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A hybrid metaheuristic algorithm
with machine learning for
detecting denial-of-service
attacks in wireless sensor
networks
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India, 2Centre for Smart Grid Technologies, Vellore Institute of Technology, Chennai, Tamil Nadu, India

Denial-of-service (DoS) attacks pose a major threat to various kinds of computer
networks. There are several kinds of networks that are victims of DoS attacks,
one of them being the wireless sensor network (WSN). The main objective of this
work is to detect such attacks in wireless sensor networks. These networks are
susceptible to intrusion attacks because of their fragile defense mechanisms in
unattended environments. Thus, a suitable intrusion detection system must be
created to optimally detect DoS attacks and prevent them. This work proposes a
hybrid technique called Grasshopper Optimization Algorithm-Genetic Algorithm
(GOA-GA), which combines the advantages of two metaheuristic algorithms,
namely, the Grasshopper Optimization Algorithm and the Genetic Algorithm, to
optimize feature selection based on the given WSN dataset. After optimal feature
selection and training, the machine learning classification algorithms classify
whether the traffic is normal or benign in the form of four types of DoS attacks,
namely, Blackhole, Scheduling, Flooding, and Grayhole attacks. The proposed
model and algorithms used are further validated and compared based on standard
performance metrics. The experiments conducted during the research show
that the GOA-GA method, when combined with the KNN classifier, achieves an
accuracy of 95.51% and a recall of 95.51%, exhibiting competitive performance
relative to recent state-of-the-art approaches while reducing feature dimensionality
and computational overhead. These results indicate that the proposed hybrid
optimization strategy offers a robust and efficient solution for DoS attack detection
in WSNs, contributing to ongoing research in information security.

KEYWORDS
cybersecurity, denial-of-service attacks, feature selection, genetic algorithm,

grasshopper optimization algorithm, hybrid GOA-GA algorithm, intrusion detection
system, machine learning

1 Introduction

Modern society is heavily reliant on information and numerous types of communication
technologies for sharing data. With increased usage, accessibility, and popularity of the
Internet, several networks, wired or wireless, have become more vulnerable to a wide variety
of cyberattacks, especially over the last few decades. The proposed work focuses its study on
a special type of such vulnerable wireless network known as the Wireless Sensor Network
(WSN). They are comparable to wireless ad hoc networks (Di Pietro et al., 2014) in that they
depend on a wireless connection and the emergence of networks on their own to enable the
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wireless transmission of sensor data. Pressure, sound, and other
environmental factors are all monitored by Wireless Sensor Networks
(WSNs). Modern WSNs are bi-directional and simultaneously collect
data (Di Francesco et al., 2011). These networks have become more
significant as a study topic because of their multiple real-time
applications in crucial military surveillance, battlefields, building
security monitoring, monitoring forest fires, healthcare, and other
useful environmental applications (Kandris et al., 2020). Achieving the
objective of protecting WSNs from different security threats becomes
a major challenge because of their constrained resources, including
limited battery energy, memory, and processing capabilities (Butun et
al., 2014).

The creation of WSNs was made possible by developments in
hardware manufacturing, wireless communications, micro-electro-
mechanical devices, and information processing. A WSN is composed
of several autonomous sensor nodes (SNs) that are scattered
throughout different regions of interest to gather crucial data and
jointly transfer it wirelessly to a more powerful node known as the
sink node or base station (BS). There could be more than one base
station in a WSN. The data transmitted across the network depends
on specialized WSN protocols. Some of the well-known examples of
WSN protocols are TEEN, APTEEN, LEACH, and PEGASIS (Khan
etal., 2016). A few recent and energy-efficient protocols, such as the
HEESR and DLCP protocols, have also been proposed (Ibrahim
Khalaf and Muttashar Abdulsahib, 2020). This study shall focus on the
WSNs following the LEACH (Low-Energy Adaptive Clustering

10.3389/frai.2026.1738152

Hierarchy) protocol (Heinzelman et al,, 2000), particularly the
LEACH-C, which is the centralized LEACH protocol. Moreover, there
are several variants of the same protocol, such as LEACH-TLCH,
V-LEACH, LEACH-H, LEACH-DCHS, etc., which have been studied
as well (Fu et al., 2013; Arora et al., 2016; Varshney and Kuma, 2018).
Most nodes communicate to cluster heads (CHs) via the hierarchical
protocol LEACH, and the cluster heads then compile and pass the data
to the base station. In order to predict whether a node will become a
cluster head in a particular round, each node runs a stochastic
algorithm. This protocol assumes that each node has a radio capable
of directly connecting to the base station or the closest cluster head,
but that continuous utilization of this radio at full power would be
energy inefficient. Figure 1 illustrates the LEACH protocol
configuration through a simple WSN node structure having three
clusters and a single base station.

WSNs need to be protected against intrusion in order to stop
hackers from falsifying sensor data or impeding the delivery of
accurate sensor data. The majority of the routing protocols for WSNs
optimize for the network’s application-specific nature, the network’s
application-specificity, and the limited capabilities of its nodes, but
they do not take into account the security aspects of the protocols. It
is crucial to examine these protocols” security characteristics, even
though security was not a primary consideration when they were
being built (Majumdar and Sarkar, 2015). Besides the security issues
with the protocols, there are other issues and challenges associated
with WSNs, including hardware and software issues, MAC layer issues,
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fault tolerance, and robustness (Sharma et al., 2014). Due to the nature
of such networks, traditional security measures like encryption might
not always be sufficient (Bukhari et al., 2024; Nguyen et al., 2025).
Therefore, a strong security measure such as an Intrusion Detection
System (IDS) is required. The role of an IDS is to detect and notify
users of system or network intrusions. However, because of the
constrained resources of the WSN nodes, developing IDSs for WSNs
presents a unique difficulty. In order to increase the lifespan of a sensor
network, IDS solutions should aim to reduce the battery usage of the
sensor nodes. Designing an IDS that can identify an intruder that uses
unknown attacks with a high degree of accuracy is difficult. It is also
difficult to create the same IDS with a lightweight profile so that the
infrastructure of WSNs is not burdened (Doddapaneni et al., 2012;
Ghosal and Halder, 2013). Thus, an IDS for a WSN should be carefully
designed considering the aforementioned research challenges.

The most prevalent and dangerous cyberattacks that pose a threat
to the security of WSNs are those known as denial-of-service (DoS)
attacks. The primary goal of these attacks, which come in a variety of
forms, is to disrupt or restrict the services offered by WSNs (Farooq
etal,, 2014; Sen, 2016). The purpose of this work is to develop an IDS
that can precisely identify several kinds of commonplace DoS attacks,
such as flooding, scheduling, blackhole, and grayhole attacks, to
improve the security of WSNs. The motivation behind this study is to
address the particular security challenges that WSNs face because of
their resource constraints. This research proposes a novel hybrid
metaheuristic algorithm called GOA-GA approach that combines the
complementary strengths of the Grasshopper Optimization
Algorithm (GOA) and the Genetic Algorithm (GA). GOA provides
effective global exploration of the search space, while GA enhances
exploitation through crossover and mutation operations. By
integrating these mechanisms, the proposed GOA-GA algorithm
aims to achieve more stable convergence toward informative and
compact feature subsets, thereby improving intrusion detection
performance without imposing excessive computational burden. As
a result, this optimizes feature selection and improve attack
classification accuracy, in contrast to standard approaches that
frequently ignore the security elements of WSN protocols. Recent
reviews of nature-inspired metaheuristic algorithms show a rising
trend in hybridization techniques (Rani et al., 2024), supporting the
relevance of our GOA-GA hybridization for WSN IDS. This
lightweight design is well suited to WSN intrusion detection, where
achieving high accuracy with reduced feature dimensionality is
essential for real-world applicability.

Hence, based on the above motivation, the SMART (abbreviation
for Specific, Measurable, Achievable, Relevant, and Time-Bound)
major contributions of this paper are listed as follows:

1 Specific: To develop and demonstrate a methodology for
detecting Denial-of-Service (DoS) attacks in Wireless Sensor
Networks (WSNs) using machine learning and metaheuristic
algorithms.

2 Measurable: To propose and evaluate a novel hybrid algorithm,
GOA-GA (Grasshopper Optimization Algorithm cum Genetic
Algorithm), for optimizing feature selection in intrusion
detection systems.

3 Achievable: To accurately classify and differentiate between
multiple types of DoS attacks, including Blackhole, Grayhole,
Flooding, and Scheduling attacks, that threaten WSNs.
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4 Relevant: To validate the proposed methodology with extensive
experiments, using standard validation techniques and
performance metrics to ensure robustness and reliability.

5 Time-Bound: To complete the development, implementation,
and validation of the proposed IDS within a predefined
timeframe, ensuring timely results and conclusions.

The rest of this research paper is structured as follows: Section 2
provides the background and a thorough literature review on strategies
adopted so far to tackle cyberattacks in WSNs and similar networks,
with their merits and demerits. This section also summarizes the
different datasets and simulation tools used for developing IDS for
WSNs against various threats. Section 3 presents the framework for
the proposed methodology, discusses the algorithms and software
tools used during the research, as well as the limitations and potential
challenges, and offers some insights into the model interpretability
and practical implications of the proposed solution. Section 4
describes the WSN dataset and DoS attacks, along with the
implementation details and the incorporated validation techniques.
Section 5 illustrates the experimental results so obtained and discusses
the importance of the achieved results while comparing the proposed
hybrid algorithm with that of the standard algorithms. Section 6
discusses the limitations and the potential challenges of the proposed
methodology. The conclusions of the work are presented in Section 7,
along with suggestions for future work.

2 Literature survey

In this section, the background pertaining to WSNs and related
works associated with WSN security against cyberattacks are
discussed. Section 2.1 gives an overview of a typical IDS in a WSN,
discusses machine learning, metaheuristic approaches, and deep
learning techniques incorporated by several studies to protect WSNs
from cyber threats. Section 2.2 does an additional literature review,
further highlighting the drawbacks, and provides a comparative
summary of the related works.

