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To enable rapid, accurate grading of tunnel surrounding rock during construction, 
we propose a real-time grading method that integrates image processing with 
lightweight deep learning. We developed an automated pipeline that combines 
image-processing techniques and machine-learning algorithms to extract and 
classify characteristic parameters of tunnel surrounding rock, enabling real-time 
monitoring and classification at the tunnel palm surface. The study demonstrates 
that: (1) Following the proposed image-acquisition standards for rock and tunnel palm 
surfaces, images are converted to grayscale, denoised, enhanced, and normalized, 
which facilitates efficient and accurate extraction of structural features and improves 
the precision of classification parameters; (2) An optimized lithology identification 
and classification model was built, and a rock-hardness, strength, and integrity 
sensing approach based on the ShuffleNetV2 convolutional neural network was 
introduced to achieve real-time surrounding-rock grading. On an engineering site, 
the method attains 85% accuracy for lithology classification, 75% for rock-mass 
integrity, and 80% for overall surrounding-rock grade, confirming its feasibility 
and practical value. These results offer theoretical insight and engineering utility 
for the scientific evaluation of tunnel surrounding-rock grade.
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1 Introduction

In recent years, the scale of underground engineering and tunnel construction has 
expanded rapidly, imposing greater challenges and higher technical standards on tunnel 
works. Consequently, traditional construction methods can no longer satisfy current demands 
for quality and schedule. As the foundation for tunnel design and construction, surrounding 
rock classification strongly influences both construction quality and progress. Consequently, 
achieving dynamic classification of tunnel surrounding rock has become a central research 
focus in geotechnical engineering.

Numerous scholars have investigated surrounding rock classification methods from both 
qualitative and quantitative perspectives. Zhuang et al. (2024) applied the state-of-the-art 
robust CNN model (EfficientNet) to tunnel wall image recognition and combined it with 
transfer learning to further improve the versatility, accuracy and efficiency of the deep 
learning model, ultimately achieving an accuracy of 89.96%. Vutukuri et al. (1974) employed 
parameters such as rock mass integrity and rock hardness as evaluation indicators for 
surrounding rock classification. Williamson (1984) introduced a rock classification system 
based on fundamental indicators, including the degree of rock weathering, rock strength, 
discontinuity degree, and density. Wang et al. (2020) employed the RMR, GSI, BQ, and HC 
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methods to classify the quality of surrounding rock, utilizing on-site 
geological descriptions, drilling tests, and laboratory rock mechanics 
test results. Ma J. et al. (2023) and Ma X. et al. (2023) developed a 
refined prediction model for tunnel surrounding rock classification 
based on extension theory, integrating various geological methods, 
including geological mapping, ground-penetrating radar, tunnel 
seismic prediction, and advanced horizontal drilling. He et al. (2020) 
introduced a classification method for surrounding rock that 
accounts for the size effect of tunnel excavation spans and the 
presence of unfavorable geological formations. Wu et al. (2020) 
proposed a stability classification model for surrounding rock in 
underground engineering, utilizing conceptual lattice and TOPSIS, 
which is based on five indicators: rock quality grade, saturated 
uniaxial compressive strength, integrity coefficient, longitudinal wave 
velocity, and fractal dimension. Tan et al. (2022) employed the 
discrete element method to simulate the rock-breaking process of a 
pneumatic rock drill and, in conjunction with field data, established 
a standard database for the dynamic classification of surrounding 
rock. Nevertheless, the above conventional classification approaches 
are constrained by protracted parameter acquisition and the 
subjective nature of pivotal indicators.

Consequently, numerous scholars have adopted intelligent 
perimeter rock grading methods for their research, significantly 
reducing both time and economic costs while yielding substantial 
results. Li et al. (2018) and colleagues introduced a reliability analysis 
theory grounded in the national standard BQ method and employed 
the Monte Carlo method to classify surrounding rock based on 
evaluation indices such as rock toughness and integrity. Shi et al. 
(2014) proposed an over-optimized classification method utilizing 
fuzzy hierarchical analysis and tunnel seismic prediction to achieve 
precise predictions of surrounding rock classification. Additionally, 
Ma J. et al. (2023) and Ma X. et al. (2023) developed an intelligent 
surrounding rock classification method alongside a tunnel 
information management system, enabling real-time and accurate 
predictions of surrounding rock classification. Ma et al. (2022) 
proposed a probabilistic prediction method based on a Bayesian 
network for classifying tunnel surrounding rock quality using 
incomplete data. They validated their approach with data collected 
from 286 cases across 10 tunnels and found that the proposed method 
demonstrates high accuracy in predicting sample results despite data 
incompleteness. Shi et al. (2024) employed an integrated learning 
prediction model that combines XGBoost with Optuna for hyper-
parameter optimization and real-time identification of perimeter rock 
classes. Xue et al. (2019) developed a perimeter rock classification 
model that incorporates five key factors: uniaxial compressive 
strength, rock integrity coefficient, softening coefficient, joint surface 
coefficient, and groundwater. This model was constructed using 
principal component analysis and the Ideal Point Method. Liu et al. 
(2020) proposed an integrated learning model that combines the 
classification and regression tree with the AdaBoost algorithm for 
predicting perimeter rock classification based on tunnel boring 
machine digging parameters. Zhao et al. (2022) employed ten 
supervised machine learning algorithms to develop an intelligent 
perimeter rock classification model and software system driven by 
drilling parameters. Song et al. (2023) utilized computerized perimeter 
rock data collected by a rock drilling cart, applying SMOTE, Random 
Forest, and XGBoost algorithms to achieve automatic classification 
and dynamic prediction of perimeter rock at the digging face.

