2-score we observe an
improvement of 10%.

5 Discussion
5.1 Model performance

Our models show relatively good performance (Pearson scores
of 0.65 and 0.75 for the LR and ETR models). Limitations in
performance may be due to limited data or the rough data
splitting method. However, this splitting strategy may better reflect
model generalization across distinct conditions. Both LR and
ETR models suffer from “regression-to-the-mean effect”, which
results in underprediction of high values and overprediction of the
low values. Still, the relative contribution of aleatoric uncertainty
is significantly higher than that of epistemic and ensemble
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TABLE 5 Mean cold ion flux values and their specific uncertainties for
training and test datasets for LR and ETR models.

Uncertainty Set LR model ‘ ETR model

Training 5.49 5.49
True Mean
Test 5.45 5.45
Training 5.50 5.49
Predictive Mean (PM)
Test 5.36 5.32
Training 5.50 5.49
Bootstrapping Mean (BM)
Test 5.36 5.32
. . . Training 0.18% 0.36%
Epistemic Uncertainty
(relative to BM)
Test 0.19% 0.75%
. Training — 1.82%
Ensemble Uncertainty
(relative to PM)
Test — 6.32%
. . Training 32% 32%
Aleatoric Mean Uncertainty
(relative)
Test 33% 33%

TABLE 6 Parameters for low-, mid (median)- and high-activity levels
used to calculate outward fluence with Formula 6, depicted in Figure 10.

Parameter Low activity Median High activity
x (Rp) 0 0 0
¥ (Rg) 0 0 0
Izl (Rg) 4 4 4
Bxpyp (nT) 0 0 0
By, jip () 0 0 0
By (nT) 14 2 10
Fyy (sfu) 70 137 280
E, gy (mV/m) 0.4 0.9 8
Psw (nPa) 0.2 2 10
Ve (km/s) 260 421 800
(Byp) (0T) 0.1 0.3 3
o(ngy (cm™) 0.1 0.5 6
0(Vgyy (km/s) 2 6 30

uncertainties (see Table 5), indicating that limited measurement
precision is a major source of model uncertainty. Although ML
models offer powerful tools for uncovering relationships in data,
they have limitations. The significance and causality of identified
features must be considered cautiously when interpreting the
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model’s results. ML results do not uncover causal chains in physical
processes but suggest statistical relationships that must be validated
through physical understanding and further empirical investigation.

5.2 Effects of various parameters on the
ion outflow flux

The ETR model identifies spatial variables x and z as the most
important predictors of the cold ion flux in the magnetosphere.
The flux of cold ions decreases with the radial distance due
to the diffusion of particles to a larger volume. Higher flux is
observed in the Northern Hemisphere, as seen from Figure 3. This
can be explained by the higher ionospheric downward Poynting
flux in the Northern Hemisphere according to Yu et al. (2024).
Electromagnetic energy that creates a downward Poynting flux
controls the ion outflow (Kronberg et al., 2014). The asymmetry
may also be related to the weaker magnetic field in this Hemisphere
and, consequently, higher electron precipitation. This results in
stronger ion outflow; see (Li et al., 2020) for more details. Higher
electron precipitation leads to stronger ionospheric conductance
(Baumjohann and Treumann, 1996). Indeed, regions with a
weaker magnetic field are associated with stronger ionospheric
conductance, as shown in the study by Fang (2025). In contrast,
a study by Liu et al. (2024) shows that auroral intensity,
which is correlated with ion outflow (Kronberg et al, 2014),
is weaker in regions with weaker magnetic field. Therefore, the
effect of the Earth’s magnetic field on the cold ion outflow is
not necessarily straightforward and needs to be addressed in
future studies.

Solar EUV irradiance, indicated by the F,,,-index, is the most
significant factor (after x and z) affecting ion outflows according to
ETR model (see Figure 8). Solar irradiance changes the ionization
rate in the ionosphere modifying the ionospheric density and
temperature, and, therefore, the escape rate of the ions (André et al.,
2015). A significant correlation was also shown by (Cully et al., 2003;
André et al., 2015; Li et al., 2017).