2.1 Background

Wireless sensor networks have become a prominent piece of
wireless technology because of their numerous real-life applications.
However, because of their susceptible nature, a lot of research has been
done and is still going on in building an efficient and lightweight
intrusion detection system for WSNs to increase their security.
Figure 2 shows a simple archetype model of a WSN with two clusters,
two base stations, and an IDS to filter the data sent out by the cluster
head to the base station so that reliable data can reach the user end
safely. Most of the research studies concerning the development of an
IDS for a WSN follow or have proposed a similar architecture as seen
in Figure 2.

Machine Learning (ML) has been widely used for the detection of
several types of cyberattacks, including DoS attacks in WSNs. Al-Issa
et al. (2019) proposed well-known ML algorithms, namely Decision
Tree and Support Vector Machine (SVM), to detect attack signatures
on a specialized dataset created by them. Though their approach was
less costly and less complex, limited attack scenarios and protocols
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were considered. Next, Almomani et al. (2016) created the WSN-DS
dataset and used Multilayer Perceptron artificial neural networks to
detect four types of DoS attacks, viz. Grayhole, Blackhole, Flooding,
and Scheduling attacks. The results achieved were appreciable but
could have been compared with other state-of-the-art techniques as
well. In a similar context, the authors in Alsulaiman and Al-Ahmadi
(2021) used the same dataset and evaluated the performance of five
popular ML algorithms, viz. Naive Bayes (NB), SVM, Random Forest,
J48, and K-Nearest Neighbors (KNN). A comprehensive evaluation
was carried out for the algorithms in this paper, but they lacked
optimization during feature selection. Zhang et al. (2020) suggested a
hierarchical intrusion detection model that groups a WSN’s nodes
according to their roles to decrease the energy consumption of nodes
during detection processing. The use of the kernel extreme learning
machine’s classification algorithm in conjunction with the Mercer
Property to synthesize multi-kernel functions is taken into
consideration in this study. Furthermore, in Lakshmi Narayanan et al.
(2022), the Enhanced Code-based Round-Trip Time (EC-BRTT)
method is used to prevent blackhole and wormhole attacks in WSNs
with the help of the ML-based Naive Bayes classifier. The key benefit
of the suggested approach was a decrease in communication overhead.

Metaheuristic algorithms, inspired by natural processes, have
been widely applied in optimization tasks due to their balance of
exploration and exploitation. Foundational works, such as Yang
(2020), provide a comprehensive theoretical framework for nature-
inspired optimization algorithms, offering insights into their
hybridization potential for complex domains like WSN intrusion
detection. Building on this theoretical foundation, nature-inspired
evolutionary algorithms have come in handy for quite a few
researchers in optimizing feature selection while building intrusion
detection models for WSNs and similar wireless networks. For
instance, Vijayanand et al. (2018) proposed a novel IDS with Genetic
Algorithm with tournament-based feature selection and multiple
SVM classifiers for wireless mesh networks. Although the suggested
model exhibited a high accuracy for attack detection with strong
validation against multiple datasets, the working of the proposed
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method might be indeterminate for WSNs, and further research might
be required. Next, the authors in Zhang et al. (2020) studied a special
type of WSN known as Mobile Wireless Sensor Networks (MWSNG).
The lifetime optimization model for the MWSN is developed in this
research using five evolutionary computing (EC) techniques. The
benefits and drawbacks of these five techniques for solving the model
are examined through numerical simulations. However, the
applicability of this model in detecting cyberattacks is unknown.

A rather sophisticated approach has been adopted in Davahli et
al. (2020) wherein the model proposed, known as GABGWO,
combines the ideas of Genetic Algorithm (GA) and Grey Wolf
Optimizer (GWO) mathematical equations to create a support vector
machine (SVM)-based lightweight IDS (LIDS). It is also determined
that the performance of this hybrid algorithm is superior to that of
pure GA, GWO, and other modern approaches. Other hybrid IDS
approaches, such as combining Grey Wolf Optimization with SVM,
have shown improved detection performance in WSNs (Safaldin et al.,
2021). Our GOA-GA approach similarly leverages hybridization but
targets faster convergence and better feature minimization.

Deep Learning (DL), which is essentially a subset of machine
learning, has been employed by researchers to make security systems
for WSNs. For example, in Salmi and Oughdir (2022), the authors used
a combined technique called Convolutional Neural Network and Long
Short-Term Memory (CNN-LSTM) to detect and classify DoS intrusion
attacks on a WSN dataset. The results obtained from this hybrid deep-
learning model indicate its high efficiency and also make the model
easy to comprehend. Though the model could have been compared
with other existing systems as well in the study. Moreover, Ramesh et
al. (2021) proposed an optimized Deep Neural Network algorithm for
detecting DoS attacks in Wireless Multimedia Sensor Networks
(WMSNs). Although their implementation might be intricate, they
used consistency-based and correlation-based feature selection along
with Multilayer Perceptron (MLP) and Stochastic Gradient Descent
(SGD) to achieve highly useful outcomes. Further, to prevent attacks on
WSNS, the study done in Pawar and Anuradha (2023) implements an
optimized LSTM model for attack detection and prevention based on
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the fitness rate-based Whale Optimization Algorithm (FR-WOA). This
is how this paper sought to optimize multi-objective functions as
intended. The investigation revealed that the optimized LSTM’s
accuracy is superior to that of traditional LSTM, and the energy
consumption of FR-WOA is superior to other evolutionary algorithms.

2.2 Related works

Besides machine learning, deep learning, and evolutionary
computing techniques, several other logical methodologies have also
been adopted by researchers to detect cyberattacks in WSNs for
reliable data transmission. An effective trust-based attack detection
module is described in Anand and Vasuki (2021) to identify DoS
attacks such as selective forwarding and flooding attacks. Although a
limited number of DoS attacks were considered for the analysis, the
proposed attack detection model performed better than traditional
detection methods. Next, Dhamodharan et al. (2022) discussed how
Distributed Denial-of-service (DDoS) attacks impair the network’s
functionality and the data being transmitted. To manage the attack
proactively, the authors presented the Centralized Detect Eliminate
and Control (CDEC) algorithm for authorization and a centralized
monitoring component. This study emphasized the security and
privacy of WSNs, but the network considered during the experiment
was small. Similarly, Dhuria and Sachdeva (2018) presented two novel
and effective methods to deal with DDoS attacks in WSNs. The first
was a lightweight two-way authentication method that would shield
WSNs from the majority of attacks, and the second was a traffic
analysis-based data filtering method that would identify and shield
WSNs from DDoS attacks. Furthermore, Pajila et al. (2022) used a
fuzzy logic approach to quickly identify DDoS (Flooding) attacks and
retrieve sensor node data. This Fuzzy-Based Detection and Recovery
(FDBR) method saved energy and worked better than other similar
schemes. But the drawback of this method is that DDoS attacks might
not be mitigated in the early stages. Moving on, Altaf Khan et al.
(2022) developed a unique method for distinguishing DDoS attacks
from the flash crowd (FC) in data traffic by using a Bayesian model to
detect aberrant data traffic in WSNs. The proposed novel mechanism
is called DDoDE and the simulation results were obtained by using
realistic datasets. The drawbacks of this work include the negligence
in considering payload patterns and hop count information. Further
on, in Alaparthy and Morgera (2018) an attempt is made to protect a
WSN utilizing an immunity theory technique known as Danger
Theory. In other words, a multi-level IDS is created based on the
characteristics of different immune cells. This technique is well-
thought-out and shows a high degree of reliability in detecting DoS
and DDoS attacks in WSNs. Last but not least, in Osanaiye et al. (2019)
the authors suggested a feature selection approach that combines the
three filter methods of Gain ratio, Chi-squared, and ReliefF (triple-
filter) for a typical IDS to protect WSNs. As a result, system complexity
would decrease and classification accuracy would rise. Additionally,
the major advantage of this approach is that the total energy consumed
by the sensor nodes during intrusion detection is decreased.

Apart from the significant contributions of the research works in
the literature review, they have some limitations as well, which bring
into the picture the following research gaps:

1 Very few computer-generated WSN datasets for DoS detection
have been developed, and meager research has been conducted

Frontiers in Artificial Intelligence

10.3389/frai.2026.1738152

on the same, wherein hybrid metaheuristic algorithms with ML
classification algorithms have been implemented.

2 Most of the related works used a standalone Genetic Algorithm
in the intrusion detection system, except for a few.

3 The evaluation of the proposed model for IDS in WSNs might
not have received enough emphasis.

Solving these drawbacks forms the motivation of this research
work. Hence, in this work, a new combined approach using the
Grasshopper Optimization Algorithm and Genetic Algorithm
(GOA-GA) has been proposed for feature selection. In addition,
several ML classifiers such as Classification and Regression Tree
(CART), KNN, Logistic Regression (LR), and MLP are used and
compared to decide which algorithmic combination yields the best
DosS attack detection. The hybrid model employed in this research
work has also been given careful consideration, and before real-time
usage, it would have undergone a thorough evaluation and
comparison. Finally, the dataset used in this paper is that of WSN-DS,
which was first used in Almomani et al. (2016) and has been
researched by various other authors, as seen in Table 1. This shows that
the dataset used is authentic for studying DoS attack detection
in WSNs.

3 Proposed methodology

In this section, the methodology behind this research work is
explained in detail. Section 3.1 presents the solution architecture of
DoS attack detection in WSNs from the dataset provided. Section 3.2
explains the metaheuristic algorithms used in the study, including the
hybrid algorithm. Section 3.3 explains the machine learning classifiers
used for training and classification purposes. Lastly, Section 3.4
provides insights into the model’s interpretability and practical
implications.

3.1 Architecture

This paper presents a solution wherein an IDS can detect cyber
threats like DoS attacks in WSNs by following a proposed
architecture, as observed in Figure 3. Figure 3 illustrates the process
of dividing the dataset into training and testing sets, then
pre-processing the data, followed by dimensionality reduction and
training of classifiers, and ultimately building the anomaly detection
model to classify the results as either normal or indicate the
presence of an attack. In case of an attack, the attack can be further
classified into four types as per the information present in the
dataset. The following architecture is inspired by the work done in
Dwivedi et al. (2020).