Image recognition, a significant factor in the classification of 
enclosing rock, has been extensively examined by numerous 
researchers. Reid and Harrison, 2000 introduced a semi-automatic 
method for detecting discontinuous traces in grayscale digital images 
and conducted a preliminary analysis of palm surface information. 
Leu and Chang, 2005 utilized digitized image processing technology 
to extract rock cracks, subsequently establishing a three-dimensional 
model that illustrates the internal conditions of the tunnel based on 
the extracted crack information. Leng et al. (2021) employed 
traditional image processing techniques to perform image 
segmentation and edge fitting on geological information, including 
rock crevices and cracks identified through edge detection, thereby 
achieving more precise rock trace information. Liu and Wang (2023) 
employed transfer learning techniques to train extensive rock image 
datasets, facilitating the automatic identification and classification of 
the properties of tunnel surrounding rocks. Huang and Chen (2023) 
developed a fine grading model for surrounding rock by integrating 
heterogeneous data from multiple sources, utilizing a database of 
photographic images of excavation surfaces in rock tunnels, alongside 
on-site measurements, data statistics, intelligent algorithms, and 
numerical simulations. Chen et al. (2024) gathered over 7,000 images 
of tunnel palm surfaces from various tunnel project sites and 
constructed convolutional neural network classification models, 
including the VGG, ResNet, DenseNet, GoogleNet, and InceptionV3, 
to achieve intelligent identification of grading features in tunnel 
enclosing rocks and enable visualization analysis. Sun et al. (2023) 
developed a quality evaluation method and standard for broken rock 
bodies based on the degree of rock fragmentation and occlusion. This 
method employs digital imaging technology, image processing 
software, and multi-factor analysis to assess broken rock bodies in 
large underground caverns. Additionally, they proposed a damage 
mode and safety guidelines for the surrounding rock. However, these 
methods lack sufficient accuracy in extracting critical information 
regarding the grading of enclosing rock, such as joints and fissures in 
the palm surface at construction sites. The accuracy of image feature 
extraction diminishes, particularly under conditions of dust and low 
light, and the high complexity of the model poses challenges for 
deployment on mobile.

In summary, despite the extensive research on tunnel surrounding 
rock classification and image analysis, most existing studies 
concentrate on enhancing classification methods or individual image 
processing techniques. There is a notable absence of systematic 
investigations into the deep integration of machine learning with 
multi-scale image characterization, particularly regarding real-time 
applications in engineering. This gap is especially pronounced in 
complex construction environments, where developing a high-
precision, deployable, and interpretable intelligent classification 
method for surrounding rocks based on image recognition remains a 
significant challenge.

In response to this challenge, this paper proposes a real-time 
classification method for surrounding rock that integrates a 
lightweight deep network with multi-scale feature analysis. This 
approach optimizes the network structure and parameter scale, 
achieving a balance between recognition accuracy, real-time 
performance, and engineering deployability. Additionally, by 
enhancing the image processing algorithm, the method accurately 
extracts geometric features of fissures in complex environmental 
conditions, addressing challenges in feature extraction, model 
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deployment, and standardization in engineering applications. 
Furthermore, this study integrates automatically detected lithology 
and integrity parameters into the existing BQ grading system, enabling 
intelligent perimeter rock grading compliant with engineering 
standards. The proposed method is ultimately validated through real-
world tunneling cases. The results indicate that the method 
demonstrates strong stability, accuracy, and engineering applicability, 
thereby offering reliable technical support for the safe, efficient, and 
economical construction of tunneling projects.

2 Tunnel feature parameter acquisition 
and processing

Tunnel palm surface image recognition plays a crucial role in 
contemporary tunneling projects. By acquiring and recognizing 
images of the palm surface, it is possible to obtain timely and accurate 
information regarding the state of the surrounding rock, thereby 
enabling real-time monitoring of tunnel construction and enhancing 
safety. This chapter examines and establishes the acquisition 
requirements and standards for various key feature parameters. 
Additionally, OpenCv, an open-source computer vision library widely 
employed for image processing, is utilized to preprocess the captured 
images. The entire processing flow is shown in Figure 1.

2.1 Rock image acquisition standards

Rock hardness is primarily influenced by lithology, which can be 
identified through rock imaging. Consequently, rock images serve as 
a crucial characteristic parameter of the surrounding rock, 
significantly contributing to lithological classification. The 
fundamental basis for determining rock lithology includes its 
structural characteristics, tectonic type, and color, among other 
factors. In the field of engineering geology, rocks are typically 
categorized into three groups based on their genesis, with their 
respective characteristics presented in Table 1.

Utilizing the structural and tectonic characteristics of rocks, along 
with additional factors such as rock color, computer image recognition 
technology can efficiently and accurately identify lithology. 
Consequently, it is essential to understand the requirements for rock 
image acquisition and to establish corresponding standards to ensure 
precise lithological determination. Based on this premise, the 
following acquisition standards are proposed: (1) Rock images must 
be captured using mobile smart devices or cameras with a minimum 
resolution of 20 megapixels. When photographing rocks within a 
tunnel, incandescent lamps should be employed for supplemental 
lighting. (2) On-site image data acquisition may occur during two 
specific time periods: 1. following the completion of tunnel blasting 
and after a ventilation period of 30 min; 2. after the discharge of slag 

FIGURE 1

Flowchart of the real-time intelligent classification method for tunnel surrounding rock.
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has been finalized. (3) Select rocks exhibiting prominent structural 
features as subjects for imaging. Prior to capturing images, clean the 
surfaces of the chosen rocks to eliminate any stains or soil, thereby 
minimizing interference and noise in the resulting images. (4) Position 
the camera in alignment with the rock to ensure clarity in the images, 
and capture the same rock mass from multiple angles, obtaining 3 to 
5 images that highlight its structural and tectonic characteristics. (5) 
Following image acquisition, document the time, tunnel, and mileage 
associated with the capture, and assess the quality of the rock 
photographs for classification and storage, facilitating subsequent 
research and analysis.

2.2 Tunnel palm surface image collection 
standard

The integrity of surrounding rock during tunnel construction is 
primarily assessed through the condition of the palm surface, which 
can be evaluated using palm surface imagery. This imagery contains 
critical information regarding structural surfaces, rock stratification, 
faults, joints, and cracks, all of which are essential for analyzing the 
integrity of the surrounding rock. Therefore, it is imperative to 
establish specific acquisition standards for palm surface image 
collection to enhance the quality of the images obtained. The 
acquisition requirements are as follows: (1) When capturing images of 
the palm surface, it is essential to ensure adequate brightness, with no 
obstruction from construction workers or equipment. This will 
facilitate high gray values and pronounced crack gradient variations 
during image processing. (2) Select a time when dust content is low to 
capture images of the palm surface, thereby ensuring minimal image 
noise. (3) Conduct forward photography on the images to prevent any 
visual distortion in the captured results. (4) In the presence of 
groundwater, choose an appropriate acquisition time, utilize 
waterproof equipment, and preprocess the images to mitigate the 
adverse effects associated with groundwater.

2.3 Image preprocessing

The quality of captured images at excavation sites is frequently 
compromised by light, dust, and construction equipment, necessitating 
preprocessing to aid in extracting structural information from rock 
and palm surfaces. In this study, we employ Python software to 

enhance image quality through grayscaling, noise reduction, 
enhancement, and normalization.