Geomagnetic activity indices such as AE and Dst and Kp have
the highest linear correlations with the ion outflow, after x and z (see
Figure 5). Geomagnetic activity associated with enhanced charged
particle and Poynting flux precipitation leads to the increased ion
outflow (Kronberg et al., 2014). Significant correlation of the cold
ion outflow with geomagnetic activity is well aligned with the
results for geomagnetic storms by (Cully et al., 2003; Li et al,
20125 Li et al,, 2013; Goldstein et al., 2018), and for geomagnetic
substorms by (Qieroset et al., 1999).

Our goal is to model the outflow based on causal drivers
of Sun-Earth interaction (e.g., solar wind parameters) rather
than indices of geomagnetic activity, which represent coupled
magnetosphere—ionosphere system responses and may both
influence and be influenced by ion outflow. This approach also
makes it easier or even possible to apply our results to other planets
where magnetic activity cannot yet be measured at the surface. We
tried LR and ETR models with geomagnetic parameters, but their
performance on the training dataset was not significantly better than
that of the model driven just by solar parameters.

For the solar wind drivers, we note that E, gy, By e Bive
and pg, show the highest contribution to the ETR model
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(Figure 8). These parameters (excluding B,;yp) are also used in
the LR model and exhibit the highest linear correlations (Figure 4).
This demonstrates consistency between the models. Enhanced
magnetospheric convection, indicated by E, gy, is a known driver
for ion outflow (Yau and Andre, 1997). B, jr was not included
as a model input because it is strongly correlated with E, gy =
~V, sw B, vp- In Figure 4 one can notice strong enhancement
of the outflow for negative B,z and, respectively, positive E, q.
This magnetic field configuration is effective for the reconnection.
In Figure 4 one can also see slight increase of the outflow with
increase of positive B, ;. This can be explained by reconnection at
high latitudes. The reconnection rate also depends on the magnetic
field magnitude (Liu et al., 2025). It leads to consequent effective
magnetosphere-ionosphere coupling. B,y defines the location of
magnetic reconnection at the magnetopause. The charged particle
and Poynting flux generated in this region follow the magnetic field
lines and affect the location of the ion outflow in the ionosphere
(Liao etal., 2010; Luo et al., 2017). Stronger ion outflow is observed
for positive values of By, (Figure 4). The asymmetry agrees with
the observations by (Howarth and Yau, 2008; Liao et al., 2010;
Lietal, 2013) and may reflect larger convection electric field at the
dusk side (Howarth and Yau, 2008).

SW dynamic pressure affects the dynamics of the magnetosphere
by additional stress on the magnetic field lines at the day
side. One of the possible effects is that pg,, also facilitates
magnetic reconnection (Kim et al., 2024). A positive correlation
between ion outflow and SW dynamic pressure was also
reported by Cully et al. (2003).

We examined whether the SW turbulence proxies, such as
0(Bpp)s 0(ngesw)s and o(vgy), are correlated with the cold ion
outflow. SW turbulence can be transported to the magnetosphere
(Gilder et al, 2020) and can enhance energy transfer to the
magnetosphere (Echim et al., 2021). Figure 4 indeed indicates
an enhancement of the cold ion flux with increasing turbulence
of o(Bpp) and o(ng:gw), but not for o(vgy). The positive
relation with o(Bpyz) was also found by Cully et al. (2003).
However, these parameters are of secondary importance in the
ETR model, although the exclusion of these parameters led to a
slight decrease in performance.
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5.3 Estimation of the cold ion escape rate