The implementation of this research work is based on four
modules in total, which are in accordance with Figure 3. Firstly, in the
data pre-processing module, four sub-steps are involved:

i Loading and Inspection: The dataset is imported as a data frame,
and its structure is studied.
ii Feature Analysis: Attributes are examined and separated into
input features and target labels.
ili Data Transformation: Necessary normalization or scaling is
applied to ensure uniform feature distribution.
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TABLE 1 Summary of the literature review for various intrusion detection systems used in WSNs.

10.3389/frai.2026.1738152

Sr. References = Year Dataset Attacks Detection/  Accuracy @ Recall Simulation = Limitations
No. analyzed prevention (detection  tool
technique rate)
1 Al-Issa et al. 2019 ‘WSN-DS Blackhole, Decision Tree; Decision Tree: Decision Tree: ‘WEKA toolbox Focused only on
(2019) Flooding, Support Vector 0.997 0.997 limited attack
Scheduling, Machine SVM: 0.973 SVM: 0.971 types; results
and Grayhole dataset-specific,
attacks not validated on
real deployments
2 Alsulaiman and 2021 WSN-DS Blackhole, Naive Bayes; 99.72% Highest average = WEKA toolbox Evaluation
Al-Ahmadi Flooding, Support Vector recall: 0.997 limited to a
(2021) Scheduling, Machine; single dataset;
and Grayhole | Random Forest; scalability and
attacks J48; K-Nearest energy efficiency
Neighbors in real WSNs not
addressed
3 Zhang et al. 2020 NSL-KDD; DoS, Probe, Multi-Kernel 98.3% overall 98.03% for DoS | MATLAB Used generic
(2020) UNSW-NB R2L,and U2R | Extreme attacks R2014b version datasets (not
15 attacks Learning WSN-specific);
Machine (MK- applicability to
ELM) constrained
WSN
environments
uncertain
4 Lakshmi 2021 Not specified | Blackhole Naive Bayes; EC-RTT: 0.91 EC-RTT: 091 NS-2 Dataset not
Narayanan et al. attacks; Enhanced Code- | for 100 nodes  for 100 nodes specified; tested
(2022) ‘Wormbhole based Round on small-scale
attacks Trip Time (EC- scenarios; lacks
BRTT) validation on
diverse
topologies
5 Davabhli et al. 2020 KDDcup99 Not specified | Genetic 99.09% 99.30% WEKA toolbox Relies on the
(2020) Algorithm; Grey outdated
Wolf Optimizer KDDcup99
dataset; lacks
validation
against modern
WSN-specific
attacks
6 Salmi and 2022 ‘WSN-DS Blackhole, Convolutional 0.944 0.922 Python 3.7.7, High
Oughdir (2022) Flooding, Neural Network; Python (Google | computation and
Scheduling, Long Short- Colab) energy cost; not
and Grayhole | Term Memory suitable for
attacks resource-
constrained
WSN nodes
7 Pawar and 2023 | Created and Blackhole Long Short- Not specified Not specified Python Results dataset-
Anuradha (2023) used an attacks; Term Memory; specific; no
experimental | Wormbhole Fitness Rate- standard dataset
dataset attacks based Whale used;
Optimization performance
Algorithm (FR- comparison with
WOA) benchmarks
missing
(Continued)
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TABLE 1 (Continued)

10.3389/frai.2026.1738152

Sr. References Dataset Attacks Detection/  Accuracy @ Recall Simulation = Limitations
[\[o} analyzed prevention (detection  tool
technique rate)
8 Anand and 2021 Not specified | Selective Multi- Not specified Between 95 to NS-2.33 Limited attack
Vasuki (2021) Forwarding dimensional 100% types analyzed;
attacks; Trust Parameters energy overhead
Flooding of trust
attacks calculation not
considered
9 Dhamodharan et 2021 Not specified | DDoS attacks | Centralized Not specified Not specified NS-2.34 Centralized
al. (2022) Detect Eliminate approach—single
and Control point of failure;
(CDEC) scalability in
Algorithm large WSNs
questionable
10 Dhuria and 2018 Not specified = DDoS attacks | Two-Way Not specified Not specified NS-2 Lacks
Sachdeva (2018) Authentication experimental
Method; Traffic dataset
Analysis-Based validation;
Data energy
Filtering Method consumption
overhead is not
studied
11 Pajilaetal. (2022) | 2022 | Notspecified | DDoSattacks | Fuzzy-based Not specified Close to 9% as = MATLAB Performance
DDosS Attack per the given validated only
Detection and graph via simulation
Recovery graphs; lacks
Mechanism comparison with
(FBDR) ML/DL models
12 Alaparthy and 2018 Not specified | Blackhole, Danger Theory; Not specified Not specified Cooja High algorithmic
Morgera (2018) Wormbole, Artificial complexity;
DDoS and Immune System computational
Selective cost unsuitable
Forwarding for low-power
attacks WSN nodes
13 Osanaiye et al. 2019 NSL-KDD DoS, Probe, Three filter 99.67% 99.76% WEKA toolbox Based on the
(2019) R2L,and U2R = methods, generic NSL-
attacks namely, Gain KDD dataset, not
Ratio, Chi- validated on real
Squared, and ‘WSN traffic;
ReliefF (Triple- ignores energy/
Filter) resource
constraints

iv Balancing: If the dataset is imbalanced, resampling techniques
(e.g., oversampling, undersampling) are applied to achieve class
balance.

Next, in the second module, the dimensionality reduction is
achieved through optimized feature selection using metaheuristic
algorithms such as the Grasshopper Optimization Algorithm, Genetic
Algorithm, Differential Evolution, and the proposed hybrid approach.
Dimensionality reduction is important as it simplifies models by
decreasing input features, which improves efficiency and performance,
mitigates overfitting, enhances accuracy, and interpretability. This
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approach makes it easier to handle high-dimensional data, speeds up
computation, helps models generalize better, and makes them easier
to understand, particularly in real-time applications like detecting
DosS attacks in WSNs. An optimized decision tree (CART) algorithm
is used as the fitness function in all four metaheuristic algorithms
required for feature selection. CART was selected because it offers
interpretable feature importance, efficient computation on high-
dimensional data, and robustness to mixed-type attributes and class
imbalance. Its splitting criteria, based directly on classification
accuracy (e.g., Gini impurity), make it a practical and meaningful
metric for guiding optimization. Recent studies reinforce its

frontiersin.org


https://doi.org/10.3389/frai.2026.1738152
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Prasad et al. 10.3389/frai.2026.1738152
T i1 DataPreprocessing i Dimensionality Reduction P Training of Classifier |
Training ' Data transformation L % F(eé)tou ;‘e éileétlgz_lg:g L | Use ML Classifiers :
' Dataset and normalization Vi DE) + CART | ‘(MLP, LR, CART, KNN)‘

LR i . i o b S
o ! " v : :
a | " v ] :
T ! {lemm=sscmmmemecmeccsmommammssmsscmsood Sesscmscosacmscmosmmssosscosmomsocmscoes $ =ommmmmmmoones==s I ---------------
. R
8 | Testngand — :
2 11 Evaluation Module — ] % o !
g ' ) “ Atack | Classify the type 1
. i ( \‘ : ’ e of DoS Attack g ;
' Testing B Anomaly Detection > " h - ]
' Dataset o Model ‘ | I Flooding Attack '
. i \ L Nomal :
| i S——— [Gomoean | |
' " Recognition of Attack Evaluation and Analysis of Attack Type H
! " Comparison of Results i
FIGURE 3
Proposed solution architecture to detect DoS attacks in a WSN based on a given dataset

effectiveness: Velasco-Mata et al. (2021) demonstrated high F1
performance with small feature subsets evaluated via decision trees,
and other works validate its role as a strong baseline compared to
more complex methods like Boruta-Random Forest in WSN IDS
scenarios (Subbiah et al., 2022). The broader literature emphasizes the
value of CART’s transparency and performance in security
applications (Li et al., 2024; Emirmahmutoglu and Atay, 2025). The
output of this second module would be the best subset of input
features based on which the model shall be trained for optimal results.
Only the top 4 features from the dataset are decided to be used for
further use by ML classifiers to reduce the overhead on the WSNs. A
point to note here is that feature selection using these four
metaheuristic algorithms was performed exclusively on the training
data to avoid introducing information from the test set during the
optimization process.

In the third module, the training of ML classifiers takes place. ML
classification algorithms such as LR, CART, KNN, and MLP are used
in the training of the models, with each of the metaheuristic
algorithms used. So, in total, there are 16 combinations of
metaheuristic algorithms and ML classifiers. To validate the training
performance, cross-validation techniques could be used. Next, in the
fourth module, the trained models are tested against the test dataset.
The models are further evaluated based on well-known performance
measures and finally compared with each other based on these
metrics. Thus, from the results, we could conclude which model(s) are
proficient in predicting DoS attacks in WSNs.

3.2 Hybrid GOA-GA and other
metaheuristic algorithms

The main proposed methodology in this research work lies in the
hybrid GOA-GA approach. Apart from that, the other three
metaheuristic algorithms were also used during the experiment and
hence are discussed below.