2.3.1 Image grayscale
Image grayscaling involves converting a color graphic into 

grayscale through a series of algorithms. Images captured by cell 
phones or digital cameras are typically in color; however, the presence 
of color and lighting factors complicates the extraction of features 
such as joints and cracks on the palm surface. This complexity results 
in a significantly larger computational load compared to processing 
grayscale images. Therefore, prior to feature extraction in palm surface 
images, it is essential to convert the images to grayscale. Subsequent 
analysis focuses on the grayscale images, which enhances data 
processing efficiency and reduces algorithmic complexity. 
Additionally, grayscaling mitigates issues related to color reflections 
and shadow interference. The results of the image processing are 
illustrated in Figure 2.

2.3.2 Image noise reduction
In this study, we contrast three frequently employed processing 

techniques: Gaussian Filtering, Median Filtering, and NL-Means 
Denoising, to ascertain the most suitable noise reduction approach. 
The outcomes of the image processing for these three methods are 
presented in Figure 3.

Assessing the quality of images produced by the three 
aforementioned noise reduction methods is challenging when relying 
solely on visual inspection. Therefore, the assessment of image quality 
post noise reduction relies on Mean Square Error (MSE), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM), as 
demonstrated in Table 2.

Table 2 reveals that NL-Means Denoising achieves the lowest MSE 
of 6.07, suggesting the closest resemblance to the original image. 
Additionally, NL-Means Denoising demonstrates the highest PSNR 
and SSIM values, indicating superior quality and structural similarity 
to the original image. The comparison highlights NL-Means 
Denoising as the most effective method for noise reduction. 
Consequently, this study employs the non-local mean denoising 
approach for image noise reduction.

2.3.3 Image enhancement
The primary objective of image enhancement is to accentuate 

crucial information while diminishing irrelevant details to facilitate 
better comprehension, analysis, and visualization of the image. 

TABLE 1  The geological characteristics of the three major types of rocks.

Geological 
features

Rock categories

Igneous Sedimentary Metamorphic

Genesis

Formed directly from high-temperature 

molten magma through magmatic 

processes

Formed from the weathering products of pre-formed 

rocks through diagenetic processes such as compaction 

and cementation.

Formed by metamorphism of pre-existing 

igneous, sedimentary, and metamorphic rocks

Texture Crystalline granular and mottled structures
Characterized by a clastic, muddy, and bioclastic 

structure
Metamorphic structure

Tectonics
Massive, flow-like, pore-like, and 

amygdaloidal structures
Layered structure Multiple foliated structures
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FIGURE 2

Image grayscale processing: (a) before graying; (b) after graying.

FIGURE 3

Gaussian filtering, median filtering, and non-local means noise reduction processing: (a) before Gaussian filtering denoising; (b) after Gaussian filtering 
denoising; (c) before median filtering denoising; (d) after median filtering denoising; (e) before NL-means denoising; (f) after NL-means denoising.
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Enhancing rock and palm surface images involves improving the 
visibility of joints, fissures, as well as enhancing the texture and 
structural details within the image. In this study, histogram 
equalization technique is chosen for enhancing rock and palm surface 
images. The gray scale map of the palm surface undergoes histogram 
equalization using OpenCV, and the outcomes are illustrated in 
Figure 4.

The histogram equalization technique was originally applied to 
grayscale images; however, advancements in technology have enabled 
its extension to color image processing. The outcomes of processing 
rock color images are illustrated in Figure 5.

It can be seen from Figures 4, 5 that histogram equalization of the 
acquired rock and palm surface images enhances the overall contrast. 
This process clarifies details such as the joints and fissures of the palm 
surface and the texture of the rock. Additionally, the histogram 
indicates an expanded overall gray level range, with a more uniform 
distribution.

2.3.4 Image normalization
The Min-Max Scaling method in deep learning facilitates image 

normalization through isometric scaling. This process involves 
linearly transforming the original image data to map it within the 
range of [0,1], thereby preserving the relative scales among the 
features, as computed in Equation 1.

	

−
=

−
min

max min
norm

X XX
X X 	

(1)

Where Xnorm is the normalized data, X is the original data, Xmin and 
Xmax are the minimum and maximum values of the data, respectively. 
The rock and tunnel palm surface images are normalized respectively, 
and their original images and corresponding histograms are shown in 
Figures 6, 7.

Figures 6, 7 illustrate that the distribution characteristics of the 
pixels in the rock and palm surface images remain unchanged 
following normalization. However, the pixel value range is reduced 
from [0, 255] to [0, 1]. This indicates that the normalization process 
preserves the information and features of the images while merely 
adjusting the scale of the pixel values. Furthermore, normalization 
facilitates faster convergence of the training model and enhances the 
model’s generalization capability.

3 Automatic perception and 
classification method of tunnel 
surrounding rock

The primary characteristic parameters of perimeter rock grading 
include the degree of rock hardness and the integrity of the rock body, 

both of which are critical for assessing the perimeter rock grade. 
Consequently, the rapid and precise acquisition of these key feature 
parameters is essential for real-time grading of surrounding rock 
during the tunnel construction phase. This chapter employs deep 
learning and image processing techniques to extract feature 
parameters. A ShuffleNet convolutional neural network model is 
developed to classify and recognize the properties of rock images. 
Additionally, image processing technology is utilized to analyze the 
palm surface images, enabling the extraction of structural 
characteristics and the identification of key feature parameters for 
enclosing rock grading.

3.1 Automatic perception of rock hardness

In the BQ method for perimeter rock classification, rock hardness 
serves as a critical index. When classifying surrounding rock, it is 
essential to not only qualitatively assess the rock’s hardness but also to 
determine its specific uniaxial saturated compressive strength. This 
section employs the ShuffleNet V2 convolutional neural network to 
classify rock images and identify lithology. The rock hardness is 
subsequently derived from the established mapping relationship 
between lithology and rock hardness for specific tunnels.

3.1.1 Rock image dataset
The rock image samples in this study were acquired through three 

methods: field collection, laboratory acquisition, and web collection. 
The samples collected from the field primarily originated from specific 
railroad tunnel projects in Southwest China, specifically in Sichuan 
and Yunnan. Initially, rocks were gathered at the construction site 
following the image acquisition criteria outlined in a previous 
publication. A total of 1,010 rock sample photos were amassed, 
comprising 606 field-collected, 185 laboratory-acquired, and 219 
web-collected images. Subsequently, the gathered rock images were 
classified and refined, resulting in 163 Class A photos (magmatic 
rocks), 681 Class B photos (sedimentary rocks), and 166 Class C 
photos (metamorphic rocks). Images with lens imperfections, 
blurriness, and intricate backgrounds were excluded, yielding 127 
Class A images, 474 Class B images, and 129 Class C images, totaling 
730 images. We employed a stratified random sampling approach to 
allocate the screened images, with 70% (510) assigned to the training 
set, 15% (110) to the validation set, and 15% (110) to the test set. This 
allocation aimed to maintain equal proportions of magmatic, 
sedimentary, and metamorphic rocks across the training, validation, 
and test sets, ensuring experimental reproducibility. Table 3 presents 
the distribution of rock photos across various lithologies.

