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Thomson scatter radars have successfully measured plasma parameters in
the ionosphere for over 60 years. Fundamentally, the radars measure increased
power returns when the Bragg scattering condition is met by a source of density
fluctuations in the plasma. Typically, wave modes of the plasma provide the
source of structuring, and the radars measure strong power returns at the
ion line which is associated with the ion-acoustic mode, the gyro line which
is associated with the electrostatic whistler mode, and the plasma line that
comes from the Langmuir mode. However, the existence of an ion-acoustic
mode or electrostatic whistler mode is not guaranteed in the ionosphere. In
this study, a formalism is developed to explain hon-resonant wave modes as
features occurring at frequencies where the dielectric function has a local
minimum as opposed to a root corresponding to the typical resonant wave
mode. With this formalism, the frequency of non-resonant waves is numerically
solved as a function of basic plasma parameters. By solving for minima of
the dielectric function, the frequency and intensity of gyro lines is determined
for a wide range of plasma temperatures and densities. This analysis explains
why Arecibo gyro lines are typically weak in intensity and result from non-
resonant waves. For VHF systems like EISCAT, gyro lines are shown to be strong
spectral peaks corresponding to standard resonant solutions for electrostatic
whistler waves.

Thomson scatter, ionosphere, radar, gyro line, wave generation, kinetic plasma, EISCAT

1 Introduction

For decades, Thomson scatter radars have measured the altitude profiles of electron
temperature, ion temperature, plasma density, and bulk drifts in the ionosphere. The datasets
produced by these radars provide an experimental foundation for studies on the heating and
cooling of the ionosphere, its coupling to the neutral atmosphere and the magnetosphere,
and kinetic plasma processes such as collisions and Landau damping (Evans, 1969).
Despite the utility and success of these radars, it has yet to be explained how some
of the observed plasma density fluctuations are created when there are no normal
wave modes. This study thus seeks to explain the existence of the standard ion line
and gyro line features while discarding the misleading terminology of “incoherent
scatter radar”

If the ionosphere was composed of a randomly distributed gas of free electrons,
then each photon scattered off an electron would return back to the radar with a
random phase. These phases would add up incoherently, resulting in weak power
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returns that require the sensitivity of a 300+ meter dish to measure
(Gordon, 1958). However, early experiments by Bowles (1958)
showed that a significantly smaller antenna can measure scatter
off the ionospheric plasma because of collective effects in the
plasma. Naturally occurring collective effects such as waves and
density irregularities will create a structuring in the plasma that
satisfies the Bragg condition of the radar. For example, if a plasma
wave exists with a wavelength of half the radar’s wavelength, then
the backscatter from successive wavefronts will be in phase and
will add coherently, much like Bragg scattering in a crystal lattice
(Kudeki and Milla, 2011). This coherence of phases will significantly
increase the return signal to the radar, and the wave’s motion will
impart a Doppler shift onto the signal that can be fit into kinetic
plasma theory in order to estimate plasma parameters (Beynon and
Williams, 1978; Vallinkoski, 1988).

This study explores a regime of scatter that fits between the
“true incoherent scatter” proposed by Gordon (1958) and the
colloquially used “incoherent scatter” first measured by Bowles
(1958) (which is a misnomer, as the scatter of waves is coherent).
For a plasma near thermal equilibrium, there are three electrostatic
wave modes that can exist to provide density structuring to satisfy
the Bragg condition—the Langmuir mode, ion-acoustic mode, and
electrostatic whistler mode—and these modes correspond to the
sharp features of Thomson scatter spectra called the plasma line,
the ion line, and the gyro line, respectively (Figure 1). For typical
ionospheric conditions, the Langmuir mode is always present, but
the ion-acoustic mode and electrostatic whistler modes can be cutoff
for a range of temperatures and densities. At these cutoffs, the
dielectric function does not have any roots, but local minima are
present and physically represent the plasma partially propagating
a wave. By examining the dielectric functions of the plasma, this
study will show that the ion and gyro lines exist as spectral
features resulting from oscillations driven by the initial state of the
plasma. Additionally, finding minima of the dielectric function is a
significantly easier numerical approach than root finding, and we
show that this approach leads to easy solutions for the frequency and
intensity of gyro lines and ion lines across a wide range of plasma
parameters.

The primary goal of this study is to calculate the plasma
parameters required to observe an ion or gyro line feature in
Thomson scatter spectra. This is the main scientific result of this
study, and readers primarily interested in this result can skip
to Section 4. However, this study is also intended to provide a
complete and self-contained interpretation of Thomson scatter
spectra. To do this, Section 2 reviews some standard results from
kinetic plasma theory and then examines the dielectric function
of Langmuir waves as a simple case. In Section 3, a physical
justification for finding the minima of a dielectric function is
developed by analogy with a driven oscillator. For a driven oscillator,
the amplitude of oscillation is infinite when driven at the resonant
frequency of a normal mode. Therefore, minima in the dielectric
function correspond to the largest amplitude waves possible in a
given frequency range, resulting in the ion and gyro line spectral
features. Finally, Section 5 provides a classification of different
types of scattering, including scatter off non-resonant modes, true
incoherent scatter, and colloquial incoherent (actually coherent)
scatter, while trying to clarify this obviously confusing terminology.
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2 Roots of the dielectric function

In this section, we review the physical concept of a normal
mode (Section2.1) and how it applies to resonant waves in
a plasma (Section2.2). The Langmuir mode is a standard
plasma wave, and Section 2.3 shows how the plasma line arises from
standard root solves (normal modes) of the dielectric function.

2.1 Normal mode analysis

Normal mode analysis is a technique that finds the resonant
frequencies of any oscillating system. Before using this technique to
describe waves in a plasma, it is useful to consider a simple example
of two masses with springs on each side, as shown in Figure 2. The
equations of motion for the position of each mass are found by
applying Newton’s second law,

2

M—x; = =2KxX] + KX, (1)
dZ

M—2x, = KX, — 2KX,, (2)
2 1 2

where « is the spring constant from Hooke’s law.
This set of differential equations can be written in matrix form as

d | % -2k K X

m—

a7 |,

3)

K 2K X,

To find the normal modes of this system, Equation3 is
Fourier transformed, so effectively d% — iw. The system of equations
then becomes
-2k

K X

(4)
X, -2K

K X,

In this form, the goal of normal mode analysis becomes
apparent: create and solve an eigenvalue equation. The left-hand side
shows the eigenvalues mw?, while the right-hand side is the linear
transform corresponding to the forces on each mass. To complete
this example, Equation 4 is rearranged:

-mw? + 2K

—K X

=0.
X2

5)

—K -maw? + 2K

The solution of Equation 5 is only possible if either x; = x, =0
(the trivial solution) or if the matrix is not invertible. Setting the
determinant to 0 and solving the resulting polynomial gives the
eigenvalues of w:

w=LZ(2x1). (6)
m

The two positive roots of w® in Equation 6 are the resonant
frequencies corresponding to the normal modes of the system. Since
this system is linear, the general solution to the equations of motion
(Equations 1, 2) is a superposition of these two normal modes. This
technique can be generalized to any dimension system of linear
differential equations, including the set of equations that describe
the motions of a plasma.

frontiersin.org


https://doi.org/10.3389/fspas.2025.1607631
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Longley et al. 10.3389/fspas.2025.1607631
10 T T T T T
lon Line
10 :
S
(]
% Gyro Lines
8L Pl Li Plasma Line g
o 10 asma Line
(@]
£ \
—
L
o O o .
O
w
10-12 - -
1044 1 1 1 1 1
-6 -4 -2 0 2 4 6
Frequency (MHz)
FIGURE 1
Theoretical calculation of Thomson scattering spectra (Froula et al., 2011), with sharp spectral features labeled. Plasma parameters for this plot are T, =
T;=500K, n,=2x10"m™>, k=18.4, and an aspect angle of 6 = 60°
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frequencies, marked by dashed vertical lines. In Section 3.2, a sinusoidal driving term is added to the equations of motion. (c) New spectral peaks that
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2.2 Deriving the dielectric function

