& frontiers | Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY

Tuan D. Pham,

Queen Mary University of London,
United Kingdom

REVIEWED BY

Hikmet Kocaman,

Karamanoglu Mehmetbey University, Turkiye
Mattia Perrone,

Rush University Medical Center, United States

*CORRESPONDENCE

Zigian Zhu
zhuzigian8822@163.com

Shiwu Yin
yinshiwu@126.com

These authors have contributed equally to
this work and share first authorship

RECEIVED 30 November 2025
REVISED 15 January 2026
ACCEPTED 16 January 2026
PUBLISHED 04 February 2026

CITATION

Zhang G, Zhu Z, Zheng H, Chang X, Zeng F,
Cui J, Tang M and Yin S (2026) Deep
learning-radiomics assessment of
intervertebral disc and paraspinal muscle
heterogeneity for predicting postoperative
recurrent lumbar disc herniation.

Front. Artif. Intell. 9:1757269.

doi: 10.3389/frai.2026.1757269

COPYRIGHT

© 2026 Zhang, Zhu, Zheng, Chang, Zeng,
Cui, Tang and Yin. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License

(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence

TYPE Original Research
PUBLISHED 04 February 2026
pol 10.3389/frai.2026.1757269

Deep learning-radiomics
assessment of intervertebral disc
and paraspinal muscle
heterogeneity for predicting
postoperative recurrent lumbar
disc herniation

Guangdong Zhang", Zigian Zhu'?*!, Haiyan Zheng?*,
Xindong Chang?*, Fanyi Zeng?, Jianwei Cui', Ming Tang® and
Shiwu Yinl2*

!Department of Interventional Vascular Medicine, The Second People's Hospital of Hefei, Hefei
Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China, 2The Fifth Clinical College of
Medicine, Anhui Medical University, Hefei, Anhui, China, *Department of Neurology (Sleep Disorders),
The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China, *Department of
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Objective: Although imaging and paraspinal muscle parameters are linked to
postoperative recurrent lumbar disc herniation (PRLDH), micro-level texture
characteristics and their interactions remain underexplored. This study applied
deep learning (DL)-radiomics to quantify the microstructural heterogeneity of
responsible intervertebral discs and paraspinal muscles (L3-S1), and assessed a
combined disc-muscle model for predicting PRLDH.

Method: Clinical and imaging data from 170 lumbar disc herniation (LDH)
patients undergoing percutaneous transforaminal endoscopic surgery (Jan
2022-Dec 2024) were retrospectively analyzed. DL and radiomics features were
extracted from intervertebral discs and paraspinal muscles. Feature selection via
mutual information was followed by construction of a DL-radiomics Radscore
model. Internal validation used leave-one-out, 10-fold cross-validation, and
bootstrapping. Pfirrmann grading performance was compared with the disc
Radscore, and potential disc-muscle interactions were explored using optimal
cutoffs.

Results: Among 170 patients, 39 had postoperative recurrence. Disc Radscore
included 2 DL and 3 radiomics features, while muscle Radscore comprised 2
DL and 5 radiomics features. The disc Radscore demonstrated good predictive
ability (AUC 0.857, 95% CI 0.797-0.918) across validation methods (AUC 0.846—
0.857). Muscle Radscore showed moderate performance (AUC 0.718, 95% ClI
0.627-0.809). Pfirrmann grade poorly predicted recurrence (AUC 0.506, 95%
Cl 0.412-0.600). Combined disc-muscle analysis was less stable than disc
Radscore alone.

Conclusion: DL-radiomics-derived intervertebral disc Radscore robustly
predicts PRLDH. While combined disc-muscle assessment is less consistent,
their interactions may inform postoperative risk stratification and management
in LDH patients.
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1 Introduction

Despite the effectiveness of surgical intervention, postoperative
recurrent lumbar disc herniation (PRLDH) continues to pose a
significant challenge for patients with lumbar disc herniation (LDH)
(Nakamura and Yoshihara, 2017). Identifying patients at high risk is
essential for tailoring postoperative strategies. Although Pfirrmann
grading remains the reference standard for assessing disc degeneration,
it reflects only macroscopic structural changes and is influenced by
subjective interpretation (Rim, 2016). Moreover, evidence regarding
the relationship between Pfirrmann grade and PRLDH is inconsistent
(Li et al, 2023; Tang et al, 2022). Spinal stability relies on the
integrated function of discs, paraspinal muscles, and neural elements
(Panjabi, 1992). While previous research has established a link
between muscle degeneration and PRLDH, most studies have been
limited to morphological or macroscopic texture analysis at a single
level, such as L4-L5, overlooking the biomechanical role of the entire
lumbar musculature and the value of microstructural texture features
(Tang et al., 2024; Tekin et al., 2025; Kong et al., 2020; Sun et al., 2025).

