
 

TYPE Original Research
PUBLISHED 24 November 2025
DOI 10.3389/fspas.2025.1607631

OPEN ACCESS

EDITED BY

Farideh Honary,
Lancaster University, United Kingdom

REVIEWED BY

Nickolay Ivchenko,
Royal Institute of Technology, Sweden
Eliana Nossa,
The Aerospace Corporation, United States

*CORRESPONDENCE

William J. Longley,
 william.longley@njit.edu

RECEIVED 07 April 2025
REVISED 03 September 2025
ACCEPTED 16 October 2025
PUBLISHED 24 November 2025

CITATION

Longley WJ, Goodwin LV and Vierinen J 
(2025) The existence of non-resonant gyro 
lines and their detectability by Thomson 
scatter radars.
Front. Astron. Space Sci. 12:1607631.
doi: 10.3389/fspas.2025.1607631

COPYRIGHT

© 2025 Longley, Goodwin and Vierinen. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

The existence of non-resonant 
gyro lines and their detectability 
by Thomson scatter radars

William J. Longley1*, Lindsay V. Goodwin1 and Juha Vierinen2

1Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, United States, 
2Department of Physics and Technology, University of Tromsø, Tromsø, Norway

 Thomson scatter radars have successfully measured plasma parameters in 
the ionosphere for over 60 years. Fundamentally, the radars measure increased 
power returns when the Bragg scattering condition is met by a source of density 
fluctuations in the plasma. Typically, wave modes of the plasma provide the 
source of structuring, and the radars measure strong power returns at the 
ion line which is associated with the ion-acoustic mode, the gyro line which 
is associated with the electrostatic whistler mode, and the plasma line that 
comes from the Langmuir mode. However, the existence of an ion-acoustic 
mode or electrostatic whistler mode is not guaranteed in the ionosphere. In 
this study, a formalism is developed to explain non-resonant wave modes as 
features occurring at frequencies where the dielectric function has a local 
minimum as opposed to a root corresponding to the typical resonant wave 
mode. With this formalism, the frequency of non-resonant waves is numerically 
solved as a function of basic plasma parameters. By solving for minima of 
the dielectric function, the frequency and intensity of gyro lines is determined 
for a wide range of plasma temperatures and densities. This analysis explains 
why Arecibo gyro lines are typically weak in intensity and result from non-
resonant waves. For VHF systems like EISCAT, gyro lines are shown to be strong 
spectral peaks corresponding to standard resonant solutions for electrostatic
whistler waves.
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 1 Introduction

For decades, Thomson scatter radars have measured the altitude profiles of electron 
temperature, ion temperature, plasma density, and bulk drifts in the ionosphere. The datasets 
produced by these radars provide an experimental foundation for studies on the heating and 
cooling of the ionosphere, its coupling to the neutral atmosphere and the magnetosphere, 
and kinetic plasma processes such as collisions and Landau damping (Evans, 1969). 
Despite the utility and success of these radars, it has yet to be explained how some 
of the observed plasma density fluctuations are created when there are no normal 
wave modes. This study thus seeks to explain the existence of the standard ion line 
and gyro line features while discarding the misleading terminology of “incoherent
scatter radar.”

If the ionosphere was composed of a randomly distributed gas of free electrons, 
then each photon scattered off an electron would return back to the radar with a 
random phase. These phases would add up incoherently, resulting in weak power
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returns that require the sensitivity of a 300+ meter dish to measure 
(Gordon, 1958). However, early experiments by Bowles (1958) 
showed that a significantly smaller antenna can measure scatter 
off the ionospheric plasma because of collective effects in the 
plasma. Naturally occurring collective effects such as waves and 
density irregularities will create a structuring in the plasma that 
satisfies the Bragg condition of the radar. For example, if a plasma 
wave exists with a wavelength of half the radar’s wavelength, then 
the backscatter from successive wavefronts will be in phase and 
will add coherently, much like Bragg scattering in a crystal lattice 
(Kudeki and Milla, 2011). This coherence of phases will significantly 
increase the return signal to the radar, and the wave’s motion will 
impart a Doppler shift onto the signal that can be fit into kinetic 
plasma theory in order to estimate plasma parameters (Beynon and 
Williams, 1978; Vallinkoski, 1988).

This study explores a regime of scatter that fits between the 
“true incoherent scatter” proposed by Gordon (1958) and the 
colloquially used “incoherent scatter” first measured by Bowles 
(1958) (which is a misnomer, as the scatter of waves is coherent). 
For a plasma near thermal equilibrium, there are three electrostatic 
wave modes that can exist to provide density structuring to satisfy 
the Bragg condition—the Langmuir mode, ion-acoustic mode, and 
electrostatic whistler mode—and these modes correspond to the 
sharp features of Thomson scatter spectra called the plasma line, 
the ion line, and the gyro line, respectively (Figure 1). For typical 
ionospheric conditions, the Langmuir mode is always present, but 
the ion-acoustic mode and electrostatic whistler modes can be cutoff 
for a range of temperatures and densities. At these cutoffs, the 
dielectric function does not have any roots, but local minima are 
present and physically represent the plasma partially propagating 
a wave. By examining the dielectric functions of the plasma, this 
study will show that the ion and gyro lines exist as spectral 
features resulting from oscillations driven by the initial state of the 
plasma. Additionally, finding minima of the dielectric function is a 
significantly easier numerical approach than root finding, and we 
show that this approach leads to easy solutions for the frequency and 
intensity of gyro lines and ion lines across a wide range of plasma 
parameters.

The primary goal of this study is to calculate the plasma 
parameters required to observe an ion or gyro line feature in 
Thomson scatter spectra. This is the main scientific result of this 
study, and readers primarily interested in this result can skip 
to Section 4. However, this study is also intended to provide a 
complete and self-contained interpretation of Thomson scatter 
spectra. To do this, Section 2 reviews some standard results from 
kinetic plasma theory and then examines the dielectric function 
of Langmuir waves as a simple case. In Section 3, a physical 
justification for finding the minima of a dielectric function is 
developed by analogy with a driven oscillator. For a driven oscillator, 
the amplitude of oscillation is infinite when driven at the resonant 
frequency of a normal mode. Therefore, minima in the dielectric 
function correspond to the largest amplitude waves possible in a 
given frequency range, resulting in the ion and gyro line spectral 
features. Finally, Section 5 provides a classification of different 
types of scattering, including scatter off non-resonant modes, true 
incoherent scatter, and colloquial incoherent (actually coherent) 
scatter, while trying to clarify this obviously confusing terminology. 

2 Roots of the dielectric function

In this section, we review the physical concept of a normal 
mode (Section 2.1) and how it applies to resonant waves in 
a plasma (Section 2.2). The Langmuir mode is a standard 
plasma wave, and Section 2.3 shows how the plasma line arises from 
standard root solves (normal modes) of the dielectric function. 

2.1 Normal mode analysis

Normal mode analysis is a technique that finds the resonant 
frequencies of any oscillating system. Before using this technique to 
describe waves in a plasma, it is useful to consider a simple example 
of two masses with springs on each side, as shown in Figure 2. The 
equations of motion for the position of each mass are found by 
applying Newton’s second law,

m d2

dt2 x1 = −2κx1 + κx2, (1)

m d2

dt2 x2 = κx1 − 2κx2, (2)

where κ is the spring constant from Hooke’s law.
This set of differential equations can be written in matrix form as

m d
dt2
[

[

x1

x2

]

]
= [

[

−2κ κ

κ −2κ
]

]
·[

[

x1

x2

]

]
. (3)

To find the normal modes of this system, Equation 3 is 
Fourier transformed, so effectively d

dt
→ iω. The system of equations 

then becomes

−mω2[

[

x1

x2

]

]
= [

[

−2κ κ

κ −2κ
]

]
·[

[

x1

x2

]

]
. (4)

In this form, the goal of normal mode analysis becomes 
apparent: create and solve an eigenvalue equation. The left-hand side 
shows the eigenvalues mω2, while the right-hand side is the linear 
transform corresponding to the forces on each mass. To complete 
this example, Equation 4 is rearranged:

[

[

−mω2 + 2κ −κ

−κ −mω2 + 2κ
]

]
·[

[

x1

x2

]

]
= 0. (5)

The solution of Equation 5 is only possible if either x1 = x2 = 0
(the trivial solution) or if the matrix is not invertible. Setting the 
determinant to 0 and solving the resulting polynomial gives the 
eigenvalues of ω:

ω2 = κ
m
(2± 1). (6)

The two positive roots of ω2 in Equation 6 are the resonant 
frequencies corresponding to the normal modes of the system. Since 
this system is linear, the general solution to the equations of motion 
(Equations 1, 2) is a superposition of these two normal modes. This 
technique can be generalized to any dimension system of linear 
differential equations, including the set of equations that describe 
the motions of a plasma. 
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FIGURE 1
Theoretical calculation of Thomson scattering spectra (Froula et al., 2011), with sharp spectral features labeled. Plasma parameters for this plot are Te =
Ti = 500K, ne = 2× 1011 m−3, k = 18.4, and an aspect angle of θ = 60°.