3.2.1 Grasshopper optimization algorithm

The Grasshopper Optimization Algorithm (GOA) is a cutting-
edge, effective metaheuristic algorithm inspired by grasshoppers.
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There are two stages in the grasshopper life cycle: nymph and adult.
While the swarm expands slowly during the nymph phase, it
expands quickly during the adult phase, taking large steps (Fathy,
2018). GOA, which was modeled after a metaheuristic based on
nature, can be used in two stages: exploration and exploitation.
Swarms move quickly during the exploration phase, but only locally
during the exploitation phase. Numerous researchers have become
interested in it to find solutions to numerous real-world problems as
a result of the vast investigation and quick convergence. Therefore,
GOA has been used in this work because of such advantages and
also for assessing its applicability in feature optimization for WSNs.
The mathematical model of GOA (Ewees et al., 2018) which mimics
the behavior of grasshoppers consists of the variable X; which
denotes the position of the ith grasshopper or solution and is
given by:

X,':Si+Gi+Ai (1)

where G; is the gravitational pull on the solution, A; denotes wind
advection, and S; denotes social interaction between the solution and
the other grasshoppers. The location of each solution after random
behavior has been included is represented by the Equation 2 below:

Xi = rIS,» + VzGi + 7’3Al‘ (2)
where [0, 1] is the range for the random integers n, r, and 3. The

social interaction between the solution and the other grasshoppers is
represented by the Equations 3, 4 below:

N A
S;i= Zs(d,-j)dij,where i#j 3)
j=1
-
s=fel —e" (4)
o~ |x1 —xl-|

where djj = represents the unit vector and d;; = |x i xi|

indicates the distance between the ith and jth grasshoppers.
Additionally, I is the appealing length scale and f is the degree of
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attraction, and s reflects the strength of two social factors (repulsion
and attraction between grasshoppers). The following Equation 5
demonstrates how to determine the gravitational force G;:

—~

Gi=-geg (5)

—~

where e, is a unit vector pointing toward the earth’s center and g
stands for the gravitational constant. How to determine 4; is shown
in the equation below:

o~

A; =ue,, (6)

where e,, is the unit vector in the wind direction and u stands for
the drift constant. Equations 3-6 are combined to get Equation 1 as
follows:

N — — o~
X; = zs(dij)dij —ge, +ue,
j=1

4 —ge;+ue/,:,,wherei¢j (7)

To address optimization concerns, prevent grasshoppers from fast
reaching their comfort zone and the swarm from failing to converge
to the target site, and solve optimization problems, Equation 7 is
adjusted as follows:

N B X —x;
xf=c Zc%s(‘x?—xﬁ)‘ ]d 1‘ +G+A, wherei=j (8)

j=1 ij

where G =0and A is the best solution in the dth dimension, UB;
and LBy are the corresponding upper and lower limits in the dth
dimension. The model for ¢ is mentioned in Equation 9:
Cmax — Cmi
X min (9)

_ . ma;
C=Cmax —iter
maXiser

where iter is the current iteration, max;,, denotes the maximum
number of iterations, and c;,¢ and ¢y, denote the maximum and
minimum values of ¢, respectively. The steps of the Algorithm 1 for
GOA are given as follows:

3.2.2 Genetic algorithm

In the larger category of evolutionary algorithms (EA), a
genetic algorithm (GA) is a metaheuristic that draws inspiration
from the process of natural selection. Utilizing biologically
inspired operators such as mutation, crossover, and selection,
genetic algorithms are frequently employed to produce high-
quality solutions to optimization and search problems (Bhola et
al., 2020). Given their ability to handle a high number of
characteristics and their effectiveness in swiftly searching through
the feature space to find the most pertinent features, genetic
algorithms can be employed to identify the most relevant features
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required for DoS attack detection in WSNs. Additionally, GA is
used in this work because they are simple to use and can be
integrated with other strategies, like machine learning, to enhance
performance. The mathematical model concerning the different
phases of GA is presented as follows:

o Initialization: Generate an initial population of candidate
solutions as mentioned in Equation 10:

P =x10,xg,...,x2 (10)

where P, is the initial population of candidate solutions; 7 is the
number of individuals in the population; x} is the i® candidate
solution in the initial population.

o Evaluation: Evaluate the fitness of each candidate solution:

f(xf)for i=12,...,n (11)

where x! s the fitness of the ith candidate solution at generation .

o Selection: Select the best-performing candidates to generate a
mating pool:

Pch (12)
where P is the mating pool, a subset of the population, and P; is
the population at generation ¢.

o Crossover: Generate offspring by combining the traits of parents
in the mating pool:

(13)

where x/*! is an offspring produced by combining the traits of
two parents; C is a crossover operator that takes two parent solutions
and generates an offspring solution that combines their traits; j; and
j2- These are indices of the two parent solutions that are used to
generate the offspring solution.

o Mutation: Introduce small random changes in some of the
offspring:

xlg+1 :M(xfﬂ)

(14)

where M is a mutation operator that takes an offspring solution
and makes a small random change to it, introducing new genetic
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Input:
e Population size

e Maximum iterations

Output: Best solution

Process:

STEP 1: Initialize the parameters.

for each grasshopper do

//End of for loop

//End of while loop
STEP 8: Return the best solution

ALGORITHM 1
Grasshopper optimization algorithm.

e Lower and upper bounds of the search space

STEP 2: Population initialization phase (Swarm Initialization).

STEP 3: Compute the fitness value for each grasshopper (search agent).
STEP 4: Select the best solution among all (best search agent).

STEP 5: Check while(Current_Iteration(t) < Maximum _Iteration(MaxT)) do

STEP 5.1: Normalize distance between grasshopper in the range [1,4].
STEP 5.2: Update the position of the current grasshopper.
STEP 5.3: Bring the current grasshopper back if it goes outside the boundaries.

STEP 6: Update the current best solution if there is a new best solution.

STEP 7: Current_Iteration «— Current_Iteration + 1

material that was not present in the parents. The steps of the
Algorithm 2 for GA are given as follows:

3.2.3 Hybrid grasshopper optimization algorithm
cum genetic algorithm

The GOA-GA is the main and proposed algorithm of this research
work. The major reason why this hybridization concept came into the
picture with GOA and GA is because of the unique and novel
combination that they have. This research work might be one of the
first works to propose a hybrid GOA-GA algorithm for feature
selection for detecting DoS attacks in WSNs. This hybrid algorithm
may be able to overcome the drawbacks of each individual approach
and produce better results more quickly by combining the advantages
of the two algorithms. Furthermore, using our hybrid approach for
feature selection with machine learning models may enhance the
precision and effectiveness of identifying DoS attacks in WSNs.

Rationale for choosing GOA-GA for this study: The Grasshopper
Optimization Algorithm (GOA) is effective for global exploration due
to its adaptive social interaction mechanism, but it often suffers from
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slow convergence and premature stagnation near local optima.
Conversely, the Genetic Algorithm (GA) excels at local exploitation
through evolutionary operators such as crossover and mutation, yet it
may lack strong global search capability and can converge slowly when
the search space is large. By hybridizing GOA and GA, we exploit
GOASs strong exploration ability while leveraging GA’s exploitation
mechanisms to refine candidate solutions. Thus, GOA and GA
compensate for each other’s shortcomings—GOA prevents GA from
being trapped in local optima, while GA accelerates convergence by
refining GOA’s diverse candidate solutions. This synergy enhances
both convergence speed and accuracy, making the hybrid algorithm
particularly suitable for high-dimensional feature selection problems
in WSN intrusion detection, where balancing exploration and
exploitation is critical.

The steps of the Algorithm 3 for GOA-GA are given as follows,
and the same is depicted in the form of a flowchart in Figure 4.

In step 5 of the algorithm, the same Equation 8 is used, which was
earlier used in GOA for updating the positions of the agents in the
search space. Equations 11-14 pertaining to evaluation, selection,
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Input:
e Population size
e Number of generations
e Probability of crossover

e  Probability of mutation

Output: Best solution found

Process:

STEP 1: Initialize a population of individuals with randomly generated genetic information (chromosomes).
STEP 2: Evaluate the fitness of each individual in the population.

STEP 3: Select individuals from the current population to form a mating pool. This selection is often based on

the individual’s fitness.

STEP 4: Breed the individuals in the mating pool to create a new generation of individuals. This breeding can
be done by applying genetic operators such as crossover (recombination) and mutation.

STEP 5: Repeat steps 2-4 for a specified number of generations or until a satisfactory solution is found.

ALGORITHM 2
Genetic algorithm.

crossover, and mutation are employed for Step 9, which involves
solution evolution utilizing GA. Thus, the hybridization process
mathematically alternates between GOA exploration (Equation 8) and
GA exploitation (Equations 11-15) until convergence criteria are met.
In addition, the elitist strategy is also included in this step. The elitist
selection approach, which is straightforward, makes sure that the best
answer so far is always included in the following group of candidate
solutions. This helps stop the gradual loss of effective solutions. The
elitist strategy can be expressed mathematically as follows:

Py =PuUx (15)

where x; is the best solution so far discovered in the optimization
process, B is the next generation of candidate solutions, and P’ is the
collection of candidate solutions produced through selection,
crossover, and mutation processes. The set union is represented by the
operator U.

Limitations addressed by the proposed hybrid approach:

o GOA limitation: Prone to premature convergence, weak
exploitation near optima.

o GA limitation: Slow convergence in large search spaces, risk of
losing diversity.

o Proposed hybrid: GOA ensures a diverse search of the feature
space; GA enhances local search and solution refinement; elitist
strategy prevents the loss of good solutions. Together, they
achieve better feature subset optimization for IDS in WSNs.

3.2.4 Differential evolution

Differential Evolution (DE) is an evolutionary algorithm that was
developed by Storn and Price and is an effective, straightforward, and
quick global search evolutionary algorithm. The differential mutation
operator used by DE, which possesses the properties of search
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direction and search step-size adaptivity, is what sets it apart from
other algorithms the most. DE has the benefits of a straightforward
structure, user-friendliness, and high robustness (Zhang et al., 20205
Deng et al., 2021). DE is very similar to GA as both algorithms
involve a selection process that identifies the best-performing
individuals from the population, and then uses them to generate new
candidate solutions for the next iteration. The implementation of DE
also has similarities with that of the GA. Due to this reason and for
comparison purposes with other metaheuristic algorithms, DE is
included in this work. The steps of the Algorithm 4 for DE are given
as follows:

3.3 Machine learning classifiers

During the experiment study, four of the well-known machine
learning classification algorithms were used, which are discussed as
follows. Note that each of the following algorithms is a supervised
learning algorithm, but at the same time, it is based on different
concepts.

3.3.1 Multilayer perceptron

MLP is a type of artificial neural network that consists of at least
three layers of neurons: an input layer, one or more hidden layers, and
an output layer (Singh and De, 2017). This method’s fundamental
strategy is to transform a large number of real-valued inputs into outputs
by varying the weights of its internal nodes. During the training of a
dataset using the back-propagation learning technique (Singh and De,
2017), MLP obtains a function f(x) ‘R > R', where i, t €
Q + represents input and output dimensions separately. The equation for
this is given as (Equation 16):

yzé{zzl(wixw)}:&(wTXw) (16)
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Input:

Population size

Maximum iterations
Bounds of the search space
Probability of crossover

Probability of mutation
Qutput: Best solution found
Process:
STEP 1:
STEP 2:
STEP 3:
STEP 4:
STEP 5:
for cach Agent do
STEP 5.3: Update the position of the current Agent.
//End of for loop
STEP 7: Current Iteration «— Current Iteration + 1
//End of while loop

STEP 8: Update the Best Agent.