Given the strength of deep learning (DL)-radiomics in quantifying
subtle tissue heterogeneity (Zheng et al., 2022), this study set out to
construct models for both the responsible intervertebral disc and the
paraspinal muscles spanning L3 to S1. We hypothesized that
quantitative DL-radiomic features extracted from the intervertebral
disc and paraspinal muscles could capture microstructural alterations
associated with PRLDH, thereby providing superior predictive
performance compared with the conventional Pfirrmann grading
system. Accordingly, our objectives were threefold: (i) to evaluate how
well the intervertebral disc Radscore predicts PRLDH and compare it
with Pfirrmann grading; (ii) to assess the predictive performance of
the paraspinal muscle Radscore; (iii) to examine whether combining
disc and muscle features could offer meaningful insights for
postoperative risk stratification. The study followed the reporting
structure recommended by the Imaging Biomarker Standardization
Initiative (IBSI) (Supplementary material S1).

2 Methods
2.1 Patients

This study retrospectively included patients with LDH who were
treated at our hospital’ s Interventional Pain Department from January
2022 to December 2024. Inclusion criteria were as follows: (1) diagnosis
of LDH according to established criteria (Basic, Research, Professional
Committee of Spine Transformation Society, and Chinese Association
of Rehabilitation Medicine Spinal Cord, 2022); (2) symptom duration
>3 months with failure of conservative treatment; and (3) preoperative
confirmation by MRI with available L3-S1 CT imaging, treatment with
percutaneous transforaminal endoscopic surgery, and no prior surgery
at the affected level. Exclusion criteria included: (1) previous lumbar
spine surgery; (2) spinal tumors, tuberculosis, deformities, or fractures
affecting spinal structure; (3) long-term postoperative medication use
potentially influencing paraspinal muscles; (4) inability to identify the
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responsible disc; (5) incomplete clinical data; and (6) severe
cardiovascular, cerebrovascular, or other congenital diseases. The study
complied with the Declaration of Helsinki and was approved by our
institutional ethics committee (2023-Keyan-062). Recurrence was
defined as the reappearance of neurologic symptoms on the same side
and segment, confirmed by imaging, occurring at least 6 months
postoperatively (Kim et al., 2019). Follow-up lasted 6 months and was
conducted through outpatient visits, review of electronic medical
records, and telephone contact. Pain severity was measured using the
Visual Analog Scale (VAS) preoperatively and on postoperative day 3,
with higher scores indicating greater pain (Tascioglu and Sahin, 2022).

2.2 Clinical characteristics

General variables included gender, age, disease duration,
occupation, smoking status, diabetes, and hypertension. Perioperative
variables were preoperative and postoperative VAS scores. Imaging
features comprised Pfirrmann grade and Modic changes.

Pfirrmann grading on T2-weighted sagittal images was defined as:
Grade I: normal disc structure and height, bright signal; Grade II:
abnormal disc structure with normal height, bright signal, and clear
nucleus-annulus boundary; Grade III: abnormal structure, normal or
slightly reduced height, intermediate signal, unclear boundary; Grade
IV: abnormal structure, normal or moderately reduced height, dark
signal, and absent boundary; Grade V: collapsed disc with abnormal
structure and no visible nucleus-annulus distinction.

Modic changes were classified on T1- and T2-weighted sagittal
images. Normal: equal TIWI and T2WTI signal; Type I: low TIWI,
high T2WT; Type II: high TIWI, high or equal T2WT; Type III: low
signal on both TIWT and T2WI.

2.3 Image acquisition and segmentation
methods

All patients underwent preoperative MRI (3.0 T, Siemens,
Germany) and CT (64-slice, Siemens, Germany) scans in the supine
position, with T2-weighted sagittal images acquired. The images were
imported into 3D Slicer 5.8.1. Two interventional physicians, one
junior (GZ) and one senior (SY), independently outlined the ROIs of
the responsible intervertebral disc. For the L3-S1 paraspinal muscles-
including the multifidus, erector spinae, and psoas major-the ROIs
were drawn using a semi-automatic approach. Any disagreements
were settled through discussion and consensus.

2.4 Deep learning methods and traditional
omics features

UCTransNet is a semantic segmentation network based on the
U-Net architecture, which incorporates the Channel-wise Cross
Attention Transformer (CCT) to replace conventional skip
connections (Wang et al., 2022). By leveraging the Channel-wise
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Cross-fusion Attention (CCA) mechanism within the CCT, the
network effectively bridges the semantic gap and improves feature
representation. The core formulation of the CCA module is as follows:

(EWo)(EWx)"

Jd

E,yu = Softmax (EWy)+E

E,,; denotes the output feature map, and E represents the input
feature map. Wo» Wk, and Wy are learnable weight matrices.
(EWQ)(EWK )T represents the attention mechanism, while EWy
corresponds to the weighted aggregation. E serves as a residual
connection. The proposed segmentation architecture consists of an
encoding stage with four down-sampling layers and a decoding stage
with four up-sampling layers. The overall formulation is expressed as
follows:

Ei ERC'XH‘XW

Here, C; denotes the number of channels, and H; and W represent
the spatial dimensions of the feature map E; at the i-th layer. Each down-
sampling and up-sampling layer comprises two grouped convolutional
blocks. Each grouped convolution consists of a 3 x 3 kernel convolution,
followed by a batch normalization layer and a ReLU activation. Network
parameters were optimized using the Adam optimizer with an initial
learning rate of 0.0001 and a weight decay of 1e-4 to prevent overfitting.
The batch size was set to 32, and the training process was conducted for
50 epochs. The model achieving the best performance on the validation
set was retained for feature extraction. The network was trained using a
combined loss function of binary cross-entropy and Dice loss.