FIGURE 2
(a) Configuration of double spring system. Fourier transform of the masses’ positions (b) shows two distinct spectral peaks at the normal mode 
frequencies, marked by dashed vertical lines. In Section 3.2, a sinusoidal driving term is added to the equations of motion. (c) New spectral peaks that 
occur at driving frequencies ω1 and ω2.

2.2 Deriving the dielectric function

The goal of normal mode analysis in a plasma is the same 
as the simple example above: to create an eigenvalue equation 
from a system of differential equations, then solve for the resonant 
frequencies of the plasma. The motions of a plasma are described at 
the kinetic level by the Vlasov equation for each species s:

∂Fs[t, x⃗, ⃗v]
∂t
+ ⃗v ·∇xFs[t, x⃗, ⃗v] +

qs

ms
(E⃗[t, x⃗] + ⃗v× B⃗) ·∇vFs[t, x⃗, ⃗v] = 0.

(7)

The Vlasov equation is effectively a total time derivative of the 
distribution function, with the Lorentz force as the acceleration. To 
close this set of equations, the electric and magnetic fields need to be 
specified. While the following solutions and ideas work for general 
electromagnetic waves, we will restrict the analysis in this paper to 

electrostatic solutions since those are the wave modes measured by 
Thomson scatter radars. Therefore, Gauss’ law is appropriate to close 
the system. Additionally, we do not include a collision operator on 
the right-hand side of Equation 7 as collisions act to damp waves, 
but they do not significantly affect the resonant frequencies.

As defined in Equation 7, the Vlasov equation is nonlinear 
since the Lorentz force multiplies the velocity derivative of the 
distribution. For normal mode analysis to apply, the Vlasov equation 
and Gauss’ law need to be linearized and then Fourier–Laplace 
transformed. This is done using standard techniques, with 
each variable being decomposed as a zero-th order term and 
a first-order perturbation, such as Fs = F0s + F1s, with any 
resulting second-order terms discarded. The full linearization 
process, including the justification for dropping second order 
terms, is detailed in Longley (2024). The linearized Vlasov
equation is then
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−i{ω− k⃗ · ⃗v− iγ}F1s[ω, k⃗, ⃗v] +
qs

ms
E⃗1[ω, k⃗]·

∇vF0s[ ⃗v] +
qs

ms
( ⃗v× B⃗) ·∇vF1s[ω, k⃗, ⃗v] = F1s[t0, k⃗, ⃗v]

(8)

where k is the wavenumber from the spatial Fourier transform 
and ω is the frequency from the Laplace transform in time. 
Note that taking the Laplace transform in time creates the 
initial value term (t0) on the right-hand side. Now linearizing
Gauss’ law,

ik⃗ · E⃗1[ω, k⃗] =
1
ϵ0

ρ1[ω, k⃗], (9)

where ρ1 = ∑sqsn1s is the charge density. Since the number density 
is defined as n1s = ∫d ⃗v3F1s, this creates a closed system of equations 
for E1 and n1s for each species.

The Thomson scattering spectra is defined as S(ω) = ⟨|n1e(ω)|
2⟩, 

so typically Equations 8, 9 are solved for the perturbed electron 
density n1e (Froula et al., 2011). However, to construct an eigenvalue 
equation for normal mode analysis, this system of equations is 
instead solved for the perturbed electric field. This is done by 
first integrating Equation 8 to obtain the perturbed densities, 
then substituting those into the charge density in Gauss’ law 
(Equation 9). This is easiest to demonstrate in the unmagnetized 
limit, where B = 0. Integrating Equation 8 over all velocity
space obtains

n1s[ω, k⃗] = −
iqs

ms
∫d ⃗v3

E⃗1[ω, k⃗] ·∇vF0s[ ⃗v]

(ω− k⃗ · ⃗v− iγ)
+ i∫d ⃗v3

F1s[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
.

(10)

Taking Equation 10 for the densities of electrons and a single ion 
species, the electric field in Equation 9 becomes

ik⃗ · E⃗1[ω, k⃗] =
1
ϵ0

{
{
{
− ie2

mi
∫d ⃗v3

E⃗1[ω, k⃗] ·∇vF0i[ ⃗v]

(ω− k⃗ · ⃗v− iγ)
+ ie∫d ⃗v3

F1i[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)

− ie2

me
∫d ⃗v3

E⃗1[ω, k⃗] ·∇vF0e[ ⃗v]

(ω− k⃗ · ⃗v− iγ)
− ie∫d ⃗v3

F1e[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)

}
}
}
.

(11)

the meaning of Equation 11 is clearer if the terms with E1 are 
grouped together. Also recognizing that for electrostatic waves, ⃗k and 
E⃗1 are colinear (k⃗ · E⃗1 = kE1), we obtain

ikE1[ω, k⃗] = −
ie2

kϵ0
E1[ω, k⃗]

{
{
{

1
mi
∫d ⃗v3 k⃗ ·∇vF0i[ ⃗v]

(ω− k⃗ · ⃗v− iγ)
+ 1

me
∫d ⃗v3 k⃗ ·∇vF0e[ ⃗v]

(ω− k⃗ · ⃗v− iγ)

}
}
}

+ ie
ϵ0

{
{
{
∫d ⃗v3

F1i[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
−∫d ⃗v3

F1e[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)

}
}
}
.

(12)

The initial value terms (F1s[t0, k⃗, ⃗v]) are not multiplied by E1, 
so Equation 12 is not a linear transformation of E1 as it does not 
satisfy the additive property. These initial value terms are analogous 
to a source term for the driven oscillator and are the primary 
subject of Section 3. However, for normal mode analysis, the steady-
state behavior of the system is of interest, so initial perturbations 

can be ignored. Dropping these initial value terms, we arrive at the 
desired eigenvalue equation:

ikE1[ω, k⃗] = −
ie2

kϵ0
E1[ω, k⃗]

{
{
{

1
mi
∫d ⃗v3 k⃗ ·∇vF0i[ ⃗v]

(ω− k⃗ · ⃗v− iγ)

+ 1
me
∫d ⃗v3 k⃗ ·∇vF0e[ ⃗v]

(ω− k⃗ · ⃗v− iγ)

}
}
}
. (13)

Physically, this shows the left-hand side as eigenvalues for the 
density perturbations on the right-hand side.

The integrals in Equation 13 are defined as the susceptibility of 
each species:

χs[ω, k⃗] =
ω2

ps

k2 ∫d ⃗v3 1
ω− k⃗ · ⃗v− iγ

k⃗ ·
∂ fos

∂ ⃗v
(14)

where ω2
ps = n0se

2/msϵ0 is the plasma frequency for each 
species, and the distribution is now normalized using the 
notation F0s = n0s f0s, so that ∫d ⃗v3 f0s = 1. We can then simplify 
Equation 13 using Equation 14

E1[ω, k⃗] = −E1[ω, k⃗] · {χi[ω, k⃗] + χe[ω, k⃗]}. (15)

Solving for the perturbed electric field in Equation 15,

(1+ χi[ω, k⃗] + χe[ω, k⃗]) ·E1[ω, k⃗] = 0. (16)

The dielectric function of a plasma is defined as ϵ = 1+ χi + χe, so 
the final result is

ϵ[ω, k⃗] ·E1[ω, k⃗] = 0. (17)

Equation 17 is the basis for the normal mode analysis of a 
plasma, and considerable literature exists on deriving equivalent 
forms (e.g., Bekefi, 1966). Solving Equation 17 means either E1 =
0 (the trivial solution) or ϵ = 0 is required. Therefore, solving for 
roots of the dielectric function will obtain the resonant frequencies 
of a plasma. Note that in Equation 17, the dielectric function is a 
scalar because the electrostatic approximation was used. A general 
electromagnetic solution will lead to a 3 × 3 matrix for the dielectric 
function, and the roots are obtained by setting the determinant of 
the matrix equal to zero.

By writing Equations 16, 17 in terms of susceptibilities, 
the assumptions of electrostatic waves (B1 = 0), unmagnetized 
plasma (B0 = 0), and no collisions can be relaxed by using the 
appropriate susceptibilities. Standard plasma physics texts (Bellan, 
2006; Froula et al., 2011) have derived these more general 
susceptibilities. Here, we make use of collisionless, electrostatic 
susceptibilities with Maxwellian velocity distributions. These are 
listed in Supplementary Appendix A, for both the unmagnetized 
and magnetized cases. Furthermore, Supplementary Appendix B 
shows how the Thomson scatter spectra are calculated from these 
susceptibilities.