3.1.2 Establishment of lithology identification 
model

To develop the lithology recognition model, we conducted image 
lithology classification experiments utilizing 0.5×, 1.0×, and 1.5× grids 
within the ShuffleNet V2 framework, as detailed in Table 4. The 
rockiness classification model comprises a convolutional layer that 
incorporates (1) 3 × 3 convolutional kernels with Batch Normalization 
(BN) and Rectified Linear Unit (ReLU) activation functions, (2) a 
MaxPool layer with a stride of 2, and (3) three modular layers, each 
consisting of ShuffleNet V2 Unit1 and Unit2. The configuration of the 
ShuffleNet V2 Units is illustrated in Figure 8, with the ratio of Unit2 

TABLE 2  Image noise reduction evaluation metrics.

Processing 
method

MSE PSNR SSIM

Gaussian filtering 11.87 37.39 0.92

Median filtering 18.98 35.35 0.86

NL-Means denoising 6.07 40.29 0.95
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FIGURE 4

Tunnel palm surface histogram equalization: (a) tunnel palm surface before equalization; (b) the histogram before equalization; (c) tunnel palm surface 
after equalization; (d) the histogram after equalization.

FIGURE 5

Histogram equalization of colored rock image: (a) tunnel palm surface before equalization; (b) the histogram before equalization; (c) tunnel palm 
surface after equalization; (d) the histogram after equalization.
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to Unit1 set at 1:3, 1:7, and 1:3, respectively. Additionally, the model 
includes (4) a 1 × 1 convolutional layer, followed by a GlobalPool layer, 
and concludes with a Fully Connected Layer (FC) that transforms the 
output from the GlobalPool layer into the final category prediction, 
employing a softmax activation function to yield the results.

Prior to model training, it is essential to establish the fundamental 
parameters and hyperparameters. This paper relies on relevant 
parameters derived from existing research (Gui, 2024; Yuan et al., 
2017), incorporates necessary adjustments, and ultimately determines 
the model parameters, as presented in Table 5.

3.1.3 Comparative analysis of test results of 
lithology identification model

The ShuffleNet V2 neural network model described in the 
previous section was employed to classify the lithology of 11 collected 
images representing magmatic, sedimentary, and metamorphic rocks. 
The training outcomes were subsequently analyzed and compared 
using various performance metrics.

The model was trained on the rock image dataset utilizing three 
distinct grid sizes: 0.5× grid, 1.0× grid, and 1.5× grid. The number of 
iterations was set to 100, and the hyperparameters were maintained at 
their default values. The results from the prediction set were analyzed 
comparatively using six performance metrics: Accuracy, Precision, 

Recall, F1 score, Total Parameters, and Model Size, as presented in 
Table 6.

As shown in Table 6, the test accuracies for the 0.5× grid, 1.0× 
grid, and 1.5× grid models applied to the 1,460 test set of lithological 
images, yielding accuracies of 87.58, 86.97, and 86.57%, respectively. 
As the grid width increases, both the model’s classification accuracy 
and the number of computational parameters double, leading to an 
increase in model size. Consequently, the 0.5× grid of the ShuffleNet 
V2 neural network model demonstrates a significant advantage over 
the other models by maintaining a high accuracy rate of 87.58%. This 
outcome underscores the effectiveness of its lightweight design.

To further validate the model’s accuracy, we analyze the 
classification results of the ShuffleNet V2 neural network for rockiness 
identification across three different grid sizes, utilizing the confusion 
matrix, as illustrated in Figures 9, 10. Each row corresponds to the 
model’s predicted categories, while each column represents the actual 
categories. The diagonal line indicates the count of instances where 
the predicted values match the actual values; thus, a higher value along 
the diagonal line signifies improved model performance.

A comprehensive comparison of the results from the three 
models reveals that the accuracy of the 0.5× grid model is slightly 
higher than that of the latter two grid models. Additionally, the 
number of computational parameters and the overall model size 

FIGURE 6

Tunnel palm surface image normalization: (a) tunnel palm surface image before normalization; (b) tunnel palm surface image after normalization; (c) 
histogram of the tunnel palm surface before normalization; (d) histogram of the tunnel palm surface after normalization.
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FIGURE 7

Rock image normalization (a) rock image before normalization; (b) rock image after normalization; (c) histogram of rock before normalization; (d) 
histogram of rock after normalization.

TABLE 3  Classification and quantity of rock sample set.

Rock classification Rock type number Lithology classification Number of pictures 
collected

Number after 
screening

Igneous

A1 Granite 67 52

A2 Basalt 44 35

A3 Andesite 52 40

Sedimentary

B1 Mudstone 210 135

B2 Shale 134 95

B3 Sandstone 157 112

B4 Conglomerate 65 48

B5 Limestone 115 84

Metamorphic

C1 Quartzite 55 44

C2 Marble 57 42

C3 Phyllite 54 43

Total 1,010 730

https://doi.org/10.3389/frai.2026.1766828
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Xiao et al.� 10.3389/frai.2026.1766828

Frontiers in Artificial Intelligence 10 frontiersin.org

of the 0.5× grid model are significantly smaller than those of the 
other two models. The accuracy of the 1.0× grid model exceeds 
that of the 1.5× grid model by only 0.4%, yet the number of 
computational parameters in the 1.0× grid model is less than half 

that of the 1.5× grid model. Therefore, considering both 
computational accuracy and the number of parameters, this paper 
selects the 0.5× grid model for lithology classification and rock 
image recognition.

FIGURE 8

ShuffleNet V2 unit structure: (a) ShuffleNet V2 Unit1; (b) ShuffleNet V2 Unit2.

TABLE 4  ShuffleNet V2 overall architecture.

Layer Output size Kernel size Stride Repeat Output channels

Image 224 × 224 3

Conv1 112 × 112 3 × 3 2 1 24

MaxPool 56 × 56 3 × 3 2 1

Stage2
28 × 28 2 1 48

28 × 28 1 3

Stage3
14 × 14 2 1 96

14 × 14 1 7

Stage4
7 × 7 2 1 192

7 × 7 1 3

Conv5 7 × 7 1 × 1 1 1,024

GlobalPool 1 × 1 7 × 7

FC 11
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TABLE 5  ShuffleNet V2 model parameter settings.