The goal of normal mode analysis in a plasma is the same
as the simple example above: to create an eigenvalue equation
from a system of differential equations, then solve for the resonant
frequencies of the plasma. The motions of a plasma are described at
the kinetic level by the Vlasov equation for each species s:

OF[t,%,7] o G m = L
ST+v-VxFS[t,x,v]+;Z(E[t,x]+v><B)-VVFS[t,x,v =0.
(7)

The Vlasov equation is effectively a total time derivative of the
distribution function, with the Lorentz force as the acceleration. To
close this set of equations, the electric and magnetic fields need to be
specified. While the following solutions and ideas work for general
electromagnetic waves, we will restrict the analysis in this paper to
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electrostatic solutions since those are the wave modes measured by
Thomson scatter radars. Therefore, Gauss’ law is appropriate to close
the system. Additionally, we do not include a collision operator on
the right-hand side of Equation 7 as collisions act to damp waves,
but they do not significantly affect the resonant frequencies.

As defined in Equation 7, the Vlasov equation is nonlinear
since the Lorentz force multiplies the velocity derivative of the
distribution. For normal mode analysis to apply, the Vlasov equation
and Gauss’ law need to be linearized and then Fourier-Laplace
transformed. This is done using standard techniques, with
each variable being decomposed as a zero-th order term and
a first-order perturbation, such as F,=F, +F,, with any
resulting second-order terms discarded. The full linearization
process, including the justification for dropping second order
terms, is detailed in Longley (2024). The linearized Vlasov
equation is then
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where k is the wavenumber from the spatial Fourier transform
and w is the frequency from the Laplace transform in time.
Note that taking the Laplace transform in time creates the
initial value term (f)) on the right-hand side. Now linearizing
Gauss’ law,

I | >

ik-Ey[w,k] = gpl[w,k], )

where p; = Y'sq.n, is the charge density. Since the number density
is defined as n,, = I dv’F,, this creates a closed system of equations
for E; and n, for each species.

The Thomson scattering spectra is defined as S(w) = <|nle(w)|2>,
so typically Equations 8, 9 are solved for the perturbed electron
density n;, (Froula etal.,, 2011). However, to construct an eigenvalue
equation for normal mode analysis, this system of equations is
instead solved for the perturbed electric field. This is done by
first integrating Equation 8 to obtain the perturbed densities,
then substituting those into the charge density in Gauss’ law
(Equation 9). This is easiest to demonstrate in the unmagnetized
limit, where B=0. Integrating Equation8 over all velocity
space obtains
Rk

j E [w,k|-V Fy ¥
nls[w,z]:_%jdvswnjdv 3 .
m

(w—k-{/'—iy)
(10)

S

Taking Equation 10 for the densities of electrons and a single ion
species, the electric field in Equation 9 becomes

the meaning of Equation 11 is clearer if the terms with E, are
grouped together. Also recognizing that for electrostatic waves, k and
E, are colinear (k- E, = kE,), we obtain

k

+i_e Jdv3 Fli[tO,E,V] —Jd173 Fle[to,z,V]
(w . (w—PV—iy) ’

(12)

The initial value terms (Fls[to,z, 17']) are not multiplied by Ej,
so Equation 12 is not a linear transformation of E; as it does not
satisfy the additive property. These initial value terms are analogous
to a source term for the driven oscillator and are the primary
subject of Section 3. However, for normal mode analysis, the steady-
state behavior of the system is of interest, so initial perturbations
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can be ignored. Dropping these initial value terms, we arrive at the
desired eigenvalue equation:

) - ie? 1) 1 [ ,5 k-V,Fy
i [wF] == ] o [ =t
(13)

= jd173 KV YVFOEW]
m, (w—k~1'/’—iy)

Physically, this shows the left-hand side as eigenvalues for the
density perturbations on the right-hand side.

The integrals in Equation 13 are defined as the susceptibility of
each species:

2
—_— - 0
Xs[w,k]zéjdfﬁq;k# (14)
Kk w-k-v—iy oV
where wf,s =nye’/my, is the plasma frequency for each

species, and the distribution is now normalized using the
notation Fy, = ny, f,,, so that Id173 fos=1. We can then simplify
Equation 13 using Equation 14

El[w,%] = —El[w,z] . {Xi[“’jé] +Xg[“’j€]}- (15)
Solving for the perturbed electric field in Equation 15,
(1+Xi[“’r%]+Xe[“’j])'E1[“’j€] =0. (16)

The dielectric function of a plasma is defined as € = 1 + y; + y,,, s0
the final result is

([w,%] ~E1[w,%] =0. (17)

Equation 17 is the basis for the normal mode analysis of a
plasma, and considerable literature exists on deriving equivalent
forms (e.g., Bekefi, 1966). Solving Equation 17 means either E, =
0 (the trivial solution) or ¢=0 is required. Therefore, solving for
roots of the dielectric function will obtain the resonant frequencies
of a plasma. Note that in Equation 17, the dielectric function is a
scalar because the electrostatic approximation was used. A general
electromagnetic solution will lead to a 3 x 3 matrix for the dielectric
function, and the roots are obtained by setting the determinant of
the matrix equal to zero.

By writing Equations 16, 17 in terms of susceptibilities,
the assumptions of electrostatic waves (B, =0), unmagnetized
plasma (B, =0), and no collisions can be relaxed by using the
appropriate susceptibilities. Standard plasma physics texts (Bellan,
2006; Froula et al, 2011) have derived these more general
susceptibilities. Here, we make use of collisionless, electrostatic
susceptibilities with Maxwellian velocity distributions. These are
listed in Supplementary Appendix A, for both the unmagnetized
and magnetized cases. Furthermore, Supplementary Appendix B
shows how the Thomson scatter spectra are calculated from these
susceptibilities.

2.3 Example solution: the Langmuir mode

The simplest solution for a root of the dielectric function is
the Langmuir mode. This wave mode is anticipated to occur at a
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FIGURE 3
(Top panel) Real (solid curves) and imaginary (dashed curves) parts of the dielectric function near the plasma frequency. The low density (n, =2 x
10*°m3) and high temperatures lead to the parameter a = 1/(k1p) being relatively small (with k = 18.4). For the T, =1000K and T, = 2500K curves, a
root for the real part of the dielectric exists (circles), but for T, = 5000K there is no such root. (Bottom panel) Plasma line feature in Thomson scatter
shown as spectral peaks occurring near the Langmuir mode frequency.

frequency near the plasma frequency, and therefore ion dynamics
can be neglected (Longley et al., 2021). Plasma lines are well known
to be enhanced by photoelectrons (Longley et al., 2021), but for
simplicity we will only analyze the case of thermally driven plasma
lines such as those detected in Vierinen et al. (2017). Using the
unmagnetized electron susceptibility, the dielectric function at high
frequencies is (Supplementary Appendix A)

€e=1l+y,= 1+¢x2[1—2xeDaw[xe]—i\/Exee""g], (18)
where the parameter « is the ratio of the wavelength to the Debye
length, defined as

(19)

