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Objective: Although imaging and paraspinal muscle parameters are linked to 
postoperative recurrent lumbar disc herniation (PRLDH), micro-level texture 
characteristics and their interactions remain underexplored. This study applied 
deep learning (DL)-radiomics to quantify the microstructural heterogeneity of 
responsible intervertebral discs and paraspinal muscles (L3-S1), and assessed a 
combined disc-muscle model for predicting PRLDH.
Method: Clinical and imaging data from 170 lumbar disc herniation (LDH) 
patients undergoing percutaneous transforaminal endoscopic surgery (Jan 
2022-Dec 2024) were retrospectively analyzed. DL and radiomics features were 
extracted from intervertebral discs and paraspinal muscles. Feature selection via 
mutual information was followed by construction of a DL-radiomics Radscore 
model. Internal validation used leave-one-out, 10-fold cross-validation, and 
bootstrapping. Pfirrmann grading performance was compared with the disc 
Radscore, and potential disc-muscle interactions were explored using optimal 
cutoffs.
Results: Among 170 patients, 39 had postoperative recurrence. Disc Radscore 
included 2 DL and 3 radiomics features, while muscle Radscore comprised 2 
DL and 5 radiomics features. The disc Radscore demonstrated good predictive 
ability (AUC 0.857, 95% CI 0.797–0.918) across validation methods (AUC 0.846–
0.857). Muscle Radscore showed moderate performance (AUC 0.718, 95% CI 
0.627–0.809). Pfirrmann grade poorly predicted recurrence (AUC 0.506, 95% 
CI 0.412–0.600). Combined disc-muscle analysis was less stable than disc 
Radscore alone.
Conclusion: DL-radiomics-derived intervertebral disc Radscore robustly 
predicts PRLDH. While combined disc-muscle assessment is less consistent, 
their interactions may inform postoperative risk stratification and management 
in LDH patients.
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1 Introduction

Despite the effectiveness of surgical intervention, postoperative 
recurrent lumbar disc herniation (PRLDH) continues to pose a 
significant challenge for patients with lumbar disc herniation (LDH) 
(Nakamura and Yoshihara, 2017). Identifying patients at high risk is 
essential for tailoring postoperative strategies. Although Pfirrmann 
grading remains the reference standard for assessing disc degeneration, 
it reflects only macroscopic structural changes and is influenced by 
subjective interpretation (Rim, 2016). Moreover, evidence regarding 
the relationship between Pfirrmann grade and PRLDH is inconsistent 
(Li et al., 2023; Tang et al., 2022). Spinal stability relies on the 
integrated function of discs, paraspinal muscles, and neural elements 
(Panjabi, 1992). While previous research has established a link 
between muscle degeneration and PRLDH, most studies have been 
limited to morphological or macroscopic texture analysis at a single 
level, such as L4-L5, overlooking the biomechanical role of the entire 
lumbar musculature and the value of microstructural texture features 
(Tang et al., 2024; Tekin et al., 2025; Kong et al., 2020; Sun et al., 2025).

Given the strength of deep learning (DL)-radiomics in quantifying 
subtle tissue heterogeneity (Zheng et al., 2022), this study set out to 
construct models for both the responsible intervertebral disc and the 
paraspinal muscles spanning L3 to S1. We hypothesized that 
quantitative DL-radiomic features extracted from the intervertebral 
disc and paraspinal muscles could capture microstructural alterations 
associated with PRLDH, thereby providing superior predictive 
performance compared with the conventional Pfirrmann grading 
system. Accordingly, our objectives were threefold: (i) to evaluate how 
well the intervertebral disc Radscore predicts PRLDH and compare it 
with Pfirrmann grading; (ii) to assess the predictive performance of 
the paraspinal muscle Radscore; (iii) to examine whether combining 
disc and muscle features could offer meaningful insights for 
postoperative risk stratification. The study followed the reporting 
structure recommended by the Imaging Biomarker Standardization 
Initiative (IBSI) (Supplementary material S1).

2 Methods

2.1 Patients

This study retrospectively included patients with LDH who were 
treated at our hospital’ s Interventional Pain Department from January 
2022 to December 2024. Inclusion criteria were as follows: (1) diagnosis 
of LDH according to established criteria (Basic, Research, Professional 
Committee of Spine Transformation Society, and Chinese Association 
of Rehabilitation Medicine Spinal Cord, 2022); (2) symptom duration 
≥3 months with failure of conservative treatment; and (3) preoperative 
confirmation by MRI with available L3-S1 CT imaging, treatment with 
percutaneous transforaminal endoscopic surgery, and no prior surgery 
at the affected level. Exclusion criteria included: (1) previous lumbar 
spine surgery; (2) spinal tumors, tuberculosis, deformities, or fractures 
affecting spinal structure; (3) long-term postoperative medication use 
potentially influencing paraspinal muscles; (4) inability to identify the 

responsible disc; (5) incomplete clinical data; and (6) severe 
cardiovascular, cerebrovascular, or other congenital diseases. The study 
complied with the Declaration of Helsinki and was approved by our 
institutional ethics committee (2023-Keyan-062). Recurrence was 
defined as the reappearance of neurologic symptoms on the same side 
and segment, confirmed by imaging, occurring at least 6 months 
postoperatively (Kim et al., 2019). Follow-up lasted 6 months and was 
conducted through outpatient visits, review of electronic medical 
records, and telephone contact. Pain severity was measured using the 
Visual Analog Scale (VAS) preoperatively and on postoperative day 3, 
with higher scores indicating greater pain (Tascioglu and Sahin, 2022).