Serial number Symbol Explanation Value

1 Resize Input image size 224 × 224

2 Epoch Number of iterations 100

3 Learning-rate Learning rate 0.001

4 Decay Weight decay factor 0.0005

5 Batch-size Number of training samples per batch 32

TABLE 6  Comparison of model test results.

Grid-size Accuracy Precision Recall F1 Total-parameters Model size

0.5× 87.58% 87.16% 85.08% 85.64% 353,067 1.35 MB

1.0× 86.97% 85.08% 84.69% 84.17% 1,264,879 4.82 MB

1.5× 86.57% 86.72% 84.21% 83.95% 2,489,899 9.5 MB

FIGURE 9

Confusion matrix of test sets with different grid widths: (a) 0.5× grid; (b) 1.0× grid; (c) 1.5× grid.
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3.1.4 Rock hardness
Rock hardness is ascertained by integrating rock lithology with 

the extent of weathering. The ShuffleNet V2 convolutional neural 
network, as previously discussed, can effectively classify the lithology 
of rock images. Subsequently, the geological investigation report of the 
particular tunnel allows for the determination of the weathering 
degree of the strata and the uniaxial saturated compressive strength of 
the corresponding rocks. Ultimately, based on Table 7, a 
comprehensive classification of rock hardness is conducted.

3.2 Automatic perception of surrounding 
rock integrity

The integrity of enclosing rock is one of the two fundamental 
indicators used for grading in the BQ method. This integrity is 
typically assessed based on parameters such as the number of nodal 

cracks, the area they occupy, and their size. In this study, the Canny 
algorithm is employed to extract image edges, followed by the 
application of the OTSU algorithm to determine the geometric 
dimensions of the nodal cracks. This process facilitates the 
measurement of crack size, the area occupied by the cracks, and other 
relevant characteristics, ultimately allowing for the evaluation of the 
surrounding rock’s integrity.

3.2.1 Joint fissure edge detection
The Canny operator is employed for extracting nodal fissure 

features from tunnel palm surface images captured in the field. To 
enhance the nodal fissure edge extraction process, adaptive Gaussian 
filtering and adaptive thresholding techniques are integrated into the 
Canny operator. This integration allows for automatic adjustment of 
parameters based on the unique characteristics of each image, 
facilitating image feature recognition. The operational procedures are 
illustrated in Figure 11.

FIGURE 10

Confusion matrix of validation sets with different grid widths: (a) 0.5× grid; (b) 1.0× grid; (c) 1.5× grid.
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To achieve automatic perception for image refinement, the Canny 
operator, along with adaptive Gaussian filtering, was employed under 
a consistent threshold for detecting nodal fissures on palm surface 
images. As illustrated in Figure 12, the adaptive Gaussian filtering 
Canny operator significantly diminishes noise interference, preserves 
a greater amount of image information, and enhances the 
identification of image features. This method demonstrates superior 
accuracy compared to traditional Canny operator detection.

The threshold of the Canny operator significantly influences 
feature detection outcomes. A threshold that is too high may result in 
the loss of critical feature information, while a threshold that is too low 
can introduce pseudo-features. To enhance the adaptability of the 
Canny operator for identifying nodal cracks in palm surface images, 
the median gray value of the image is employed as the basis for 
threshold calculation. Subsequently, an adaptive thresholding 
statistical method is utilized for image segmentation. The results of 
this process are illustrated in Figure 13.

It can be seen from Figure 13 that the application of adaptive 
threshold detection results in the removal of certain fine edge features. 
However, this process significantly enhances the extraction of 
important features within the image, thereby improving the accuracy 
of nodal crack detection on the palm surface.

3.2.2 Fissure body segmentation
The initial state of joint fissure serves as a crucial indicator for 

assessing the stability of adjacent rock formations. In this study, the 
OTSU method is employed to differentiate between the joint fissure 
and the rock matrix, thereby extracting the primary structure of the 
joint fissure. The procedural details are outlined below:

	(1)	 Calculate histogram.

Calculate the number of pixels at each gray level in the 
grayscale image after processing with the improved Canny 
operator.

	(2)	 Normalize the histogram.

Obtain the probability density function by the ratio of the number 
of pixels at each gray level to the total number of pixels.

	(3)	 Calculate the inter-class variance.

Let T represent the single-channel grayscale maximum. For 
any threshold k, the grayscale values of the image (denoted as t) 
are divided into two intervals, C0 and C1, where C0 is defined as 
{ }<0C t k  and C1 as { }< <1C k t T . Subsequently, the probability 
distributions of the two-pixel categories, P0(k) and P1(k), along 
with their respective mean values, u0(k) and u1(k), are computed. 
Finally, the interclass variance, σ2

ω(k), is determined using the 
Equation 2:

	 ( ) ( ) ( ) ( ) ( )ωσ  = × × − 
22
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	(4)	 Determination and application of optimal threshold.

The variances between different classes of threshold k are 
calculated for each value in the range [0, T]. When ( )ωσ 2 k  is 
maximized, this threshold is used for image segmentation. The image 
segmentation of the face of the tunnel using the OTSU method is 
shown in Figure 14.

The presence of rock cover, combined with variations in light 
tilt and shooting angle, typically results in a low gray value for 
nodal fissures. As illustrated in Figure 14, the traditional OTSU 
method reveals significant overlaps between the segmented joint 
fissures and the surrounding rocks on the palm surface. This 

TABLE 7  Classification of rock hardness levels.

Category Rc (Mpa) Weathering degree Lithology

Hard rock Extremely hard rock >60 Unweathered ~ slightly weathered Granite, basalt, andesite, diorite, syenite, gneiss, quartzite, siliceous 

limestone, siliceous cemented sandstone or conglomerate, etc.

Hard rock 60 ~ 30 Unweathered ~ slightly weathered Marble, limestone, slate, calcareous cemented sandstone, etc.

weak weathered Granite, basalt, andesite, diorite, syenite, gneiss, quartzite, siliceous 

limestone, siliceous cemented sandstone or conglomerate, etc.

Soft rock Slightly soft rock 30 ~ 15 Unweathered ~ slightly weathered Phyllite, sandy mudstone, conglomerate, marl, shale, etc.

weak weathered Marble, limestone, slate, calcareous cemented sandstone, etc.

strong weathering Granite, basalt, andesite, diorite, syenite, gneiss, quartzite, siliceous 

limestone, siliceous cemented sandstone or conglomerate, etc.