Figure 3 plots the real and imaginary parts of Equation 18
for different sets of plasma parameters. The resonant frequency is
obtained by solving for the roots of ¢=0, which correspond to
eigenvalues of ¢ E; = 0. The parameters chosen in Figure 3 illustrate
three different cases of the dielectric function for the Langmuir
mode. For the T, = 1000K curve, the parameter & = 3.5 means that
the wavelength is significantly larger than the Debye length. With
large o and small Landau damping due to the low temperature, there
exists a single root to ¢ = 0 that is the Langmuir frequency. Raising
the temperature in Figure 3 to 2500 K lowers « to 2.2 and creates
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appreciable Landau damping, so that Im[¢] # 0 for frequencies near
the root of Re[e] =0. This makes a solution to ¢=0 impossible,
but physically it represents a damped wave. A root to the equation
Re[¢] = 0 when damping is present is called a “quasinormal mode”
(Wikipedia, 2023). Note that Landau damping is mathematically
described by the i \/7_rxse”‘§ term in Equation 18, and therefore the
damping is never exactly 0 for finite x,. Physically, Landau damping
is where particles with velocities near the phase velocity of the wave
(v = w/k) efficiently take energy from the wave, leading to a decrease
in the wave’s amplitude (Chen, 2016). The amount of damping is
dependent on the temperature of the distribution, which describes
how many particles have velocities near the phase velocity of the
wave. Even at the lower temperature of T, = 1000 K in Figure 3, some
Landau damping is present, and this case could be strictly defined
as a quasinormal mode. However, a practical distinction is applied
where cases with Im[¢] = 0 are considered normal modes.

Increasing the temperature once more to 5000 K in Figure 3
leads to a=1.6, and the wavelength is now the same order of
magnitude as the Debye length. Physically, the Debye length is an
exponential scale length describing distances where electrons can
easily reconfigure to shield any charge imbalances. Waves propagate
through a plasma by creating and sustaining charge imbalances. It is
therefore no surprise that for the o = 1.6 case, there is no solution to
Re[¢] = 0. However, a distinct spectral peak in the scattering power
still appears for this case.

frontiersin.org
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(Top panel) Real (solid curves) and imaginary (dashed curves) parts of the dielectric function near the ion-acoustic frequency for different temperature

squared of the dielectric function plotted for the same parameters as the top panel. Stars still mark roots to Rel¢], but now the circles mark the minima
values of the dielectric which we define as the non-resonant frequencies of the wave. (Bottom panel) Resulting Thomson scatter spectra, showing that
the non-resonant ion-acoustic mode (T, < 3.5T)) is as easily detectible as the resonant ion-acoustic mode (T, > 3.5T)). Furthermore, the strongest
scatter is displaced from both the resonant and non-resonant frequencies since the driving source is strongest at lower frequencies.

wi(k-vthi)

hose roots only exist if T, > 3.5T,. For each temperature ratio, the imaginary
dependence on the electron temperature increases. (Middle panel) Magnitude

The transition of the plasma line/Langmuir mode from a normal
to a quasinormal mode, and to what will later be defined as a non-
resonant mode, appears to depend on the a parameter. We can
further investigate this by directly solving for roots of the real part
of the dielectric function,

0 = Re[d] = 1+ &*[1 - 2x,Daw]x,]]. (20)

The standard approximation is to anticipate @ = w,,, which in
most conditions means x, > 1. The Dawson function can then be
Taylor-series expanded for large x,, so that 2x,Daw[x,] =1+ ? +

é +O(x;®). Putting this into Equation 20,

ozl_az[%%]. @)
2x,  4x,

This creates the biquadratic equation in x, which is solved
with the quadratic formula. With the assumption that «* > 1 and

Frontiers in Astronomy and Space Sciences

substituting x, = w/kv,, ,, Equation 21 simplifies to the well-known
dispersion relation for Languir waves (Equation 22):

3
2_ 2 2.2
W' =Wy, + Ek Vine (22)

For the Langmuir mode, it is easy to solve for a root of the
dielectric function if the approximations of x, > 1 and &® > 1 can
be made. Without these assumptions, an analytical solution is not
as simple, and in some cases not even possible. An easier and more
interesting question is to make no assumptions on x, and ask what
parameters are needed for a root of Re[¢] = 0 to exist. Looking at the
real part of the dielectric function in Equation 20, we see that at x, =
0, the dielectric is ¢ = 1 + %, which is strictly positive. Therefore, a
rootis only possible if the right-hand side becomes negative for some
value of x,. This gives the condition of

0> 1+a*(1-2x,Daw]x,]) (23)
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The only free plasma parameter in Equation 23 is &, so we solve
for the values of «a necessary for a root to exist. The inequality is
easiest to satisfy when the term (1 — 2x,Daw]x,]) is at its minimum
value. This occurs for x, = 1.50198. Substituting this for x, and
rearranging, we obtain the condition for a root to exist:

a> 1874 (24)

For typical Thomson scatter experiments in the ionosphere, a >
1, and therefore a root to the dielectric function is expected near the
plasma frequency. Note that the magnetized form of the dielectric
function can slightly modify the condition in Equation 24. Figure 3
shows that for low densities and high temperatures, it is possible for
the above condition to not be satisfied and therefore no root will
exist. Observations of the plasma line at altitudes above 1500 km are
reported in Hagen and Behnke (1976), with observed spectra at a =
1.2 looking similar to that in Figure 3 with a = 1.6.

The unmagnetized Langmuir mode and its relation to the plasma
line are the easiest solutions to the dielectric function possible.
Yet the solution still encounters several problems. The first is that
if damping is present, we cannot solve for ¢ =0 and instead need
to solve Re[e] =0. Figure 3 shows there are actually two roots
to this equation, and we intuitively choose the root with less
damping. Nonetheless, we have not justified the exclusion of the
other roots nor defined criteria to assure a root-solving algorithm
finds the correct root. Furthermore, while it is expected that the
Langmuir mode usually exists in the ionosphere, the ion-acoustic
and electrostatic whistler modes are often cutoff with no solutions
to Re[e] = 0 (see Section 4). However, Thomson scatter experiments
still measure strong scatter in ion and gyro lines, necessitating a more
robust characterization of what a plasma wave mode is.

3 Driven oscillations in a plasma
3.1 Initial value terms in the dielectric

In deriving the dielectric function in Section 2.2, the initial value
terms from the Laplace transform in time were dropped so that
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a linear transformation of the electric field could be written and
solved for eigenvalue frequencies. Keeping the initial value terms,
the equation for the electric field becomes

. K], [wk] = k_(O { j i

w—k-V—iy

) —]-d173 F“[f‘)’k’v] ) } (25)

Without the
side, this is Equation 17.

initial value terms on the right-hand

Equation 25 is no longer solvable for eigenvalues of the dielectric
function. Mathematically, this is because the initial value term on the
right-hand side means this is no longer a linear transformation of
the electric field (failing the additive property f(x +y) = f(x) + f(y)).
Physically, Equation 25 thus no longer describes the normal modes
of the system that will naturally exist with small initial perturbations.
Instead, the initial positions of particles will create an electric field

with the strength being

e Rilk] fur Fy [t 7]
(w—?l?—iy) (w—ﬁ-?—iy)
(26)

For normal modes of the system, ¢ — 0 at a resonant frequency
and amplitude E; of the wave can be large for a given initial
perturbation (RHS of Equation 26). Going one step further, at non-
resonant frequencies, the amplitude of oscillation will be highest
when the dielectric function is smallest. It is this behavior of the
dielectric that is of interest.

