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Real-time grading method of
tunnel surrounding rock based on
image recognition

Yihuan Xiao?, Hao Yuan'*, Qingye Shi', Zemin Qiu?, Liao Tang?,
Yihua Yu?, Yabin Li%, Yin Pan? and Qinghua Xiao'*

School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China, ?Sichuan
Electric Power Design and Consulting Co., Ltd., Chengdu, China

To enable rapid, accurate grading of tunnel surrounding rock during construction,
we propose a real-time grading method that integrates image processing with
lightweight deep learning. We developed an automated pipeline that combines
image-processing techniques and machine-learning algorithms to extract and
classify characteristic parameters of tunnel surrounding rock, enabling real-time
monitoring and classification at the tunnel palm surface. The study demonstrates
that: (1) Following the proposed image-acquisition standards for rock and tunnel palm
surfaces, images are converted to grayscale, denoised, enhanced, and normalized,
which facilitates efficient and accurate extraction of structural features and improves
the precision of classification parameters; (2) An optimized lithology identification
and classification model was built, and a rock-hardness, strength, and integrity
sensing approach based on the ShuffleNetV2 convolutional neural network was
introduced to achieve real-time surrounding-rock grading. On an engineering site,
the method attains 85% accuracy for lithology classification, 75% for rock-mass
integrity, and 80% for overall surrounding-rock grade, confirming its feasibility
and practical value. These results offer theoretical insight and engineering utility
for the scientific evaluation of tunnel surrounding-rock grade.

KEYWORDS

image processing, machine learning, ShuffleNetV2, surrounding rock classification,
tunnel engineering

1 Introduction

In recent years, the scale of underground engineering and tunnel construction has
expanded rapidly, imposing greater challenges and higher technical standards on tunnel
works. Consequently, traditional construction methods can no longer satisfy current demands
for quality and schedule. As the foundation for tunnel design and construction, surrounding
rock classification strongly influences both construction quality and progress. Consequently,
achieving dynamic classification of tunnel surrounding rock has become a central research
focus in geotechnical engineering.

Numerous scholars have investigated surrounding rock classification methods from both
qualitative and quantitative perspectives. Zhuang et al. (2024) applied the state-of-the-art
robust CNN model (EfficientNet) to tunnel wall image recognition and combined it with
transfer learning to further improve the versatility, accuracy and efficiency of the deep
learning model, ultimately achieving an accuracy of 89.96%. Vutukuri et al. (1974) employed
parameters such as rock mass integrity and rock hardness as evaluation indicators for
surrounding rock classification. Williamson (1984) introduced a rock classification system
based on fundamental indicators, including the degree of rock weathering, rock strength,
discontinuity degree, and density. Wang et al. (2020) employed the RMR, GSI, BQ, and HC
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methods to classify the quality of surrounding rock, utilizing on-site
geological descriptions, drilling tests, and laboratory rock mechanics
test results. Ma J. et al. (2023) and Ma X. et al. (2023) developed a
refined prediction model for tunnel surrounding rock classification
based on extension theory, integrating various geological methods,
including geological mapping, ground-penetrating radar, tunnel
seismic prediction, and advanced horizontal drilling. He et al. (2020)
introduced a classification method for surrounding rock that
accounts for the size effect of tunnel excavation spans and the
presence of unfavorable geological formations. Wu et al. (2020)
proposed a stability classification model for surrounding rock in
underground engineering, utilizing conceptual lattice and TOPSIS,
which is based on five indicators: rock quality grade, saturated
uniaxial compressive strength, integrity coefficient, longitudinal wave
velocity, and fractal dimension. Tan et al. (2022) employed the
discrete element method to simulate the rock-breaking process of a
pneumatic rock drill and, in conjunction with field data, established
a standard database for the dynamic classification of surrounding
rock. Nevertheless, the above conventional classification approaches
are constrained by protracted parameter acquisition and the
subjective nature of pivotal indicators.

Consequently, numerous scholars have adopted intelligent
perimeter rock grading methods for their research, significantly
reducing both time and economic costs while yielding substantial
results. Li et al. (2018) and colleagues introduced a reliability analysis
theory grounded in the national standard BQ method and employed
the Monte Carlo method to classify surrounding rock based on
evaluation indices such as rock toughness and integrity. Shi et al.
(2014) proposed an over-optimized classification method utilizing
fuzzy hierarchical analysis and tunnel seismic prediction to achieve
precise predictions of surrounding rock classification. Additionally,
Ma J. et al. (2023) and Ma X. et al. (2023) developed an intelligent
surrounding rock classification method alongside a tunnel
information management system, enabling real-time and accurate
predictions of surrounding rock classification. Ma et al. (2022)
proposed a probabilistic prediction method based on a Bayesian
network for classifying tunnel surrounding rock quality using
incomplete data. They validated their approach with data collected
from 286 cases across 10 tunnels and found that the proposed method
demonstrates high accuracy in predicting sample results despite data
incompleteness. Shi et al. (2024) employed an integrated learning
prediction model that combines XGBoost with Optuna for hyper-
parameter optimization and real-time identification of perimeter rock
classes. Xue et al. (2019) developed a perimeter rock classification
model that incorporates five key factors: uniaxial compressive
strength, rock integrity coefficient, softening coefficient, joint surface
coeficient, and groundwater. This model was constructed using
principal component analysis and the Ideal Point Method. Liu et al.
(2020) proposed an integrated learning model that combines the
classification and regression tree with the AdaBoost algorithm for
predicting perimeter rock classification based on tunnel boring
machine digging parameters. Zhao et al. (2022) employed ten
supervised machine learning algorithms to develop an intelligent
perimeter rock classification model and software system driven by
drilling parameters. Song et al. (2023) utilized computerized perimeter
rock data collected by a rock drilling cart, applying SMOTE, Random
Forest, and XGBoost algorithms to achieve automatic classification
and dynamic prediction of perimeter rock at the digging face.
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Image recognition, a significant factor in the classification of
enclosing rock, has been extensively examined by numerous
researchers. Reid and Harrison, 2000 introduced a semi-automatic
method for detecting discontinuous traces in grayscale digital images
and conducted a preliminary analysis of palm surface information.
Leu and Chang, 2005 utilized digitized image processing technology
to extract rock cracks, subsequently establishing a three-dimensional
model that illustrates the internal conditions of the tunnel based on
the extracted crack information. Leng et al. (2021) employed
traditional image processing techniques to perform image
segmentation and edge fitting on geological information, including
rock crevices and cracks identified through edge detection, thereby
achieving more precise rock trace information. Liu and Wang (2023)
employed transfer learning techniques to train extensive rock image
datasets, facilitating the automatic identification and classification of
the properties of tunnel surrounding rocks. Huang and Chen (2023)
developed a fine grading model for surrounding rock by integrating
heterogeneous data from multiple sources, utilizing a database of
photographic images of excavation surfaces in rock tunnels, alongside
on-site measurements, data statistics, intelligent algorithms, and
numerical simulations. Chen et al. (2024) gathered over 7,000 images
of tunnel palm surfaces from various tunnel project sites and
constructed convolutional neural network classification models,
including the VGG, ResNet, DenseNet, GoogleNet, and InceptionV3,
to achieve intelligent identification of grading features in tunnel
enclosing rocks and enable visualization analysis. Sun et al. (2023)
developed a quality evaluation method and standard for broken rock
bodies based on the degree of rock fragmentation and occlusion. This
method employs digital imaging technology, image processing
software, and multi-factor analysis to assess broken rock bodies in
large underground caverns. Additionally, they proposed a damage
mode and safety guidelines for the surrounding rock. However, these
methods lack sufficient accuracy in extracting critical information
regarding the grading of enclosing rock, such as joints and fissures in
the palm surface at construction sites. The accuracy of image feature
extraction diminishes, particularly under conditions of dust and low
light, and the high complexity of the model poses challenges for
deployment on mobile.

In summary, despite the extensive research on tunnel surrounding
rock classification and image analysis, most existing studies
concentrate on enhancing classification methods or individual image
processing techniques. There is a notable absence of systematic
investigations into the deep integration of machine learning with
multi-scale image characterization, particularly regarding real-time
applications in engineering. This gap is especially pronounced in
complex construction environments, where developing a high-
precision, deployable, and interpretable intelligent classification
method for surrounding rocks based on image recognition remains a
significant challenge.