Evaluation.

ALGORITHM 3

Initialize important parameters for GOA and GA.

Initialize the population randomly in the search space.

For each Agent, evaluate their performance using the objective (fitness) function.
Select the Best Agent among all. (i.e., Target).

Update the position of the Agents in the search space using GOA.

STEP 5.1: Check while(Current Iteration(t) <Maximum_Iteration(MaxT)) do

STEP 5.2: Normalize distance between Agent in the range [1,4].

STEP 5.4: Bring the current Agent back if it goes outside the boundaries.

STEP 6: Evaluate the updated solutions based on the objective function.

STEP 9: Solution Evolution using GA. Steps involved: Selection, Crossover, Mutation, Elitist strategy, and

STEP 10: Update the best solution using GA (Update the best solution’s position, Target: best solution).

STEP 11: Check Stopping Criteria (Check if Current Iteration < Maximum _Iterations).
STEP 12: Display the best solution found (Best solution «<— Optimal solution).

Hybrid grasshopper optimization algorithm cum genetic algorithm (proposed).

where & represents the activation function, w stands for the
weight vectors, X for the input vectors, and b for the bias. This neural
classifier has been used widely in practice in several disciplines,
including pattern classification, identification, and prediction. For
this work, the MLP classifier is chosen because MLPs are capable of
learning complex, non-linear relationships between the input features
and the target variable. This is important in the given research case
because it is likely that the input features may not have a simple,
linear relationship with the target variable (i.e., the presence or
absence of a DoS attack). Also, they are well-suited for detecting
patterns and relationships in high-dimensional data, which is often
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the case in WSNs where there may be many different sensors
generating data.

3.3.2 K-nearest neighbors

In KNN classification, all computation is postponed until after the
function has been evaluated, and the function is only locally
approximated. Since this approach depends on distance for classification,
normalizing the training data can significantly increase accuracy if the
features reflect several physical units or have wildly different sizes.
However, several factors, such as the choice of the k value, the choice of
distance metrics, and others, can impact how well the KNN classification
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performs. The distance between two data points x and y in a feature
space of d dimensions is given by the Euclidean distance as given in
Equation 17:

17)

which is the most used distance metric in KNN. Indicated as
Ny (x,D), the collection of k-nearest neighbors is defined as in
Equation 17a:

Ng (x,D)={xi inD|d(x,x,-)Sd(x,xj)
forall xjinD,j=i},where|Ni(x.D)|=k

In other words, N (x,D) is the set of k data points in D that have
the smallest distance to x. The reason why KNN is used for this
research work is that it is simple to implement and can be effective in
cases where the decision boundary between classes is not well defined,
as seen in the dataset used. This could be the case for detecting DoS
attacks, where the patterns of attack may not be easily characterized
by a specific model or algorithm.
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3.3.3 Logistic regression

Logistic regression is mainly used for classification purposes
(Zou et al., 2019). The probability of an event occurring
depending on one or more input features can be modeled using
this well-liked and often-used classification approach. In the
given situation, where machine learning is applied to the WSN
dataset to detect DoS attacks, LR can be helpful since it enables
forecasting the likelihood that a specific network packet or
communication will be used in a DoS attack. In addition to being
reasonably simple to understand, LR can shed light on the
connection between the input features and the expected chance
of a DoS attack taking place. This can help in determining which
characteristics are most crucial for spotting DoS attacks in WSNs
and can help in the creation of stronger defenses against them.
The logistic function has the following formula as given in
Equation 18:

(18)

where s is a scale parameter and x is a location parameter (the
midpoint of the curve, where p(x) = 1/2). Maximizing the likelihood
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Input:

e Population size

e  Number of generations

e Bounds of the search space

e  Mutation factor (F)

e  Crossover probability (CR)
Output: Best individual found
Process:
STEP 1: Initialize a population of candidate solutions, called individuals, randomly.
STEP 2: Repeat the following steps for a specified number of generations or until a stopping criterion is met:

for each individual in the population do
STEP 2.1: Select three other individuals randomly from the population, making sure that the selected
individuals are not the same as the current individual.
STEP 2.2: Generate a new candidate solution by combining the selected individuals using a combination
strategy, such as weighted averaging or crossover.
STEP 2.3: Apply a mutation operator to the new candidate solution, such as adding a small random value to
each element of the solution.
STEP 2.4: Evaluate the fitness (i.e., quality) of the new candidate solution.
STEP 2.5: Replace the current individual with the new candidate solution if the new solution is better.
//End of for loop
STEP 3: Return the best individual found as the result of the optimization.
ALGORITHM 4

Differential evolution.

function represents the likelihood that the provided data set was
generated by a specific logistic function as given in Equation 19:

L= T pe [T (-px)

kiy,=1  kiy,=0

(19)

when the likelihood function L is used. In the k™ observation, yj
is the binary answer variable and py is the anticipated probability of
the positive class, or the likelihood that yy =1.

3.3.4 Classification and regression tree

CART is a type of decision tree algorithm used for both
classification and regression purposes (Breiman et al., 2017). To
construct a decision tree based on the Gini impurity index, the
CART method comes into the picture. It offers a wide range of
useful applications and is a fundamental machine learning
algorithm. As the CART classifier is already used for fitness
functions while implementing the metaheuristic algorithms, it is
one of the reasons why optimized CART is employed for
classification in this research case. It can be advantageous to use the
same classifier for all of the classification tasks because it keeps the
methodology consistent. As a classification technique, decision
trees also have several benefits, including their interpretability and
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capacity for both categorical and numerical data. Additionally, they
can handle huge datasets and train quickly. Decision trees function
better when their CART is optimized since it reduces overfitting
and increases generalization. The following is a definition of Gini
impurity:

(20)

IG(P)=ZLIP1' (1-p:)

where ¢ is the number of classes and p; denotes the percentage of
samples that belong to class i. In CART, the quality of a split is
evaluated using the information gain. The decrease in entropy (or Gini
impurity) brought on by the split is referred to as information gain.
The formula for information gain is as follows:

N
AI:I(P)_ZjE{L,R}W]I(pj) (21)

where I ( p) is the parent node’s impurity, N ; denotes the number
of samples in the j* child node, N denotes the total number of
samples, and p; denotes the percentage of samples in the j-th
child node.
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3.4 Model interpretability and practical
implications

In this section, the interpretability, and practical implications of
the IDS in real-world situations are covered. It is discussed here that
adaptive learning and frequent upgrades of the IDS could improve its
efficacy in addressing evolving cyber threats. Its usefulness can be
increased by working with cybersecurity specialists and industry
stakeholders to validate it in various contexts. Finally, upholding
ethical and data privacy laws will increase the validity and reliability
of the results.

3.4.1 Interpretability of the model

The interpretability of machine learning classifiers and hybrid
metaheuristic algorithms is still a challenge, despite their ability to
detect DoS attacks with high accuracy. Gaining trust and assuring
the model’s dependability require an understanding of how it makes
decisions. To improve the model’s interpretability, strategies like
feature importance analysis, SHAP (SHapley Additive exPlanations),
and LIME (Local Interpretable Model-agnostic Explanations)
might be used. Network administrators can gain a better
understanding of and confidence in the IDS’s decision by receiving
insights into the features that have the greatest impact on threat
detection.

3.4.2 Practical implications of deploying the IDS
Incorporating the suggested IDS into actual WSNs necessitates
considering many pragmatic factors. These consist of the necessary
processing resources, the simplicity of integration with the current
network architecture, and the possible influence on the overall
performance of the network. The suggested approach should be made
to use the least number of resources possible while integrating easily
with the hardware and communication protocols already in place in
the WSN. Furthermore, it’s crucial to make sure the IDS does not add
alot of cost or delay that can interfere with regular network operations.

3.4.3 Adaptive learning and continuous updating

It is essential to include techniques for adaptive learning and
constant updating of the IDS due to the dynamic nature of cyber
threats. Attack methods and patterns change often; therefore, an
inactive IDS can easily become outdated. By putting adaptive learning
strategies into practice, such as reinforcement learning and online
learning algorithms, IDS may update its detection models in real-time
and learn from new attack patterns. This flexibility will improve the
IDS’s long-term effectiveness and resistance to new threats. Moreover,
applied IDS deployments have already demonstrated tangible benefits
in WSN environments. For instance, an IDS integrated with a CLGO-
enhanced SVM achieved practical improvements in packet delivery
rate and energy consumption (Gupta et al., 2023), underscoring the
potential of hybrid optimization and adaptive learning in real-world
scenarios.

3.4.4 Collaboration with industry stakeholders
and cybersecurity experts

It is essential to collaborate with cybersecurity experts and
industry stakeholders in order to validate and improve the suggested
methodology. Through industry relationships, access to operational
insights, real-world data, and practical difficulties that are not usually
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met in academic research can be made possible. Working
collaboratively to validate the proposed IDS in various operating
situations will help find any flaws and make it easier to refine it to
comply with industry standards and specifications.

3.4.5 Ethical considerations and data privacy

Developing and implementing intrusion detection systems
requires careful attention to ethical issues and data protection laws.
The suggested IDS needs to make sure it does not invade user privacy
or gather pointless data. Respecting data privacy laws, such as the
General Data Privacy Regulation (GDPR), is crucial to keeping the
validity and reliability of study findings. The responsible use and
deployment of the IDS should also be guided by ethical concerns to
make sure that it does not get misused and that neither people nor
systems are harmed.

4 Experimental analysis and validation

In this section, experimental analysis and validation techniques
related to this work’s implementation are discussed. Section 4.1 briefly
discusses the experimental setup and tools used. Section 4.2 illustrates
the dataset used in the experimental study and its related features.
Next, in Section 4.3, the selection of hyperparameters for each of the
ML classifiers during their training is discussed. Lastly, Section 4.4
describes the standard performance metrics and validation techniques
used during the experiment to evaluate the models.