Soft rock 15 ~ 5 Unweathered ~ slightly weathered Mudstones: mudstone, argillaceous cemented sandstone and 

conglomerate, etc.

weak weathered Phyllite, sandy mudstone, conglomerate, marl, shale, etc.

Weak weathering ~ strong weathering Marble, slate, limestone, calcareous cemented sandstone, etc.

Extremely Soft rock ≤5 strong weathering Mudstones: mudstone, argillaceous cemented sandstone and 

conglomerate, etc.

fully weathered All kinds of rocks
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overlap contributes to a low accuracy in fissure recognition, 
resulting in substantial white and black blocks, as well as 
discontinuities in the segmentation diagrams. Consequently, 
improvements to this method are necessary. The traditional OTSU 
method categorizes the higher gray value part as the foreground 
and the lower part as the background when segmenting an image 
into front and back views. However, this approach is overly rigid. 
To address this limitation, our study introduces a dual-threshold 
segmentation method building upon the OTSU method. This 
method utilizes the optimal threshold value k from OTSU as a 
benchmark and defines a dual-threshold value range within the 
interval [k − 50, k + 50]: Tmax = k + 50 and Tmin = k − 50. Pixels 
falling above the high threshold or below the low threshold are 
designated as the background (white), while pixels within this 
range are identified as the foreground (black). This technique 
facilitates the extraction of nodal fissures, as illustrated in 
Figure 15.

3.2.3 Integrity of surrounding rock
The assessment of rock integrity can be determined by the 

measured rock volume nodal number, Jv. However, the Jv value cannot 
be directly obtained through computer image processing. 
Consequently, the fissure ratio, Ks, is introduced as an alternative 
metric for evaluating rock integrity, with the fissure ratio formula 
presented in Equation 3.

	
∑ ∑

= =i i i
s

A l dK
A A 	

(3)

Where A is the total area of the image pixels, i is the number of 
fissures, li is the length of the i-th fissure, and id  is the average pixel 
width of the i-th fissure.

Relevant study indicate that the rock mass fissure ratio Ks is a 
valuable parameter for assessing the strength of surrounding rock 
integrity (Jia et al., 2001). Consequently, this paper employs the fissure 
ratio Ks as an evaluative criterion to classify the integrity of the rock 
mass at the palm surface. However, Equation 3 is not directly 
applicable in the image processing operation; therefore, it is 
reformulated based on the image characteristics, as illustrated in 
Equation 4.

	
+ +

= =
×
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s
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Where Pc and Pe are the number of fissure points and edge points, 
respectively, N is the total number of pixels, and w and h are the image 
width and height in terms of pixel values, respectively.

The fissure number ratio depicted in the palm surface image can 
be derived using Equation 4. However, this equation solely accounts 
for the ductility of the joint fissure, neglecting the tensioning 
conditions affecting it. To simultaneously consider both ductility and 
tension conditions of joint fissures in the image, the fragmentation 
coefficient Kb is employed to assess the integrity of the rock mass. The 
value of Kb is defined as the sum of the fissure ratio Ks and a modified 
value of K that incorporates the tension conditions of the fissures, as 
calculated in Equations 5,6.
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The fragmentation coefficient Kb takes into account the ductility 
and tension of the fissures in the image, and has a good effect on the 
evaluation of the integrity of the surrounding rock. The integrity 
evaluation scheme using Kb is shown in Table 8.

This study employs the BQ method for assessing rock quality, 
wherein rock body integrity serves as one of the two fundamental 
indicators that directly influence the classification of enclosing rock 
grade. The integrity of the rock mass can be evaluated using the Kv 
value, which is derived from the number of joints per unit volume. 
However, obtaining the number of joints per unit volume from images 
poses significant challenges. Consequently, this study correlates the 
rock mass integrity grading, determined by the aforementioned 
crushing coefficient, to the Kv value. The Kv value is then calculated 
through the linear internal deviation of the crushing coefficient Kb 
obtained from image processing, thereby establishing the essential 
index parameters for enclosing rock grading. The classification criteria 
are presented in Table 9.

FIGURE 11

Flowchart of the improved Canny operator.
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This study also examines the influence of groundwater, which 
can be assessed qualitatively or quantitatively, as a correction index 
for perimeter rock grading. To facilitate rapid perimeter rock 

grading at the tunnel construction site, a qualitative approach is 
employed to determine the groundwater status. Consequently, this 
method yields the correction coefficient for groundwater, which is 

FIGURE 12

Comparison of adaptive Gaussian filtering and Canny detection: (a) basic Canny detection; (b) adaptive Gaussian noise reduction Canny detection.

FIGURE 13

Comparison of adaptive threshold and Canny detection: (a) before using adaptive threshold; (b) after using adaptive threshold.

FIGURE 14

Traditional OTSU method for image segmentation: (a) grayscale image of joints on the tunnel palm surface; (b) image segmentation using the OTSU 
method.
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derived according to the qualitative evaluation method outlined in 
Table 10.

Utilizing the rock hardness RC, rock integrity Kv, and 
groundwater coefficient K1 established previously, and based on 
the BQ grading method, we enhance the formula for calculating 
the perimeter rock correction evaluation index [BQ]. 
This leads to the derivation of a formula suitable for the rapid 
real-time grading of perimeter rock quality, as calculated in 
Equation 7.

	 ( )= + + × − 13 250 100 1c vBW R K K 	 (7)

In the formula, BW is the surrounding rock classification 
evaluation index used in this system. Based on the calculated value, 
the surrounding rock grade of the working face at the current mileage 
is determined according to Table 11.

To validate the model’s efficacy, it was run on a laptop 
equipped with an Intel Core i7-12700H processor, 16 GB of RAM, 

FIGURE 15

Improved OTSU method for image segmentation: (a) before improvement and (b) after improvement.

TABLE 8  The evaluation criteria for the fragmentation coefficient.

Fragmentation 
coefficient

Integrity of the tunnel palm 
surface

The description of tunnel palm surface

>0.15 Extremely broken The joint fissures are dense, the main structural planes are highly open, and the rock mass is 

in a granular structure

0.07 ~ 0.15 Broken There are many joint fissures, the opening degree of structural plane is high, and the rock 

mass is fragmented structure

0.03 ~ 0.07 Slightly broken The number of joint fissures is general, there is a certain distance between the structural 

planes and the opening degree is high or general, and the rock mass fracture block structure 

or inlaid fragmented structure

0.01 ~ 0.03 Relatively intact The number of joint fissures is small, there is a certain distance between the structural planes 

and the degree of opening is low or good, and the rock mass is medium thick layered 

structure or thick layered structure

<0.01 Intact The number of joint fissures is very small, the spacing of structural planes is wide and the 

degree of combination is very good, and the rock mass is integral or thick layer structure

TABLE 9  Correspondence between rock mass fragmentation coefficient and Kv value.