In response to this challenge, this paper proposes a real-time
classification method for surrounding rock that integrates a
lightweight deep network with multi-scale feature analysis. This
approach optimizes the network structure and parameter scale,
achieving a balance between recognition accuracy, real-time
performance, and engineering deployability. Additionally, by
enhancing the image processing algorithm, the method accurately
extracts geometric features of fissures in complex environmental
conditions, addressing challenges in feature extraction, model
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deployment, and standardization in engineering applications.
Furthermore, this study integrates automatically detected lithology
and integrity parameters into the existing BQ grading system, enabling
intelligent perimeter rock grading compliant with engineering
standards. The proposed method is ultimately validated through real-
world tunneling cases. The results indicate that the method
demonstrates strong stability, accuracy, and engineering applicability,
thereby offering reliable technical support for the safe, efficient, and
economical construction of tunneling projects.

2 Tunnel feature parameter acquisition
and processing

Tunnel palm surface image recognition plays a crucial role in
contemporary tunneling projects. By acquiring and recognizing
images of the palm surface, it is possible to obtain timely and accurate
information regarding the state of the surrounding rock, thereby
enabling real-time monitoring of tunnel construction and enhancing
safety. This chapter examines and establishes the acquisition
requirements and standards for various key feature parameters.
Additionally, OpenCy, an open-source computer vision library widely
employed for image processing, is utilized to preprocess the captured
images. The entire processing flow is shown in Figure 1.

10.3389/frai.2026.1766828

2.1 Rock image acquisition standards

Rock hardness is primarily influenced by lithology, which can be
identified through rock imaging. Consequently, rock images serve as
a crucial characteristic parameter of the surrounding rock,
The
fundamental basis for determining rock lithology includes its

significantly contributing to lithological classification.

structural characteristics, tectonic type, and color, among other
factors. In the field of engineering geology, rocks are typically
categorized into three groups based on their genesis, with their
respective characteristics presented in Table 1.

Utilizing the structural and tectonic characteristics of rocks, along
with additional factors such as rock color, computer image recognition
technology can efficiently and accurately identify lithology.
Consequently, it is essential to understand the requirements for rock
image acquisition and to establish corresponding standards to ensure
precise lithological determination. Based on this premise, the
following acquisition standards are proposed: (1) Rock images must
be captured using mobile smart devices or cameras with a minimum
resolution of 20 megapixels. When photographing rocks within a
tunnel, incandescent lamps should be employed for supplemental
lighting. (2) On-site image data acquisition may occur during two
specific time periods: 1. following the completion of tunnel blasting
and after a ventilation period of 30 min; 2. after the discharge of slag

On-site Image Acquisition
(standardized shooting protocol)

A 4

Image Preprocessing
[
| : ! }

Grayscale Image Image Image
onversion denoising enhancement normalization

| | l |
!

Feature Inference and Parameter Perception
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(lightweight CNN) detection extraction coefficient K,

| |
I
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FIGURE 1
Flowchart of the real-time intelligent classification method for tunnel surrounding rock.
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TABLE 1 The geological characteristics of the three major types of rocks.

Geological

features
Igneous

Sedimentary

10.3389/frai.2026.1766828

Rock categories

Metamorphic

Formed directly from high-temperature Formed from the weathering products of pre-formed
Formed by metamorphism of pre-existing
Genesis molten magma through magmatic rocks through diagenetic processes such as compaction
igneous, sedimentary, and metamorphic rocks
processes and cementation.
Characterized by a clastic, muddy, and bioclastic
Texture Crystalline granular and mottled structures Metamorphic structure
structure
Massive, flow-like, pore-like, and
Tectonics Layered structure Multiple foliated structures
amygdaloidal structures

has been finalized. (3) Select rocks exhibiting prominent structural
features as subjects for imaging. Prior to capturing images, clean the
surfaces of the chosen rocks to eliminate any stains or soil, thereby
minimizing interference and noise in the resulting images. (4) Position
the camera in alignment with the rock to ensure clarity in the images,
and capture the same rock mass from multiple angles, obtaining 3 to
5 images that highlight its structural and tectonic characteristics. (5)
Following image acquisition, document the time, tunnel, and mileage
associated with the capture, and assess the quality of the rock
photographs for classification and storage, facilitating subsequent
research and analysis.

2.2 Tunnel palm surface image collection
standard

The integrity of surrounding rock during tunnel construction is
primarily assessed through the condition of the palm surface, which
can be evaluated using palm surface imagery. This imagery contains
critical information regarding structural surfaces, rock stratification,
faults, joints, and cracks, all of which are essential for analyzing the
integrity of the surrounding rock. Therefore, it is imperative to
establish specific acquisition standards for palm surface image
collection to enhance the quality of the images obtained. The
acquisition requirements are as follows: (1) When capturing images of
the palm surface, it is essential to ensure adequate brightness, with no
obstruction from construction workers or equipment. This will
facilitate high gray values and pronounced crack gradient variations
during image processing. (2) Select a time when dust content is low to
capture images of the palm surface, thereby ensuring minimal image
noise. (3) Conduct forward photography on the images to prevent any
visual distortion in the captured results. (4) In the presence of
groundwater, choose an appropriate acquisition time, utilize
waterproof equipment, and preprocess the images to mitigate the
adverse effects associated with groundwater.

2.3 Image preprocessing

The quality of captured images at excavation sites is frequently
compromised by light, dust, and construction equipment, necessitating
preprocessing to aid in extracting structural information from rock
and palm surfaces. In this study, we employ Python software to
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enhance image quality through grayscaling, noise reduction,
enhancement, and normalization.

2.3.1 Image grayscale

Image grayscaling involves converting a color graphic into
grayscale through a series of algorithms. Images captured by cell
phones or digital cameras are typically in color; however, the presence
of color and lighting factors complicates the extraction of features
such as joints and cracks on the palm surface. This complexity results
in a significantly larger computational load compared to processing
grayscale images. Therefore, prior to feature extraction in palm surface
images, it is essential to convert the images to grayscale. Subsequent
analysis focuses on the grayscale images, which enhances data
processing efficiency and reduces algorithmic complexity.
Additionally, grayscaling mitigates issues related to color reflections
and shadow interference. The results of the image processing are

illustrated in Figure 2.

2.3.2 Image noise reduction

In this study, we contrast three frequently employed processing
techniques: Gaussian Filtering, Median Filtering, and NL-Means
Denoising, to ascertain the most suitable noise reduction approach.
The outcomes of the image processing for these three methods are
presented in Figure 3.

Assessing the quality of images produced by the three
aforementioned noise reduction methods is challenging when relying
solely on visual inspection. Therefore, the assessment of image quality
post noise reduction relies on Mean Square Error (MSE), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM), as
demonstrated in Table 2.

Table 2 reveals that NL-Means Denoising achieves the lowest MSE
of 6.07, suggesting the closest resemblance to the original image.
Additionally, NL-Means Denoising demonstrates the highest PSNR
and SSIM values, indicating superior quality and structural similarity
to the original image. The comparison highlights NL-Means
Denoising as the most effective method for noise reduction.
Consequently, this study employs the non-local mean denoising
approach for image noise reduction.

2.3.3 Image enhancement

The primary objective of image enhancement is to accentuate
crucial information while diminishing irrelevant details to facilitate
better comprehension, analysis, and visualization of the image.
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FIGURE 2
Image grayscale processing: (a) before graying; (b) after graying.

FIGURE 3
Gaussian filtering, median filtering, and non-local means noise reduction processing: (a) before Gaussian filtering denoising; (b) after Gaussian filtering
denoising; (c) before median filtering denoising; (d) after median filtering denoising; (e) before NL-means denoising; (f) after NL-means denoising.
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TABLE 2 Image noise reduction evaluation metrics.

Processing MSE PSNR SSIM
method

Gaussian filtering 11.87 37.39 0.92
Median filtering 18.98 35.35 0.86
NL-Means denoising 6.07 40.29 0.95

Enhancing rock and palm surface images involves improving the
visibility of joints, fissures, as well as enhancing the texture and
structural details within the image. In this study, histogram
equalization technique is chosen for enhancing rock and palm surface
images. The gray scale map of the palm surface undergoes histogram
equalization using OpenCV, and the outcomes are illustrated in
Figure 4.