2.2 Clinical characteristics

General variables included gender, age, disease duration, 
occupation, smoking status, diabetes, and hypertension. Perioperative 
variables were preoperative and postoperative VAS scores. Imaging 
features comprised Pfirrmann grade and Modic changes.

Pfirrmann grading on T2-weighted sagittal images was defined as: 
Grade I: normal disc structure and height, bright signal; Grade II: 
abnormal disc structure with normal height, bright signal, and clear 
nucleus-annulus boundary; Grade III: abnormal structure, normal or 
slightly reduced height, intermediate signal, unclear boundary; Grade 
IV: abnormal structure, normal or moderately reduced height, dark 
signal, and absent boundary; Grade V: collapsed disc with abnormal 
structure and no visible nucleus-annulus distinction.

Modic changes were classified on T1- and T2-weighted sagittal 
images. Normal: equal T1WI and T2WI signal; Type I: low T1WI, 
high T2WI; Type II: high T1WI, high or equal T2WI; Type III: low 
signal on both T1WI and T2WI.

2.3 Image acquisition and segmentation 
methods

All patients underwent preoperative MRI (3.0 T, Siemens, 
Germany) and CT (64-slice, Siemens, Germany) scans in the supine 
position, with T2-weighted sagittal images acquired. The images were 
imported into 3D Slicer 5.8.1. Two interventional physicians, one 
junior (GZ) and one senior (SY), independently outlined the ROIs of 
the responsible intervertebral disc. For the L3-S1 paraspinal muscles-
including the multifidus, erector spinae, and psoas major-the ROIs 
were drawn using a semi-automatic approach. Any disagreements 
were settled through discussion and consensus.

2.4 Deep learning methods and traditional 
omics features

UCTransNet is a semantic segmentation network based on the 
U-Net architecture, which incorporates the Channel-wise Cross 
Attention Transformer (CCT) to replace conventional skip 
connections (Wang et al., 2022). By leveraging the Channel-wise 

https://doi.org/10.3389/frai.2026.1757269
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Zhang et al.� 10.3389/frai.2026.1757269

Frontiers in Artificial Intelligence 03 frontiersin.org

Cross-fusion Attention (CCA) mechanism within the CCT, the 
network effectively bridges the semantic gap and improves feature 
representation. The core formulation of the CCA module is as follows:
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outE  denotes the output feature map, and E  represents the input 
feature map. QW , KW , and VW  are learnable weight matrices. 
( )( )TQ KEW EW  represents the attention mechanism, while VEW  
corresponds to the weighted aggregation. E  serves as a residual 
connection. The proposed segmentation architecture consists of an 
encoding stage with four down-sampling layers and a decoding stage 
with four up-sampling layers. The overall formulation is expressed as 
follows:

	
× ×∈ i i iC H W

iE 

Here, iC  denotes the number of channels, and iH  and iW  represent 
the spatial dimensions of the feature map iE  at the i-th layer. Each down-
sampling and up-sampling layer comprises two grouped convolutional 
blocks. Each grouped convolution consists of a 3 × 3 kernel convolution, 
followed by a batch normalization layer and a ReLU activation. Network 
parameters were optimized using the Adam optimizer with an initial 
learning rate of 0.0001 and a weight decay of 1e-4 to prevent overfitting. 
The batch size was set to 32, and the training process was conducted for 
50 epochs. The model achieving the best performance on the validation 
set was retained for feature extraction. The network was trained using a 
combined loss function of binary cross-entropy and Dice loss.

DL features were extracted from ROIs for predicting PRLDH. The 
DL feature extraction process was performed as follows: (i) ROI 
selection: Rectangular ROIs covering the tissue were obtained for DL 
analysis. All ROIs were resized to a uniform dimension of 224 × 224 
pixels and used as input images. (ii) Image normalization: Input 
images were normalized using min-max scaling according to the 
following formula:
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Where X  represents the original pixel intensity, andM mX X  are 
the maximum and minimum pixel values in the original image, 
respectively, and ∗X  denotes the normalized pixel intensity. (iii) 
Representative feature extraction: The normalized 2D images were 
input into the DL network, and feature maps were extracted from the 
fourth downsampling activation layer of UCTransNet. Global average 
pooling was applied to obtain a 1 × 512-dimensional semantic 
segmentation feature for each 2D image. The DL feature extraction 
process comprised two modules: a DL feature extraction module and 
a deep feature selection module. The workflow is illustrated in Figure 1. 
First, the network was trained on the segmentation dataset to capture 
lesion-specific features. During testing, 2D images were input into the 
trained DL network, and feature maps were extracted from the fourth 
downsampling activation layer of UCTransNet. Global average pooling 
was then performed to generate DL features. Second, features extracted 
from the segmentation dataset were used to construct a feature library 