2.3 Example solution: the Langmuir mode

The simplest solution for a root of the dielectric function is 
the Langmuir mode. This wave mode is anticipated to occur at a 
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FIGURE 3
(Top panel) Real (solid curves) and imaginary (dashed curves) parts of the dielectric function near the plasma frequency. The low density (ne = 2×
1010 m−3) and high temperatures lead to the parameter α = 1/(kλD) being relatively small (with k = 18.4). For the Te = 1000K and Te = 2500K curves, a 
root for the real part of the dielectric exists (circles), but for Te = 5000K there is no such root. (Bottom panel) Plasma line feature in Thomson scatter 
shown as spectral peaks occurring near the Langmuir mode frequency.

frequency near the plasma frequency, and therefore ion dynamics 
can be neglected (Longley et al., 2021). Plasma lines are well known 
to be enhanced by photoelectrons (Longley et al., 2021), but for 
simplicity we will only analyze the case of thermally driven plasma 
lines such as those detected in Vierinen et al. (2017). Using the 
unmagnetized electron susceptibility, the dielectric function at high 
frequencies is (Supplementary Appendix A)

ϵ = 1+ χe = 1+ α2[1− 2xeDaw[xe] − i√πxee−x
2
e], (18)

where the parameter α is the ratio of the wavelength to the Debye 
length, defined as

α = 1
kλD

(19)

Figure 3 plots the real and imaginary parts of Equation 18 
for different sets of plasma parameters. The resonant frequency is 
obtained by solving for the roots of ϵ = 0, which correspond to 
eigenvalues of ϵ ·E1 = 0. The parameters chosen in Figure 3 illustrate 
three different cases of the dielectric function for the Langmuir 
mode. For the Te = 1000K curve, the parameter α = 3.5 means that 
the wavelength is significantly larger than the Debye length. With 
large α and small Landau damping due to the low temperature, there 
exists a single root to ϵ = 0 that is the Langmuir frequency. Raising 
the temperature in Figure 3 to 2500 K lowers α to 2.2 and creates 

appreciable Landau damping, so that Im[ϵ] ≠ 0 for frequencies near 
the root of Re[ϵ] = 0. This makes a solution to ϵ = 0 impossible, 
but physically it represents a damped wave. A root to the equation 
Re[ϵ] = 0 when damping is present is called a “quasinormal mode” 
(Wikipedia, 2023). Note that Landau damping is mathematically 
described by the i√πxse

−x2
s  term in Equation 18, and therefore the 

damping is never exactly 0 for finite xs. Physically, Landau damping 
is where particles with velocities near the phase velocity of the wave 
(v = ω/k) efficiently take energy from the wave, leading to a decrease 
in the wave’s amplitude (Chen, 2016). The amount of damping is 
dependent on the temperature of the distribution, which describes 
how many particles have velocities near the phase velocity of the 
wave. Even at the lower temperature of Te = 1000K in Figure 3, some 
Landau damping is present, and this case could be strictly defined 
as a quasinormal mode. However, a practical distinction is applied 
where cases with Im[ϵ] ≈ 0 are considered normal modes.

Increasing the temperature once more to 5000 K in Figure 3 
leads to α = 1.6, and the wavelength is now the same order of 
magnitude as the Debye length. Physically, the Debye length is an 
exponential scale length describing distances where electrons can 
easily reconfigure to shield any charge imbalances. Waves propagate 
through a plasma by creating and sustaining charge imbalances. It is 
therefore no surprise that for the α = 1.6 case, there is no solution to 
Re[ϵ] = 0. However, a distinct spectral peak in the scattering power 
still appears for this case.
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FIGURE 4
(Top panel) Real (solid curves) and imaginary (dashed curves) parts of the dielectric function near the ion-acoustic frequency for different temperature 
ratios. Stars mark location of roots to the real part of the dielectric, and those roots only exist if Te > 3.5Ti. For each temperature ratio, the imaginary 
part of the dielectric provides significant damping of the wave, with little dependence on the electron temperature increases. (Middle panel) Magnitude 
squared of the dielectric function plotted for the same parameters as the top panel. Stars still mark roots to Re[ϵ], but now the circles mark the minima 
values of the dielectric which we define as the non-resonant frequencies of the wave. (Bottom panel) Resulting Thomson scatter spectra, showing that 
the non-resonant ion-acoustic mode (Te < 3.5Ti) is as easily detectible as the resonant ion-acoustic mode (Te > 3.5Ti). Furthermore, the strongest 
scatter is displaced from both the resonant and non-resonant frequencies since the driving source is strongest at lower frequencies.

The transition of the plasma line/Langmuir mode from a normal 
to a quasinormal mode, and to what will later be defined as a non-
resonant mode, appears to depend on the α parameter. We can 
further investigate this by directly solving for roots of the real part 
of the dielectric function,

0 = Re[ϵ] = 1+ α2[1− 2xeDaw[xe]]. (20)

The standard approximation is to anticipate ω ≈ ωpe, which in 
most conditions means xe ≫ 1. The Dawson function can then be 
Taylor-series expanded for large xe, so that 2xeDaw[xe] = 1+ 1

2x2
e
+

3
4x4

e
+O(x−6e ). Putting this into Equation 20,

0 = 1− α2[ 1
2x2

e
+ 3

4x4
e
]. (21)

This creates the biquadratic equation in xe which is solved 
with the quadratic formula. With the assumption that α2 ≫ 1 and 

substituting xe = ω/kvth,e, Equation 21 simplifies to the well-known 
dispersion relation for Languir waves (Equation 22):

ω2 = ω2
pe +

3
2

k2v2
th,e (22)

For the Langmuir mode, it is easy to solve for a root of the 
dielectric function if the approximations of xe ≫ 1 and α2 ≫ 1 can 
be made. Without these assumptions, an analytical solution is not 
as simple, and in some cases not even possible. An easier and more 
interesting question is to make no assumptions on xe and ask what 
parameters are needed for a root of Re[ϵ] = 0 to exist. Looking at the 
real part of the dielectric function in Equation 20, we see that at xe =
0, the dielectric is ϵ = 1+ α2, which is strictly positive. Therefore, a 
root is only possible if the right-hand side becomes negative for some 
value of xe. This gives the condition of

0 > 1+ α2(1− 2xeDaw[xe]) (23)
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FIGURE 5
Solution for the ion-acoustic frequency (left). The dashed line is at Te = 3.5Ti, and values above this line are where there is no root for the real part of 
the dielectric. Panel on the (right) normalizes the ion-acoustic frequency by the ion thermal velocity. (a) Ion acoustic frequency, (b) ωia

(Kvthi)
.

The only free plasma parameter in Equation 23 is α, so we solve 
for the values of α necessary for a root to exist. The inequality is 
easiest to satisfy when the term (1− 2xeDaw[xe]) is at its minimum 
value. This occurs for xe ≈ 1.50198. Substituting this for xe and 
rearranging, we obtain the condition for a root to exist:

α > 1.874 (24)

For typical Thomson scatter experiments in the ionosphere, α≫
1, and therefore a root to the dielectric function is expected near the 
plasma frequency. Note that the magnetized form of the dielectric 
function can slightly modify the condition in Equation 24. Figure 3 
shows that for low densities and high temperatures, it is possible for 
the above condition to not be satisfied and therefore no root will 
exist. Observations of the plasma line at altitudes above 1500 km are 
reported in Hagen and Behnke (1976), with observed spectra at α ≈
1.2 looking similar to that in Figure 3 with α = 1.6.

The unmagnetized Langmuir mode and its relation to the plasma 
line are the easiest solutions to the dielectric function possible. 
Yet the solution still encounters several problems. The first is that 
if damping is present, we cannot solve for ϵ = 0 and instead need 
to solve Re[ϵ] = 0. Figure 3 shows there are actually two roots 
to this equation, and we intuitively choose the root with less 
damping. Nonetheless, we have not justified the exclusion of the 
other roots nor defined criteria to assure a root-solving algorithm 
finds the correct root. Furthermore, while it is expected that the 
Langmuir mode usually exists in the ionosphere, the ion-acoustic 
and electrostatic whistler modes are often cutoff with no solutions 
to Re[ϵ] = 0 (see Section 4). However, Thomson scatter experiments 
still measure strong scatter in ion and gyro lines, necessitating a more 
robust characterization of what a plasma wave mode is. 