DL features were extracted from ROIs for predicting PRLDH. The
DL feature extraction process was performed as follows: (i) ROI
selection: Rectangular ROIs covering the tissue were obtained for DL
analysis. All ROIs were resized to a uniform dimension of 224 x 224
pixels and used as input images. (ii) Image normalization: Input
images were normalized using min-max scaling according to the

= X=X
XM_Xm

Where X represents the original pixel intensity, X, and X, are

following formula:

the maximum and minimum pixel values in the original image,
respectively, and X" denotes the normalized pixel intensity. (iii)
Representative feature extraction: The normalized 2D images were
input into the DL network, and feature maps were extracted from the
fourth downsampling activation layer of UCTransNet. Global average
pooling was applied to obtain a 1 x 512-dimensional semantic
segmentation feature for each 2D image. The DL feature extraction
process comprised two modules: a DL feature extraction module and
a deep feature selection module. The workflow is illustrated in Figure 1.
First, the network was trained on the segmentation dataset to capture
lesion-specific features. During testing, 2D images were input into the
trained DL network, and feature maps were extracted from the fourth
downsampling activation layer of UCTransNet. Global average pooling
was then performed to generate DL features. Second, features extracted
from the segmentation dataset were used to construct a feature library
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for adaptive similarity evaluation. Finally, an unsupervised clustering
algorithm was applied to divide features into two clusters, and the
similarity between the clusters and the feature library was evaluated to
select the most informative feature combinations. A total of 512 DL
features were extracted from each patient for each parameter map.
UCTransNet was implemented using PyTorch 2.3.1 + CUDA 11.8 and
executed on an NVIDIA RTX 2080 Ti GPU.

Radiomics features were extracted using PyRadiomics,
encompassing shape, first-order statistics, gray-level co-occurrence
matrix (GLCM), and gray-level run length matrix (GLRLM) features.
Image processing included original images, wavelet decomposition,
Laplacian of Gaussian (LoG) filtering, square, square root, logarithm,
and exponential transformations, yielding a total of 1,223 features.

2.5 Statistical analysis

Statistical analyses were performed using R Studio (v4.2.3) and
Python (v3.9.13). Continuous variables were expressed as mean +
standard deviation (¥ + s) and compared using independent ¢-tests.
Categorical variables were presented as counts and percentages (n %)
and analyzed using the chi-square test.

Radiomics and DL features were extracted through a stepwise
procedure. First, features from ROIs outlined by two radiologists
were assessed with the intraclass correlation coefficient (ICC),
retaining those with ICC > 0.75. Next, the Maximum Relevance
Minimum Redundancy (MRMR) algorithm combined with a
random forest classifier (5-fold cross-validation) was used to remove
redundant features. Features with high inter-feature correlation
(Pearson > 0.9) or weak association with outcomes (<0.3) were
further excluded. Finally, LASSO and SVM-RFE with 10-fold cross-
validation were applied to narrow the feature set. The final DL
Radiomics features were used to calculate a Radscore, representing
the DL Radiomics model (Figure 1).

The discriminative performance was assessed using the Area
Under the Curve (AUC). To evaluate the added value of clinical
factors, we constructed “Adjusted Models” using multivariate logistic
regression, incorporating the Radscores along with clinical covariates.
Model calibration (the agreement between predicted probabilities and
observed frequencies) was assessed using calibration curves and the
Hosmer-Lemeshow goodness-of-fit test. To ensure robustness and
avoid overfitting, the performance of both Unadjusted and Adjusted
models (including the multivariate fitting process) was validated using
leave-one-out, 10-fold cross-validation, and bootstrap validation
(1,000 resamples). Cutoff values for the Radscores were determined
using the Youden index. All models were adjusted for age, sex, BMI,
diabetes, hypertension, smoking history, pre- and postoperative VAS
scores, disease duration, occupation, Pfirrmann grade, Modic changes,
herniation type, and herniation segment. Differences were considered
statistically significant at p < 0.05.

3 Results
3.1 General results

A total of 170 patients were enrolled, with ages ranging from
21 to 88 years (mean 58.44 + 14.38 years). Among them, 39

patients experienced postoperative recurrence, with ages between
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FIGURE 1
Workflow of radiomics and deep-learning (DL) feature extraction, image segmentation, DL-radiomics model building, feature selection, and result
analysis. CCT, Channel-wise Cross-Attention Transformer; LDH, lumbar disc herniation.