for adaptive similarity evaluation. Finally, an unsupervised clustering 
algorithm was applied to divide features into two clusters, and the 
similarity between the clusters and the feature library was evaluated to 
select the most informative feature combinations. A total of 512 DL 
features were extracted from each patient for each parameter map. 
UCTransNet was implemented using PyTorch 2.3.1 + CUDA 11.8 and 
executed on an NVIDIA RTX 2080 Ti GPU.

Radiomics features were extracted using PyRadiomics, 
encompassing shape, first-order statistics, gray-level co-occurrence 
matrix (GLCM), and gray-level run length matrix (GLRLM) features. 
Image processing included original images, wavelet decomposition, 
Laplacian of Gaussian (LoG) filtering, square, square root, logarithm, 
and exponential transformations, yielding a total of 1,223 features.

2.5 Statistical analysis

Statistical analyses were performed using R Studio (v4.2.3) and 
Python (v3.9.13). Continuous variables were expressed as mean ± 
standard deviation (x̄ ± s) and compared using independent t-tests. 
Categorical variables were presented as counts and percentages (n %) 
and analyzed using the chi-square test.

Radiomics and DL features were extracted through a stepwise 
procedure. First, features from ROIs outlined by two radiologists 
were assessed with the intraclass correlation coefficient (ICC), 
retaining those with ICC > 0.75. Next, the Maximum Relevance 
Minimum Redundancy (MRMR) algorithm combined with a 
random forest classifier (5-fold cross-validation) was used to remove 
redundant features. Features with high inter-feature correlation 
(Pearson > 0.9) or weak association with outcomes (<0.3) were 
further excluded. Finally, LASSO and SVM-RFE with 10-fold cross-
validation were applied to narrow the feature set. The final DL 
Radiomics features were used to calculate a Radscore, representing 
the DL Radiomics model (Figure 1).

The discriminative performance was assessed using the Area 
Under the Curve (AUC). To evaluate the added value of clinical 
factors, we constructed “Adjusted Models” using multivariate logistic 
regression, incorporating the Radscores along with clinical covariates. 
Model calibration (the agreement between predicted probabilities and 
observed frequencies) was assessed using calibration curves and the 
Hosmer-Lemeshow goodness-of-fit test. To ensure robustness and 
avoid overfitting, the performance of both Unadjusted and Adjusted 
models (including the multivariate fitting process) was validated using 
leave-one-out, 10-fold cross-validation, and bootstrap validation 
(1,000 resamples). Cutoff values for the Radscores were determined 
using the Youden index. All models were adjusted for age, sex, BMI, 
diabetes, hypertension, smoking history, pre- and postoperative VAS 
scores, disease duration, occupation, Pfirrmann grade, Modic changes, 
herniation type, and herniation segment. Differences were considered 
statistically significant at p < 0.05.

3 Results

3.1 General results

A total of 170 patients were enrolled, with ages ranging from 
21 to 88 years (mean 58.44 ± 14.38 years). Among them, 39 
patients experienced postoperative recurrence, with ages between 
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30 and 87 years (mean 59.00 ± 13.64 years). Significant differences 
were observed between the PRLDH and non-PRLDH groups in 
disease duration, Intervertebral Disc Radscore, Paraspinal Muscle 
Radscore, and combined Intervertebral Disc and Paraspinal 
Muscle Radscore (p < 0.05). The detailed comparison of patient 
characteristics is summarized in Table 1.

3.2 Feature selection results of deep 
learning-radiomics

After ICC-based screening, 813 PyRadiomics features for the disc 
and 921 for the paraspinal muscles, as well as 201 DL features for the 
disc and 263 for the muscles, were retained. The MRMR algorithm 

FIGURE 1

Workflow of radiomics and deep-learning (DL) feature extraction, image segmentation, DL-radiomics model building, feature selection, and result 
analysis. CCT, Channel-wise Cross-Attention Transformer; LDH, lumbar disc herniation.
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TABLE 1  Characteristics of PRLDH and non-PRLDH.