3 Driven oscillations in a plasma

3.1 Initial value terms in the dielectric

In deriving the dielectric function in Section 2.2, the initial value 
terms from the Laplace transform in time were dropped so that 

a linear transformation of the electric field could be written and 
solved for eigenvalue frequencies. Keeping the initial value terms, 
the equation for the electric field becomes

ϵ[ω, k⃗]E1[ω, k⃗] =
ie

kϵ0

{
{
{
∫d ⃗v3

F1i[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
−∫d ⃗v3

F1e[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)

}
}
}

(25)

Without the initial value terms on the right-hand 
side, this is Equation 17.

Equation 25 is no longer solvable for eigenvalues of the dielectric 
function. Mathematically, this is because the initial value term on the 
right-hand side means this is no longer a linear transformation of 
the electric field (failing the additive property f(x+ y) = f(x) + f(y)). 
Physically, Equation 25 thus no longer describes the normal modes 
of the system that will naturally exist with small initial perturbations. 
Instead, the initial positions of particles will create an electric field 
with the strength being

E1[ω, k⃗] =
1

ϵ[ω, k⃗]
· ie

kϵ0

{
{
{
∫d ⃗v3

F1i[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
−∫d ⃗v3

F1e[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)

}
}
}
(26)

For normal modes of the system, ϵ→ 0 at a resonant frequency 
and amplitude E1 of the wave can be large for a given initial 
perturbation (RHS of Equation 26). Going one step further, at non-
resonant frequencies, the amplitude of oscillation will be highest 
when the dielectric function is smallest. It is this behavior of the 
dielectric that is of interest.

Taking a step back, the initial value terms of every particle are 
unknowable for a plasma experiment. Instead, an ensemble average 
is taken of Equation 25 to find the average electric field strength, 
weighted by the likelihood the plasma started in a particular initial 
state. The ensemble average is defined in Froula et al. (2011) as

⟨X⟩ =
∫dvX(v)P(v)

∫dvP(v)
. (27)
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FIGURE 6
Similar to Figure 4 for the gyro line at Arecibo with θ = 45° and ne = 1011 m−3. For the Te = 500K curve, the finite Larmor radius parameter is b = 0.037 and 
the normalized gyrofrequency is Ωce/k∥vth,e = 3.77. For Te = 500K, both a normal mode (star) and non-resonant frequency (circle) are obtained with the 
resulting gyro line (bottom panel) being sharp and distinct. For the Te = 1000K case, parameters are b = 0.071 and Ωce/k∥vth,e = 2.66, and a non-resonant 
gyro line can be seen. With the higher temperature of Te = 1500K, the parameters are b = 0.106 and Ωce/k∥vth,e = 2.17, and no root or minima to the 
dielectric function is obtained.

where the zero-th order distribution f0(v) is the probability P(v) of 
finding particles of species s at a given initial position. Formally, 
Equation 25 is squared and ensemble averaged using Equation 27 
to obtain the average electric field (without squaring, the result 
is ⟨E1⟩ = 0 since there is an implied sinusoidal dependence when 
linearizing). Furthermore, this ensemble average is applied over all 
space and time, taking the limit as the volume and time going to 
infinity (note that γ = 1/T). Then

|ϵ[ω, k⃗]|2⟨|E1[ω, k⃗]|
2⟩ = lim

T,V→∞

1
TV

e2

k2ϵ20

⟨|

|
∫d ⃗v3

F1i[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
−∫d ⃗v3

F1e[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
|

|

2

⟩

(28)

In squaring the left-hand side of Equation 28, there will be cross 
terms, but the standard treatment is to drop these by assuming 
that the initial positions of electrons and ions are uncorrelated 
(Froula et al., 2011). This assumption can be relaxed, though the 
resulting cross terms will only lead to an initial transient that decays 
as 1/t (Froula et al., 2011). Carrying out the ensemble average on the 
right-hand side,

|ϵ[ω, k⃗]|2⟨|E1[ω, k⃗]|
2⟩ = (Se[ω, k⃗] + Si[ω, k⃗]), (29)

where we define the source terms as

Ss[ω, k⃗] = lim
T,V→∞

1
TV

e2

k2ϵ20
⟨|

|
∫d ⃗v3

F1s[t0, k⃗, ⃗v]

(ω− k⃗ · ⃗v− iγ)
|

|

2

⟩. (30)
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FIGURE 7
Similar to Figure 6, but for EISCAT 230 MHz parameters. Careful tracking of the imaginary part (dashed line, top panel) of the dielectric function shows 
that it is nearly 0 for each of the marked roots of Re[ϵ] = 0 (stars). Minimal damping means that the roots and the minima of the dielectric function 
(circles) are collocated and lead to sharp gyro lines. For Te = [500; 1000; 1500; 2000; 2500]K curves, the respective finite Larmor radius parameter is b =
[0.0047; 0.0094; 0.0141; 0.0188; 0.0235] and the respective normalized gyrofrequency is Ωce/k∥vth,e = [10.3; 7.3; 5.9; 5.2; 4.6].

As an example, the Maxwellian distribution can be used for the 
initial distribution function F1s[t0], and in the unmagnetized limit, 
the source term in Equation 30 evaluates to

Ss[ω, k⃗] =
nse

2

k2ϵ20

√π
kvth,s

exp(− ω2

k2v2
th,s

) (31)

Comparing Equation 31 to Appendix Equation B3 shows 
the connection between the wave source terms S and the 
modified distributions M that describe Thomson scatter 
(Supplementary Appendix B). In general, these terms are 
proportional through the relation shown in Equation 32

Ss[ω, k⃗] =
nse

2

k2ϵ20
Ms[ω, k⃗] (32)

Chapter 9 of Nicholson (1983) derives a similar expression 
to Equation 28 by neglecting ion dynamics and considering the 

electric potential of numerous moving test charges. Nicholson 
(1983) calls this result “fluctuations in equilibrium” but only applies 
the analysis to resonant Langmuir waves (i.e., ϵ = 0 condition). 
Furthermore, Bekefi (1966) develops the formalism for “non-
resonant” waves driven by motions of charges but does not provide 
a treatment of the ensemble averaged system. 

3.2 Driven oscillations

Equation 29 is the desired result for interpreting the existence 
of density fluctuations in a plasma. The normal modes can still 
be obtained by setting the source terms S equal to 0 and solving 
for roots of ϵ, but the strongest oscillations in a plasma are not 
necessarily at the resonant frequencies. The steady-state behavior of 
the plasma is obtained by taking an ensemble average, and therefore 
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TABLE 1  Nominal parameters for selected Thomson scatter radars with routine ionosphere observations. Locations marked with an asterisk are the 
main transmit site of a multi-static system.

Radar Location Transmit frequency Bragg wavelength Bragg wavenumber

Jicamarca Radio Observatory Lima, Peru 50 MHz 3 m 2.09

EISCAT VHF Tromsø, Norway∗ 224 MHz 66.9 cm 9.38

EISCAT-3D Skibotn, Norway∗ 233 MHz 64.3 cm 9.77

Arecibo Observatory Puerto Rico, US 430 MHz 34.9 cm 18.02

Sanya ISR Sanya, China∗ 440 MHz 34.1 cm 18.44

Millstone Hill ISR Westford, MA, USA 440 MHz 34.1 cm 18.44

AMISR PFISR in Poker Flat, AK, USA;
RISR in Resolute Bay, NU, 
CAN

449 MHz 33.34 cm 18.82

EISCAT Svalbard Longyearbyen, Norway 500 MHz 30 cm 20.95

EISCAT UHF Tromsø, Norway∗ 930 MHz 16.1 cm 38.98

the source terms show how waves are continuously generated across 
all frequencies.

For physical intuition, we return to the mass-on-spring analogy 
of Section 2.1. The eigenvalue/eigenvector relation in Equation 5 can 
be written to include a sinusoidal driving force on each mass, giving 
the new relation

[

[

−mω2 + 2κ −κ

−κ −mω2 + 2κ
]

]
·[

[

x1

x2

]

]
= [

[

A1 sin(ωdt)

A2 sin(ωdt)
]

]
(33)

In this example, the frequency of the driving force ωd will 
dictate the frequency each mass oscillates the same as the original 
eigenvalues of the matrix on the left-hand side of Equation 33. It is 
this balance between an external driving force (source term) and the 
system’s internal response (normal modes) that determines the full 
oscillating spectrum of the system.

The source term in its simplest form (Equation 31) is the velocity 
distribution evaluated at the condition v = ω/k (Equation 29). 
This is the Cherenkov condition for wave generation by particle 
motion, with more particles at a given velocity leading to 
stronger waves (Nicholson, 1983). This creates an analogy with the 
driven harmonic oscillator, where the source terms Se and Si act as a 
continuous driving force for waves at the frequency ω = k⃗ · ⃗v. In this 
interpretation, ⟨|E1|2⟩ is the average amplitude of the oscillations, 
dictated by the value of the response function |ϵ|2.