The histogram equalization technique was originally applied to
grayscale images; however, advancements in technology have enabled
its extension to color image processing. The outcomes of processing
rock color images are illustrated in Figure 5.

It can be seen from Figures 4, 5 that histogram equalization of the
acquired rock and palm surface images enhances the overall contrast.
This process clarifies details such as the joints and fissures of the palm
surface and the texture of the rock. Additionally, the histogram
indicates an expanded overall gray level range, with a more uniform
distribution.

2.3.4 Image normalization

The Min-Max Scaling method in deep learning facilitates image
normalization through isometric scaling. This process involves
linearly transforming the original image data to map it within the
range of [0,1], thereby preserving the relative scales among the
features, as computed in Equation 1.

X- Xmin

Xmax - Xmin

(1)

Xnorm =

Where X,,,,, is the normalized data, X is the original data, X,;, and
Xnax are the minimum and maximum values of the data, respectively.
The rock and tunnel palm surface images are normalized respectively,
and their original images and corresponding histograms are shown in
Figures 6, 7.

Figures 6, 7 illustrate that the distribution characteristics of the
pixels in the rock and palm surface images remain unchanged
following normalization. However, the pixel value range is reduced
from [0, 255] to [0, 1]. This indicates that the normalization process
preserves the information and features of the images while merely
adjusting the scale of the pixel values. Furthermore, normalization
facilitates faster convergence of the training model and enhances the
model’s generalization capability.

3 Automatic perception and
classification method of tunnel
surrounding rock

The primary characteristic parameters of perimeter rock grading
include the degree of rock hardness and the integrity of the rock body,
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both of which are critical for assessing the perimeter rock grade.
Consequently, the rapid and precise acquisition of these key feature
parameters is essential for real-time grading of surrounding rock
during the tunnel construction phase. This chapter employs deep
learning and image processing techniques to extract feature
parameters. A ShuffleNet convolutional neural network model is
developed to classify and recognize the properties of rock images.
Additionally, image processing technology is utilized to analyze the
palm surface images, enabling the extraction of structural
characteristics and the identification of key feature parameters for
enclosing rock grading.

3.1 Automatic perception of rock hardness

In the BQ method for perimeter rock classification, rock hardness
serves as a critical index. When classifying surrounding rock, it is
essential to not only qualitatively assess the rock’s hardness but also to
determine its specific uniaxial saturated compressive strength. This
section employs the ShuffleNet V2 convolutional neural network to
classify rock images and identify lithology. The rock hardness is
subsequently derived from the established mapping relationship
between lithology and rock hardness for specific tunnels.

3.1.1 Rock image dataset

The rock image samples in this study were acquired through three
methods: field collection, laboratory acquisition, and web collection.
The samples collected from the field primarily originated from specific
railroad tunnel projects in Southwest China, specifically in Sichuan
and Yunnan. Initially, rocks were gathered at the construction site
following the image acquisition criteria outlined in a previous
publication. A total of 1,010 rock sample photos were amassed,
comprising 606 field-collected, 185 laboratory-acquired, and 219
web-collected images. Subsequently, the gathered rock images were
classified and refined, resulting in 163 Class A photos (magmatic
rocks), 681 Class B photos (sedimentary rocks), and 166 Class C
photos (metamorphic rocks). Images with lens imperfections,
blurriness, and intricate backgrounds were excluded, yielding 127
Class A images, 474 Class B images, and 129 Class C images, totaling
730 images. We employed a stratified random sampling approach to
allocate the screened images, with 70% (510) assigned to the training
set, 15% (110) to the validation set, and 15% (110) to the test set. This
allocation aimed to maintain equal proportions of magmatic,
sedimentary, and metamorphic rocks across the training, validation,
and test sets, ensuring experimental reproducibility. Table 3 presents
the distribution of rock photos across various lithologies.

3.1.2 Establishment of lithology identification
model

To develop the lithology recognition model, we conducted image
lithology classification experiments utilizing 0.5%, 1.0x, and 1.5x grids
within the ShuffleNet V2 framework, as detailed in Table 4. The
rockiness classification model comprises a convolutional layer that
incorporates (1) 3 x 3 convolutional kernels with Batch Normalization
(BN) and Rectified Linear Unit (ReLU) activation functions, (2) a
MaxPool layer with a stride of 2, and (3) three modular layers, each
consisting of ShuffleNet V2 Unitl and Unit2. The configuration of the
ShuftleNet V2 Units is illustrated in Figure 8, with the ratio of Unit2
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FIGURE 4
Tunnel palm surface histogram equalization: (a) tunnel palm surface before equalization; (b) the histogram before equalization; (c) tunnel palm surface
after equalization; (d) the histogram after equalization.
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(b)

0 Intensity (unweighted) 255

(d

FIGURE 5
Histogram equalization of colored rock image: (a) tunnel palm surface before equalization; (b) the histogram before equalization; (c) tunnel palm
surface after equalization; (d) the histogram after equalization.
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FIGURE 6
Tunnel palm surface image normalization: (a) tunnel palm surface image before normalization; (b) tunnel palm surface image after normalization; (c)
histogram of the tunnel palm surface before normalization; (d) histogram of the tunnel palm surface after normalization.

to Unitl set at 1:3, 1:7, and 1:3, respectively. Additionally, the model
includes (4) a 1 x 1 convolutional layer, followed by a GlobalPool layer,
and concludes with a Fully Connected Layer (FC) that transforms the
output from the GlobalPool layer into the final category prediction,
employing a softmax activation function to yield the results.

Prior to model training, it is essential to establish the fundamental
parameters and hyperparameters. This paper relies on relevant
parameters derived from existing research (Gui, 2024; Yuan et al,,
2017), incorporates necessary adjustments, and ultimately determines
the model parameters, as presented in Table 5.

3.1.3 Comparative analysis of test results of
lithology identification model

The ShuffleNet V2 neural network model described in the
previous section was employed to classify the lithology of 11 collected
images representing magmatic, sedimentary, and metamorphic rocks.
The training outcomes were subsequently analyzed and compared
using various performance metrics.

The model was trained on the rock image dataset utilizing three
distinct grid sizes: 0.5x grid, 1.0x grid, and 1.5x grid. The number of
iterations was set to 100, and the hyperparameters were maintained at
their default values. The results from the prediction set were analyzed
comparatively using six performance metrics: Accuracy, Precision,
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Recall, F1 score, Total Parameters, and Model Size, as presented in
Table 6.

As shown in Table 6, the test accuracies for the 0.5x grid, 1.0x
grid, and 1.5x grid models applied to the 1,460 test set of lithological
images, yielding accuracies of 87.58, 86.97, and 86.57%, respectively.
As the grid width increases, both the model’s classification accuracy
and the number of computational parameters double, leading to an
increase in model size. Consequently, the 0.5x grid of the ShuffleNet
V2 neural network model demonstrates a significant advantage over
the other models by maintaining a high accuracy rate of 87.58%. This
outcome underscores the effectiveness of its lightweight design.

To further validate the models accuracy, we analyze the
classification results of the ShuftleNet V2 neural network for rockiness
identification across three different grid sizes, utilizing the confusion
matrix, as illustrated in Figures 9, 10. Each row corresponds to the
model’s predicted categories, while each column represents the actual
categories. The diagonal line indicates the count of instances where
the predicted values match the actual values; thus, a higher value along
the diagonal line signifies improved model performance.

A comprehensive comparison of the results from the three
models reveals that the accuracy of the 0.5x grid model is slightly
higher than that of the latter two grid models. Additionally, the
number of computational parameters and the overall model size
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FIGURE 7
Rock image normalization (a) rock image before normalization; (b) rock image after normalization; (c) histogram of rock before normalization; (d)
histogram of rock after normalization.

TABLE 3 Classification and quantity of rock sample set.