Variables Total
(n = 170)

Non-PRLDH
(n = 131)

PRLDH
(n = 39)

t/χ2/− P

Age (years) 58.44 ± 14.38 58.27 ± 14.64 59.00 ± 13.64 −0.28 0.781

Gender (%) 1.69 0.194

 � Female 72 (42.35) 59 (45.04) 13 (33.33)

 � Male 98 (57.65) 72 (54.96) 26 (66.67)

BMI (kg/m2) 24.65 ± 3.40 24.44 ± 3.46 25.37 ± 3.12 −1.51 0.134

Smoking (%) 1.01 0.315

 � No 124 (72.94) 98 (74.81) 26 (66.67)

 � Yes 46 (27.06) 33 (25.19) 13 (33.33)

Disease duration (years) 4.06 ± 6.08 3.46 ± 5.41 6.05 ± 7.66 −2.36 0.019

Diabets (%) 2.41 0.121

 � No 133 (78.24) 106 (80.92) 27 (69.23)

 � Yes 37 (21.76) 25 (19.08) 12 (30.77)

Hypertension (%) 0.25 0.620

 � No 106 (62.35) 83 (63.36) 23 (58.97)

 � Yes 64 (37.65) 48 (36.64) 16 (41.03)

Preoperative VAS score (%) – 0.542

 � 3 1 (0.59) 1 (0.76) 0 (0.00)

 � 4 8 (4.71) 5 (3.82) 3 (7.69)

 � 5 79 (46.47) 62 (47.33) 17 (43.59)

 � 6 68 (40.00) 53 (40.46) 15 (38.46)

 � 7 10 (5.88) 6 (4.58) 4 (10.26)

 � 8 4 (2.35) 4 (3.05) 0 (0.00)

Postoperative VAS score (%) 0.01 0.908

 � 2 134 (78.82) 103 (78.63) 31 (79.49)

 � 3 36 (21.18) 28 (21.37) 8 (20.51)

Occupation (%) – 0.899

 � Office worker 63 (37.06) 47 (35.88) 16 (41.03)

 � Laborer 15 (8.82) 11 (8.40) 4 (10.26)

 � Farmer 72 (42.35) 57 (43.51) 15 (38.46)

 � Self-employed households 20 (11.76) 16 (12.21) 4 (10.26)

Pfirrmann grade (%) 0.02 0.992

 � Grade III 64 (37.65) 49 (37.40) 15 (38.46)

 � Grade IV 88 (51.76) 68 (51.91) 20 (51.28)

 � Grade V 18 (10.59) 14 (10.69) 4 (10.26)

Modic change (%) – 0.561

 � Normal 45 (26.47) 36 (27.48) 9 (23.08)

 � Type I 1 (0.59) 1 (0.76) 0 (0.00)

 � Type II 107 (62.94) 83 (63.36) 24 (61.54)

 � Type III 17 (10.00) 11 (8.40) 6 (15.38)

Herniation type (%) 2.27 0.321

 � Bulge 26 (15.29) 19 (14.50) 7 (17.95)

 � Herniation 130 (76.47) 99 (75.57) 31 (79.49)

 � Prolapse 14 (8.24) 13 (9.92) 1 (2.56)

(Continued)
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combined with a random forest classifier (5-fold cross-validation) 
further reduced the sets to 12 and 8 PyRadiomics features and 7 and 3 
DL features. Features with high inter-feature correlation (Pearson > 
0.9) or low association with outcomes (<0.3) were excluded, leaving 11 
and 8 PyRadiomics features and 6 and 3 DL features. Finally, LASSO 
and SVM-RFE (10-fold cross-validation) narrowed the feature sets to 
5 and 3 PyRadiomics features and 2 and 2 DL features. The Radscore 
calculation formula is detailed in Supplementary material S2.

3.3 Evaluation of the predictive 
performance of the responsible 
intervertebral disc and paraspinal muscles

As shown in Tables 2, 3 and Figure 2, the Intervertebral Disc 
Radscore achieved an AUC of 0.857 (95% CI 0.797–0.918), with an 
accuracy of 0.806, sensitivity 0.744, and specificity 0.824. Internal 
validation confirmed robust performance, with AUCs of 0.846 (leave-
one-out), 0.847 (10-fold cross-validation), and 0.857 (bootstrap). After 
adjusted, the AUC increased to 0.898, with accuracy 0.812, sensitivity 
0.821, and specificity 0.809. By contrast, the Pfirrmann grade 
performed poorly, with an AUC of 0.506, accuracy 0.571, sensitivity 
0.385, and specificity 0.626.

For the Paraspinal Muscle Radscore, the AUC was 0.718 (0.627–
0.809), with accuracy 0.667, sensitivity 0.692, and specificity 0.672. 
Internal validation yielded AUCs of 0.701 (leave-one-out), 0.699 
(10-fold), and 0.719 (bootstrap). Adjusted improved performance, giving 
an AUC of 0.822, accuracy 0.759, sensitivity 0.769, and specificity 0.756.

3.4 Combined predictive performance 
assessment of the responsible 
intervertebral disc and paraspinal muscles

Using the identified cutoffs, patients were classified according to 
the Intervertebral Disc Radscore (−0.824) and Paraspinal Muscle 

Radscore (−0.970) into four groups: “High-Radscore (muscle) and 
High-Radscore (disc),” “Low-Radscore (muscle) and High-Radscore 
(disc),” “High-Radscore (muscle) and Low-Radscore (disc),” and 
“Low-Radscore (muscle) and Low-Radscore (disc)” (Figure 3; 
Table 4). Relative to the High-Radscore (muscle) and High-Radscore 
(disc) group, all other combinations were protective, with ORs ranging 
from 0.022 to 0.413 (95% CI 0.005–1.267) and adjusted ORs from 
0.009 to 0.245 (95% CI 0.001–0.945).