Since ϵ = 1+ χe + χi, we can interpret the resonant ( ϵ = 0) versus 
non-resonant (ϵ ≠ 0) response to driven oscillations in terms of the 
susceptibilities mean. If χs is large at a given frequency, then species 
s is able to efficiently reconfigure and cancel out an applied electric 
field. An intuitive example of this is that for low frequency waves 
ω ≈ 0, the susceptibility will be very high (e.g., Figure 3) since the 
long period of the wave allows plenty of time for electrons and ions 
to reconfigure and cancel out the wave’s electric field. The real part 
of χs will act in phase with the wave, whereas the imaginary part of 
χs acts out of phase with the wave and therefore will damp it out. 
If Re[χs] ≈ 0, then the plasma is not reconfiguring to cancel out the 

applied electric field but is instead moving with the electric field in 
a way that continues the wave’s propagation. Values of Re[χs] that 
are small, but non-zero can be interpreted as the plasma trying to 
propagate the wave but being unable to fully do so in each cycle.

With this interpretation of the dielectric function, we are able 
to explain the concept of a non-resonant wave mode (e.g., Bekefi, 
1966). Given a source term S(ω) that is constant at all frequencies, 
the amplitude of oscillation ⟨|E1(ω)|2⟩ is largest when the plasma 
is best able to propagate the wave. Therefore, when the dielectric 
function has no roots (ϵ(ω) = 0), a local minimum of the dielectric 
function |ϵ(ω)|2 will represent non-resonant waves where the source 
term is continuously driving the wave and the plasma is able to 
partially continue the oscillation but at a lower amplitude than if 
a normal mode resonance existed. Without the continuous driving 
of S(ω), such waves would quickly decay and be unobservable. 
This interpretation also better characterizes finding roots of the 
real part of the dielectric when there is still an imaginary damping 
part—Re[ϵ] = 0 and Im[ϵ] ≠ 0. Therefore, for heavily damped roots 
(Re[ϵ] = 0 and |Im[ϵ]| ≫ 0), no wave will exist.

For a source term that varies with frequency, the largest 
oscillations will occur at a balance between the minima of the 
dielectric function and the maxima of the driving source. This 
balance can lead to the strongest scatter occurring at frequencies 
shifted away from the resonant or non-resonant frequencies, as the 
next sections will demonstrate. 

4 Minima of the dielectric function

In this section, the dielectric function is examined for minimum 
values that correspond to non-resonant versions of the ion-
acoustic wave and the electrostatic whistler wave. In each case, 
these non-resonant waves are shown to correspond to distinct 
spectral features that are routinely observed in Thomson scatter
experiments. 
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FIGURE 8
Gyro line for Arecibo (430 MHz) at a 45° aspect angle. (a) How the frequency obtained from minima of |ϵ|2 varies with plasma density and electron 
temperature. In (b), the gyro line frequency is obtained by solving for roots of the dielectric function (ωroot) and compared to the frequency obtained in 
panel (a) (ωmin). Note that the root finder fails across a wider parameter regime than the minima finding technique, as indicated by the larger white 
region. (c) Calculates the gyro line power relative to the ion line power in dB (see Equation 47). (d) Calculates the prominence of the gyro line by 
calculating the ratio of the power at ωGL relative to the power at 0.9ωGL in dB.

4.1 Ion line (ion acoustic mode)

For the ion-acoustic mode, both the electron and ion 
susceptibilities are important, and therefore the dielectric function 
is ϵ = 1+ χe + χi. It is expected from fluid theory that the ion-
acoustic frequency will be approximately ω ≈ kvth,i, which means 
xi ∼ 1 (Appendix Equation A2), and the Dawson function in 
the ion susceptibility cannot be Taylor expanded in either the 
large or small limits. The electron susceptibility, however, can 
be simplified. Since the Dawson functions are evaluated at 
normalized frequencies (Appendix Equation A2), the electron and 

ion arguments are related by xi
xe
= √mi

me

Te
Ti

. For the ion-acoustic 
mode, xi ≈ 1, so xe ≪ 1 in this frequency range so long as Te and 
Ti are approximately within an order of magnitude. The electron 
susceptibility can then be Taylor-expanded to first order in xe as

χe ≈ α2(1− i√πxe) (34)

With Equation 34, the dielectric function at low 
frequencies is then

ϵ(ω) = 1+ α2(1− ixi√
πmeTi
miTe
)+

Te
Ti

α2[1− 2xiDaw[xi] − i√πxie
−x2

i ] (35)

The presence of the Dawson function requires a numerical 
solution to find any roots of Equation 35.

In the top panel of Figure 4, the real and imaginary parts of 
Equation 35 are plotted, showing that roots for Re[ϵ] = 0 only occur 
for specific ratios of the electron and ion temperatures. Exact criteria 
for when a root occurs can be derived from Equation 35. Firstly, 
note that at xi = 0, the real part of the dielectric function is strictly 
positive—Re[ϵ] = 1+ α2(1+ Te

Ti
) > 0. Therefore, a root only exists if 

there is a value of xi where the real part of the dielectric is negative. 
This condition is

0 > 1+ α2 +
Te

Ti
α2(1− 2xiDaw[xi]) (36)

Since 1+ α2 > 0, the last term in Equation 36 needs to be 
negative. This is easiest to satisfy if 1− 2xiDaw[xi] is at its minimum 
value, which happens at xi ≈ 1.50198. Then

Te

Ti
> 1+ α−2

|min(1− 2xiDaw[xi])|
(37)

Te

Ti
> 1+ α−2

0.28475
≈ 3.51(1+ 1

α2) (38)

Typically, α2 ≫ 1 for Thomson scatter experiments in the 
ionosphere, so the ion acoustic mode only has a root for the dielectric 
function when Te

Ti
≳ 3.5. In the ionosphere, the temperature ratio is 

rarely greater than ∼3 (Aponte et al., 2001), and therefore no root to 
the real part of the dielectric exists according to Equations 37, 38. 
Nonetheless, the ion line is always observed in the collective scatter 
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FIGURE 9
Same as Figure 8, but for EISCAT 230 MHz radar. At this radar frequency the gyro line frequency panel (a) has considerably less variation with density 
and temperature. Note in panel (b), both the minima finding technique and the root solve produce nearly identical answers at a wide range of 
temperatures. At low temperatures, the source term has a minimum near the gyro line frequency, leading to the absolute gyro line power (c) varying 
significantly with density and temperature despite the gyro lines being sharp and having the same relative prominence (d).

regime where α≫ 1. Moreover, the ability to detect the ion line is 
arguably the single defining feature of the incoherent scatter radar 
(ISR) class of Thomson scatter radars. This highlights the problem 
of associating the resonant solution of the ion-acoustic mode with 
the ion line in Thomson scatter spectra.

The existence of an ion line in Thomson scatter experiments can 
be explained by the analogy with a driven oscillator described in 
Section 3.2. Waves will continuously be generated at low frequencies 
through Cherenkov radiation by particles moving at v = ω/k, with 
the source terms providing the strength of wave generation. The 
response of the plasma to these generated waves is quantified 
by the dielectric function, with local minima of |ϵ(ω)|2 being 
defined as non-resonant wave frequencies. To test this idea, the 
middle panel of Figure 4 shows |ϵ(ω)|2, and the bottom panel shows 
the corresponding ion line spectra. Because the ion-acoustic mode 
is heavily Landau-damped (imaginary part of ϵ), the minima values 
of the dielectric function do not correspond exactly to the roots 
of Re[ϵ] = 0 when they exist. Similarly, the peaks in the ion line 
spectra do not correspond to either the resonant or non-resonant 
frequencies of the ion-acoustic mode since the driving source term 
is also important.

The ion line is effectively unmagnetized for most aspect angles 
(Milla and Kudeki, 2011). Therefore, the driving source term for ion-
acoustic waves is the Maxwellian distribution given by Equation 31. 
For electrons, the argument of the Maxwellian is ω

kvthe
≪ 1, so the 

electrons drive waves of equal strength at all frequencies relevant to 

the ion line. However, the ion source term will drop off significantly 
on the range of frequencies relevant to the ion line. This means 
that while the plasma responds best at frequencies around ω

kvthi
≈

2 (see Figure 4), the strongest driving force is at lower frequencies, 
ω

kvthi
< 1. The balance between the response of the plasma (dielectric) 

and the continuous generation and driving of waves leads to the 
characteristic double-hump shape of the ion line where the peak 
spectral power does not directly correspond to a resonant or non-
resonant wave frequency.