30 and 87 years (mean 59.00 + 13.64 years). Significant differences 3.2 Feature selection results of deep
were observed between the PRLDH and non-PRLDH groups in ~ lea rning- radiomics
disease duration, Intervertebral Disc Radscore, Paraspinal Muscle

Radscore, and combined Intervertebral Disc and Paraspinal After ICC-based screening, 813 PyRadiomics features for the disc
Muscle Radscore (p < 0.05). The detailed comparison of patient  and 921 for the paraspinal muscles, as well as 201 DL features for the
characteristics is summarized in Table 1. disc and 263 for the muscles, were retained. The MRMR algorithm
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TABLE 1 Characteristics of PRLDH and non-PRLDH.

Variables Non-PRLDH
(n =131)
Age (years) 58.44 + 14.38 58.27 £ 14.64 59.00 + 13.64 —0.28 0.781
Gender (%) 1.69 0.194
Female 72 (42.35) 59 (45.04) 13 (33.33)
Male 98 (57.65) 72 (54.96) 26 (66.67)
BMI (kg/m?) 24.65 +3.40 24.44 £ 3.46 2537 £3.12 —-1.51 0.134
Smoking (%) 1.01 0.315
No 124 (72.94) 98 (74.81) 26 (66.67)
Yes 46 (27.06) 33(25.19) 13 (33.33)
Disease duration (years) 4.06 + 6.08 3.46 £ 541 6.05 £ 7.66 -2.36 0.019
Diabets (%) 241 0.121
No 133 (78.24) 106 (80.92) 27 (69.23)
Yes 37 (21.76) 25 (19.08) 12 (30.77)
Hypertension (%) 0.25 0.620
No 106 (62.35) 83 (63.36) 23 (58.97)
Yes 64 (37.65) 48 (36.64) 16 (41.03)
Preoperative VAS score (%) - 0.542
3 1(0.59) 1(0.76) 0(0.00)
4 8(4.71) 5(3.82) 3(7.69)
5 79 (46.47) 62 (47.33) 17 (43.59)
6 68 (40.00) 53 (40.46) 15 (38.46)
7 10 (5.88) 6 (4.58) 4(10.26)
8 4(2.35) 4(3.05) 0 (0.00)
Postoperative VAS score (%) 0.01 0.908
2 134 (78.82) 103 (78.63) 31 (79.49)
3 36 (21.18) 28 (21.37) 8(20.51)
Occupation (%) - 0.899
Office worker 63 (37.06) 47 (35.88) 16 (41.03)
Laborer 15 (8.82) 11 (8.40) 4(10.26)
Farmer 72 (42.35) 57 (43.51) 15 (38.46)
Self-employed households 20 (11.76) 16 (12.21) 4(10.26)
Pfirrmann grade (%) 0.02 0.992
Grade I1I 64 (37.65) 49 (37.40) 15 (38.46)
Grade IV 88 (51.76) 68 (51.91) 20 (51.28)
Grade V 18 (10.59) 14 (10.69) 4(10.26)
Modic change (%) - 0.561
Normal 45 (26.47) 36 (27.48) 9 (23.08)
Type 1 1(0.59) 1(0.76) 0 (0.00)
Type II 107 (62.94) 83 (63.36) 24 (61.54)
Type ITI 17 (10.00) 11 (8.40) 6(15.38)
Herniation type (%) 227 0.321
Bulge 26 (15.29) 19 (14.50) 7(17.95)
Herniation 130 (76.47) 99 (75.57) 31 (79.49)
Prolapse 14 (8.24) 13 (9.92) 1(2.56)
(Continued)
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TABLE 1 (Continued)

10.3389/frai.2026.1757269

Variables Non-PRLDH
(n =131)
Herniation segments (%) - 0.187
L3/5 6(3.53) 6 (4.58) 0 (0.00)
L4/5 107 (62.94) 85 (64.89) 22 (56.41)
L5/S1 57 (33.53) 40 (30.53) 17 (43.59)
Intervertebral disc Radscore —1.41 £ 1.90 —1.95 + 1.64 0.40 + 1.54 —7.94 <0.001
Paraspinal muscle Radscore -1.23+1.16 —1.44 £1.07 —0.54 £1.19 —4.46 <0.001
Intervertebral disc and Paraspinal muscle Radscore (%) 51.95 <0.001
High-Radscore (muscle) 31(18.24) 11 (8.40) 20 (51.28)
and High-Radscore (disc)
Low-Radscore (muscle) 21 (12.35) 12 (9.16) 9 (23.08)
and High-Radscore (disc)
High-Radscore (muscle) 39 (22.94) 32(24.43) 7 (17.95)
and Low-Radscore (disc)
Low-Radscore (muscle) 79 (46.47) 76 (58.02) 3(7.69)
and Low-Radscore (disc)

BMI, Body Mass Index; t, t-test; x* Chi-square test; —, Fisher exact.

combined with a random forest classifier (5-fold cross-validation)
further reduced the sets to 12 and 8 PyRadiomics features and 7 and 3
DL features. Features with high inter-feature correlation (Pearson >
0.9) or low association with outcomes (<0.3) were excluded, leaving 11
and 8 PyRadiomics features and 6 and 3 DL features. Finally, LASSO
and SVM-RFE (10-fold cross-validation) narrowed the feature sets to
5 and 3 PyRadiomics features and 2 and 2 DL features. The Radscore
calculation formula is detailed in Supplementary material S2.