The combined Intervertebral Disc and Paraspinal Muscle model 
achieved adjusted and unadjusted AUCs of 0.898 and 0.841, with 
accuracies of 0.871 and 0.806, sensitivities of 0.821 and 0.744, and 
specificities of 0.885 and 0.824. Internal validation produced leave-
one-out AUCs of 0.811/0.764, 10-fold AUCs of 0.824/0.791, and 
bootstrap AUCs of 0.784/0.833 (Table 3).

Partial ROC curves for sensitivity 1–0.80 showed pAUCs of 0.116 
for the Intervertebral Disc Radscore and 0.104 for the combined 
model (PDelong = 0.466; adjusted PDelong = 0.768). For specificity 1–0.80, 
pAUCs were 0.104 and 0.097, respectively (PDelong = 0.646; adjusted 
PDelong = 0.646) (Figure 4). Both models demonstrated good 
calibration, and decision curve analysis (DCA) and clinical impact 
curves (CIC) analyses showed no meaningful differences (Figures 5, 6).

4 Discussion

In this study evaluating DL-based radiomics (DL-Radiomics) 
of the Intervertebral Disc and Paraspinal Muscle for predicting 
PRLDH, we found that the Intervertebral Disc Radscore 
demonstrated strong predictive performance (AUC = 0.857, 95% 
CI: 0.797–0.918). Its performance remained stable even after 
adjusting for additional factors, including Pfirrmann grade, Modic 
changes, BMI, and comorbidities, and across different internal 
validation methods (leave-one-out, 10-fold cross-validation, and 
bootstrap), with consistently favorable sensitivity and specificity.

Previous studies have suggested that paraspinal muscle 
characteristics also contribute to PRLDH risk prediction (Tang et al., 

TABLE 1  (Continued)

Variables Total
(n = 170)

Non-PRLDH
(n = 131)

PRLDH
(n = 39)

t/χ2/− P

Herniation segments (%) – 0.187

 � L3/5 6 (3.53) 6 (4.58) 0 (0.00)

 � L4/5 107 (62.94) 85 (64.89) 22 (56.41)

 � L5/S1 57 (33.53) 40 (30.53) 17 (43.59)

Intervertebral disc Radscore −1.41 ± 1.90 −1.95 ± 1.64 0.40 ± 1.54 −7.94 <0.001

Paraspinal muscle Radscore −1.23 ± 1.16 −1.44 ± 1.07 −0.54 ± 1.19 −4.46 <0.001

Intervertebral disc and Paraspinal muscle Radscore (%) 51.95 <0.001

 � High-Radscore (muscle) 

and High-Radscore (disc)

31 (18.24) 11 (8.40) 20 (51.28)

 � Low-Radscore (muscle) 

and High-Radscore (disc)

21 (12.35) 12 (9.16) 9 (23.08)

 � High-Radscore (muscle) 

and Low-Radscore (disc)

39 (22.94) 32 (24.43) 7 (17.95)

 � Low-Radscore (muscle) 

and Low-Radscore (disc)

79 (46.47) 76 (58.02) 3 (7.69)

BMI, Body Mass Index; t, t-test; χ2, Chi-square test; −, Fisher exact.
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2024; Tekin et al., 2025; Kong et al., 2020; Sun et al., 2025; Kocaman 
et al., 2023); however, these studies typically focused on the L4-L5 
segment only. To assess the overall influence of the lower lumbar 
musculature, we included paraspinal muscles from the L3-S1 segments 
in our analysis. Although the Paraspinal Muscle Radscore differed 
significantly between patients with and without PRLDH (p < 0.001), 
its predictive performance (AUC = 0.718, 95% CI: 0.627–0.809) was 
lower than that reported in prior studies and inferior to the 
Intervertebral Disc Radscore.

To investigate the combined predictive and risk-stratification 
potential of the intervertebral disc and paraspinal muscles, we 
analyzed their interaction. Both adjusted and unadjusted combined 
models (Intervertebral Disc and Paraspinal Muscle) showed good 
predictive performance (AUC 0.841–0.898, 95% CI: 0.772–0.958); 
however, internal validation results were less stable (AUC 0.764–
0.833). Importantly, the interaction analysis indicated that, compared 
with the High-Radscore (muscle) and High-Radscore (disc) group, 
the Low-Radscore (muscle) and Low-Radscore (disc) combination 

TABLE 3  Internal validation of the model.