Taking a step back, the initial value terms of every particle are
unknowable for a plasma experiment. Instead, an ensemble average
is taken of Equation 25 to find the average electric field strength,
weighted by the likelihood the plasma started in a particular initial
state. The ensemble average is defined in Froula et al. (2011) as

Jde(v) P(v)
Xy=——"60-—. (27)

jva(v)
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FIGURE 6
Similar to Figure 4 for the gyro line at Arecibo with 8= 45°and n, = 10 m™3. For the T, = 500K curve, the finite Larmor radius parameter is b = 0.037 and
the normalized gyrofrequency is Q../k vy, e = 3.77. For T, = 500K, both a normal mode (star) and non-resonant frequency (circle) are obtained with the
resulting gyro line (bottom panel) being sharp and distinct. For the T, = 1000K case, parameters are b = 0.071 and Q. /k vy, = 2.66, and a non-resonant
gyro line can be seen. With the higher temperature of T, = 1500K, the parameters are b = 0.106 and Q../k vy, . = 2.17, and no root or minima to the
dielectric function is obtained.

where the zero-th order distribution f,(v) is the probability P(v) of
finding particles of species s at a given initial position. Formally,
Equation 25 is squared and ensemble averaged using Equation 27
to obtain the average electric field (without squaring, the result
is (E;) = 0 since there is an implied sinusoidal dependence when
linearizing). Furthermore, this ensemble average is applied over all
space and time, taking the limit as the volume and time going to
infinity (note that y = 1/T). Then

> - . 1 &
[k (|E[w][*) = tim T—Vp

<

deﬁ k] Jdﬁ3
(w—ic.w?—iy) (w—ic.w?—iy)
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In squaring the left-hand side of Equation 28, there will be cross
terms, but the standard treatment is to drop these by assuming
that the initial positions of electrons and ions are uncorrelated
(Froula et al., 2011). This assumption can be relaxed, though the
resulting cross terms will only lead to an initial transient that decays
as 1/t (Froula et al., 2011). Carrying out the ensemble average on the
right-hand side,

ekl (E0fP) = (s +s[ek]). @9
where we define the source terms as

1 é

. Fy[to k7]
lim —— —
T,.V—oco TV k2((2)

vy — 30
jv(w—kw'/'—iy) G0

Ss[w,%] =
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FIGURE 7
Similar to Figure 6, but for EISCAT 230 MHz parameters. Careful tracking of the imaginary part (dashed line, top panel) of the dielectric function shows
that it is nearly O for each of the marked roots of Re[¢] = O (stars). Minimal damping means that the roots and the minima of the dielectric function
(circles) are collocated and lead to sharp gyro lines. For T, = [500; 1000; 1500; 2000; 2500] K curves, the respective finite Larmor radius parameter is b =
[0.0047;0.0094; 0.0141; 0.0188; 0.0235] and the respective normalized gyrofrequency is Qco/kvy, . = [10.3;7.3; 5.9;5.2; 4.6].

As an example, the Maxwellian distribution can be used for the
initial distribution function F,[f,], and in the unmagnetized limit,
the source term in Equation 30 evaluates to

2 2
Ss[a),k] _ e Vm exp(— 2w
k th,s

K€ kg,
Comparing Equation 31 to Appendix Equation B3  shows

(31)

the connection between the wave source terms S and the

modified distributions M that describe Thomson scatter
(Supplementary Appendix B). In general, these terms are
proportional through the relation shown in Equation 32
[0 f] = 0[] (2
sl k| = =5 M;|w,
Kq

Chapter 9 of Nicholson (1983) derives a similar expression
to Equation 28 by neglecting ion dynamics and considering the
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electric potential of numerous moving test charges. Nicholson
(1983) calls this result “fluctuations in equilibrium” but only applies
the analysis to resonant Langmuir waves (i.e., ¢=0 condition).
Furthermore, Bekefi (1966) develops the formalism for “non-
resonant” waves driven by motions of charges but does not provide
a treatment of the ensemble averaged system.

3.2 Driven oscillations

Equation 29 is the desired result for interpreting the existence
of density fluctuations in a plasma. The normal modes can still
be obtained by setting the source terms S equal to 0 and solving
for roots of ¢ but the strongest oscillations in a plasma are not
necessarily at the resonant frequencies. The steady-state behavior of
the plasma is obtained by taking an ensemble average, and therefore
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TABLE 1 Nominal parameters for selected Thomson scatter radars with routine ionosphere observations. Locations marked with an asterisk are the

main transmit site of a multi-static system.

Radar Location Transmit frequency Bragg wavelength Bragg wavenumber
Jicamarca Radio Observatory Lima, Peru 50 MHz 3m 2.09
EISCAT VHF Tromse, Norway* 224 MHz 66.9 cm 9.38
EISCAT-3D Skibotn, Norway™ 233 MHz 64.3 cm 9.77
Arecibo Observatory Puerto Rico, US 430 MHz 34.9 cm 18.02
Sanya ISR Sanya, China* 440 MHz 34.1 cm 18.44
Millstone Hill ISR Westford, MA, USA 440 MHz 34.1 cm 18.44
AMISR PFISR in Poker Flat, AK, USA; 449 MHz 33.34cm 18.82
RISR in Resolute Bay, NU,
CAN
EISCAT Svalbard Longyearbyen, Norway 500 MHz 30 cm 20.95
EISCAT UHF Tromse, Norway* 930 MHz 16.1 cm 38.98

the source terms show how waves are continuously generated across
all frequencies.

For physical intuition, we return to the mass-on-spring analogy
of Section 2.1. The eigenvalue/eigenvector relation in Equation 5 can
be written to include a sinusoidal driving force on each mass, giving
the new relation

—mw* + 2k -K X A, sin(wyt)

(33)

-K —mw® +2x | | x, A, sin(wyt)

In this example, the frequency of the driving force w,; will
dictate the frequency each mass oscillates the same as the original
eigenvalues of the matrix on the left-hand side of Equation 33. It is
this balance between an external driving force (source term) and the
system’s internal response (normal modes) that determines the full
oscillating spectrum of the system.

The source term in its simplest form (Equation 31) is the velocity
distribution evaluated at the condition v=w/k (Equation 29).
This is the Cherenkov condition for wave generation by particle
motion, with more particles at a given velocity leading to
stronger waves (Nicholson, 1983). This creates an analogy with the
driven harmonic oscillator, where the source terms S, and S; act as a
continuous driving force for waves at the frequency w = k- 7. In this
interpretation, (|E,|*) is the average amplitude of the oscillations,
dictated by the value of the response function |¢|*.

Since € = 1+, + x,, we can interpret the resonant (¢ = 0) versus
non-resonant (¢ # 0) response to driven oscillations in terms of the
susceptibilities mean. If y, is large at a given frequency, then species
s is able to efficiently reconfigure and cancel out an applied electric
field. An intuitive example of this is that for low frequency waves
w = 0, the susceptibility will be very high (e.g., Figure 3) since the
long period of the wave allows plenty of time for electrons and ions
to reconfigure and cancel out the wave’s electric field. The real part
of x, will act in phase with the wave, whereas the imaginary part of
X, acts out of phase with the wave and therefore will damp it out.
If Re[x,] = 0, then the plasma is not reconfiguring to cancel out the
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applied electric field but is instead moving with the electric field in
a way that continues the wave’s propagation. Values of Re[y ] that
are small, but non-zero can be interpreted as the plasma trying to
propagate the wave but being unable to fully do so in each cycle.

With this interpretation of the dielectric function, we are able
to explain the concept of a non-resonant wave mode (e.g., Bekefl,
1966). Given a source term S(w) that is constant at all frequencies,
the amplitude of oscillation <|E1(w)|2> is largest when the plasma
is best able to propagate the wave. Therefore, when the dielectric
function has no roots (¢(w) = 0), a local minimum of the dielectric
function |e(w)|? will represent non-resonant waves where the source
term is continuously driving the wave and the plasma is able to
partially continue the oscillation but at a lower amplitude than if
a normal mode resonance existed. Without the continuous driving
of S(w), such waves would quickly decay and be unobservable.
This interpretation also better characterizes finding roots of the
real part of the dielectric when there is still an imaginary damping
part—Re[e] = 0 and Im[¢] # 0. Therefore, for heavily damped roots
(Re[e] =0 and |Im[e]| > 0), no wave will exist.