Rock classification

Rock type number

Lithology classification

Number of pictures

Number after

collected screening
Al Granite 67 52
Igneous A2 Basalt 44 35
A3 Andesite 52 40
B1 Mudstone 210 135
B2 Shale 134 95
Sedimentary B3 Sandstone 157 112
B4 Conglomerate 65 48
B5 Limestone 115 84
Cl Quartzite 55 44
Metamorphic C2 Marble 57 42
C3 Phyllite 54 43
Total 1,010 730
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TABLE 4 ShuffleNet V2 overall architecture.

Layer Output size Kernel size Stride Repeat Output channels
Image 224 x 224 3
Convl 112 x 112 3x3 2 1 24
MaxPool 56 x 56 3x3 2 1
28 x 28 2 1 48
Stage2
28 x 28 1 3
14 % 14 2 1 96
Stage3
14 x 14 1 7
7%x7 2 1 192
Stage4
7x7 1 3
Conv5 7%x7 1x1 1 1,024
GlobalPool 1x1 7x7
FC 11
Feature Map Input
Feature Map Input

Channel split

1x1 Conv2d

1x1 Conv2d v
BN Rel. 3x3 Conv |
eLu
v
33 Comv 1x1 Conv2d +BN

BN ReLu

1x1 Conv2d

1x1 Conv2d BN ReLu

\ BN ReLu Concat
Concat l
l Channel Shuffle
Channel Shuffle
Feature Map Output
Feature Map Output

(@ (b)

FIGURE 8
ShuffleNet V2 unit structure: (a) ShuffleNet V2 Unitl; (b) ShuffleNet V2 Unit2.

of the 0.5x grid model are significantly smaller than those of the ~ that of the 1.5x grid model. Therefore, considering both
other two models. The accuracy of the 1.0x grid model exceeds ~ computational accuracy and the number of parameters, this paper
that of the 1.5x grid model by only 0.4%, yet the number of  selects the 0.5x grid model for lithology classification and rock
computational parameters in the 1.0x grid model is less than half ~ image recognition.
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TABLE 5 ShuffleNet V2 model parameter settings.
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Serial number Symbol Explanation Value
1 Resize Input image size 224 x 224
2 Epoch Number of iterations 100

3 Learning-rate Learning rate 0.001

4 Decay Weight decay factor 0.0005

5 Batch-size Number of training samples per batch 32

TABLE 6 Comparison of model test results.

Grid-size Accuracy Precision Total-parameters Model size
0.5x 87.58% 87.16% 85.08% 85.64% 353,067 1.35 MB
1.0x 86.97% 85.08% 84.69% 84.17% 1,264,879 4.82 MB
1.5% 86.57% 86.72% 84.21% 83.95% 2,489,899 9.5 MB
Confusion Matrix Confusion Matrix
Al . 4 3 o o 4 0 0 2 200 Al . 0 4 0 0 0 0 0 2 1 3
200
A2 4 2 3 3 o o o o 1 A2 3 54 0 p ! - 4 0 1 o 2 o
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FIGURE 9
Confusion matrix of test sets with different grid widths: (a) 0.5x grid; (b) 1.0x grid; (c) 1.5x grid.
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FIGURE 10
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Confusion matrix of validation sets with different grid widths: (a) 0.5x grid; (b) 1.0x grid; (c) 1.5x grid.
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3.1.4 Rock hardness

Rock hardness is ascertained by integrating rock lithology with
the extent of weathering. The ShuftleNet V2 convolutional neural
network, as previously discussed, can effectively classify the lithology
of rock images. Subsequently, the geological investigation report of the
particular tunnel allows for the determination of the weathering
degree of the strata and the uniaxial saturated compressive strength of
the corresponding rocks. Ultimately, based on Table 7, a
comprehensive classification of rock hardness is conducted.

3.2 Automatic perception of surrounding
rock integrity

The integrity of enclosing rock is one of the two fundamental
indicators used for grading in the BQ method. This integrity is
typically assessed based on parameters such as the number of nodal

Frontiers in Artificial Intelligence 12

cracks, the area they occupy, and their size. In this study, the Canny
algorithm is employed to extract image edges, followed by the
application of the OTSU algorithm to determine the geometric
dimensions of the nodal cracks. This process facilitates the
measurement of crack size, the area occupied by the cracks, and other
relevant characteristics, ultimately allowing for the evaluation of the
surrounding rock’s integrity.

3.2.1 Joint fissure edge detection

The Canny operator is employed for extracting nodal fissure
features from tunnel palm surface images captured in the field. To
enhance the nodal fissure edge extraction process, adaptive Gaussian
filtering and adaptive thresholding techniques are integrated into the
Canny operator. This integration allows for automatic adjustment of
parameters based on the unique characteristics of each image,
facilitating image feature recognition. The operational procedures are
illustrated in Figure 11.
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TABLE 7 Classification of rock hardness levels.
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Category R. (Mpa) Weathering degree Lithology
Hard rock Extremely hard rock | >60 Unweathered ~ slightly weathered Granite, basalt, andesite, diorite, syenite, gneiss, quartzite, siliceous
limestone, siliceous cemented sandstone or conglomerate, etc.
Hard rock 60 ~ 30 Unweathered ~ slightly weathered Marble, limestone, slate, calcareous cemented sandstone, etc.
weak weathered Granite, basalt, andesite, diorite, syenite, gneiss, quartzite, siliceous
limestone, siliceous cemented sandstone or conglomerate, etc.
Soft rock Slightly soft rock 30~15 Unweathered ~ slightly weathered Phyllite, sandy mudstone, conglomerate, marl, shale, etc.
weak weathered Marble, limestone, slate, calcareous cemented sandstone, etc.
strong weathering Granite, basalt, andesite, diorite, syenite, gneiss, quartzite, siliceous
limestone, siliceous cemented sandstone or conglomerate, etc.
Soft rock 15~5 Unweathered ~ slightly weathered Mudstones: mudstone, argillaceous cemented sandstone and
conglomerate, etc.
weak weathered Phyllite, sandy mudstone, conglomerate, marl, shale, etc.
Weak weathering ~ strong weathering | Marble, slate, limestone, calcareous cemented sandstone, etc.
Extremely Soft rock <5 strong weathering Mudstones: mudstone, argillaceous cemented sandstone and
conglomerate, etc.
fully weathered All kinds of rocks

To achieve automatic perception for image refinement, the Canny
operator, along with adaptive Gaussian filtering, was employed under
a consistent threshold for detecting nodal fissures on palm surface
images. As illustrated in Figure 12, the adaptive Gaussian filtering
Canny operator significantly diminishes noise interference, preserves
a greater amount of image information, and enhances the
identification of image features. This method demonstrates superior
accuracy compared to traditional Canny operator detection.

The threshold of the Canny operator significantly influences
feature detection outcomes. A threshold that is too high may result in
the loss of critical feature information, while a threshold that is too low
can introduce pseudo-features. To enhance the adaptability of the
Canny operator for identifying nodal cracks in palm surface images,
the median gray value of the image is employed as the basis for
threshold calculation. Subsequently, an adaptive thresholding
statistical method is utilized for image segmentation. The results of
this process are illustrated in Figure 13.

It can be seen from Figure 13 that the application of adaptive
threshold detection results in the removal of certain fine edge features.
However, this process significantly enhances the extraction of
important features within the image, thereby improving the accuracy
of nodal crack detection on the palm surface.

3.2.2 Fissure body segmentation

The initial state of joint fissure serves as a crucial indicator for
assessing the stability of adjacent rock formations. In this study, the
OTSU method is employed to differentiate between the joint fissure
and the rock matrix, thereby extracting the primary structure of the
joint fissure. The procedural details are outlined below:

(1) Calculate histogram.
Calculate the number of pixels at each gray level in the

grayscale image after processing with the improved Canny
operator.
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(2) Normalize the histogram.

Obtain the probability density function by the ratio of the number
of pixels at each gray level to the total number of pixels.

(3) Calculate the inter-class variance.

Let T represent the single-channel grayscale maximum. For
any threshold k, the grayscale values of the image (denoted as t)
are divided into two intervals, C, and C,, where C, is defined as
{CO |t < k} and Cl1 as {Cl |k <t< T}. Subsequently, the probability
distributions of the two-pixel categories, Py(k) and P,(k), along
with their respective mean values, u,(k) and u,(k), are computed.
Finally, the interclass variance, ¢%,(k), is determined using the
Equation 2:

o (k)= By (k)< By (K)x[ g (K) ~1 () T @

Where By (k) = Zf:opi’Pl (k) = Zf=_/:+1pi L is the number of gray
1

P (k)

(4) Determination and application of optimal threshold.