Model Leave-one-out cross-
validation

10-fold cross-validation Boostrapping

AUC 95%CI AUC 95%CI AUC 95%CI

Intervertebral disc Radscore

Unadjusted 0.846 0.783, 0.910 0.847 0.783, 0.911 0.857 0.766, 0.932

Adjusted 0.824 0.750, 0.898 0.825 0.750, 0.900 0.801 0.677, 0.908

Paraspinal muscle Radscore

Unadjusted 0.701 0.606, 0.795 0.699 0.602, 0.795 0.719 0.590, 0.834

Adjusted 0.702 0.610, 0.793 0.696 0.604, 0.787 0.689 0.561, 0.821

Intervertebral disc and Paraspinal muscle

Unadjusted 0.764 0.672, 0.856 0.791 0.706,

0.876

0.833 0.729, 0.928

Adjusted 0.811 0.729, 0.894 0.824 0.746, 0.901 0.784 0.654, 0.904

Unadjusted: raw model; Adjusted: adjusted for age, gender, BMI, diabetes, hypertension, smoking status, pre- and postoperative VAS scores, disease duration, occupation, Pfirrmann grade, 
Modic changes, herniation type, and herniation segment.

TABLE 2  Model prediction performance.

Model AUC
(95%CI)

Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

PPV
(95%CI)

NPV
(95%CI)

Pfirrmann grade

Unadjusted 0.506

(0.412, 0.600)

0.571

(0.493, 0.646)

0.385

(0.234, 0.554)

0.626

(0.537, 0.709)

0.234

(0.138, 0.357)

0.774

(0.682, 0.849)

Adjusted 0.719

(0.628, 0.811)

0.700

(0.625, 0.768)

0.641

(0.472, 0.788)

0.718

(0.632, 0.793)

0.403

(0.281, 0.536)

0.870

(0.792, 0.927)

Intervertebral disc Radscore

Unadjusted 0.857

(0.797, 0.918)

0.806

(0.738, 0.863)

0.744

(0.579, 0.870)

0.824

(0.748, 0.885)

0.558

(0.413, 0.695)

0.915

(0.850, 0.959)

Adjusted 0.898

(0.845, 0.951)

0.812

(0.745, 0.868)

0.821

(0.665, 0.925)

0.809

(0.731, 0.873)

0.561

(0.424, 0.693)

0.938

(0.877, 0.975)

Paraspinal muscle Radscore

Unadjusted 0.718

(0.627, 0.809)

0.677

(0.601, 0.746)

0.692

(0.524, 0.830)

0.672

(0.584, 0.751)

0.386

(0.272, 0.510)

0.880

(0.800, 0.936)

Adjusted 0.822

(0.750, 0.894)

0.759

(0.687, 0.821)

0.769

(0.607, 0.889)

0.756

(0.673, 0.827)

0.484

(0.355, 0.614)

0.917

(0.848, 0.961)

Intervertebral disc and Paraspinal muscle

Unadjusted 0.841

(0.772, 0.909)

0.806

(0.738, 0.863)

0.744

(0.579, 0.870)

0.824

(0.748, 0.885)

0.558

(0.413, 0.695)

0.915

(0.850, 0.959)

Adjusted 0.898

(0.838, 0.958)

0.871

(0.811, 0.917)

0.821

(0.665, 0.925)

0.885

(0.818, 0.934)

0.681

(0.529, 0.809)

0.943

(0.886, 0.977)

Unadjusted: raw model; Adjusted: adjusted for age, gender, BMI, diabetes, hypertension, smoking status, pre- and postoperative VAS scores, disease duration, occupation, Pfirrmann grade, 
Modic changes, herniation type, and herniation segment.
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consistently acted as a protective factor in both unadjusted and 
adjusted models (p < 0.001), supporting its value for postoperative risk 
stratification.

Finally, comparison of the Intervertebral Disc Radscore with the 
combined Intervertebral Disc and Paraspinal Muscle model revealed 
no significant differences in performance for sensitivity and specificity 
within the 1–0.80 range (PDelong = 0.466–0.768). The calibration curve, 

DCA, and CIC show similar patterns across risk thresholds. The 
segmentation model achieved robust performance. For the Paraspinal 
Muscles (Axial view), the model demonstrated excellent accuracy with 
a Mean DSC of 0.9277 and Mean HD95 of 2.92 mm, reflecting the 
distinct anatomical boundaries of muscle groups. For the 
Intervertebral Discs (Sagittal T2WI), the model achieved a Mean DSC 
of 0.7859 and Mean HD95 of 5.91 mm. While slightly lower than the 
muscle segmentation metrics, this performance is consistent with the 
challenges of delineating irregular herniated tissues and complex 
boundaries in sagittal MRI views. Visual inspection confirmed that 
the ROIs successfully covered the region of interest for radiomics 
extraction.

Previous studies investigating the role of the responsible 
intervertebral disc in PRLDH have primarily focused on the 
Pfirrmann grading system. Pfirrmann grade reflects pathological 
changes within the disc, and higher grades correspond to more severe 
degeneration, which may increase the risk of LDH (Ozden and Silav, 
2023). Elevated Pfirrmann grades are associated with reduced water 
content, loss of proteoglycans, and disruption of collagen fiber 
architecture within the disc tissue (Wei et al., 2014; Anderson and 
Tannoury, 2005; Kuzu et al., 2025). These changes compromise the 
mechanical integrity of the disc, rendering it more susceptible to 
herniation. For instance, Minin et al. (2025) developed the SpineScan 
model to enable automated Pfirrmann grading.