For a source term that varies with frequency, the largest
oscillations will occur at a balance between the minima of the
dielectric function and the maxima of the driving source. This
balance can lead to the strongest scatter occurring at frequencies
shifted away from the resonant or non-resonant frequencies, as the
next sections will demonstrate.

4 Minima of the dielectric function

In this section, the dielectric function is examined for minimum
values that correspond to non-resonant versions of the ion-
acoustic wave and the electrostatic whistler wave. In each case,
these non-resonant waves are shown to correspond to distinct
spectral features that are routinely observed in Thomson scatter
experiments.
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Gyro line for Arecibo (430 MHz) at a 45° aspect angle. (a) How the frequency obtained from minima of |¢|? varies with plasma density and electron

temperature. In (b), the gyro line frequency is obtained by solving for roots of the dielectric function (w,

0ot) aNd compared to the frequency obtained in

panel (a) (w,,,,). Note that the root finder fails across a wider parameter regime than the minima finding technique, as indicated by the larger white
region. (c) Calculates the gyro line power relative to the ion line power in dB (see Equation 47). (d) Calculates the prominence of the gyro line by
calculating the ratio of the power at wg, relative to the power at 0.9 wg; in dB.

4.1 lon line (ion acoustic mode)

For the ion-acoustic mode, both the electron and ion
susceptibilities are important, and therefore the dielectric function
is e=1+y,+y,. It is expected from fluid theory that the ion-
acoustic frequency will be approximately w = kv, ;, which means
x;~1 (Appendix Equation A2), and the Dawson function in
the ion susceptibility cannot be Taylor expanded in either the
large or small limits. The electron susceptibility, however, can
be simplified. Since the Dawson functions are evaluated at

normalized frequencies (Appendix Equation A2), the electron and
m; T

. X;
ion arguments are related by = . For the ion-acoustic
xl’

e i

mode, x; = 1, so x, < 1 in this frequency range so long as T, and
T; are approximately within an order of magnitude. The electron
susceptibility can then be Taylor-expanded to first order in x, as

X, = a?(1-ivmx,) (34)
With Equation 34, the dielectric function at low
frequencies is then
mm, T

eti

m;T,

ite

((a)):1+oc2<1—ix,- >+%a2[1—2x,Daw[x]—z\/—xe ] (35)

The presence of the Dawson function requires a numerical
solution to find any roots of Equation 35.
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In the top panel of Figure 4, the real and imaginary parts of
Equation 35 are plotted, showing that roots for Re[¢] = 0 only occur
for specific ratios of the electron and ion temperatures. Exact criteria
for when a root occurs can be derived from Equation 35. Firstly,
note that at x; = 0, the real part of the dielectric function is strictly
positive—Re[e] =1+« (1 + =<

there is a value of x; where the real part of the dielectric is negative.

) > 0. Therefore, a root only exists if

This condition is

T
0>1+a”+ Feocz(l - 2x;Daw][x;])

i

(36)

Since 1+a?> 0, the last term in Equation 36 needs to be
negative. This is easiest to satisfy if 1 — 2x;Daw|x;] is at its minimum
value, which happens at x; = 1.50198. Then

T -2
e 1+a (37)
T;  |min(1-2x;Daw|[x;])|

T, 1+a? 1

— > ——=351{ 1+ —= 38
T, 028475 < ! oﬂ) 9

Typically, &> > 1 for Thomson scatter experiments in the
ionosphere, so the ion acoustic mode only has a root for the dielectric
function when 2 > 3.5. In the ionosphere, the temperature ratio is
rarely greater than ~3 (Aponte et al., 2001), and therefore no root to
the real part of the dielectric exists according to Equations 37, 38.
Nonetheless, the ion line is always observed in the collective scatter
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Same as Figure 8, but for EISCAT 230 MHz radar. At this radar frequency the gyro line frequency panel (a) has considerably less variation with density
and temperature. Note in panel (b), both the minima finding technique and the root solve produce nearly identical answers at a wide range of
temperatures. At low temperatures, the source term has a minimum near the gyro line frequency, leading to the absolute gyro line power (c) varying
significantly with density and temperature despite the gyro lines being sharp and having the same relative prominence (d).

regime where a > 1. Moreover, the ability to detect the ion line is
arguably the single defining feature of the incoherent scatter radar
(ISR) class of Thomson scatter radars. This highlights the problem
of associating the resonant solution of the ion-acoustic mode with
the ion line in Thomson scatter spectra.

The existence of an ion line in Thomson scatter experiments can
be explained by the analogy with a driven oscillator described in
Section 3.2. Waves will continuously be generated at low frequencies
through Cherenkov radiation by particles moving at v = w/k, with
the source terms providing the strength of wave generation. The
response of the plasma to these generated waves is quantified
by the dielectric function, with local minima of |((w)|* being
defined as non-resonant wave frequencies. To test this idea, the
middle panel of Figure 4 shows |e(w)|?, and the bottom panel shows
the corresponding ion line spectra. Because the ion-acoustic mode
is heavily Landau-damped (imaginary part of ¢), the minima values
of the dielectric function do not correspond exactly to the roots
of Rele]
spectra do not correspond to either the resonant or non-resonant

=0 when they exist. Similarly, the peaks in the ion line

frequencies of the ion-acoustic mode since the driving source term
is also important.

The ion line is effectively unmagnetized for most aspect angles
(Milla and Kudeki, 2011). Therefore, the driving source term for ion-
acoustic waves is the Maxwellian distribution given by Equation 31.
<« 1, so the

For electrons, the argument of the Maxwellian is
electrons drive waves of equal strength at all frequenc1es relevant to
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the ion line. However, the ion source term will drop oft significantly
on the range of frequencies relevant to the ion line. This means
that while the plasma responds best at frequencies around — =
2 (see Figure 4), the strongest driving force is at lower frequenéhlles,
;”—M < 1. The balance between the response of the plasma (dielectric)
and the continuous generation and driving of waves leads to the
characteristic double-hump shape of the ion line where the peak
spectral power does not directly correspond to a resonant or non-
resonant wave frequency.

Despite the peak ion line power having no relation to the ion-
acoustic frequency, we can still define the ion-acoustic frequency
as either a root to Re[e] =0 if it exists or the frequency where
|e(w)? is at a minimum. Figure 5 shows the calculation of the ion-
acoustic frequency with this definition as a function of electron
and ion temperature. The behavior of the ion-acoustic mode cleanly
transitions from the resonant to non-resonant cases when T, =

35T,

4.2 Gyro line (electrostatic whistler mode)

Gyro lines in Thomson scatter experiments are typically
associated with the electrostatic whistler mode. The whistler mode is
inherently magnetized and propagates via the electrons’ gyro motion
around the magnetic field. The relatively low power of the gyro line
compared to the plasma and ion lines has led to few observations of

frontiersin.org


https://doi.org/10.3389/fspas.2025.1607631
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org

Longley et al. 10.3389/fspas.2025.1607631
Distribution Driven Fluctuations
105 T T T T T T T 10_6
o . -
O 110" o©
8 .0 "
i O]
% 10 O
= -10 3
(@] 110~ ©
- w
) -12
10 Z 10
10- T T I T 1 T 1
5] )
2 £
o) |
o £
2 109 Distribution driven fluctuations 2 4
= r
2
Q)
O
w
-1 1 1 1 1 1 1 1
10710
0 1 2 3 4 5 6 74 8
wl(k-vthe)
FIGURE 10
T, =1500K curve for Arecibo (430 MHz) at 45° aspect angle from Figure 6 examined in more detail. (Top panel) Magnitude of the dielectric function
(black curve) with a distinct minimum at the plasma line (w/kyvy, o = 7). Source term (orange curve) is also plotted, showing its variation with frequency.
(Bottom panel) Resulting scattering power, with distinct peaks at normalized frequencies of 2 and 5 occurring from distribution driven fluctuations.

it—mostly by the Arecibo Observatory (Bhatt et al., 2006; Janches
and Nicolls, 2007; Hysell et al., 2017) and the European Incoherent
Scatter (EISCAT) radar (Malnes et al., 1993). The gyro line has
remained an enigma within the ionospheric radar community due
to its limited observations and the complicated magnetized terms
in the dielectric function. Hysell et al. (2017) provides a thorough
examination of the resulting whistler mode dispersion relation,
concluding that a simple formula for the gyro line frequency
does not exist.