L-1 .
levels;ug (k) = PRS2

#k)zf: i< (k)

The variances between different classes of threshold k are
calculated for each value in the range [0, T]. When sz (k) is
maximized, this threshold is used for image segmentation. The image
segmentation of the face of the tunnel using the OTSU method is
shown in Figure 14.

The presence of rock cover, combined with variations in light
tilt and shooting angle, typically results in a low gray value for
nodal fissures. As illustrated in Figure 14, the traditional OTSU
method reveals significant overlaps between the segmented joint
fissures and the surrounding rocks on the palm surface. This
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FIGURE 11
Flowchart of the improved Canny operator.

overlap contributes to a low accuracy in fissure recognition,
resulting in substantial white and black blocks, as well as
discontinuities in the segmentation diagrams. Consequently,
improvements to this method are necessary. The traditional OTSU
method categorizes the higher gray value part as the foreground
and the lower part as the background when segmenting an image
into front and back views. However, this approach is overly rigid.
To address this limitation, our study introduces a dual-threshold
segmentation method building upon the OTSU method. This
method utilizes the optimal threshold value k from OTSU as a
benchmark and defines a dual-threshold value range within the
interval [k — 50, k + 50]: T, =k + 50 and T,,, = k — 50. Pixels
falling above the high threshold or below the low threshold are
designated as the background (white), while pixels within this
range are identified as the foreground (black). This technique
facilitates the extraction of nodal fissures, as illustrated in
Figure 15.

3.2.3 Integrity of surrounding rock

The assessment of rock integrity can be determined by the
measured rock volume nodal number, J,. However, the J, value cannot
be directly obtained through computer image processing.
Consequently, the fissure ratio, K, is introduced as an alternative
metric for evaluating rock integrity, with the fissure ratio formula
presented in Equation 3.
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3)

Where A is the total area of the image pixels, i is the number of
fissures, [; is the length of the i-th fissure, and d; is the average pixel
width of the i-th fissure.

Relevant study indicate that the rock mass fissure ratio K, is a
valuable parameter for assessing the strength of surrounding rock
integrity (Jia et al., 2001). Consequently, this paper employs the fissure
ratio K, as an evaluative criterion to classify the integrity of the rock
mass at the palm surface. However, Equation 3 is not directly
applicable in the image processing operation; therefore, it is
reformulated based on the image characteristics, as illustrated in
Equation 4.

_P.+PF, P +P

K N

(4)

wxh

Where P, and P, are the number of fissure points and edge points,
respectively, N is the total number of pixels, and w and h are the image
width and height in terms of pixel values, respectively.

The fissure number ratio depicted in the palm surface image can
be derived using Equation 4. However, this equation solely accounts
for the ductility of the joint fissure, neglecting the tensioning
conditions affecting it. To simultaneously consider both ductility and
tension conditions of joint fissures in the image, the fragmentation
coefficient K}, is employed to assess the integrity of the rock mass. The
value of K, is defined as the sum of the fissure ratio K, and a modified
value of K that incorporates the tension conditions of the fissures, as
calculated in Equations 5,6.

Ky=fetle g )
wxh
K= 2P, )

P, x\lw? +h?

The fragmentation coefficient K, takes into account the ductility
and tension of the fissures in the image, and has a good effect on the
evaluation of the integrity of the surrounding rock. The integrity
evaluation scheme using K is shown in Table 8.

This study employs the BQ method for assessing rock quality,
wherein rock body integrity serves as one of the two fundamental
indicators that directly influence the classification of enclosing rock
grade. The integrity of the rock mass can be evaluated using the K,
value, which is derived from the number of joints per unit volume.
However, obtaining the number of joints per unit volume from images
poses significant challenges. Consequently, this study correlates the
rock mass integrity grading, determined by the aforementioned
crushing coefficient, to the K, value. The K, value is then calculated
through the linear internal deviation of the crushing coefficient K,
obtained from image processing, thereby establishing the essential
index parameters for enclosing rock grading. The classification criteria
are presented in Table 9.
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(b)
FIGURE 12
Comparison of adaptive Gaussian filtering and Canny detection: (a) basic Canny detection; (b) adaptive Gaussian noise reduction Canny detection

@ (b)

FIGURE 13
Comparison of adaptive threshold and Canny detection: (a) before using adaptive threshold; (b) after using adaptive threshold.

FIGURE 14
Traditional OTSU method for image segmentation: (a) grayscale image of joints on the tunnel palm surface; (b) image segmentation using the OTSU

method.

This study also examines the influence of groundwater, which ~ grading at the tunnel construction site, a qualitative approach is
can be assessed qualitatively or quantitatively, as a correction index ~ employed to determine the groundwater status. Consequently, this
for perimeter rock grading. To facilitate rapid perimeter rock  method yields the correction coefficient for groundwater, which is
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FIGURE 15

Improved OTSU method for image segmentation: (a) before improvement and (b) after improvement.

TABLE 8 The evaluation criteria for the fragmentation coefficient.

Fragmentation

Integrity of the tunnel palm

The description of tunnel palm surface

coefficient surface

>0.15 Extremely broken The joint fissures are dense, the main structural planes are highly open, and the rock mass is
in a granular structure

0.07 ~0.15 Broken ‘There are many joint fissures, the opening degree of structural plane is high, and the rock
mass is fragmented structure

0.03 ~ 0.07 Slightly broken The number of joint fissures is general, there is a certain distance between the structural
planes and the opening degree is high or general, and the rock mass fracture block structure
or inlaid fragmented structure

0.01 ~0.03 Relatively intact ‘The number of joint fissures is small, there is a certain distance between the structural planes
and the degree of opening is low or good, and the rock mass is medium thick layered
structure or thick layered structure

<0.01 Intact The number of joint fissures is very small, the spacing of structural planes is wide and the
degree of combination is very good, and the rock mass is integral or thick layer structure

TABLE 9 Correspondence between rock mass fragmentation coefficient and K, value.

Fragmentation coefficient

Rock mass integrity coefficient K,

Tunnel palm surface integrity degree

>0.15 <0.15 Extremely broken
0.07 ~0.15 0.35~0.15 Broken
0.03 ~ 0.07 0.55~0.35 Slightly broken
0.01 ~0.03 0.75 ~ 0.55 Relatively intact
<0.01 >0.75 Intact
derived according to the qualitative evaluation method outlined in BW =3R, +250K,, +100x (1 -K 1) (7)

Table 10.

Utilizing the rock hardness RC, rock integrity K,, and

groundwater coefficient K; established previously, and based on
the BQ grading method, we enhance the formula for calculating
(BQJ.

This leads to the derivation of a formula suitable for the rapid

the perimeter rock correction evaluation index
real-time grading of perimeter rock quality, as calculated in

Equation 7.

Frontiers in Artificial Intelligence

In the formula, BW is the surrounding rock classification
evaluation index used in this system. Based on the calculated value,
the surrounding rock grade of the working face at the current mileage
is determined according to Table 11.

To validate the model’s efficacy, it was run on a laptop
equipped with an Intel Core i7-12700H processor, 16 GB of RAM,
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TABLE 10 Qualitative determination and value of groundwater.
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Groundwater outflow BQ
NE
550 ~ 451 450 ~ 351 350 ~ 251

Damp or dripping water 0 0 0~0.1 02~0.3 0.4 ~0.6
Water discharge in the form of

0~0.1 0.1~0.2 02~0.3 0.4 ~0.6 0.7~0.9
rain or linear stream
gushing water 0.1~0.2 02~0.3 0.4~0.6 0.7~0.9 1.0

TABLE 11 Improved surrounding rock evaluation indices and
classification.