Despite the peak ion line power having no relation to the ion-
acoustic frequency, we can still define the ion-acoustic frequency 
as either a root to Re[ϵ] = 0 if it exists or the frequency where 
|ϵ(ω)|2 is at a minimum. Figure 5 shows the calculation of the ion-
acoustic frequency with this definition as a function of electron 
and ion temperature. The behavior of the ion-acoustic mode cleanly 
transitions from the resonant to non-resonant cases when Te =
3.5Ti. 

4.2 Gyro line (electrostatic whistler mode)

Gyro lines in Thomson scatter experiments are typically 
associated with the electrostatic whistler mode. The whistler mode is 
inherently magnetized and propagates via the electrons’ gyro motion 
around the magnetic field. The relatively low power of the gyro line 
compared to the plasma and ion lines has led to few observations of 
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FIGURE 10
Te = 1500K curve for Arecibo (430 MHz) at 45° aspect angle from Figure 6 examined in more detail. (Top panel) Magnitude of the dielectric function 
(black curve) with a distinct minimum at the plasma line (ω/k∥vth,e ≈ 7). Source term (orange curve) is also plotted, showing its variation with frequency. 
(Bottom panel) Resulting scattering power, with distinct peaks at normalized frequencies of 2 and 5 occurring from distribution driven fluctuations.

it—mostly by the Arecibo Observatory (Bhatt et al., 2006; Janches 
and Nicolls, 2007; Hysell et al., 2017) and the European Incoherent 
Scatter (EISCAT) radar (Malnes et al., 1993). The gyro line has 
remained an enigma within the ionospheric radar community due 
to its limited observations and the complicated magnetized terms 
in the dielectric function. Hysell et al. (2017) provides a thorough 
examination of the resulting whistler mode dispersion relation, 
concluding that a simple formula for the gyro line frequency 
does not exist.

The standard theory for the gyro line frequency ωGL makes the 
following harsh assumptions (Hysell et al., 2017):

k2
∥v

2
th,e ≪ k2

⊥v
2
th,e ≪ ω2

GL ≪Ω2
ce ≪ ω2

pe (39)

Using Appendix Equation A6 for the magnetized electron 
susceptibility and neglecting ions, the dielectric function is

ϵ = 1+ α2(1− ω
k∥vth,e
∑
n

e−k
2
⊥ρ

2
e In(k2
⊥ρ

2
e){2Daw[yen] + i√πe−y

2
en})

(40)

With the harsh assumptions of Equation 39, roots to the real 
part of Equation 40 can be obtained through the following steps: 
1) assuming that k2

⊥ρ
2
e ≪ 1 means I0(k

2
⊥ρ

2
e) ≈ 1 and In≠0(k

2
⊥ρ

2
e) ≈ 0, 

so the n ≠ 0 terms are dropped from the summation; 2) Taylor-
expand the remaining Bessel function in the small argument limit; 
3) Taylor-expand the Dawson function in the large argument limit; 

4) retain only first order terms in both expansions; 5) solve for 
ω2

GL using the quadratic equation. With these steps and a few 
minor approximations detailed in Hysell et al. (2017), the gyro line 
frequency is found to be

ω2
GL =Ω2

ce cos2 θ
(1+ 2

k2v2
th,e

Ω2
ce
)

(Ω2
ce

ω2
pe
+ 1− 3

4
k2v2

th,e

Ω2
ce
)

(41)

From Equation 39 we have assumed Ω2
ce

ω2
pe
≪ 1 and 

k2v2
th,e

Ω2
ce
≪ 1, so 

both those factors can be neglected to produce the often quoted gyro 
line frequency of

ωGL ≈Ωce cos θ (42)

Note that in this study, the convention for the aspect angle is 
that θ = 0° corresponds to waves propagating parallel to the magnetic 
field. For radar observations, θ = 0° is obtained when the radar line 
of sight is parallel to the Earth’s magnetic field.

The assumptions in Equation 39 are required for a clean, 
simple solution for roots of the dielectric function. However, those 
assumptions are often not justified. At lower altitudes where gyro 
lines are often observed, both ωpe and Ωce can be a similar order of 
magnitude (Bhatt et al., 2008). The constraint of k2

∥v
2
th,e ≪ k2

⊥v
2
th,e is 

not valid for any gyro lines at Arecibo, as it implies k∥ ≪ k⊥, meaning 
that cos θ≪ sin θ, but the aspect angles at Arecibo range from 30° to 
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FIGURE 11
Dielectric function and scattering spectrum showing plasma line splitting. Note that x-axis is plotted in physical units of frequency. ωpe/Ωce ratio is 1.35 
for the low density (black) curves, 1.91 for the middle density value (blue curves), and 2.34 for the higher density value (orange curves). In each panel, 
roots (stars) and minima (circles) are only marked for the plasma lines. This plot uses parameters from Bhatt et al. (2008), including the Arecibo 
wavelength and magnetic field, and a 60° aspect angle.

60°. Furthermore, while k2
⊥v

2
th,e ≪Ω2

ce is typically justified and means 
that the argument of the Bessel functions is small, it is often not 
small enough to justify dropping the n ≠ 0 terms. A more robust 
assumption is to assume that k2

⊥ρ
2
e  is small enough that only the n =

1 term is comparable to the n = 0 term. This simplifies the dielectric 
function to

ϵ = 1+ α2(1− ω
k∥vth,e

e−k
2
⊥ρ

2
e(I0(k2

⊥ρ
2
e){2Daw[y0] + i√πe−y

2
0}

+I1(k2
⊥ρ

2
e){2Daw[y1] + i√πe−y

2
1})),

(43)

where y0 = ω/k∥vth,e and y1 = (ω−Ωce)/k∥vth,e in Equation 43.
The imaginary parts and therefore the damping of the whistler 

mode are dominated by the terms exp(−y2
0) and exp(−y2

1). The 
former describes Landau damping and is important at small 
frequencies, and the latter describes cyclotron damping at the first 
gyro-resonance and is maximized when ω ≈Ωce. Neglecting the 
damping components, the normal mode frequency of the gyro line 
can be obtained by solving for roots to the real part of the dielectric 

function. Noting that y1 = y0 −Ce, which defines Ce =Ω/k∥vth,e as 
the normalized gyrofrequency, we can then solve for the roots of

0 = 1+ α2(1− 2y0e−k
2
⊥ρ

2
e{I0(k2

⊥ρ
2
e)Daw[y0] + I1(k2

⊥ρ
2
e)Daw[y0 −Ce]})

(44)

As with the plasma line, the dielectric function at ω = 0 is strictly 
positive, so a root will only exist if, for some non-zero frequency, the 
dielectric function is negative. We can write as the inequality

1
α2 + 1 < 2y0e−k

2
⊥ρ

2
e{I0(k2
⊥ρ

2
e)Daw[y0] + I1(k2

⊥ρ
2
e)Daw[y0 −Ce]}

(45)

The problem in solving either Equations 44 or 45,  is 
that the Bessel and Dawson functions are transcendental, and 
a general solution is not tractable unless the assumptions 
of Equation 39 are made to justify Taylor expansions. It is 
therefore not possible to obtain an analytical solution for the 
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FIGURE 12
Zooming in on the dielectric function for split plasma lines. Densities correspond to ωpe/Ωce ratios of 1.71, 1.81, 1.91, 2.00, and 2.09 from low to high 
density. Note the inset showing the roots to the real part of the dielectric function and the triple-root for the density of 3.6× 1010 m−3 (orange curve). 
Second harmonic of the gyro frequency is marked as the vertical dashed line at 1.88 MHz and is the frequency where cyclotron damping is strongest.

TABLE 2  Terminology of types of waves and fluctuations in a plasma.

Name of 
fluctuation

Spectral shape 
of feature

Colloquial name Coherence of 
scatter

Condition Example of 
spectral feature

Normal wave mode Sharp line Incoherent scatter Coherent Root to ϵ = 0 Plasma line (α≫ 2). 
Some gyro lines.

Quasi-normal wave 
mode

Sharp line Incoherent scatter Coherent Root to Re[ϵ] = 0 and 
small but non-zero Im[ϵ]

Damped plasma lines 
(α ≈ 2). Ion line for Te >
3.5Ti. Some gyro lines.

Non-resonant wave 
mode

Broad line Incoherent scatter Coherent Local minima of ϵ Ion line when Te < 3.5Ti
(most common). Some 
gyro lines.

Distribution-driven 
fluctuations

Broadband, relatively flat Unnamed Minimal coherence No root or minima of ϵ. 
Collective regime where 
α≫ 1

Shelf that fills in spectra 
between spectral lines.
Vestigial gyro lines at 
high Te.