In our study, although the Intervertebral Disc Radscore was 
significantly associated with PRLDH, Pfirrmann grades did not differ 
between the recurrent and non-recurrent groups (p = 0.992), nor 
between patients with high versus low Intervertebral Disc Radscores 
(p = 0.347). Thus, while prior research has suggested that Pfirrmann 
grade serves as a primary indicator of disc degeneration and can 
influence LDH and PRLDH risk, this effect may not always be 
statistically significant (Bulut et al., 2024). This discrepancy likely 
arises because Pfirrmann grading relies on T2-weighted signal 
intensity and morphological features, which capture macroscopic 
structural changes. In contrast, the DL-based Intervertebral Disc 
Radscore extracts high-dimensional radiomic features from 
T2-weighted images that are imperceptible to the human eye, thereby 

FIGURE 3

Unadjusted (A) and adjusted (B) forest plot illustrating the interaction between intervertebral disc Radscore and paraspinal muscle Radscore.

FIGURE 2

Unadjusted and adjusted ROC curves of the intervertebral disc 
Radscore, paraspinal muscle Radscore, and the combined model. 
Model 1: Intervertebral disc Radscore (adjusted); Model 2: Paraspinal 
muscle Radscore (adjusted); Model 3: Intervertebral disc and 
paraspinal muscle (adjusted); Model 4: Intervertebral disc Radscore 
(unadjusted); Model 5: Paraspinal muscle Radscore (unadjusted); 
Model 6: Intervertebral disc and paraspinal muscle (unadjusted). 
Adjusted: age, gender, BMI, diabetes, hypertension, smoking, pre- 
and post-operative VAS scores, disease duration, occupation, 
Pfirrmann grade, Modic changes, herniation type, and herniation 
segment.
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quantifying microstructural heterogeneity within the disc (van der 
Velden et al., 2022; McSweeney et al., 2025; Fan et al., 2024). 
Consequently, the Radscore can detect subtle pixel-level pathological 
and physiological changes within the disc before they manifest as 
observable morphological differences, allowing earlier and more 
precise assessment of degeneration and its associated risk (Xie et al., 
2023). Even when Pfirrmann grades are identical, underlying disc 
pathology may vary substantially, and these internal differences likely 
represent a key determinant of PRLDH occurrence.

The spine, as a multi-joint system, plays a critical role in 
maintaining posture and facilitating body movement. Panjabi (1992) 

demonstrated that spinal stability depends on the interplay of three 
subsystems: the passive subsystem (vertebrae, intervertebral discs, and 
ligaments), the active subsystem (paraspinal muscles), and the neural 
control subsystem. These subsystems interact closely, collectively 
contributing to spinal stability.

Consequently, increasing attention has been given to the role of 
paraspinal muscles in maintaining spinal stability. Previous studies 
have shown that degenerative changes in paraspinal muscles, such as 
fatty infiltration, are associated with PRLDH (Tang et al., 2024; Tekin 
et al., 2025; Kong et al., 2020; Sun et al., 2025). In our study, we 
extended the evaluation of paraspinal muscles from the single L4-L5 

TABLE 4  Interaction between intervertebral disc and paraspinal muscle.

Variable B S. E. P OR OR 95%CI

Lower Upper

Unadjusted

High-Radscore (muscle) and High-Radscore (disc) Ref

Low-Radscore (muscle) and High-Radscore (disc) −0.886 0.579 0.126 0.413 0.129 1.267

High-Radscore (muscle) and Low-Radscore (disc) −2.118 0.561 <0.001 0.120 0.038 0.346

Low-Radscore (muscle) and Low-Radscore (disc) −3.830 0.698 <0.001 0.022 0.005 0.075

Adjusted

High-Radscore (muscle) and High-Radscore (disc) Ref

Low-Radscore (muscle) and High-Radscore (disc) −1.408 0.709 0.047 0.245 0.057 0.945

High-Radscore (muscle) and Low-Radscore (disc) −2.729 0.701 <0.001 0.065 0.015 0.237

Low-Radscore (muscle) and Low-Radscore (disc) −4.704 0.847 <0.001 0.009 0.001 0.041

Unadjusted: raw model; Adjusted: adjusted for age, gender, BMI, diabetes, hypertension, smoking status, pre- and postoperative VAS scores, disease duration, occupation, Pfirrmann grade, 
Modic changes, herniation type, and herniation segment.