Surrounding rock grade BW
I >550
i 550 ~ 451
11 450 ~ 351
v 350 ~ 251
% <250

and an NVIDIA GeForce RTX 3060 graphics card. The computer
performed well across all performance metrics. The indicators
excelled in precision evaluation. Functionally, the model achieved
an accuracy rate of 95.0% and a recall rate of 96.0%. Performance
testing revealed a single inference time of 0.6 milliseconds, a
memory occupancy of merely 0.12 MB, and a throughput of
128,385 samples/s. In robustness testing, the accuracy rate
decreased by only 3.8% when noise was added. Moreover, the
model effectively handled null values, NaN, and over-range
values, passing all corresponding tests. Compared with similar
studies (Huang and Chen, 2023), the method proposed in this
paper is faster, more practical, and more in line with engineering
practice.

4 Engineering application of real-time
classification method of tunnel
surrounding rock

To assess the feasibility and accuracy of this method, we utilized
the key parameters of perimeter rock classification identified in the
preceding section. This was complemented by the real-time perimeter
rock classification model developed using the BQ method. Testing
was conducted at the Xuefeng Mountain Tunnel and Jinyun Mountain
Tunnel, specifically at the segments K2 + K762 to K2 + K805 in the
Xuefeng Mountain Tunnel and K2 + 258 to K2 + 290 in the Jinyun
Mountain Tunnel. In each tunnel, ten palm surfaces were selected for
perimeter rock classification verification. Rock and palm surface
images are captured using a cell phone at the tunnel site (refer to
Figure 16). Uploading the images to the system for analysis and
identification enables the intelligent grading of tunnel surrounding
rock, a process that takes approximately 20 s. Implementing lighting
equipment at the tunnel site addresses issues related to high dust
levels and low light, thereby streamlining the image acquisition
process and facilitating real-time rock grading. Statistical analysis is
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conducted on the results generated by the real-time perimeter rock
grading model in comparison with both the designated perimeter
rock grade and the manually determined grade, as illustrated in
Table 12.

The comparison of the system’s judgment results for images of
20 tunnel palm surfaces with the actual excavation geological
conditions reveals an 85% accuracy rate in lithology judgment, a
75% correctness rate in rock integrity assessment, and an 80%
accuracy rate in the final perimeter rock level judgment. These
results satisfy the requirements for practical tunnel engineering
applications, thereby validating the robustness, accuracy, and
applicability of this method. Furthermore, they provide a theoretical
foundation for the on-site grading and application of perimeter
rock in palm surface assessments.

To investigate the causes of misjudgment in enclosure grading,
field observations reveal that such misjudgments are primarily
influenced by low light and high dust conditions. Consequently, it is
essential to regulate the data acquisition conditions to mitigate
environmental interference during the collection process.

5 Discussion

(1) The method presented in this paper effectively addresses the
challenge of real-time classification of surrounding rock in
complex construction environments by integrating the
lightweight neural network ShuftleNetV2 with dynamic image
preprocessing techniques. In contrast to traditional deep
learning models, such as ResNet and VGG, ShuftleNetV2
markedly decreases the number of model parameters through
channel segmentation and depth-separable convolution,
aligning with the lightweight approach of MobileNetV2
proposed by Sandler et al. (2018). Regarding image
preprocessing, although the integrity assessment based on 2D
images in this study has limitations in spatial connectivity
analysis compared to the 3D fissure network modeling method
introduced by Li et al. (2024). This constraint hinders the
ability to accurately represent the 3D spatial connectivity, strike
inclination, and deep extension of the fissure network.
However, the method demonstrates significant engineering
applicability at tunnel sites, characterized by easy data
acquisition, low computational overhead, and rapid processing
speed. Furthermore, it holds potential for enhancement
through future integration with LiDAR or 3D reconstruction
technologies.

(2) In contrast to the traditional method of classifying enclosing

rocks, the approach presented in this paper efficiently extracts
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FIGURE 16
Tunnel site picture collection: (a) image of the rock face and (b) image of the tunnel palm surface.

(©)

(4)

features from images, classifies them, and significantly reduces
classification time. When compared to the model developed by
Liu et al. (2018), this method demonstrates greater efficiency
and aligns with the robustness of the adaptive image
segmentation algorithm proposed by Jiang et al. (2022).
Nevertheless, the theoretical algorithm requires further
refinement. Additionally, as this method does not account for
the influence of groundwater, it presents certain errors and
limitations when classifying surrounding rocks in water-rich
tunnels. Therefore, further research is necessary to establish a
classification method that incorporates multiple factors,
including groundwater.

The comparative analysis of engineering applications
demonstrates that the identification results presented in this
paper align closely with the engineering site data. The
accuracy of lithology, rock integrity, and enclosing rock
grade exceeds 75%, thereby validating the effectiveness of
this method. Although the ShuffleNet V2 neural network
model utilized in this study exhibits significant efficiency and
accuracy, it remains constrained by the quality of data sets,
the number of training samples, and the complexity of
environmental factors. Future research may establish a
multifactor collaborative grading model by integrating the
hydrogeological parameter fusion method proposed by
Marinos and Hoek (2001), and Yuan et al. (2017), along with
a migration learning strategy.

The field dataset for this study was primarily collected from
tunnel projects in Southwest China, encompassing a range of
common rock types and typical palm face morphologies. This
diversity enhances the real-time grading validation for
engineering applications presented in this paper. However, the
limited geographic scope and specific projects from which the
data were obtained result in deficiencies regarding the
geological domain coverage. Rock formations in different
regions may exhibit variations in lithological assemblages, joint
and

and fissure development, weathering processes,
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water-bearing conditions, all of which can influence the
model’s accuracy. Consequently, future research must focus on
establishing a comprehensive dataset that includes multiple
regions, various types of surrounding rocks, and complex
hydrogeological conditions.

6 Conclusion

This paper presents a real-time grading method for tunnel

surrounding rock that relies on the automatic perception of parameters.

An automated model for the extraction and grading of surrounding rock

feature parameters is developed by integrating machine learning with

image processing technologies. The primary conclusions are as follows:

(1)

@

©)

A standard and method for collecting surrounding rock feature
parameters are established. The image processing techniques
employed include graying out, noise reduction, enhancement,
and normalization, which collectively facilitate the efficient and
accurate extraction of structural feature information from the
palm surface. This approach significantly enhances the
accuracy of the grading feature parameters for the
surrounding rock.

This study employs the ShuffleNetV2 convolutional neural
network to develop a model for the identification and
classification of lithology, enabling rapid and precise
recognition of rock types. Additionally, it proposes a method
for assessing rock hardness and the integrity of surrounding
rock, facilitating real-time classification.

Through comparative analysis at the engineering site, the
feasibility and practicality of this approach are validated. The
accuracy of rock property assessment is determined to be 85%,
the correctness of integrity evaluation is 75%, and the accuracy
of final enclosing rock classification is 80%. These results
significantly enhance the efficiency and precision of enclosing
rock grading.
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TABLE 12 Summary of surrounding rock classification results.

Tunnel Mileage Assessment Lithology R. Rock Rock Groundwater Surrounding
name method hardness mass rock grade
integrity
Automated Slightly soft
Xuefeng Mudstone 10.77 Broken Damp or dripping \Y%
assessment rock
Mountain  KI12+625
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Broken Damp or dripping v
rodl
Automated Slightly soft
Xuefeng Shale 13.16 Broken Damp or dripping \Y%
assessment rock
Mountain K12+627
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Broken Damp or dripping v
roc
Automated Slightly soft
Xuefeng Mudstone 10.77 Broken Damp or dripping v
assessment rock
Mountain K12+633
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Broken Damp or dripping v
roc]
Automated Slightly soft
Xuefeng Mudstone 10.77 Slightly broken | Damp or dripping \Y%
assessment rock
Mountain K12+635
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Slightly broken | Damp or dripping v
rod]
Automated Slightly hard Relatively o
Xuefeng Sandstone 35.37 ) Damp or dripping v
assessment rock intact
Mountain K12+638
Slightly hard
Tunnel Manual assessment | Sandstone — gk Y Slightly broken | Damp or dripping v
roc
Automated Slightly soft
Xuefeng Mudstone 10.77 Slightly broken | Damp or dripping v
assessment rock
Mountain K12+644
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Slightly broken | Damp or dripping v
roc]
Automated Slightly soft
Xuefeng Mudstone 10.77 Broken Damp or dripping v
assessment rock
Mountain K12+650
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Broken Damp or dripping v
roc]
Automated Slightly soft
Xuefeng Shale 13.16 Broken Damp or drippin v
assessment rock
Mountain | KI12+653
Slightly soft
Tunnel Manual assessment | Shale — gk Y Broken Damp or drippin v
rod]
Automated Slightly hard Relatively o
Xuefeng Sandstone 35.37 ) Damp or drippin v
assessment rock intact
Mountain K12+658
Slightly hard Relatively
Tunnel Manual assessment | Sandstone — Damp or drippin v
rock intact
Automated Slightly soft Relatively o
Xuefeng Mudstone 10.77 ) Damp or dripping v
assessment rock intact
Mountain K12+670
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Slightly broken | Damp or dripping v
roc]
Automated Slightly soft
Jinyun Mudstone 5.42 Broken Damp or dripping v
assessment rock
Mountain DK25+745
Slightly soft
Tunnel Manual assessment | Mudstone — gk Y Broken Damp or dripping v
rod]
Automated Slightly soft
Jinyun Mudstone 5.42 Broken Damp or dripping v
assessment rock
Mountain DK25+748
Slightly soft
Tunnel Manual assessment | Mudstone — gk v Broken Damp or dripping \Y%
roc