Non-collective scatter Broadband, matches 
shape of distribution

“True” incoherent scatter,
or Gordon (1958) 
incoherent scatter

Incoherent No root or minima of ϵ. 
Non-collective regime, 
α ≤ 1

Laser measurements of 
laboratory/fusion 
plasmas.

gyro line frequency or conditions for its existence unless the 
approximations in Equation 39 are used.

The existing gyro line theory in Equations 41 and 42 relies on 
a narrow set of assumptions needed to simplify the magnetized 
dielectric function. The primary difficulty in a general solution is 
the presence of the infinite summation of the Bessel functions, the 
argument of which is called the “finite Larmor radius parameter” and 
is defined in Equation 46 as:

b ≡ k2
⊥ρ

2
e = k2
⊥

v2
th,e

2Ω2
cs

(46)

For infinitesimal b, only the n = 0 term is needed for the 
dielectric function. However, the n = 1 term can become important 
even when b is as small as 0.03 (Figure 6). As the finite Larmor radius 
parameter increases, higher order terms in the summation in the 
dielectric function are needed. These higher order terms can either 
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FIGURE 13
The same spectra from Figure 1 plotted again, with the spectral features labeled using terminology in Table 2. Note that distribution driven fluctuations 
have always been present in calculations of the full-bandwidth Thomson scatter spectra but have previously been ignored.

remove roots from the dielectric function (for intermediate aspect 
angles) or further complicate the problem by creating even more 
roots that correspond to the magnetized Berstein modes (aspect 
angles near 90°).

Figure 6 shows the gyro line’s dependence on electron 
temperature and therefore on b. At low temperature, the finite 
Larmor radius parameter is b = 0.035, and a normal mode solution 
is clearly present even though the n = 1 term contributes to the 
dielectric function. Visually, the importance of the n = 1 term can 
be assessed by seeing the substantial increase in cyclotron damping 
(Im[ϵ]) when ω ≈Ωce. Increasing the temperature in Figure 6 shows 
that the normal mode resonance is lost when b = 0.071, but a 
non-resonant mode is still obtained by finding the minima of 
the dielectric function. Further increasing the temperature leads 
to b = 0.106, allowing the higher-order terms in the summation 
to wash out the root typically produced by the n = 0 term. At 
the higher temperature of 1500 K, the minimum of the dielectric 
function disappears, but a vestigial gyro line is still present in 
the scattering spectra. This interesting feature will be further 
discussed in Section 4.3.

The finite Larmor radius parameter can be minimized by 
either smaller temperatures, larger magnetic fields, or smaller 
wavenumbers. Note that changing the aspect angle will change b 
as well, but the tradeoff is that the argument ω/k∥vth,e also changes 
and will modify the location of the roots and damping. While the 
magnetic field varies slightly with altitude in the ionosphere, both k⊥
and Ωce are primarily dictated by experimental setup. To investigate 
this dependence, the gyro line for a 230-MHz radar is calculated in 
Figure 7 (results are applicable to 224 MHz and 233 MHz EISCAT 
radars in Table 1). The Bragg scatter wavenumber for a 230-MHz 
radar is k = 9.64, compared to Arecibo’s k = 18.02 at 430 MHz. 
Additionally, for EISCAT’s location in northern Scandinavia, the 
magnetic field at ∼200 km is 4.92× 10−5 T, compared to 3.36×
10−5 T at Arecibo. Both of these conditions lead to smaller finite 
Larmor radius parameters than at EISCAT compared to Arecibo for 

a given temperature. The smaller finite Larmor radius parameter 
leads to most of the assumptions in Equation 39 being valid, so 
the resulting whistler mode is a normal mode of the plasma with 
minimal damping. Figure 7 shows that the resulting gyro lines at 
EISCAT are considerably sharper and more powerful than the gyro 
lines at Arecibo.

The dependence of the gyro line frequency on plasma 
parameters is investigated in Figure 8 for Arecibo and Figure 9 for 
EISCAT. In both figures, the aspect angle is fixed at 45°, with plots 
at different aspect angles shown in the supporting information. 
In panel (a) of each figure, the gyro line frequency is obtained 
by solving for the minima of |ϵ|2. This frequency is compared to 
the frequency found from solving roots of Re[ϵ] = 0 in panel (b). 
For EISCAT, the roots are distinct and easy to obtain, so there is 
little difference between the two resulting frequencies. However, for 
Arecibo, the root is not present across a wide range of typical plasma 
parameters, and therefore the resulting gyro line is associated with 
non-resonant whistler waves. In panel (c) of Figures 8 and 9, the 
power at the gyro line frequency is calculated and compared to the 
ion line power. The ion line power is calculated analytically for ω =
0 as (Froula et al., 2011)

S(ω = 0, k⃗) = 2√π
k∥vth,i

[[

[

α2

1+ α2(1+ Te
Ti
)
]]

]

2

(47)

Since the gyro line is not influenced by ion dynamics, it is 
assumed that Te = Ti.

The estimate in panel (c) shows how easily the gyro line 
could detect relative to the ion line. However, as the electron 
temperature increases, the gyro line experiences more Landau 
and cyclotron damping, broadening the spectral peak. Eventually, 
for high enough temperatures, the whistler mode becomes non-
resonant and decreases in power while broadening substantially 
(Figure 6). This could lead to experimental difficulties in detecting 
the gyro line peak within a noisy measurement of the scattering 
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spectra. Panel (d) in Figures 8, 9 estimates the relative prominence 
of the gyro line peak by calculating the power at ωGL and 0.9ωGL and 
plotting the ratio of the power in dB, 10 log10(

S(ωGL)
S(0.9ωGL)
). While the 

choice of 0.9 is somewhat arbitrary, it does provide an indication of 
how prominent the gyro line peak will be compared to the broader 
noise-dominated spectrum.

Solving for the gyro line frequency shows that the minima 
finding technique has two significant advantages over the typical 
root solving in normal mode analysis. First, the gyro line frequency 
can be calculated across a wider range of plasma parameters, better 
aligning with them where gyro lines are observed. Second, when a 
root does exist, it is significantly easier to find it with a bracketing 
method that searches for it near the non-resonant frequency. The 
root solving in this paper bracketed the root between 0.8ωGL,min and 
1.2ωGL,min, with ωGL,min being found by minimizing |ϵ|2. This proved 
to be a robust root solving algorithm that always found the correct 
root with no convergence issues.

Figures 8, 9, along with the similar figures in the Supplementary 
Material, provide a full range of conditions needed for a radar 
to observe gyro lines at Arecibo and EISCAT VHF/3D. The data 
availability statement provides the code used to generate these 
figures and can readily create similar figures for different radars to 
predict the detectability of gyro lines. 

4.3 What if there are no minima of the 
dielectric function?

Figure 6 plots the gyro lines at Arecibo for different electron 
temperatures. As the temperature rises, the root to the dielectric 
function disappears and then the minima of the dielectric disappear. 
Interestingly, a gyro-line-like feature remained present for each 
temperature. To examine this more closely, Figure 10 re-plots the 
same Te = 1500K case at Arecibo from Figure 6 across a wider 
frequency range. While the plasma line at ω/k∥vth,e ≈ 7 corresponds 
to a distinct minimum of |ϵ|2, there are no other minima of the 
dielectric. However, broad spectral peaks can still be observed at 
ω/k∥vth,e ≈ 2 and ω/k∥vth,e ≈ 5. While the peak at ω/k∥vth,e ≈ 2 was 
referred to as a “vestigial gyro line” in the previous section, there 
is no such transition from a gyro line for the ω/k∥vth,e ≈ 5 peak. 
Therefore, these peaks need a more general interpretation.

In Figure 10, the only visible feature of the dielectric function 
at the vestigial gyro line is an inflection point. However, there 
is no obvious interpretation for what an inflection point in the 
dielectric function would physically mean, so we therefore attribute 
no significance to these inflection points. Furthermore, it has yet 
to be determined why there is scattering power at any of the other 
frequencies between the ion and plasma lines. Both the broad 
“vestigial gyro line” and the broader “shelf ” feature between the 
ion and plasma lines can again be explained by the analogy of 
the driven oscillator. Previously, we focused on characterizing the 
plasma’s response to driven oscillations by looking for roots or 
minima of the dielectric function. The balancing part of this analogy 
is the source term that generates waves and drives fluctuations in 
the plasma. This source term is plotted in Figure 10. Again, there are 
inflection points at the peaks in the scattering power, but it does not 
appear to be fruitful or physically meaningful to try and characterize 
inflection points. However, it is clear that the non-constant source 

term balanced against the dielectric function leads to the bumps in 
the scattering spectra, as well as the general filling-in of the spectra.