The standard theory for the gyro line frequency w;; makes the
following harsh assumptions (Hysell et al., 2017):

k22

I th,e (39)

2
Wpe

2 2 2
<kiv,  <wy <O <

Using Appendix Equation A6 for the magnetized electron
susceptibility and neglecting ions, the dielectric function is

e=1+a*(1-
(-2

With the harsh assumptions of Equation 39, roots to the real

w

e (R 2Dl e
(40)

1Vthe

part of Equation 40 can be obtained through the following steps:
1) assuming that k3 p> < 1 means Iy(k>p2) = 1 and I,,,4(k}p2) = 0,
so the n# 0 terms are dropped from the summation; 2) Taylor-
expand the remaining Bessel function in the small argument limit;

3) Taylor-expand the Dawson function in the large argument limit;

Frontiers in Astronomy and Space Sciences

13

4) retain only first order terms in both expansions; 5) solve for
wZGL using the quadratic equation. With these steps and a few
minor approximations detailed in Hysell et al. (2017), the gyro line

K
the
(1 +2 oL )
2
(Q_ZE +1- é_k th’“)
2 2
Wpe 4 Qg

. Q
From Equation 39 we have assumed —

2

frequency is found to be

wy, =02, cos’ 0 (41)

K
<« 1land

<1, so

both those factors can be neglected to prodtfce the often qgoted gyro
line frequency of

wgp = Oy, cos 0 (42)

Note that in this study, the convention for the aspect angle is
that 6 = 0° corresponds to waves propagating parallel to the magnetic
field. For radar observations, 6 = 0°is obtained when the radar line
of sight is parallel to the Earth’s magnetic field.

The assumptions in Equation 39 are required for a clean,
simple solution for roots of the dielectric function. However, those
assumptions are often not justified. At lower altitudes where gyro
lines are often observed, both w,, and ), can be a similar order of
magnitude (Bhatt et al., 2008). The constraint of kﬁvfh,e < kivfh’e is
not valid for any gyro lines at Arecibo, as it implies k; < k,, meaning
that cos 6 < sin 6, but the aspect angles at Arecibo range from 30° to
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FIGURE 11
Dielectric function and scattering spectrum showing plasma line splitting. Note that x-axis is plotted in physical units of frequency. wpe/Qc, ratio is 1.35
for the low density (black) curves, 1.91 for the middle density value (blue curves), and 2.34 for the higher density value (orange curves). In each panel,
roots (stars) and minima (circles) are only marked for the plasma lines. This plot uses parameters from Bhatt et al. (2008), including the Arecibo
wavelength and magnetic field, and a 60° aspect angle.

60°. Furthermore, while kivfh’e < Q%

that the argument of the Bessel functions is small, it is often not
small enough to justify dropping the #n # 0 terms. A more robust
assumption is to assume that k2 p? is small enough that only the n =
1 term is comparable to the n = 0 term. This simplifies the dielectric

function to

is typically justified and means

e=1+a*(1-

o e"kiﬁe(lo(kzlf)g){ZDaw[yo] +i 7'[6_)'3}
th,e

+1, (K2 p2) {2Dawly, ] + i\/f_re’)’ﬁ})),

(43)

where y, = w/kyvy,, and y, = (0 - Q) /kvy,, in Equation 43.

The imaginary parts and therefore the damping of the whistler
mode are dominated by the terms exp(-y;) and exp(-y}). The
former describes Landau damping and is important at small
frequencies, and the latter describes cyclotron damping at the first
gyro-resonance and is maximized when w = Q. Neglecting the
damping components, the normal mode frequency of the gyro line
can be obtained by solving for roots to the real part of the dielectric
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function. Noting that y, =y, — C,, which defines C, = Q/kvy,, as
the normalized gyrofrequency, we can then solve for the roots of

0=1+ ocz(l - 2y0e’kiﬁg{10(kiﬁg)Daw[y0] +Il(k2l,5§)Daw[y0 - Ce]})
(44)

As with the plasma line, the dielectric function at w = 0 is strictly
positive, so a root will only exist if, for some non-zero frequency, the
dielectric function is negative. We can write as the inequality

L 1 <2y S 7 Dalyg) + 1 (7Dl G}
(45)
The problem in solving either Equations44 or 45, s
that the Bessel and Dawson functions are transcendental, and
a general solution is not tractable unless the assumptions
of Equation 39 are made to justify Taylor expansions. It is
therefore not possible to obtain an analytical solution for the
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10 Plasma Line Split: Varying Density
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FIGURE 12
Zooming in on the dielectric function for split plasma lines. Densities correspond to w,./Q, ratios of 1.71, 1.81, 1.91, 2.00, and 2.09 from low to high
density. Note the inset showing the roots to the real part of the dielectric function and the triple-root for the density of 3.6 x 10 m~> (orange curve).
Second harmonic of the gyro frequency is marked as the vertical dashed line at 1.88 MHz and is the frequency where cyclotron damping is strongest.

TABLE 2 Terminology of types of waves and fluctuations in a plasma.

Name of
fluctuation

Spectral shape
of feature

Colloquial name

Coherence of
scatter

Condition

Example of

spectral feature

mode

Normal wave mode Sharp line Incoherent scatter Coherent Roottoe=0 Plasma line (o > 2).
Some gyro lines.
Quasi-normal wave Sharp line Incoherent scatter Coherent Root to Re[e] = 0 and Damped plasma lines
mode small but non-zero Iml[¢] (a=2).Ion line for T, >
3.5 T;. Some gyro lines.
Non-resonant wave Broad line Incoherent scatter Coherent Local minima of Ton line when T, < 3.5T;

(most common). Some
gyro lines.

Distribution-driven
fluctuations

Broadband, relatively flat

Unnamed

Minimal coherence

No root or minima of ¢.
Collective regime where
a>1

Shelf that fills in spectra
between spectral lines.
Vestigial gyro lines at
high T,.

Non-collective scatter

Broadband, matches
shape of distribution

“True” incoherent scatter,
or Gordon (1958)
incoherent scatter

Incoherent

No root or minima of ¢.
Non-collective regime,
a<l

Laser measurements of
laboratory/fusion
plasmas.

gyro line frequency or conditions for its existence unless the

. (46)

cs

i
b= k2 ﬁZ _ k2 ud
approximations in Equation 39 are used. e Ty
The existing gyro line theory in Equations 41 and 42 relies on

a narrow set of assumptions needed to simplify the magnetized For infinitesimal b, only the n=0 term is needed for the

dielectric function. The primary difficulty in a general solution is dielectric function. However, the = 1 term can become important

the presence of the infinite summation of the Bessel functions, the even when b is as small as 0.03 (Figure 6). As the finite Larmor radius

argument of which is called the “finite Larmor radius parameter”and ~ Parameter increases, higher order terms in the summation in the

is defined in Equation 46 as: dielectric function are needed. These higher order terms can either
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The same spectra from Figure 1 plotted again, with the spectral features labeled using terminology in Table 2. Note that distribution driven fluctuations
have always been present in calculations of the full-bandwidth Thomson scatter spectra but have previously been ignored.

remove roots from the dielectric function (for intermediate aspect
angles) or further complicate the problem by creating even more
roots that correspond to the magnetized Berstein modes (aspect
angles near 90°).