3.3 Evaluation of the predictive
performance of the responsible
intervertebral disc and paraspinal muscles

As shown in Tables 2, 3 and Figure 2, the Intervertebral Disc
Radscore achieved an AUC of 0.857 (95% CI 0.797-0.918), with an
accuracy of 0.806, sensitivity 0.744, and specificity 0.824. Internal
validation confirmed robust performance, with AUCs of 0.846 (leave-
one-out), 0.847 (10-fold cross-validation), and 0.857 (bootstrap). After
adjusted, the AUC increased to 0.898, with accuracy 0.812, sensitivity
0.821, and specificity 0.809. By contrast, the Pfirrmann grade
performed poorly, with an AUC of 0.506, accuracy 0.571, sensitivity
0.385, and specificity 0.626.

For the Paraspinal Muscle Radscore, the AUC was 0.718 (0.627-
0.809), with accuracy 0.667, sensitivity 0.692, and specificity 0.672.
Internal validation yielded AUCs of 0.701 (leave-one-out), 0.699
(10-fold), and 0.719 (bootstrap). Adjusted improved performance, giving
an AUC of 0.822, accuracy 0.759, sensitivity 0.769, and specificity 0.756.

3.4 Combined predictive performance
assessment of the responsible
intervertebral disc and paraspinal muscles

Using the identified cutoffs, patients were classified according to
the Intervertebral Disc Radscore (—0.824) and Paraspinal Muscle
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Radscore (—0.970) into four groups: “High-Radscore (muscle) and
High-Radscore (disc),” “Low-Radscore (muscle) and High-Radscore
(disc),” “High-Radscore (muscle) and Low-Radscore (disc),” and
“Low-Radscore (muscle) and Low-Radscore (disc)” (Figure 3;
Table 4). Relative to the High-Radscore (muscle) and High-Radscore
(disc) group, all other combinations were protective, with ORs ranging
from 0.022 to 0.413 (95% CI 0.005-1.267) and adjusted ORs from
0.009 to 0.245 (95% CI 0.001-0.945).

The combined Intervertebral Disc and Paraspinal Muscle model
achieved adjusted and unadjusted AUCs of 0.898 and 0.841, with
accuracies of 0.871 and 0.806, sensitivities of 0.821 and 0.744, and
specificities of 0.885 and 0.824. Internal validation produced leave-
one-out AUCs of 0.811/0.764, 10-fold AUCs of 0.824/0.791, and
bootstrap AUCs of 0.784/0.833 (Table 3).

Partial ROC curves for sensitivity 1-0.80 showed pAUCs of 0.116
for the Intervertebral Disc Radscore and 0.104 for the combined
model (Ppong = 0.466; adjusted Ppeong = 0.768). For specificity 1-0.80,
PAUCs were 0.104 and 0.097, respectively (Ppeong = 0.646; adjusted
Ppeong = 0.646) (Figure 4). Both models demonstrated good
calibration, and decision curve analysis (DCA) and clinical impact
curves (CIC) analyses showed no meaningful differences (Figures 5, 6).

4 Discussion

In this study evaluating DL-based radiomics (DL-Radiomics)
of the Intervertebral Disc and Paraspinal Muscle for predicting
PRLDH, we found that the Intervertebral Disc Radscore
demonstrated strong predictive performance (AUC = 0.857, 95%
CIL: 0.797-0.918). Its performance remained stable even after
adjusting for additional factors, including Pfirrmann grade, Modic
changes, BMI, and comorbidities, and across different internal
validation methods (leave-one-out, 10-fold cross-validation, and
bootstrap), with consistently favorable sensitivity and specificity.

Previous studies have suggested that paraspinal muscle
characteristics also contribute to PRLDH risk prediction (Tang et al.,
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TABLE 2 Model prediction performance.