Fragmentation coefficient Rock mass integrity coefficient Kv Tunnel palm surface integrity degree

>0.15 <0.15 Extremely broken

0.07 ~ 0.15 0.35 ~ 0.15 Broken

0.03 ~ 0.07 0.55 ~ 0.35 Slightly broken

0.01 ~ 0.03 0.75 ~ 0.55 Relatively intact

<0.01 >0.75 Intact
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and an NVIDIA GeForce RTX 3060 graphics card. The computer 
performed well across all performance metrics. The indicators 
excelled in precision evaluation. Functionally, the model achieved 
an accuracy rate of 95.0% and a recall rate of 96.0%. Performance 
testing revealed a single inference time of 0.6 milliseconds, a 
memory occupancy of merely 0.12 MB, and a throughput of 
128,385 samples/s. In robustness testing, the accuracy rate 
decreased by only 3.8% when noise was added. Moreover, the 
model effectively handled null values, NaN, and over-range 
values, passing all corresponding tests. Compared with similar 
studies (Huang and Chen, 2023), the method proposed in this 
paper is faster, more practical, and more in line with engineering 
practice.

4 Engineering application of real-time 
classification method of tunnel 
surrounding rock

To assess the feasibility and accuracy of this method, we utilized 
the key parameters of perimeter rock classification identified in the 
preceding section. This was complemented by the real-time perimeter 
rock classification model developed using the BQ method. Testing 
was conducted at the Xuefeng Mountain Tunnel and Jinyun Mountain 
Tunnel, specifically at the segments K2 + K762 to K2 + K805 in the 
Xuefeng Mountain Tunnel and K2 + 258 to K2 + 290 in the Jinyun 
Mountain Tunnel. In each tunnel, ten palm surfaces were selected for 
perimeter rock classification verification. Rock and palm surface 
images are captured using a cell phone at the tunnel site (refer to 
Figure 16). Uploading the images to the system for analysis and 
identification enables the intelligent grading of tunnel surrounding 
rock, a process that takes approximately 20 s. Implementing lighting 
equipment at the tunnel site addresses issues related to high dust 
levels and low light, thereby streamlining the image acquisition 
process and facilitating real-time rock grading. Statistical analysis is 

conducted on the results generated by the real-time perimeter rock 
grading model in comparison with both the designated perimeter 
rock grade and the manually determined grade, as illustrated in 
Table 12.

The comparison of the system’s judgment results for images of 
20 tunnel palm surfaces with the actual excavation geological 
conditions reveals an 85% accuracy rate in lithology judgment, a 
75% correctness rate in rock integrity assessment, and an 80% 
accuracy rate in the final perimeter rock level judgment. These 
results satisfy the requirements for practical tunnel engineering 
applications, thereby validating the robustness, accuracy, and 
applicability of this method. Furthermore, they provide a theoretical 
foundation for the on-site grading and application of perimeter 
rock in palm surface assessments.

To investigate the causes of misjudgment in enclosure grading, 
field observations reveal that such misjudgments are primarily 
influenced by low light and high dust conditions. Consequently, it is 
essential to regulate the data acquisition conditions to mitigate 
environmental interference during the collection process.

5 Discussion

	(1)	 The method presented in this paper effectively addresses the 
challenge of real-time classification of surrounding rock in 
complex construction environments by integrating the 
lightweight neural network ShuffleNetV2 with dynamic image 
preprocessing techniques. In contrast to traditional deep 
learning models, such as ResNet and VGG, ShuffleNetV2 
markedly decreases the number of model parameters through 
channel segmentation and depth-separable convolution, 
aligning with the lightweight approach of MobileNetV2 
proposed by Sandler et al. (2018). Regarding image 
preprocessing, although the integrity assessment based on 2D 
images in this study has limitations in spatial connectivity 
analysis compared to the 3D fissure network modeling method 
introduced by Li et al. (2024). This constraint hinders the 
ability to accurately represent the 3D spatial connectivity, strike 
inclination, and deep extension of the fissure network. 
However, the method demonstrates significant engineering 
applicability at tunnel sites, characterized by easy data 
acquisition, low computational overhead, and rapid processing 
speed. Furthermore, it holds potential for enhancement 
through future integration with LiDAR or 3D reconstruction 
technologies.

	(2)	 In contrast to the traditional method of classifying enclosing 
rocks, the approach presented in this paper efficiently extracts 

TABLE 10  Qualitative determination and value of groundwater.

Groundwater outflow 
status

BQ

>550 550 ~ 451 450 ~ 351 350 ~ 251 ≤250

Damp or dripping water 0 0 0 ~ 0.1 0.2 ~ 0.3 0.4 ~ 0.6

Water discharge in the form of 

rain or linear stream
0 ~ 0.1 0.1 ~ 0.2 0.2 ~ 0.3 0.4 ~ 0.6 0.7 ~ 0.9

gushing water 0.1 ~ 0.2 0.2 ~ 0.3 0.4 ~ 0.6 0.7 ~ 0.9 1.0

TABLE 11  Improved surrounding rock evaluation indices and 
classification.

Surrounding rock grade BW

I >550

II 550 ~ 451

III 450 ~ 351

IV 350 ~ 251

V ≤250
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features from images, classifies them, and significantly reduces 
classification time. When compared to the model developed by 
Liu et al. (2018), this method demonstrates greater efficiency 
and aligns with the robustness of the adaptive image 
segmentation algorithm proposed by Jiang et al. (2022). 
Nevertheless, the theoretical algorithm requires further 
refinement. Additionally, as this method does not account for 
the influence of groundwater, it presents certain errors and 
limitations when classifying surrounding rocks in water-rich 
tunnels. Therefore, further research is necessary to establish a 
classification method that incorporates multiple factors, 
including groundwater.

	(3)	 The comparative analysis of engineering applications 
demonstrates that the identification results presented in this 
paper align closely with the engineering site data. The 
accuracy of lithology, rock integrity, and enclosing rock 
grade exceeds 75%, thereby validating the effectiveness of 
this method. Although the ShuffleNet V2 neural network 
model utilized in this study exhibits significant efficiency and 
accuracy, it remains constrained by the quality of data sets, 
the number of training samples, and the complexity of 
environmental factors. Future research may establish a 
multifactor collaborative grading model by integrating the 
hydrogeological parameter fusion method proposed by 
Marinos and Hoek (2001), and Yuan et al. (2017), along with 
a migration learning strategy.