Figure 6 shows the gyro lines dependence on electron
temperature and therefore on b. At low temperature, the finite
Larmor radius parameter is b = 0.035, and a normal mode solution
is clearly present even though the n =1 term contributes to the
dielectric function. Visually, the importance of the n =1 term can
be assessed by seeing the substantial increase in cyclotron damping
(Im[e]) when w = Q,. Increasing the temperature in Figure 6 shows
that the normal mode resonance is lost when b =0.071, but a
non-resonant mode is still obtained by finding the minima of
the dielectric function. Further increasing the temperature leads
to b=0.106, allowing the higher-order terms in the summation
to wash out the root typically produced by the n=0 term. At
the higher temperature of 1500 K, the minimum of the dielectric
function disappears, but a vestigial gyro line is still present in
the scattering spectra. This interesting feature will be further
discussed in Section 4.3.

The finite Larmor radius parameter can be minimized by
either smaller temperatures, larger magnetic fields, or smaller
wavenumbers. Note that changing the aspect angle will change b
as well, but the tradeoff is that the argument w/k;vy,, also changes
and will modify the location of the roots and damping. While the
magnetic field varies slightly with altitude in the ionosphere, both k |
and Q,, are primarily dictated by experimental setup. To investigate
this dependence, the gyro line for a 230-MHz radar is calculated in
Figure 7 (results are applicable to 224 MHz and 233 MHz EISCAT
radars in Table 1). The Bragg scatter wavenumber for a 230-MHz
radar is k=9.64, compared to Arecibos k=18.02 at 430 MHz.
Additionally, for EISCAT’s location in northern Scandinavia, the
magnetic field at ~200km is 4.92x 107 T, compared to 3.36 x
107 T at Arecibo. Both of these conditions lead to smaller finite

Larmor radius parameters than at EISCAT compared to Arecibo for
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a given temperature. The smaller finite Larmor radius parameter
leads to most of the assumptions in Equation 39 being valid, so
the resulting whistler mode is a normal mode of the plasma with
minimal damping. Figure 7 shows that the resulting gyro lines at
EISCAT are considerably sharper and more powerful than the gyro
lines at Arecibo.

The dependence of the gyro line frequency on plasma
parameters is investigated in Figure 8 for Arecibo and Figure 9 for
EISCAT. In both figures, the aspect angle is fixed at 45°, with plots
at different aspect angles shown in the supporting information.
In panel (a) of each figure, the gyro line frequency is obtained
by solving for the minima of |¢[>. This frequency is compared to
the frequency found from solving roots of Re[¢] = 0 in panel (b).
For EISCAT, the roots are distinct and easy to obtain, so there is
little difference between the two resulting frequencies. However, for
Arecibo, the root is not present across a wide range of typical plasma
parameters, and therefore the resulting gyro line is associated with
non-resonant whistler waves. In panel (c) of Figures 8 and 9, the
power at the gyro line frequency is calculated and compared to the
ion line power. The ion line power is calculated analytically for w =
0 as (Froula et al., 2011)

_ 2\/5 o?

kv | 1+ ocz(l + %)

i

S(w=0,k (47)

Since the gyro line is not influenced by ion dynamics, it is
assumed that T, = T;.

The estimate in panel (c) shows how easily the gyro line
could detect relative to the ion line. However, as the electron
temperature increases, the gyro line experiences more Landau
and cyclotron damping, broadening the spectral peak. Eventually,
for high enough temperatures, the whistler mode becomes non-
resonant and decreases in power while broadening substantially
(Figure 6). This could lead to experimental difficulties in detecting
the gyro line peak within a noisy measurement of the scattering
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spectra. Panel (d) in Figures 8, 9 estimates the relative prominence
of the gyro line peak by calculating the power at w; and 0.9 wg;; and

S(wgr) .
S ) While the

choice of 0.9 is somewhat arbitrary, it does provide an indication of
how prominent the gyro line peak will be compared to the broader

plotting the ratio of the power in dB, 1010g10(

noise-dominated spectrum.

Solving for the gyro line frequency shows that the minima
finding technique has two significant advantages over the typical
root solving in normal mode analysis. First, the gyro line frequency
can be calculated across a wider range of plasma parameters, better
aligning with them where gyro lines are observed. Second, when a
root does exist, it is significantly easier to find it with a bracketing
method that searches for it near the non-resonant frequency. The
root solving in this paper bracketed the root between 0.8 wg; ,,;, and
1.20g; pyin> With WGy i, being found by minimizing |¢|*. This proved
to be a robust root solving algorithm that always found the correct
root with no convergence issues.

Figures 8, 9, along with the similar figures in the Supplementary
Material, provide a full range of conditions needed for a radar
to observe gyro lines at Arecibo and EISCAT VHEF/3D. The data
availability statement provides the code used to generate these
figures and can readily create similar figures for different radars to
predict the detectability of gyro lines.

4.3 What if there are no minima of the
dielectric function?

Figure 6 plots the gyro lines at Arecibo for different electron
temperatures. As the temperature rises, the root to the dielectric
function disappears and then the minima of the dielectric disappear.
Interestingly, a gyro-line-like feature remained present for each
temperature. To examine this more closely, Figure 10 re-plots the
same T, =1500K case at Arecibo from Figure 6 across a wider
frequency range. While the plasma line at w/kv,, = 7 corresponds
to a distinct minimum of |¢|%, there are no other minima of the
dielectric. However, broad spectral peaks can still be observed at
w/kyvy, =2 and w/kvy,, =~ 5. While the peak at w/kyv,,, =2 was
referred to as a “vestigial gyro line” in the previous section, there
is no such transition from a gyro line for the w/kyv,,, =5 peak.
Therefore, these peaks need a more general interpretation.

In Figure 10, the only visible feature of the dielectric function
at the vestigial gyro line is an inflection point. However, there
is no obvious interpretation for what an inflection point in the
dielectric function would physically mean, so we therefore attribute
no significance to these inflection points. Furthermore, it has yet
to be determined why there is scattering power at any of the other
frequencies between the ion and plasma lines. Both the broad
“vestigial gyro line” and the broader “shelf” feature between the
ion and plasma lines can again be explained by the analogy of
the driven oscillator. Previously, we focused on characterizing the
plasma’s response to driven oscillations by looking for roots or
minima of the dielectric function. The balancing part of this analogy
is the source term that generates waves and drives fluctuations in
the plasma. This source term is plotted in Figure 10. Again, there are
inflection points at the peaks in the scattering power, but it does not
appear to be fruitful or physically meaningful to try and characterize
inflection points. However, it is clear that the non-constant source
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term balanced against the dielectric function leads to the bumps in
the scattering spectra, as well as the general filling-in of the spectra.

The vestigial gyro lines and shelf features in Figures 3, 6,
7,and 10 are not dictated by the plasma’s response but by the driving
of the system by the equilibrium distribution, and therefore we
call these features “distribution driven fluctuations”. This choice of
terminology reflects the dominant role of the source term in driving
the fluctuations and creating a possibly measurable scattering power.
For a distribution driven fluctuation to exist, the driving source
term must be substantially large and continuously maintained in
equilibrium in order to survive the ensemble average. In contrast,
the normal modes in a plasma can be driven by an infinitesimal
perturbation and still result in high scattering power.