4.1 Experimental setup and tools used

The HP laptop used for this project’s studies has an Intel(R) Core
(TM) i5-8265UC processor running at 2.4 GHz, 16.0 gigabytes of
RAM, and 256 gigabytes of solid-state drive (SSD) memory storage
capacity. The crucial Python modules and Jupyter Notebook 6.5.2, a
web-based, interactive computing notebook environment, were
installed locally using Anaconda Navigator 2.3.2. The projects
execution took place in the same computing environment, and the
notebooK’s operating system was Windows 10 (Version 22H2).

Python programming (version 3.9.16) was used for the entire
project’s implementation and coding. Throughout the implementation,
crucial libraries including pandas, NumPy, Matplotlib, scikit-learn,
and DEAP were used.

4.2 The WSN-DS dataset

The dataset utilized in this research work is known as WSN-DS
and was cited in Almomani et al. (2016). Essentially, it is a dataset for
wireless sensor networks used by intrusion detection systems. 374,661
records and 19 columns make up the dataset. It was discovered during
data pre-processing that the dataset did not contain any null or NA
values. Figure 5 shows the distribution of the data points together with
the count value for each class label.

The attributes of the dataset are split into input/independent
variables and a target/output variable since the categorization of class
labels is the ultimate objective. The following variables (18 in number)
were included in the input: “id} “Time” “Is_CH,” “who CH,
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FIGURE 5
The WSN-DS dataset’s "Attack type” attribute’'s composition.

“Dist_To_CH,” “ADV_S, “ADV_R;” “JOIN_S;” “JOIN_R; “SCH_S;
“SCH_R;” “Rank;” “send_code;,” “DATA_S, “DATA_R, “Data_Sent_
To_BS,” “dist_CH_To_BS” and “Expaned Energy” The “Attack type”
attribute made up the target variable.

Ultimately, 4 out of the 18 input features were chosen in order to
lessen the burden on WSNs and lower the number of features required
to forecast attacks. A great compromise between high model
performance and computational efficiency has been demonstrated by the
thorough experimentation and cross-validation that supported this
decision. A model’s capacity to be applied to new data must be
maintained by preventing overfitting, which is achieved by choosing four
features. The interpretability of the model is also improved, and the
influence of each feature on DoS attack detection is easier to comprehend
with a reduced feature set. With respect to the restricted processing
power and energy constraints typical of WSNG, this method greatly
minimizes computational complexity and resource usage. A small feature
set of this size provides a good trade-oft between performance and
complexity. The hybrid GOA-GA algorithm effectively identified these
four features namely, “send_code;,” “Time;” “Data_Sent_To_BS,” and
“JOIN_R” as the most relevant and impactful subset, ensuring a robust
and efficient detection mechanism without redundancy.

While the proposed GOA-GA approach demonstrated strong
classification performance, metaheuristic algorithms are inherently
stochastic and can vyield different feature subsets across runs. To
evaluate the stability of our selected features, we performed multiple
independent runs (N =20) and computed the Jaccard similarity
coefficient between the resulting subsets. Across repeated runs, the
average pairwise Jaccard similarity of selected feature subsets was
approximately 0.70, indicating that while minor variations occurred,
the algorithm consistently converged on a stable core set of features.
This suggests that the algorithm consistently prioritized a core group
of features, with minor variation in less informative attributes. This
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aligns with observations in prior studies on stochastic feature selection
(Yang, 2020).

The dataset is divided 8:2 in ratio. Accordingly, 80% of the dataset
will be used for training and the remaining 20% for testing. The rationale
for this ratio’s selection is to ensure that the models receive a sufficient
number of samples during the training phase, allowing them to make as
accurate a classification prediction as feasible for the testing set.
Additionally, the usual ratio used in the majority of the research reviews
is 8:2. The overall data count for the various classes for the training and
testing sets is displayed in Table 2. The 20% test set was held out as an
independent evaluation set and was not used at any stage of feature
selection, data balancing, hyperparameter tuning, or model optimization.
All model development and selection procedures were performed
exclusively on the training data to ensure an unbiased final evaluation.

Also, from Figure 4, it is observed that the dataset is highly
imbalanced. To deal with this issue, the dataset is balanced after
splitting the dataset into training and testing sets so that the testing set
is not affected. The technique used for balancing the dataset is called
Adaptive Synthetic Sampling (ADASYN). For machine learning
algorithms to learn from the data and achieve high accuracy in
predicting the minority class in such circumstances can be difficult.
By creating artificial examples of the minority class based on the
density distribution of the samples, the ADASYN algorithm solves this
issue. Following the addition of these artificial cases, the classes in the
initial dataset are balanced, which enhances the effectiveness of
machine learning algorithms so that they can better recognize the
minority class rather than being biased toward the majority. To
prevent data leakage, ADASYN was applied only to the training subset
after the train-test split, while the test set retained its original class
distribution and remained completely untouched.

To evaluate the impact of balancing, we compared model
performance with and without ADASYN. Models trained on the
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TABLE 2 WSN-DS dataset separated into 80% training set and 20%
testing set.

The attack type ‘ Training set (80%) ‘ Testing set (20%)

Normal 272,101 67,965
Grayhole 11,594 3,002
Blackhole 8,025 2,024
TDMA 5,352 1,286
Flooding 2,656 656

Sum 299,728 74,933

balanced dataset showed a clear improvement in recall and F1-score
for the minority class, while overall accuracy remained consistent.
This indicates that balancing primarily improved minority detection
without degrading majority class performance.

Regarding the risk of overfitting to synthetic samples, the use of
ADASYN after the train—test split prevents contamination of the test
set. Moreover, repeated runs showed stable results across folds,
suggesting that the models generalized well rather than overfitting to
synthetic examples.

4.3 Hyperparameter tuning

In this section, the hyperparameters concerning different algorithms
are discussed. For GOA, GOA-GA, and DE, the maximum number of
iterations and number of agents are 50 and 50, respectively. On similar
lines, the GA had 50 generations in total. The maximum iteration for
each algorithm is 50. The lower bound and upper bound for GOA are 0
and 1, respectively. The probabilities of crossover and mutation for
GOA-GA are 0.8 and 0.1, respectively. For DE, the F (scaling factor) and
CR (crossover rate) are chosen as 0.5 and 0.7, respectively.

Next, coming to the machine learning algorithms, for the MLP
classifier, the hidden layer sizes is (10, 5), activation is set to “relu,”
solver is “adam,” learning rate is “adaptive” with constant value of
0.0001, alpha is set to 0.01, maximum iterations is 10,000 and random
state of 42. For the LR classifier, a pipeline is used for scaling and
iterations to be 500. Then,
GridSearchCV is used to find the best hyperparameters to get the best

classification, with maximum
training performance. For the KNN, the value of k is 5, i.e., 5
neighbors are taken into consideration. Lastly, for the CART
algorithm, the default hyperparameters are used as defined by the
decision tree classifier function in the Python scikit-learn library. All
hyperparameter tuning and model selection were conducted strictly
within the training data. GridSearchCV with 5-fold cross-validation
was applied only to the training set, and each cross-validation fold
operated exclusively on training samples. The held-out test set was
not accessed during feature selection or hyperparameter optimization
and was used only once for final performance evaluation.

4.4 Performance measures and validation
techniques

For understanding how better the machine learning classifiers are

trained, we used the k-fold cross-validation technique with k = 5. The
reason behind choosing this technique is that it is a commonly used
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technique to measure training performance and is easy to implement
and comprehend. Besides, the value of k is considered to be 5 for the
sake of convenience.

The experiment used the following performance measures
mentioned in Equations 22-29 to evaluate each technique or
algorithmic combination for the testing dataset:

Accuracy = __ IN#TP (22)
TP+TN +FP+FN
o TN :True Negatives
e TP:True Positives
o FP: False Positives
o EN: False Negatives
s . TP
Recall = Sensitivity = Detection Rate=TPR=———— (23)
TP+ FN
TP
Precision=—— (24)
TP+ FP
* ision *
F —measure = F1—score = 2* Precision * Recall (25)
Precision+ Recall
PR = _fP (26)
FP+TP
Specificity =1— FPR (27)
AUC= Sensitivity + Specificity (28)
2
n 2
) T;
RMSE = 2,(%-T) (29)

where O; and T; are the output and target values, respectively, and
n is the total number of data points.

Note that the calculation of precision, recall, F1-score (f-measure),
and AUC is done using the weighted average concept, as it is a convenient
averaging method for multi-class classification problems in the case of
an imbalanced dataset. In order to ensure that the performance of the
model on the minority classes is given more priority when evaluating the
overall performance, a weighted average applies higher weights to classes
with fewer data. Therefore, a weighted average may be suited if the
dataset is imbalanced with respect to different types of attacks.

5 Results and discussion

In this section, we discuss the various results obtained from the
experiment concerning the detection of DoS attacks from the
WSN-DS dataset using the aforementioned metaheuristic algorithms
and ML classifiers.

Table 3 lists the features that were chosen by each of the four
metaheuristic algorithms. Take note that each time an algorithm is
run, the features that are chosen may change.
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Next, Tables 4, 5 provide the performance measures results
obtained from the experiment.

While Tables 4, 5 report weighted-average metrics, such
aggregates can obscure the behavior of intrusion detection systems on
minority attack classes in highly imbalanced datasets. To address this
concern, Table 6 presents per-class precision, recall, and F1-score for
the proposed GOA-GA method with the KNN classifier. The support
column indicates the number of test samples belonging to each class.
The results show near-perfect detection of normal traffic and strong
performance for Grayhole attacks, which are among the most
prevalent attack types in the dataset. Moderate recall values are
observed for Blackhole and Scheduling (TDMA) attacks, indicating
partial overlap in feature characteristics with other traffic patterns.