10.3389/frai.2026.1757269

AUC Accuracy Sensitivity Specificity PPV NPV
(95%Cl) (95%Cl) (95%Cl) (95%Cl) (95%Cl) (95%Cl)

Pfirrmann grade

Unadjusted 0.506 0.571 0.385 0.626 0.234 0.774
(0.412, 0.600) (0.493, 0.646) (0.234,0.554) (0.537,0.709) (0.138,0.357) (0.682, 0.849)

Adjusted 0.719 0.700 0.641 0.718 0.403 0.870
(0.628,0.811) (0.625,0.768) (0.472,0.788) (0.632,0.793) (0.281, 0.536) (0.792,0.927)

Intervertebral disc Radscore

Unadjusted 0.857 0.806 0.744 0.824 0.558 0.915
(0.797, 0.918) (0.738, 0.863) (0.579, 0.870) (0.748, 0.885) (0.413, 0.695) (0.850, 0.959)

Adjusted 0.898 0.812 0.821 0.809 0.561 0.938
(0.845,0.951) (0.745, 0.868) (0.665, 0.925) (0.731,0.873) (0.424, 0.693) (0.877,0.975)

Paraspinal muscle Radscore

Unadjusted 0.718 0.677 0.692 0.672 0.386 0.880
(0.627, 0.809) (0.601, 0.746) (0.524, 0.830) (0.584,0.751) (0.272,0.510) (0.800, 0.936)

Adjusted 0.822 0.759 0.769 0.756 0.484 0.917
(0.750, 0.894) (0.687,0.821) (0.607, 0.889) (0.673,0.827) (0.355,0.614) (0.848,0.961)

Intervertebral disc and Paraspinal muscle

Unadjusted 0.841 0.806 0.744 0.824 0.558 0.915
(0.772, 0.909) (0.738, 0.863) (0.579, 0.870) (0.748, 0.885) (0.413, 0.695) (0.850, 0.959)

Adjusted 0.898 0.871 0.821 0.885 0.681 0.943
(0.838, 0.958) (0.811,0.917) (0.665, 0.925) (0.818,0.934) (0.529, 0.809) (0.886,0.977)

Unadjusted: raw model; Adjusted: adjusted for age, gender, BMI, diabetes, hypertension, smoking status, pre- and postoperative VAS scores, disease duration, occupation, Pfirrmann grade,

Modic changes, herniation type, and herniation segment.
TABLE 3 Internal validation of the model.

Leave-one-out cross-

10-fold cross-validation

Boostrapping

validation
AUC 95%Cl AUC 95%Cl AUC 95%Cl

Intervertebral disc Radscore

Unadjusted 0.846 0.783,0.910 0.847 0.783,0.911 0.857 0.766, 0.932
Adjusted 0.824 0.750, 0.898 0.825 0.750, 0.900 0.801 0.677,0.908
Paraspinal muscle Radscore

Unadjusted 0.701 0.606, 0.795 0.699 0.602, 0.795 0.719 0.590, 0.834
Adjusted 0.702 0.610, 0.793 0.696 0.604, 0.787 0.689 0.561, 0.821
Intervertebral disc and Paraspinal muscle

Unadjusted 0.764 0.672, 0.856 0.791 0.706, 0.833 0.729, 0.928

0.876
Adjusted 0.811 0.729, 0.894 0.824 0.746, 0.901 0.784 0.654, 0.904

Unadjusted: raw model; Adjusted: adjusted for age, gender, BMI, diabetes, hypertension, smoking status, pre- and postoperative VAS scores, disease duration, occupation, Pfirrmann grade,

Modic changes, herniation type, and herniation segment.

2024; Tekin et al., 2025; Kong et al., 2020; Sun et al., 2025; Kocaman
et al., 2023); however, these studies typically focused on the L4-L5
segment only. To assess the overall influence of the lower lumbar
musculature, we included paraspinal muscles from the L3-S1 segments
in our analysis. Although the Paraspinal Muscle Radscore differed
significantly between patients with and without PRLDH (p < 0.001),
its predictive performance (AUC = 0.718, 95% CI: 0.627-0.809) was
lower than that reported in prior studies and inferior to the
Intervertebral Disc Radscore.

Frontiers in Artificial Intelligence

To investigate the combined predictive and risk-stratification
potential of the intervertebral disc and paraspinal muscles, we
analyzed their interaction. Both adjusted and unadjusted combined
models (Intervertebral Disc and Paraspinal Muscle) showed good
predictive performance (AUC 0.841-0.898, 95% CI: 0.772-0.958);
however, internal validation results were less stable (AUC 0.764-
0.833). Importantly, the interaction analysis indicated that, compared
with the High-Radscore (muscle) and High-Radscore (disc) group,
the Low-Radscore (muscle) and Low-Radscore (disc) combination
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consistently acted as a protective factor in both unadjusted and
adjusted models (p < 0.001), supporting its value for postoperative risk
stratification.