FIGURE 4

Partial ROC curves for intervertebral disc Radscore and intervertebral disc and paraspinal muscle models at sensitivities of 1.0–0.80 (A–D) and 
specificities of 1.0–0.80 (E–H). (A,C) Unadjusted and adjusted partial ROC curves for intervertebral disc Radscore at sensitivities of 1.0–0.80; (B,D) 
Unadjusted and adjusted partial ROC curves for intervertebral disc and paraspinal muscle at sensitivities of 1.0–0.80; (E,G) Unadjusted and adjusted 
partial ROC curves for intervertebral disc Radscore at specificities of 1.0–0.80; (F,H) Unadjusted and adjusted partial ROC curves for intervertebral disc 
and paraspinal muscle at specificities of 1.0–0.80.
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FIGURE 5

Calibration curves for the intervertebral disc Radscore and the intervertebral disc and paraspinal muscle model (A,B), decision curve analyses (C,D), and 
clinical impact curves (E,F).

segment to encompass the full lower lumbar region (L3-S1). Given 
that the multifidus and erector spinae muscles span multiple vertebral 
segments, their contribution to spinal stability relies on integrated 
biomechanical force transmission across the entire muscle chain 
rather than on isolated segmental effects (Noonan and Brown, 2021). 
Assessing only the L4-L5 segment may fail to capture the true 
compensatory capacity of the entire paraspinal muscle group in the 
lumbar-sacral region, a high-stress area. By including the L3-S1 
segments, we aimed to reduce potential selection bias arising from 

single-segment measurements and provide a more comprehensive 
evaluation of paraspinal muscle function. Moreover, our findings 
indicate that paraspinal muscles from L3-S1 exhibit inferior predictive 
performance for PRLDH compared with the responsible intervertebral 
disc, suggesting that the primary pathological substrate of PRLDH 
resides within the disc itself. Although paraspinal muscle degeneration 
may compromise spinal stability, it appears to act as a secondary or 
modulatory factor, a relationship further supported by the observed 
disc-muscle interaction effects.
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To explore the interaction between the responsible intervertebral 
disc and paraspinal muscles in PRLDH development, we analyzed 
their combined effects. At the macroscopic level, the PRLDH group 
exhibited a higher proportion of High-Radscore (muscle) and High-
Radscore (disc) cases (51.28%), whereas the Non-PRLDH group 
showed a higher proportion of Low-Radscore (muscle) and 
Low-Radscore (disc) cases (58.02%), with a significant difference 
between groups (p < 0.001). Notably, a low paraspinal muscle 
Radscore mitigated the risk associated with a high intervertebral disc 
Radscore (OR 0.245, 95% CI 0.057–0.945).

Although the combined Intervertebral Disc and Paraspinal 
Muscle model did not significantly improve predictive performance 
over the Intervertebral Disc Radscore alone, its value for risk 
stratification warrants attention. This finding reflects the dynamic 
compensatory mechanisms between the active and passive subsystems 
of spinal stability. When the intervertebral disc, as a passive stabilizing 
structure, exhibits severe degeneration, well-functioning paraspinal 
muscles can provide critical compensatory protection by enhancing 
dynamic spinal stiffness and buffering abnormal loads, thereby 
reducing recurrence risk. For example, Crisco et al. (1992) 
demonstrated that removing paraspinal muscles from cadaveric 
lumbar spines resulted in a marked reduction in spinal stability under 
an average load of 88 N, whereas an intact in vivo lumbar spine can 
withstand an average load of 2,600 N.

However, when both the disc and paraspinal muscles exhibit 
severe degenerative changes, the spine enters a state of dual structural 
and functional decompensation. While the combined model offers 
only limited improvement in overall statistical performance-likely 
due to the dominant role of disc pathology in PRLDH-it carries 
important clinical implications. Specifically, even in patients with 
severely degenerated discs, postoperative rehabilitation aimed at 
strengthening paraspinal muscle function may leverage muscular 
compensation to disrupt the vicious cycle of recurrence.

This study has several limitations. First, it is a single-center 
retrospective study, and the sample size, particularly the number of 

recurrence events (n = 39), represents a primary limitation relative to 
the high-dimensional radiomics feature space. Although we 
implemented a strict “coarse-to-fine” feature selection pipeline to 
reduce the final model to four features (resulting in an Events Per 
Variable ratio of ~9.75) and verified stability using extensive internal 
validation (LOOCV and bootstrapping), the risk of overfitting and 
selection bias cannot be entirely ruled out. The current performance 
estimates may be optimistic compared to real-world clinical 
application. Therefore, external validation on larger, multi-center 
cohorts is essential to confirm the generalizability of our findings 
before clinical implementation. Second, although we hypothesize that 
a high Intervertebral Disc Radscore reflects microstructural 
pathological changes within the disc, direct validation using 
postoperative histopathological specimens was not performed. 
Consequently, the precise biological correspondence between radiomic 
features and specific tissue pathology remains to be elucidated through 
further basic research. Third, our study primarily focused on local 
anatomical imaging features and did not fully incorporate global 
sagittal spinal balance parameters or the biomechanical loading 
experienced by patients postoperatively, both of which could represent 
important confounding factors influencing PRLDH risk.
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