The vestigial gyro lines and shelf features in Figures 3, 6, 
7, and 10 are not dictated by the plasma’s response but by the driving 
of the system by the equilibrium distribution, and therefore we 
call these features “distribution driven fluctuations”. This choice of 
terminology reflects the dominant role of the source term in driving 
the fluctuations and creating a possibly measurable scattering power. 
For a distribution driven fluctuation to exist, the driving source 
term must be substantially large and continuously maintained in 
equilibrium in order to survive the ensemble average. In contrast, 
the normal modes in a plasma can be driven by an infinitesimal 
perturbation and still result in high scattering power. 

4.4 Interpreting exotic spectra

The transition of gyro lines into broad distribution driven 
fluctuations is one example of non-standard Thomson scatter 
spectra. Other exotic spectra include perpendicular-to-B ion 
lines driven by Coulomb collisions (Kudeki and Milla, 2011; 
Milla and Kudeki, 2011), ion lines distorted by non-Maxwellian 
distribution functions (Goodwin et al., 2018), and plasma line 
splitting (Bhatt et al., 2008). In this section, we provide an example 
of interpreting these types of exotic spectra by examining the roots 
and minima of the dielectric function for plasma line splitting.

Plasma line splitting is a phenomenon first observed at Arecibo 
by Bhatt et al. (2008), where two distinct spectral peaks occur near 
the plasma frequency. This phenomenon was originally proposed in 
Salpeter (1961), predicting that two roots will appear in the dielectric 
function when the plasma frequency is near the second harmonic of 
the gyro frequency (ωpe ≈ 2Ωce). This splitting is shown in Figure 11, 
plotting the dielectric function and scattering spectra for several 
densities. At the lower density (ne = 2× 1010 m−3), the plasma line is 
sharp and corresponds to a normal mode of the plasma; a similarly 
sharp plasma line occurs at higher density (ne = 6× 1010 m−3). 
However, at the chosen intermediate density (ne = 4× 1010 m−3,) 
the plasma line has two distinct spectral peaks, one of which 
corresponds to a normal mode with a root to Re[ϵ] = 0, and the 
other peak corresponds to a non-resonant wave where the dielectric 
function is at a minimum but has no root.

The parameters in Figure 11 show the plasma line occurring 
at a lower frequency (∼1.5 MHz), then jumping to a higher 
frequency (∼2.5 MHz), with the plasma line splitting occurring 
as an intermediate step. To understand this transition further, 
Figure 12 plots the dielectric function for a narrower set of density 
values, with the inset showing where roots to Re[ϵ] = 0 occur. 
The predicted behavior from Salpeter (1961) occurs, where the 
single root occurs at lower frequencies and then jumps to higher 
frequencies. Interestingly, the double root reported in Salpeter 
(1961) is actually a triple root to the real part of the dielectric (ne =
3.6× 1010 m−3 curve, corresponding to ωpe/Ωce = 1.81). However, 
the scattering spectrum only has two peaks because cyclotron 
damping is strongest at the harmonics of the gyro frequency, and 
therefore the middle root has no effect on the wave behavior.

For each of the densities shown in Figure 12, the plasma line 
spectrum has two distinct peaks that sit on top of a broader spectral 
enhancement. This broader spectral enhancement is another 
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example of distribution-driven fluctuations, where waves are 
continually excited near the second gyroharmonic. This is seen from 
evaluating the magnetized source term (Appendix Equation B4) 
with ω = 2Ωce, and seeing that exp(ω−2Ωce

k∥vth,e
) is maximized at this 

condition. The plasma line spectrum in this regime is therefore a 
balance between the driving of waves by the electron’s gyro motion 
and the plasma’s response in this frequency range. The imaginary 
part of the dielectric shows strong cyclotron damping at the second 
gyroharmonic, whereas the real part of the dielectric is close to 
0 for a broad frequency range. The measurements of plasma line 
splitting in Bhatt et al. (2008) showed some filling in of the spectrum 
between the two spectral peaks, but a careful reanalysis of those 
experiments would need to be done to rule out instrumental or 
signal processing effects. 

5 Discussion

5.1 Types of Thomson scatter

This study has separately examined the dielectric function for 
the plasma line, the ion line, and the gyro line. These are common 
names for the spectral features observed in ionospheric Thomson 
scatter experiments, but as we have shown, the underlying wave 
mode or fluctuation may have a different physical origin depending 
on the plasma and radar parameters. Table 2 consolidates the 
terminology used to describe these different types of waves and 
fluctuations, the required conditions for that type of fluctuation 
to be present, and the corresponding spectral features. The 
usage of this terminology for Thomson scatter experiments is 
demonstrated in Figure 13, which revisits the sample Arecibo 
spectra plotted in Figure 1.

Table 2 also highlights a major problem within the ionospheric 
radar community: every measurement is erroneously called 
“incoherent scatter.” The original idea of ionospheric radar was 
posited in Gordon (1958) and assumed that electrons in the 
ionosphere would be randomly distributed, and therefore the phases 
of scattered waves would be random and the total backscatter 
would be incoherent. The terminology of “incoherent scatter” 
has persisted despite its well-known inaccuracy. Colloquially, an 
incoherent scatter radar is any ionospheric radar capable of making 
routine ion-line measurements with enough sensitivity to fit the 
ion line for plasma parameters. Formally, these are high-power 
and large-aperture Thomson scatter radars that operate in the 
collective scattering regime where α≫ 1 (Equation 19). When 
α≫ 1, the incident wavelength is larger than the Debye length, 
and the resulting scatter is off plasma waves. These wave fronts 
provide enough structure for the Bragg scatter condition to be met, 
where constructive interference occurs from scatter off successive 
wavefronts and creates coherence in the backscattered wave.

The distribution-driven fluctuations shown in Figure 10 are 
an interesting transition case between coherent and incoherent 
scatter. In terms of α, these fluctuations are well within the 
collective scatter regime. However, the scatter is weak and 
largely dictated by the equilibrium distribution. True incoherent 
scatter (α < 1) is also weak, and the spectra exactly follow 
the electron distribution. The physical distinction is that 
true incoherent scatter is Doppler broadening of an incident 

electromagnetic wave, whereas distribution-driven fluctuations 
physically represent a forced oscillation at a non-resonant 
frequency, and therefore the scattered wave will have some degree
of coherence. 

5.2 Summary

The goal of this study has been to explain the presence of strong 
spectral features in Thomson scatter experiments when normal wave 
modes are not present. The ubiquitous measurements of ion lines in 
the ionosphere were a motivating puzzle which are now explained as 
non-resonant ion acoustic waves. Non-resonant waves are defined 
as frequencies where the magnitude of the dielectric function is 
at a local minimum. This holds a physical analogy to a driven 
oscillator, where waves are continuously created by Cherenkov 
radiation (source term) and the dielectric function characterizes the 
plasma’s response to continuously driven oscillations. Normal wave 
modes such as the Langmuir mode are also continuously driven, and 
their amplitudes are the result of a balance between the damping of 
the wave (dielectric function) and the driving source.

Our analysis used a specific framework (Froula et al., 2011) for 
calculating the dielectric function and source terms in a thermal 
plasma. This framework is ideal for this study as it is based on 
the plasma kinetic equations, but it suffers deficiencies in modeling 
collisions with the BGK operator. The more accurate Coulomb 
collision operators in Kudeki and Milla (2011) and Milla and Kudeki 
(2011) are required for accurate computations of the ion line at 
aspect angles within ∼10° of perpendicular to the magnetic field, and 
possibly the gyro line in the same regime. The ideas developed here 
can be generalized to this perpendicular-to-B regime by analyzing 
the dielectric functions from Kudeki and Milla (2011) and Milla and 
Kudeki (2011). For example, the ion line exactly perpendicular to B 
is created by collisional diffusion across magnetic field lines (Milla 
and Kudeki, 2011) and is best classified as a distribution driven 
fluctuation.

For extant radars, EISCAT-3D and EISCAT-VHF are best 
equipped to observe gyro lines and further explore the transition 
from normal modes at lower temperatures to quasi-normal or 
non-resonant wave modes at higher temperatures. Nonetheless, the 
highest resolution gyro line observations were made at Arecibo 
(Bhatt et al., 2006; Hysell et al., 2017). Future research will 
examine archived Arecibo experiments to look for gyro lines 
that transition from sharp spectral peaks to distribution driven 
fluctuations which would appear as a broad shelf feature between 
the ion and plasma lines. The −20 dB or lower power of the 
shelf feature places it at the edge of Arecibo’s sensitivity, although 
experiments such as Hagen and Behnke (1976) showed Arecibo 
to be capable of measuring spectra in the very weak, non-
collective regime.
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