Finally, comparison of the Intervertebral Disc Radscore with the
combined Intervertebral Disc and Paraspinal Muscle model revealed
no significant differences in performance for sensitivity and specificity
within the 1-0.80 range (Ppejong = 0.466-0.768). The calibration curve,

10.3389/frai.2026.1757269

DCA, and CIC show similar patterns across risk thresholds. The
segmentation model achieved robust performance. For the Paraspinal
Muscles (Axial view), the model demonstrated excellent accuracy with
a Mean DSC of 0.9277 and Mean HD95 of 2.92 mm, reflecting the
distinct anatomical boundaries of muscle groups. For the
Intervertebral Discs (Sagittal T2WI), the model achieved a Mean DSC
of 0.7859 and Mean HD95 of 5.91 mm. While slightly lower than the
muscle segmentation metrics, this performance is consistent with the
challenges of delineating irregular herniated tissues and complex

boundaries in sagittal MRI views. Visual inspection confirmed that
o
= ] the ROIs successfully covered the region of interest for radiomics
extraction.
© Previous studies investigating the role of the responsible
pacil
intervertebral disc in PRLDH have primarily focused on the
Pfirrmann grading system. Pfirrmann grade reflects pathological
25 changes within the disc, and higher grades correspond to more severe
>
= degeneration, which may increase the risk of LDH (Ozden and Silav,
) . .
S < 2023). Elevated Pfirrmann grades are associated with reduced water
wn e | content, loss of proteoglycans, and disruption of collagen fiber
— AUC of model1:0.898(95%CI 0.845-0.951) architecture within the disc tissue (Wei et al., 2014; Anderson and
N AUC of model2:0.822(95%C1 0.750-0.894) Tannoury, 2005; Kuzu et al., 2025). These changes compromise the
o AUC of model3:0.898(95%CI 0.838-0.958) A ) . o .
— ALUC of model&0 85795401 0177-0.518) mechanical integrity of the disc, rendering it more susceptible to
— AUC of model5:0.718(95%C 0.627-0.809) herniation. For instance, Minin et al. (2025) developed the SpineScan
o
S — AUC of modelé:0.841(95%C1 0.772-0.905) model to enable automated Pfirrmann grading.
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FIGURE 3

Unadjusted (A) and adjusted (B) forest plot illustrating the interaction between intervertebral disc Radscore and paraspinal muscle Radscore.
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TABLE 4 Interaction between intervertebral disc and paraspinal muscle.

10.3389/frai.2026.1757269

Variable OR 95%Cl
Lower Upper

Unadjusted

High-Radscore (muscle) and High-Radscore (disc) Ref

Low-Radscore (muscle) and High-Radscore (disc) —0.886 0.579 0.126 0.413 0.129 1.267

High-Radscore (muscle) and Low-Radscore (disc) —2.118 0.561 <0.001 0.120 0.038 0.346

Low-Radscore (muscle) and Low-Radscore (disc) —3.830 0.698 <0.001 0.022 0.005 0.075

Adjusted

High-Radscore (muscle) and High-Radscore (disc) Ref

Low-Radscore (muscle) and High-Radscore (disc) —1.408 0.709 0.047 0.245 0.057 0.945

High-Radscore (muscle) and Low-Radscore (disc) —2.729 0.701 <0.001 0.065 0.015 0.237

Low-Radscore (muscle) and Low-Radscore (disc) —4.704 0.847 <0.001 0.009 0.001 0.041

Unadjusted: raw model; Adjusted: adjusted for age, gender, BMI, diabetes, hypertension, smoking status, pre- and postoperative VAS scores, disease duration, occupation, Pfirrmann grade,

Modic changes, herniation type, and herniation segment.
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FIGURE 4
Partial ROC curves for intervertebral disc Radscore and intervertebral disc and paraspinal muscle models at sensitivities of 1.0-0.80 (A—-D) and
specificities of 1.0-0.80 (E—H). (A,C) Unadjusted and adjusted partial ROC curves for intervertebral disc Radscore at sensitivities of 1.0-0.80; (B,D)
Unadjusted and adjusted partial ROC curves for intervertebral disc and paraspinal muscle at sensitivities of 1.0-0.80; (E,G) Unadjusted and adjusted
partial ROC curves for intervertebral disc Radscore at specificities of 1.0-0.80; (F,H) Unadjusted and adjusted partial ROC curves for intervertebral disc
and paraspinal muscle at specificities of 1.0-0.80.

quantifying microstructural heterogeneity within the disc (van der
Velden et al., 2022; McSweeney et al., 2025; Fan et al., 2024).
Consequently, the Radscore can detect subtle pixel-level pathological
and physiological changes within the disc before they manifest as
observable morphological differences, allowing earlier and more
precise assessment of degeneration and its associated risk (Xie et al.,
2023). Even when Pfirrmann grades are identical, underlying disc
pathology may vary substantially, and these internal differences likely
represent a key determinant of PRLDH occurrence.

The spine, as a multi-joint system, plays a critical role in
maintaining posture and facilitating body movement. Panjabi (1992)

Frontiers in Artificial Intelligence 0

demonstrated that spinal stability depends on the interplay of three
subsystems: the passive subsystem (vertebrae, intervertebral discs, and
ligaments), the active subsystem (paraspinal muscles), and the neural
control subsystem. These subsystems interact closely, collectively
contributing to spinal stability.