	(4)	 The field dataset for this study was primarily collected from 
tunnel projects in Southwest China, encompassing a range of 
common rock types and typical palm face morphologies. This 
diversity enhances the real-time grading validation for 
engineering applications presented in this paper. However, the 
limited geographic scope and specific projects from which the 
data were obtained result in deficiencies regarding the 
geological domain coverage. Rock formations in different 
regions may exhibit variations in lithological assemblages, joint 
and fissure development, weathering processes, and 

water-bearing conditions, all of which can influence the 
model’s accuracy. Consequently, future research must focus on 
establishing a comprehensive dataset that includes multiple 
regions, various types of surrounding rocks, and complex 
hydrogeological conditions.

6 Conclusion

This paper presents a real-time grading method for tunnel 
surrounding rock that relies on the automatic perception of parameters. 
An automated model for the extraction and grading of surrounding rock 
feature parameters is developed by integrating machine learning with 
image processing technologies. The primary conclusions are as follows:

	(1)	 A standard and method for collecting surrounding rock feature 
parameters are established. The image processing techniques 
employed include graying out, noise reduction, enhancement, 
and normalization, which collectively facilitate the efficient and 
accurate extraction of structural feature information from the 
palm surface. This approach significantly enhances the 
accuracy of the grading feature parameters for the 
surrounding rock.

	(2)	 This study employs the ShuffleNetV2 convolutional neural 
network to develop a model for the identification and 
classification of lithology, enabling rapid and precise 
recognition of rock types. Additionally, it proposes a method 
for assessing rock hardness and the integrity of surrounding 
rock, facilitating real-time classification.

	(3)	 Through comparative analysis at the engineering site, the 
feasibility and practicality of this approach are validated. The 
accuracy of rock property assessment is determined to be 85%, 
the correctness of integrity evaluation is 75%, and the accuracy 
of final enclosing rock classification is 80%. These results 
significantly enhance the efficiency and precision of enclosing 
rock grading.

FIGURE 16

Tunnel site picture collection: (a) image of the rock face and (b) image of the tunnel palm surface.
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TABLE 12  Summary of surrounding rock classification results.

Tunnel 
name

Mileage Assessment 
method

Lithology Rc Rock 
hardness

Rock 
mass 
integrity

Groundwater Surrounding 
rock grade

Xuefeng 

Mountain 

Tunnel

K12+625

Automated 

assessment
Mudstone 10.77

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+627

Automated 

assessment
Shale 13.16

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+633

Automated 

assessment
Mudstone 10.77

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+635

Automated 

assessment
Mudstone 10.77

Slightly soft 

rock
Slightly broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Slightly broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+638

Automated 

assessment
Sandstone 35.37

Slightly hard 

rock

Relatively 

intact
Damp or dripping IV

Manual assessment Sandstone —
Slightly hard 

rock
Slightly broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+644

Automated 

assessment
Mudstone 10.77

Slightly soft 

rock
Slightly broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Slightly broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+650

Automated 

assessment
Mudstone 10.77

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Xuefeng 

Mountain 

Tunnel

K12+653

Automated 

assessment
Shale 13.16

Slightly soft 

rock
Broken Damp or drippin V

Manual assessment Shale —
Slightly soft 

rock
Broken Damp or drippin V

Xuefeng 

Mountain 

Tunnel

K12+658

Automated 

assessment
Sandstone 35.37

Slightly hard 

rock

Relatively 

intact
Damp or drippin IV

Manual assessment Sandstone —
Slightly hard 

rock

Relatively 

intact
Damp or drippin V

Xuefeng 

Mountain 

Tunnel

K12+670

Automated 

assessment
Mudstone 10.77

Slightly soft 

rock

Relatively 

intact
Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Slightly broken Damp or dripping V

Jinyun 

Mountain 

Tunnel

DK25+745

Automated 

assessment
Mudstone 5.42

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Jinyun 

Mountain 

Tunnel

DK25+748

Automated 

assessment
Mudstone 5.42

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

(Continued)
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TABLE 12  (Continued)

Tunnel 
name

Mileage Assessment 
method

Lithology Rc Rock 
hardness

Rock 
mass 
integrity

Groundwater Surrounding 
rock grade

Jinyun 

Mountain 

Tunnel

DK25+752

Automated 

assessment
Shale 14.52

Slightly soft 

rock
Broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Jinyun 

Mountain 

Tunnel

DK25+758

Automated 

assessment
Mudstone 5.42

Slightly soft 

rock
Slightly broken Damp or dripping V

Manual assessment Mudstone —
Slightly soft 

rock
Broken Damp or dripping V

Jinyun 

Mountain 

Tunnel

DK25+762

Automated 

assessment
Quartzite 31.12

Slightly hard 

rock
Slightly broken Damp or dripping V

Manual assessment Quartzite —
Slightly hard 

rock

Relatively 

intact
Damp or dripping V

Jinyun 

Mountain 

Tunnel

DK25+776

Automated 

assessment
Quartzite 31.12

Slightly hard 

rock

Relatively 

intact

Damp or dripping IV

Manual assessment Quartzite — Slightly hard 

rock

Relatively 

intact

Damp or dripping IV

Jinyun 

Mountain 

Tunnel

DK25+779 Automated 

assessment

Limestone 29.83 Soft rock Relatively 

intact

Damp or dripping V

Manual assessment Limestone — Soft rock Relatively 

intact

Damp or dripping IV

Jinyun 

Mountain 

Tunnel

DK25+785 Automated 

assessment

Limestone 29.83 Soft rock Relatively 

intact

Damp or dripping IV

Manual assessment Limestone — Soft rock Relatively 

intact

Damp or dripping IV

Jinyun 

Mountain 

Tunnel

DK25+792 Automated 

assessment

Quartzite 31.12 Slightly hard 

rock

Relatively 

intact

Damp or dripping IV

Manual assessment Quartzite — Slightly hard 

rock

Relatively 

intact

Damp or dripping IV

Jinyun 

Mountain 

Tunnel

DK25+795 Automated 

assessment

Sandstone 20.5 Soft rock Slightly broken Damp or dripping V

Manual assessment Limestone — Slightly hard 

rock

Relatively 

intact

Damp or dripping IV
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