4.4 Interpreting exotic spectra

The transition of gyro lines into broad distribution driven
fluctuations is one example of non-standard Thomson scatter
spectra. Other exotic spectra include perpendicular-to-B ion
lines driven by Coulomb collisions (Kudeki and Milla, 2011;
Milla and Kudeki, 2011), ion lines distorted by non-Maxwellian
distribution functions (Goodwin et al., 2018), and plasma line
splitting (Bhatt et al., 2008). In this section, we provide an example
of interpreting these types of exotic spectra by examining the roots
and minima of the dielectric function for plasma line splitting.

Plasma line splitting is a phenomenon first observed at Arecibo
by Bhatt et al. (2008), where two distinct spectral peaks occur near
the plasma frequency. This phenomenon was originally proposed in
Salpeter (1961), predicting that two roots will appear in the dielectric
function when the plasma frequency is near the second harmonic of
the gyro frequency (w,, = 2€Q,,). This splitting is shown in Figure 11,
plotting the dielectric function and scattering spectra for several
densities. At the lower density (1, = 2 x 10'? m73), the plasma line is
sharp and corresponds to a normal mode of the plasma; a similarly
sharp plasma line occurs at higher density (n, =6x 101" m™).
However, at the chosen intermediate density (n, =4 x 10%m73)
the plasma line has two distinct spectral peaks, one of which
corresponds to a normal mode with a root to Re[¢] =0, and the
other peak corresponds to a non-resonant wave where the dielectric
function is at a minimum but has no root.

The parameters in Figure 11 show the plasma line occurring
at a lower frequency (~1.5MHz), then jumping to a higher
frequency (~2.5 MHz), with the plasma line splitting occurring
as an intermediate step. To understand this transition further,
Figure 12 plots the dielectric function for a narrower set of density
values, with the inset showing where roots to Re[¢] =0 occur.
The predicted behavior from Salpeter (1961) occurs, where the
single root occurs at lower frequencies and then jumps to higher
frequencies. Interestingly, the double root reported in Salpeter
(1961) is actually a triple root to the real part of the dielectric (n, =
3.6x10'm™ curve, corresponding to Wpe/ Y, = 1.81). However,
the scattering spectrum only has two peaks because cyclotron
damping is strongest at the harmonics of the gyro frequency, and
therefore the middle root has no effect on the wave behavior.

For each of the densities shown in Figure 12, the plasma line
spectrum has two distinct peaks that sit on top of a broader spectral
enhancement. This broader spectral enhancement is another
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example of distribution-driven fluctuations, where waves are
continually excited near the second gyroharmonic. This is seen from

evaluating the magnetized source term (Appendix Equation B4)
w-20Q) . P .
—= ) is maximized at this
[IVthe

condition. The plasma line spectrum in this regime is therefore a

with w =2Q,,, and seeing that exp(

balance between the driving of waves by the electron’s gyro motion
and the plasma’s response in this frequency range. The imaginary
part of the dielectric shows strong cyclotron damping at the second
gyroharmonic, whereas the real part of the dielectric is close to
0 for a broad frequency range. The measurements of plasma line
splitting in Bhatt et al. (2008) showed some filling in of the spectrum
between the two spectral peaks, but a careful reanalysis of those
experiments would need to be done to rule out instrumental or
signal processing effects.

5 Discussion
5.1 Types of Thomson scatter

This study has separately examined the dielectric function for
the plasma line, the ion line, and the gyro line. These are common
names for the spectral features observed in ionospheric Thomson
scatter experiments, but as we have shown, the underlying wave
mode or fluctuation may have a different physical origin depending
on the plasma and radar parameters. Table 2 consolidates the
terminology used to describe these different types of waves and
fluctuations, the required conditions for that type of fluctuation
to be present, and the corresponding spectral features. The
usage of this terminology for Thomson scatter experiments is
demonstrated in Figure 13, which revisits the sample Arecibo
spectra plotted in Figure 1.

Table 2 also highlights a major problem within the ionospheric
radar community: every measurement is erroneously called
“incoherent scatter” The original idea of ionospheric radar was
posited in Gordon (1958) and assumed that electrons in the
ionosphere would be randomly distributed, and therefore the phases
of scattered waves would be random and the total backscatter
would be incoherent. The terminology of “incoherent scatter”
has persisted despite its well-known inaccuracy. Colloquially, an
incoherent scatter radar is any ionospheric radar capable of making
routine ion-line measurements with enough sensitivity to fit the
ion line for plasma parameters. Formally, these are high-power
and large-aperture Thomson scatter radars that operate in the
collective scattering regime where a > 1 (Equation 19). When
a > 1, the incident wavelength is larger than the Debye length,
and the resulting scatter is off plasma waves. These wave fronts
provide enough structure for the Bragg scatter condition to be met,
where constructive interference occurs from scatter off successive
wavefronts and creates coherence in the backscattered wave.

The distribution-driven fluctuations shown in Figure 10 are
an interesting transition case between coherent and incoherent
scatter. In terms of «, these fluctuations are well within the
collective scatter regime. However, the scatter is weak and
largely dictated by the equilibrium distribution. True incoherent
scatter (¢ <1) is also weak, and the spectra exactly follow
the electron distribution. The physical distinction is that
true incoherent scatter is Doppler broadening of an incident
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electromagnetic wave, whereas distribution-driven fluctuations
physically represent a forced oscillation at a non-resonant
frequency, and therefore the scattered wave will have some degree
of coherence.

5.2 Summary

The goal of this study has been to explain the presence of strong
spectral features in Thomson scatter experiments when normal wave
modes are not present. The ubiquitous measurements of ion lines in
the ionosphere were a motivating puzzle which are now explained as
non-resonant ion acoustic waves. Non-resonant waves are defined
as frequencies where the magnitude of the dielectric function is
at a local minimum. This holds a physical analogy to a driven
oscillator, where waves are continuously created by Cherenkov
radiation (source term) and the dielectric function characterizes the
plasma’s response to continuously driven oscillations. Normal wave
modes such as the Langmuir mode are also continuously driven, and
their amplitudes are the result of a balance between the damping of
the wave (dielectric function) and the driving source.

Our analysis used a specific framework (Froula et al., 2011) for
calculating the dielectric function and source terms in a thermal
plasma. This framework is ideal for this study as it is based on
the plasma kinetic equations, but it suffers deficiencies in modeling
collisions with the BGK operator. The more accurate Coulomb
collision operators in Kudeki and Milla (2011) and Milla and Kudeki
(2011) are required for accurate computations of the ion line at
aspect angles within ~10° of perpendicular to the magnetic field, and
possibly the gyro line in the same regime. The ideas developed here
can be generalized to this perpendicular-to-B regime by analyzing
the dielectric functions from Kudeki and Milla (2011) and Milla and
Kudeki (2011). For example, the ion line exactly perpendicular to B
is created by collisional diffusion across magnetic field lines (Milla
and Kudeki, 2011) and is best classified as a distribution driven
fluctuation.

For extant radars, EISCAT-3D and EISCAT-VHF are best
equipped to observe gyro lines and further explore the transition
from normal modes at lower temperatures to quasi-normal or
non-resonant wave modes at higher temperatures. Nonetheless, the
highest resolution gyro line observations were made at Arecibo
(Bhatt et al., 2006; Hysell et al., 2017). Future research will
examine archived Arecibo experiments to look for gyro lines
that transition from sharp spectral peaks to distribution driven
fluctuations which would appear as a broad shelf feature between
the ion and plasma lines. The —20 dB or lower power of the
shelf feature places it at the edge of Arecibo’s sensitivity, although
experiments such as Hagen and Behnke (1976) showed Arecibo
to be capable of measuring spectra in the very weak, non-
collective regime.
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