The Flooding attack class exhibits comparatively lower recall and
F1-score, which can be attributed to its severe class imbalance and
feature-level similarity with normal traffic in the WSN-DS dataset.
Flooding attacks often manifest as short-duration bursts that overlap
with legitimate traffic patterns, making them more difficult to distinguish
using static feature subsets. Despite the use of ADASYN to mitigate class
imbalance, limited intrinsic separability of Flooding instances remains a

10.3389/frai.2026.1738152

Additionally, the F-measure and Area Under the Curve (AUC)
score of the GOA-GA method are seen in Table 5. The model
demonstrates strong discrimination capability across normal traffic
and multiple Do§ attack classes, as reflected by high macro-averaged
AUC and per-class performance metrics. Additionally, a high
F-measure and AUC score show that the model is doing well at
correctly identifying instances, and the likelihood of false positives
and false negatives is minimal.

Figure 7 shows that all methods are operating with high precision
(> 90%), as may be seen. Because GOA is more effective at completely
scanning the space, it achieves the best precision when used with the
KNN classifier. Since genetic algorithms are known to be susceptible
to premature convergence, which means that they may converge to a
suboptimal solution before achieving the global optimum, the lowest
precision is reached in the case of GA using the KNN algorithm. The
highest precision values are seen with the MLP classifier for the
proposed technique, GOA-GA, with all four ML classifiers.

TABLE 4 Comparison of the accuracy, recall (detection rate), and
precision of various algorithms.

challenge, as also reported in prior WSN intrusion detection studies. Measures GOA- DE  Algorithms
These results highlight the importance of incorporating temporal (%) GA
features, cost-sensitive learning, or ensemble-based strategies in future Accuracy 93.15 73,08 92.67 9422 | MIP
work to further enhance minority-class detection.
. o Recall 93.15 | 73.08 92.67 94.22
Figure 6 and Table 4 show that the majority of the approaches are e
performing well in terms of accuracy. With every ML classification Precision 9589 | 9494 | 9624 | 9576
algorithm applied, GOA and DE perform equally well. The least Accuracy 93.15 | 91.92 81.82 9357 | LR
accurate classification algorithm is MLP in GA. The suggested Recall 9315 | 91.92 8182 93.57
approach, GOA-GA, performs nearly as good as or in some
: . Precision 9589 | 94.88 92.74 95.03
circumstances better than GOA, GA, and DE alone. The maximum
accuracy for GOA-GA using the KNN classification algorithm Accuracy 9315 | 9008 90.98 8999 | CART
is 95.51%. Recall 93.15 90.08 90.98 89.99
Precision 9589 | 93.33 95.76 96.42
o ) . Accuracy 9173 | 86.78 95.51 91.41 | KNN
TABLE 3 Description of the best attributes chosen by metaheuristic
algorithms from the WSN-DS dataset. Recall 91.73 86.78 95.51 91.41
Metaheuristic Selected Attribute name Precision 9764 | 9214 | 9552 | 9650
algorithm attribute index
Grasshopper optimization 2 “Is_CH”
. TABLE 5 Comparison of several techniques based on F-measure, AUC
algorithm 5 “ADV_S” results, and RMSE values.
7 JORS Measures Algorithms
10 “SCH_R”
Genetic algorithm 0 “id” F-measure 0.9252 | 0.7980 0.9403 0.9477 | MLP
2 “Is_CH” AUC 09772 | 0.8987 = 09913  0.9900
3 “who CH” RMSE 04497 | 13911 = 05983 04715
4 “Dist_To_CH” F-measure 09252 09225 = 08629 09383 LR
Hybrid grasshopper 12 “send_code” AUC 0.9772 0.9666 0.9458 0.9830
optimization algorithm and 1 “Time” RMSE 04497 | 05784 06948  0.4820
genetic algorithm (GOA-GA) P
15 Data_Sent_To_BS” F-measure 0.9252 0.9150 0.9283 0.9247 | CART
8 “JOIN_R” AUC 09773 = 09665 = 09843  0.9424
Differential evolution 2 “Is_CH” RMSE 0.4497 0.6538 0.5940 0.4278
1 “Time” F-measure 0.9122 0.8916 0.9551 0.9333 = KNN
9 “SCH_S” AUC 09782 = 09480 = 09733  0.9819
17 “Expaned Energy” RMSE 0.7994 0.7517 0.5270 0.4173
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TABLE 6 Per-class precision, recall, and F1-score for GOA-GA with KNN
classifier.

Class Precision Recall F1- Support
score

Blackhole 0.5226 0.5707 0.5456 2,024

attack

Flooding 0.2396 0.2195 0.2291 656

attack

Grayhole 0.7697 0.7392 0.7541 3,002

attack

Scheduling 0.5798 0.5622 0.5709 1,286

(TDMA)

attack

Normal 0.9902 0.9906 0.9904 67,965

Macro 0.6204 0.6164 0.6180 74,933

average

Weighted 0.9552 0.9551 0.9551 74,933

average

The 3D surface plot in Figure 8 and Table 5 shows that the GA
with the MLP classifier has the largest RMSE value, which has resulted
in lower accuracy. The example of DE with the KNN classifier has the
lowest RMSE value, which shows that the model has a better ability to
predict values because the predicted values are closer to the real
values. With all the ML classifiers combined, the suggested technique,
GOA-GA, has significantly lower RMSE values, indicating higher
model accuracy.

One benefit of utilizing this method is that GOA-GA has the
shortest computing time for feature selection, as can be seen in
Figure 9. However, using GA and GOA separately requires more
computation time than using GA and GOA together. Due to the
algorithm’s requirement to evaluate the fitness function for each
candidate solution in each generation, which can be computationally
expensive, particularly for high-dimensional or complex problems,
the GA takes the longest to compute. Due to its effectiveness for high-
dimensional problems, DE has the second-lowest computing time.

In addition to the empirical runtime comparison shown in
Figure 9, we provide a more detailed computational complexity
analysis. Let N denote the population size, G the number of
generations, and d the dimensionality of the feature space. For all
population-based metaheuristics considered (GA, GOA, DE, and the
hybrid GOA-GA), the dominant cost arises from evaluating the fitness
function, which requires O(N A4 ) operations per generation. Hence,
the overall time complexity is approximately O(N .Gd ) In practice,
the constants and the number of functional operations differ across
algorithms. For example, GA requires multiple crossover and
mutation operations, which introduce additional overhead and lead
to longer runtimes. GOA involves modeling the grasshopper
swarming mechanism, which scales linearly with the population size
and dimensionality but is relatively lightweight in per-iteration cost.
DE benefits from its efficient mutation and crossover strategy, making
it competitive for high-dimensional spaces. The hybrid GOA-GA
leverages GOA’s exploration with GA’s exploitation, reducing the
number of generations required for convergence, which explains its
superior runtime in Figure 9.
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Regarding space complexity, all methods maintain a population
of candidate solutions of size N, each of dimensionality d, leading to
a space requirement of O(N .d). This requirement is similar across
algorithms, although GA may require additional storage for offspring
populations. Overall, GOA-GA achieves favorable trade-offs in both
time and space due to faster convergence and reduced redundant
evaluations.

Figure 10 illustrates the convergence behavior of GA, GOA,
GOA-GA, and DE in terms of the best fitness value obtained during
feature selection. The fitness value corresponds to the training error
minimized during optimization. As observed, GA converges slowly
and exhibits noticeable oscillations, indicating premature convergence.
GOA demonstrates stronger exploration in early iterations but
requires more iterations to refine solutions. DE achieves competitive
performance but shows higher variability. In contrast, the proposed
GOA-GA algorithm converges more rapidly and smoothly, reaching
lower fitness values in fewer iterations. This behavior highlights the
effectiveness of hybridizing GOA’s exploration capability with GAs
exploitation mechanism, resulting in improved convergence speed
and stability. Here, fitness corresponds to the objective function
minimized during feature selection, defined as the classification error
computed on the training dataset. The convergence curves correspond
to a representative optimization run using identical parameter settings
for all algorithms. Such empirical convergence analysis based on
fitness evolution is a standard practice for assessing the efficiency and
stability of metaheuristic optimization algorithms.

Since the WSN-DS dataset involves a multiclass classification
problem (normal traffic and four types of DoS attacks), ROC curves
and AUC values were computed using a one-vs-rest (OVR) strategy.
In this approach, each class is treated as the positive class against all
remaining classes, and the corresponding ROC curve is obtained. The
reported AUC values represent the macro-averaged AUC, calculated
by averaging the AUC scores across all classes, thereby assigning equal
importance to each class irrespective of class imbalance.

Figures 11a-d shows the ROC curves for all four machine learning
classifiers (MLP, LR, CART, KNN) combined with all four
metaheuristic algorithms (GOA, GA, GOA-GA, DE). For each
classifier-metaheuristic combination, class-wise TPR (True Positive
Rate) and FPR (False Positive Rate) values were computed under the
one-vs-rest setting and aggregated to construct the macro-averaged
ROC curves. As the ROC curve approaches the upper left corner of
the plot, the model’s performance improves. A ROC curve that runs
straight up the y-axis and then straight up the x-axis to the right would
be the optimum ROC curve for a classifier. The Area Under the ROC
Curve (AUC) shows how well the model can distinguish between
positive and negative cases, i.e., it serves as a quantitative measure of
separability between normal and attack instances. An AUC of 1 would
represent a flawless classifier, whereas an AUC of 0.5 would represent
a completely random classifier.

From the plots, several trends are evident:

(i) MLP-based models (Figure 11a): GOA-GA + MLP consistently
achieves near-perfect discrimination, reflected in its ROC
curve hugging the top-left corner. In contrast, GA + MLP
demonstrates much weaker performance, with a shallower
slope and smaller AUC, indicating difficulty in reducing false
positives. This suggests that hybridization (GOA-GA)
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Analysis of the precision of GOA-GA in comparison to other methods.
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Comparative analysis of GOA-GA with respect to other methods in terms of RMSE values.
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FIGURE 9
Performance analysis of the metaheuristic algorithms in terms of
computational time on the WSN-DS dataset.

improves convergence toward informative features, directly
benefiting nonlinear classifiers like MLP.
(ii) LR-based models (Figure 11b): While DE + LR and GOA + LR
(~0.95+), GOA-GA + LR
underperforms slightly, with more fluctuations along the curve.

show strong AUC values
This indicates that the linear decision boundary of LR may not
fully exploit the hybrid-selected features, and precision-recall
trade-offs could be less favorable in high recall regions.