(Continued)
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TABLE 12 (Continued)

10.3389/frai.2026.1766828

Tunnel Mileage Assessment Lithology R. Rock Rock Groundwater Surrounding
name method hardness mass rock grade
integrity
Automated Slightly soft
Jinyun Shale 14.52 Broken Damp or dripping \%
assessment rock
Mountain DK25+752
Slightly soft
Tunnel Manual assessment | Mudstone — X Broken Damp or dripping \4
rod]
Automated Slightly soft
Jinyun Mudstone 5.42 Slightly broken | Damp or dripping \4
assessment rock
Mountain DK25+758
Slightly soft
Tunnel Manual assessment | Mudstone — N Broken Damp or dripping \%
rod]
Automated Slightly hard
Jinyun Quartzite 31.12 Slightly broken | Damp or dripping \4
assessment rock
Mountain DK25+762
Slightly hard Relatively
Tunnel Manual assessment | Quartzite — Damp or dripping \4
rock intact
Automated Slightly hard Relatively Damp or dripping v
Jinyun Quartzite 31.12
assessment rock intact
Mountain DK25+776
Tunnel Manual assessment | Quartzite — Slightly hard Relatively Damp or dripping v
rock intact
Jinyun DK25+779 Automated Limestone 29.83 Soft rock Relatively Damp or dripping \4
Mountain assessment intact
Tunnel Manual assessment | Limestone — Soft rock Relatively Damp or dripping v
intact
Jinyun DK25+785 Automated Limestone 29.83 Soft rock Relatively Damp or dripping v
Mountain assessment intact
Tunnel Manual assessment | Limestone — Soft rock Relatively Damp or dripping v
intact
Jinyun DK25+792 Automated Quartzite 31.12 Slightly hard Relatively Damp or dripping v
Mountain assessment rock intact
Tunnel Manual assessment  Quartzite — Slightly hard Relatively Damp or dripping v
rock intact
Jinyun DK25+795 Automated Sandstone 20.5 Soft rock Slightly broken | Damp or dripping v
Mountain assessment
Tunnel Manual assessment  Limestone — Slightly hard Relatively Damp or dripping v
rock intact

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

YX: Writing - review & editing, Investigation, Validation,
Writing - original draft, Data curation, Software, Conceptualization,
Visualization, Formal analysis. HY: Data curation, Validation,
Visualization, Conceptualization, Supervision, Writing - review &
editing. QS: Writing - review & editing, Investigation, Data curation,
Visualization. ZQ: Data curation, Writing — review & editing,
Investigation, Visualization. LT: Writing - review & editing,
Supervision, Investigation. YY: Writing — review & editing, Data
curation, YL: Data curation,

Investigation. Investigation,

Frontiers in Artificial Intelligence

Writing - review & editing. YP: Writing - review & editing,
Investigation, Data curation. QX: Project administration, Writing —
review & editing, Supervision, Funding acquisition, Conceptualization.

Funding

The author(s) declared that financial support was received for this
work and/or its publication. This work was supported by the Scientific
and Technological R&D Project - Research on Key Technologies for
Construction Safety Control of Kilometer-level Multi-arch Tunnels
in Complex Environments (KJYF-2025-B-07); Research Project of
Safety Annular Space-Ground Integrated Investigation System along
the Railway of Zhejiang Provincial Department of Transportation
Limited (Project No. 0625-23217225); Science and Technology
Project of the Zhejiang Provincial Department of Transportation
(Project No. HCZX-24343).

frontiersin.org


https://doi.org/10.3389/frai.2026.1766828
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Xiao et al.

Conflict of interest

YP was employed by Sichuan Electric Power Design and
Consulting Co., Ltd.

The remaining author(s) declared that this work was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that Generative AI was not used in the
creation of this manuscript.

References

Chen, W, Li, T,, Huang, Y., Yang, G., Wang, H., and Xiao, H. (2024). Intelligent
identification of classification features of tunnel surrounding rock and visualization. J.
Railway Sci. Eng. 21, 406-421. doi: 10.19713/j.cnki.43-1423/u.T20230214

Gui, D (2024) Research on classification method of surrounding rock on tunnel face
based on digital image (dissertation). Southwest Jiaotong University. Chengdu, Sichuan
Province, China.

He, P, Wang, G., Sun, S., Li, W, Jiang, E, and Zheng, C. (2020). Reliable stability analysis
of surrounding rock for super section tunnel based on digital characteristics of joint
information. Geomat. Nat. Hazards Risk 11, 1528-1541. doi: 10.1080/19475705.2020.1803996

Huang, H., and Chen, J. (2023). Research on intelligent identification and classification
of surrounding rock in tunnels and research on excavation safety risk based on machine
vision. J. Basic Sci. Eng. 31, 1382-1409. doi: 10.16058/j.issn.1005-0930.2023.06.003

Jia, H., Tang, H., and Liu, Y. (2001). Advances in the study of rock discontinuity net
work modeling technique. Bull. Geol. Sci. Technol. 1, 105-108. doi: 10.13347/j.cnki.
mkaq.2017.06.053

Jiang, E, Wang, G., He, P, Zheng, C., Xiao, Z., and Wu, Y. (2022). Application of canny
operator threshold adaptive segmentation algorithm combined with digital image
processing in tunnel face crevice extraction. J. Supercomput. 78, 11601-11620. doi:
10.1007/s11227-022-04330-9

Leng, B., Yang, H., Hou, G, and Lyamin, A. (2021). Rock mass trace line identification
incorporated with grouping algorithm at tunnel faces. Tunn. Undergr. Space Technol.
110:103810. doi: 10.1016/j.tust.2021.103810

Leu, S., and Chang, S. (2005). Digital image processing based approach for tunnel
excavation faces. Autom. Constr. 14, 750-765. doi: 10.1016/j.autcon.2005.02.004

Li, S., He, P, Li, L., Zhang, Q,, Shi, S., Xu, E, et al. (2018). Reliability analysis method
of sub-classification of tunnel rock mass and its engineering application. Rock Soil Mech.
39, 967-976. doi: 10.16285/j.rsm.2016.2785.

Li, X,, Song, Z., Zhi, B., Pu, J., and Meng, C. (2024). Intelligent identification of rock
mass structural based on point cloud deep learning technology. Constr. Build. Mater.
456:139340. doi: 10.1016/j.conbuildmat.2024.139340

Liu, H., Li, W,, Zha, H., Jiang, W., and Xu, T. (2018). Method for surrounding rock
mass classification of highway tunnels based on deep learning technology[J]. Chin. J.
Geotech. Eng. 40, 1809-1817. doi: 10.11779/CJGE201810007

Liu, H., and Wang, J. (2023). Lithology identification method of tunnel surrounding
rock based on transfer learning technology. Chin. J. Undergr. Space Eng. 19, 437-445.
doi: 10.20174/j.juse.2023.02.010.