The user-friendly linear empirical model in Formula 6 can help
us evaluate the total escape rate from the polar cap depending on
the variation of solar irradiance and SW dynamic pressure in order
to compare their impact. In comparison, the ETR model, while
more accurate overall, is less suited for isolating and interpreting the
impact of individual parameters. We estimate the polar cap area at
the geocentric distance of ~4 Ry, as the lowest observations were
at this altitude. The edge of the polar cap at this distance can be
determined from the first open field lines from the geomagnetic
equator for all magnetic longitudes using the Tsyganenko TO1
model (Tsyganenko, 2002). The total polar cap area is integrated
over all parts of the sphere at different magnetic longitudes. The
area was calculated for three activity levels: low, median and high
(see Table 6). To run the TO1 model, we used pgy;, B,jyr and
B, imr = — E,gw/vsw. Furthermore, the Dst index was taken as
0, -22 and -170 nT for each activity, respectively. This resulted
in polar cap areas of 0.61-10", 0.84-10" and 1.33-10"° m?,
for low, median and high activity, respectively. Note that in case
the Dst index is not available, a simple geometric formula of
the polar cap area can be used for a rougher estimation. The
values of the input parameters in Formula 6 are listed in Table 6.
For each activity level, we vary either F);, or pg,. The results
are shown in Figure 10. We can see that the solar irradiance
and the SW pressure strongly modulate the outward fluence.
This means that the contribution of stellar wind-magnetosphere
coupling along with the stellar irradiance has to be considered in
modeling the ion outflow at Earth and Earth-like exoplanets. The
LR model can help estimate the influence of such an interaction
on the ion outflow at exoplanets. The outward fluence varies over
approximately three orders of magnitude, from ~1.1 x 10%* to ~2.7 x
10% ions/s, with median value ~7 x 10%*. The fluences estimated
in previous studies, such as, ~0.2-1x 10%° ions/s by André and
Cully (2012) and an upper limit of ~3 x 10?® ions/s for 10-30 eV
oxygen from Strangeway et al. (2005), are similar to the high activity
values predicted by our model. The upper limit is comparable
with the atmospheric neutral hydrogen escape related to Jeans
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process for the solar maximum, which is ~6 x 10%° ions/s and the
charge-exchange escape of neutrals for the solar minimum ~6 x 10%®
ions/s (Gronoff et al., 2020). However, the estimated escape rate is
only a part of the total ion outflow from the polar cap. To evaluate
the total outflow rate, particles with energies above 70 eV and ion
species other than hydrogen must also be considered. This means
that the contribution of the cold ion outflow in the total atmospheric
escape, according to LR, is not negligible during active solar wind
conditions. The fluence values for the ETR model are ~4.9 x 10%,
~6.1x 10%* and ~2 x 10% for low, median, and high activity levels,
respectively. The values are lower than those derived by the LR model
and in previous studies. This may be due to the tendency of the ETR
model to underpredict high flux values, as shown in Figure 7.

6 Conclusions and outlook

In this work we used Cluster measurements to derive models
for cold ion outflow. We developed a linear model with empirical
formula and a more accurate nonlinear ensemble model to
predict cold ion flux in the magnetospheric lobes for particles
emanating from Earth’s ionosphere. The models use solar activity
parameters as predictors. The spatial variables x and z are the
most important predictors for the cold ion flux. The flux decreases
with altitude, an expected effect due to ion diffusion into a larger
volume, and a north-south asymmetry is observed. According
to the ETR model, solar EUV irradiance, indicated by F,,, is
the most significant solar activity parameter. Among the solar

wind drivers, E,gw, B,ivp Bivp and pgy, show mainly the

highest linear correlati(fns with the cold ion flux and highest
contribution as predictors to the nonlinear model. The importance
of these parameters indicates the effectiveness of the solar-
wind-magnetopshere-ionosphere coupling and of reconnection in
triggering cold ion outflow. We estimate the total escape rate
range of cold ions (<70eV) from the polar cap to be between
~1.1 x 10** ions/s and ~2.7 x 10%® ions/s, which is comparable to
the neutral escape for the high activity. To estimate the total ion
outflow, contributions from higher energies must be included. The
derived linear model can help to scale the influence of the stellar
wind magnetospheric interaction on the ion outflow at Earth-like
exoplanets.

In future studies, we plan to extend the database of cold ion
fluxes, to include additional input parameters such as temporal
history, solar wind energy, X-ray flux, magnetopause location, and
terrestrial magnetic field. We will also consider more advanced
feature engineering for the linear baseline model.
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