Consequently, increasing attention has been given to the role of
paraspinal muscles in maintaining spinal stability. Previous studies
have shown that degenerative changes in paraspinal muscles, such as
fatty infiltration, are associated with PRLDH (Tang et al., 2024; Tekin
et al,, 2025; Kong et al., 2020; Sun et al,, 2025). In our study, we
extended the evaluation of paraspinal muscles from the single L4-L5
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FIGURE 5
Calibration curves for the intervertebral disc Radscore and the intervertebral disc and paraspinal muscle model (A,B), decision curve analyses (C,D), and
clinical impact curves (E,F).

segment to encompass the full lower lumbar region (L3-S1). Given
that the multifidus and erector spinae muscles span multiple vertebral
segments, their contribution to spinal stability relies on integrated
biomechanical force transmission across the entire muscle chain
rather than on isolated segmental effects (Noonan and Brown, 2021).
Assessing only the L4-L5 segment may fail to capture the true
compensatory capacity of the entire paraspinal muscle group in the
lumbar-sacral region, a high-stress area. By including the L3-S1
segments, we aimed to reduce potential selection bias arising from

Frontiers in Artificial Intelligence

single-segment measurements and provide a more comprehensive
evaluation of paraspinal muscle function. Moreover, our findings
indicate that paraspinal muscles from L3-S1 exhibit inferior predictive
performance for PRLDH compared with the responsible intervertebral
disc, suggesting that the primary pathological substrate of PRLDH
resides within the disc itself. Although paraspinal muscle degeneration
may compromise spinal stability, it appears to act as a secondary or
modulatory factor, a relationship further supported by the observed
disc-muscle interaction effects.
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Paraspinal muscle (Risk score = 0.315)

FIGURE 6
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1 disc (Risk score = 0.683)

Paraspinal muscle (Risk score = 0.063)

Visualization heatmaps of intervertebral discs and paraspinal muscles across different risk score levels based on UCTransNet. (A) high risk, (B) medium—
high risk, (C) medium—low risk, and (D) low risk, shown by Grad-CAM and corresponding risk scores.

To explore the interaction between the responsible intervertebral
disc and paraspinal muscles in PRLDH development, we analyzed
their combined effects. At the macroscopic level, the PRLDH group
exhibited a higher proportion of High-Radscore (muscle) and High-
Radscore (disc) cases (51.28%), whereas the Non-PRLDH group
showed a higher proportion of Low-Radscore (muscle) and
Low-Radscore (disc) cases (58.02%), with a significant difference
between groups (p <0.001). Notably, a low paraspinal muscle
Radscore mitigated the risk associated with a high intervertebral disc
Radscore (OR 0.245, 95% CI 0.057-0.945).

Although the combined Intervertebral Disc and Paraspinal
Muscle model did not significantly improve predictive performance
over the Intervertebral Disc Radscore alone, its value for risk
stratification warrants attention. This finding reflects the dynamic
compensatory mechanisms between the active and passive subsystems
of spinal stability. When the intervertebral disc, as a passive stabilizing
structure, exhibits severe degeneration, well-functioning paraspinal
muscles can provide critical compensatory protection by enhancing
dynamic spinal stiffness and buffering abnormal loads, thereby
reducing recurrence risk. For example, Crisco et al. (1992)
demonstrated that removing paraspinal muscles from cadaveric
lumbar spines resulted in a marked reduction in spinal stability under
an average load of 88 N, whereas an intact in vivo lumbar spine can
withstand an average load of 2,600 N.

However, when both the disc and paraspinal muscles exhibit
severe degenerative changes, the spine enters a state of dual structural
and functional decompensation. While the combined model offers
only limited improvement in overall statistical performance-likely
due to the dominant role of disc pathology in PRLDH-it carries
important clinical implications. Specifically, even in patients with
severely degenerated discs, postoperative rehabilitation aimed at
strengthening paraspinal muscle function may leverage muscular
compensation to disrupt the vicious cycle of recurrence.

This study has several limitations. First, it is a single-center
retrospective study, and the sample size, particularly the number of

Frontiers in Artificial Intelligence

recurrence events (n = 39), represents a primary limitation relative to
the high-dimensional radiomics feature space. Although we
implemented a strict “coarse-to-fine” feature selection pipeline to
reduce the final model to four features (resulting in an Events Per
Variable ratio of ~9.75) and verified stability using extensive internal
validation (LOOCYV and bootstrapping), the risk of overfitting and
selection bias cannot be entirely ruled out. The current performance
estimates may be optimistic compared to real-world clinical
application. Therefore, external validation on larger, multi-center
cohorts is essential to confirm the generalizability of our findings
before clinical implementation. Second, although we hypothesize that
a high Intervertebral Disc Radscore reflects microstructural
pathological changes within the disc, direct validation using
postoperative histopathological specimens was not performed.
Consequently, the precise biological correspondence between radiomic
features and specific tissue pathology remains to be elucidated through
further basic research. Third, our study primarily focused on local
anatomical imaging features and did not fully incorporate global
sagittal spinal balance parameters or the biomechanical loading
experienced by patients postoperatively, both of which could represent
important confounding factors influencing PRLDH risk.
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