Liu, Q., Wang, X., Huang, X., and Yin, X. (2020). Prediction model of rock mass class
using classification and regression tree integrated AdaBoost algorithm based on TBM
driving data. Tunn. Undergr. Space Technol. 106:103595. doi: 10.1016/j.tust.2020.103595

Ma, ], Li, T, Li, X,, Zhou, S., Ma, C., Wei, D., et al. (2022). A probability prediction
method for the classification of surrounding rock quality of tunnels with incomplete
data using Bayesian networks. Sci. Rep. 12:19846. doi: 10.1038/s41598-022-19301-6

Ma, ], Li, T, Yang, G., Dai, K., Ma, C., Tang, H., et al. (2023). A real-time intelligent
classification model using machine learning for tunnel surrounding rock and its
application. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 17, 148-168. doi:
10.1080/17499518.2023.2182891

Ma, X., Xue, Y, Qiu, D., Xia, T., Qu, C., and Kong, F. (2023). Classification for tunnel
surrounding rock based on multiple geological methods and extension model. Bull. Eng.
Geol. Environ. 82:109. doi: 10.1007/s10064-023-03097-4

Frontiers in Artificial Intelligence

10.3389/frai.2026.1766828

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If you
identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Marinos, P, and Hoek, E. (2001). Estimating the geotechnical properties of
heterogeneous rock masses such as flysch. Bull. Eng. Geol. Environ. 60, 85-92. doi:
10.1007/s100640000090

Reid, T., and Harrison, J. (2000). A semi-automated methodology for discontinuity
trace detection in digital images of rock mass exposures. Int. J. Rock Mech. Min. Sci. 37,
1073-1089. doi: 10.1016/S1365-1609(00)00041-1

Sandler, M, Howard, A, Zhu, M, Zhmoginov, A, and Chen, L (2018) Mobilenetv2:
inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Los Alamitos, California, USA: IEEE
Computer Society (pp. 4510-4520)

Shi, S., Li, S., Li, L., Zhou, Z., and Wang, J. (2014). Advance optimized classification and
application of surrounding rock based on fuzzy analytic hierarchy process and tunnel seismic
prediction. Autorm. Constr. 37, 217-222. doi: 10.1016/j.autcon.2013.08.019

Shi, K., Shi, R., Fu, T, Lu, Z., and Zhang, J. (2024). A novel identification approach
using RFECV-Optuna-XGBoost for assessing surrounding rock grade of tunnel
boring machine based on tunneling parameters. Appl. Sci. 14:2347. doi: 10.3390/
app14062347

Song, S., Xu, G., Bao, L., Xie, Y., Lu, W,, Liu, H,, et al. (2023). Classifying the
surrounding rock of tunnel face using machine learning. Front. Earth Sci. 10:1052117.
doi: 10.3389/feart.2022.1052117

Sun, N,, Liu, C., Zhang, E, Dong, M., and Li, Z. (2023). Accurate identification of
broken rock mass structure and its application in stability analysis of underground
caverns surrounding rock. Appl. Sci. 13:6964. doi: 10.3390/app13126964

Tan, E, You, M., Zuo, C,, Jiao, Y., and Tian, H. (2022). Simulation of rock-breaking
process by drilling machine and dynamic classification of surrounding rocks. Rock Mech.
Rock. Eng. 55, 423-437. doi: 10.1007/s00603-021-02659-w

Vutukuri, V. S., Lama, R. D., and Saluja, S. S. (1974). Handbook on mechanical
properties of rocks. Int. J. Rock Mech. Min. Sci. 16:269. doi: 10.1016/0148-9062(79)91204-x

Wang, B., Zhu, J., Zhang, Z., and Zhang, L. (2020). Preliminary discussion on
classifying surrounding rockmass considering influence of high ground temperature and
geothermal gradient. J. Changjiang River Sci. Res. Inst. 37, 69-74. doi: 10.11988/
ckyyb.20191526

Williamson, D. A. (1984). Unified rock classification system. Bull. Assoc. Eng. Geol.
21, 345-354. doi: 10.1016/0148-9062(85)93356-x

Wu, S., Chen, J., and Wu, M. (2020). Study on stability classification of underground
engineering surrounding rock based on concept lattice—TOPSIS. Arab. J. Geosci. 13:346.
doi: 10.1007/s12517-020-05320-y

Xue, Y., Li, Z., Qiu, D., Zhang, L., Zhao, Y., Zhang, X., et al. (2019). Classification
model for surrounding rock based on the PCA-ideal point method: an engineering
application. Bull. Eng. Geol. Environ. 78, 3627-3635. doi: 10.1007/s10064-018-1368-5

Yuan, Y., Wang, C., and Zhou, A. (2017). Prediction model for stability classification
of roadway surrounding rock based on grid search method and support vector machine.
Saf. Coal Mines 48, 200-203. doi: 10.13347/j.cnki.mkaq.2017.06.053

Zhao, S., Wang, M., Yi, W,, Yang, D., and Tong, J. (2022). Intelligent classification of
surrounding rock of tunnel based on 10 machine learning algorithms. Appl. Sci. 12:2656.
doi: 10.3390/app12052656

Zhuang, X., Fan, W, Guo, H., Chen, X., and Wang, Q. (2024). Surrounding rock
classification from onsite images with deep transfer learning based on EfficientNet.
Front. Struct. Civ. Eng. 18, 1311-1320. doi: 10.1007/s11709-024-1134-7

frontiersin.org


https://doi.org/10.3389/frai.2026.1766828
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.19713/j.cnki.43-1423/u.T20230214
https://doi.org/10.1080/19475705.2020.1803996
https://doi.org/10.16058/j.issn.1005-0930.2023.06.003
https://doi.org/10.13347/j.cnki.mkaq.2017.06.053
https://doi.org/10.13347/j.cnki.mkaq.2017.06.053
https://doi.org/10.1007/s11227-022-04330-9
https://doi.org/10.1016/j.tust.2021.103810
https://doi.org/10.1016/j.autcon.2005.02.004
https://doi.org/10.16285/j.rsm.2016.2785.
https://doi.org/10.1016/j.conbuildmat.2024.139340
https://doi.org/10.11779/CJGE201810007
https://doi.org/10.20174/j.juse.2023.02.010.
https://doi.org/10.1016/j.tust.2020.103595
https://doi.org/10.1038/s41598-022-19301-6
https://doi.org/10.1080/17499518.2023.2182891
https://doi.org/10.1007/s10064-023-03097-4
https://doi.org/10.1007/s100640000090
https://doi.org/10.1016/S1365-1609(00)00041-1
https://doi.org/10.1016/j.autcon.2013.08.019
https://doi.org/10.3390/app14062347
https://doi.org/10.3390/app14062347
https://doi.org/10.3389/feart.2022.1052117
https://doi.org/10.3390/app13126964
https://doi.org/10.1007/s00603-021-02659-w
https://doi.org/10.1016/0148-9062(79)91204-x
https://doi.org/10.11988/ckyyb.20191526
https://doi.org/10.11988/ckyyb.20191526
https://doi.org/10.1016/0148-9062(85)93356-x
https://doi.org/10.1007/s12517-020-05320-y
https://doi.org/10.1007/s10064-018-1368-5
https://doi.org/10.13347/j.cnki.mkaq.2017.06.053
https://doi.org/10.3390/app12052656
https://doi.org/10.1007/s11709-024-1134-7

	Real-time grading method of tunnel surrounding rock based on image recognition
	1 Introduction
	2 Tunnel feature parameter acquisition and processing
	2.1 Rock image acquisition standards
	2.2 Tunnel palm surface image collection standard
	2.3 Image preprocessing
	2.3.1 Image grayscale
	2.3.2 Image noise reduction
	2.3.3 Image enhancement
	2.3.4 Image normalization

	3 Automatic perception and classification method of tunnel surrounding rock
	3.1 Automatic perception of rock hardness
	3.1.1 Rock image dataset
	3.1.2 Establishment of lithology identification model
	3.1.3 Comparative analysis of test results of lithology identification model
	3.1.4 Rock hardness
	3.2 Automatic perception of surrounding rock integrity
	3.2.1 Joint fissure edge detection
	3.2.2 Fissure body segmentation
	3.2.3 Integrity of surrounding rock

	4 Engineering application of real-time classification method of tunnel surrounding rock
	5 Discussion
	6 Conclusion

	References