(iii) CART-based models (Figure 11c): All metaheuristic-assisted
versions (GOA, DE, GOA-GA) produce tightly clustered ROC

Frontiers in Artificial Intelligence

curves with high AUC, indicating that tree-based models
handle the selected subsets robustly. DE + CART shows slightly
lower discrimination compared to GOA-GA, but still
maintains a strong balance between precision and recall.

(iv) KNN-based models (Figure 11d): GOA-GA + KNN achieves
the steepest curve with an AUC approaching 1, outperforming
standalone GA and DE. This highlights the strength of the
hybrid feature selection in supporting distance-based classifiers,
which are otherwise sensitive to noisy or redundant features.

Overall, the ROC analysis shows that GOA-GA consistently
enhances classifier performance, particularly for nonlinear learners
like MLP and KNN. However, for LR, the hybrid approach yields
marginal improvements or even instability, suggesting the importance
of aligning feature selection with classifier characteristics. In terms of
precision-recall trade-offs, GOA-GA reduces false negatives
effectively, which is critical in WSN intrusion detection, where missed
attacks can be more damaging than false alarms. Although ROC-
AUC provides an overall measure of separability, per-class recall
values are particularly important in WSN intrusion detection, as
missed detections of minority attack types can have severe operational
consequences.

According to Table 7, the suggested strategy, which combines
GOA-GA and KNN, is more accurate than other methods when
applied to the WSN-DS dataset. Deep learning techniques are the
foundation of the methods that are compared to the one that is
suggested in this research work.

Besides, it is important to highlight that while KNN may have
longer computational times and generally be slower when compared
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Convergence behavior of GA, GOA, GOA-GA, and DE in terms of best fitness value over iterations during feature selection on the WSN-DS training set.

to MLP, LR, and CART classifiers, it indeed provided the best accuracy
when used with the GOA-GA hybrid algorithm and thus can be
considered as a “fast” method to achieve dimensionality reduction
with primary focus on achieving the best accuracy in detecting DoS
attacks. Consequently, this demonstrates the effectiveness of the
proposed hybrid approach in achieving high accuracy even with a
computationally intensive classifier.

As a result, the hybrid GOA-GA is a new and effective feature
selection mechanism used to minimize the number of attributes for
WSNs during the detection of DoS attacks.

From a practical deployment perspective, the proposed
intrusion detection framework is well suited for hierarchical
wireless sensor network architectures. Given the computational
complexity of metaheuristic-based feature selection, the GOA-GA
optimization process is intended to be executed offline or at a
resource-rich entity such as the base station or cluster head, rather
than on individual sensor nodes. Once an optimal subset of features
is identified, lightweight classifiers can be deployed for online
intrusion detection using the reduced feature set. In real-world
WSN deployments, model retraining and feature re-optimization
can be performed periodically or triggered by changes in network
behavior, while real-time monitoring is handled by cluster heads or
sink nodes. This design minimizes energy consumption and
computational overhead at sensor nodes, which typically operate
under strict resource constraints. Moreover, the reduced feature
dimensionality achieved by the proposed approach supports faster
decision-making and facilitates integration with existing network
management and security mechanisms. These considerations
indicate that the proposed framework is not only effective in
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experimental settings but also feasible for practical WSN
applications such as environmental monitoring, industrial sensing,
and smart infrastructure.

Trade-off analysis (high accuracy vs. higher computational
demand): While the proposed GOA-GA with KNN achieved superior
detection accuracy, the computational cost remains relatively high
due to the iterative nature of metaheuristic optimization and the
distance-based evaluations in KNN. This limitation is common in
high-dimensional WSN datasets where KNN’s complexity scales with
the number of samples. To address this, future work could investigate
approximate nearest neighbor search methods (e.g., KD-trees,
locality-sensitive hashing) to accelerate classification. Alternatively,
dimensionality reduction techniques such as Principal Component
Analysis (PCA) or autoencoders may further minimize feature space
before classification, reducing runtime. Another direction could
involve integrating lighter classifiers, such as Random Forests post
feature-selection, or parallelizing the metaheuristic search. Such
strategies may retain the accuracy benefits of GOA-GA while
improving scalability for real-world deployment in resource-
constrained WSN environments.

6 Limitations and potential challenges

The proposed methodology in this research work has its
limitations and potential challenges in terms of scalability, robustness
to varying network conditions, dependency on the chosen routing
protocol, and generalizability across different WSN environments, as
discussed below.
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FIGURE 11
(@) AUC-ROC curves for the metaheuristic algorithms with the MLP classifier. (b) AUC-ROC curves for the metaheuristic algorithms with the LR
classifier. (c) AUC-ROC curves for the metaheuristic algorithms with the CART classifier. (d) AUC-ROC curves for the metaheuristic algorithms with the
KNN classifier.

6.1 Scalability

The scalability of the presented methodology is one of its main
drawbacks. While machine learning approaches and the hybrid
metaheuristic algorithm (GOA-GA) have demonstrated promising
results in identifying DoS attacks in WSNG, their performance may
deteriorate as the size of the network increases. Larger WSNs with more
nodes and intricate communication patterns can introduce higher
computational overhead and latency in the detection process. Future
work should concentrate on improving the algorithm’s efficiency,
reducing its computational complexity, and exploring distributed or
hierarchical IDS models to ensure scalability for large-scale deployments.
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6.2 Robustness to varying network
conditions and node mobility

WSNs often operate in dynamic environments where network
conditions change significantly due to node failures, mobility,
environmental interference, or fluctuating traffic loads. The proposed
IDS, though effective in static topologies, has not been fully validated
under scenarios involving frequent node mobility and topology
reconfiguration, which may lead to detection delays or degraded
accuracy. Future extensions should evaluate the methodology under
such dynamic conditions to ensure resilience and adaptability across
diverse real-world applications.
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TABLE 7 Comparison of the proposed method with state-of-the-art techniques.

Dataset Related works

WSN-DS Almomani et al. (2016)

Detection/prevention technique

Multilayer Perceptron; Artificial Neural Network (ANN)

Best accuracy

91.96% (average of classification accuracies for

all 4 attacks)

Algorithm (GOA-GA) + KNN

Davahli et al. (2020) Convolutional Neural Network (CNN); Long Short-Term Memory = 94.4%
(LSTM)
Proposed method Hybrid Grasshopper Optimization Algorithm and Genetic 95.51%

6.3 Dependency on routing protocol
(LEACH-specific)

Our evaluation is conducted using the LEACH (Low-Energy
Adaptive Clustering Hierarchy) protocol. While widely used in
research, real-world WSNs may rely on alternative routing
protocols such as PEGASIS or AODYV, each with different
clustering mechanisms, energy consumption patterns, and traffic
dynamics. For instance, PEGASIS arranges nodes in chains rather
than clusters, which affects communication flow and could alter
IDS performance; AODV supports on-demand routing and
dynamic topologies, relevant in mobile or large-scale settings
(Oztoprak et al., 2024). It is essential to evaluate the IDS with
multiple routing protocols to confirm its adaptability across WSN
architectures.

6.4 Generalizability across different WSN
environments

One critical challenge is the ability of the IDS to be
generalized across different environments of WSN. Various types
of WSN applications, such as those used in military, healthcare,
environmental monitoring, and industrial automation, must have
their proposed methodology effectiveness validated. There are
unique attributes and demands for every application that could
influence IDS performance. For example, routing protocols
beyond LEACH, such as TEEN, PEGASIS, and HEED, pose
unique vulnerabilities that attackers may exploit, requiring
tailored intrusion detection strategies (Alansari et al., 2022). As
a result, rigorous testing and validation in mixed operational
settings are required to ensure the relevance and applicability of
this proposed IDS across different WSN environments.

6.5 Stochastic variability and statistical
validation

The proposed feature selection methods are based on
metaheuristic optimization, which is inherently stochastic and
may lead to variations in selected feature subsets and
classification outcomes across different runs. Although multiple
experimental executions were performed during model
development, the primary results reported in this study focus on
peak performance metrics rather than aggregated statistical
summaries. Incorporating repeated end-to-end evaluations with
explicit reporting of mean and standard deviation, along with
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formal statistical significance testing, would further strengthen
the robustness and reproducibility of the conclusions.
Addressing this aspect constitutes an important direction for
future work.

7 Conclusion and future work

This research presents an effective intrusion detection
methodology for identifying DoS attacks in wireless sensor
networks by integrating machine learning-based classification
with metaheuristic optimization. A novel hybrid metaheuristic
feature selection method, GOA-GA, combining the Grasshopper
Optimization Algorithm and Genetic Algorithm, was introduced.
The study focused on four types of DoS attacks - Blackhole,
Grayhole, Flooding, and Scheduling - tested on the WSN-DS
dataset. Among the four ML classifiers evaluated (MLP, KNN,
CART, and LR) and various metaheuristic algorithms (GOA, GA,
and Differential Evolution), the GOA-GA with KNN achieved the
highest overall classification accuracy of 95.51% and the least
computational time. While the proposed approach does not
universally outperform all reported methods, the results show
that it is competitive with recent state-of-the-art techniques and
offers a favorable balance between detection accuracy and
computational efficiency. These findings emphasize the
significance of selecting minimal yet significant features for
effective and early detection of DoS attacks in resource-
constrained WSNs. The results indicate a promising direction for
IDS performance, highlighting the advantages of GOA-GA in
reducing computational time while maintaining high accuracy.
Limitations include the computational intensity of KNN,
suggesting the need for further optimization. The trends indicate
that metaheuristic algorithms can significantly enhance IDS
effectiveness, with implications for developing more efficient and
accurate security systems in WSNs.

In the future, the performance of the features chosen from the
proposed algorithm, GOA-GA, can be evaluated against other
well-known ML classifiers such as Support Vector Machine,
Random Forest, and Naive Bayes. Future work should also
explore optimizing the KNN implementation or using other fast,
accurate classifiers to enhance efficiency further. On the same
dataset, the performance of GOA-GA can be compared to that of
other evolutionary algorithms and well-known metaheuristic
algorithms, including the hybrid ones. In addition to the
WSN-DS dataset utilized in the study, other datasets that record
cyber-attacks on WSNs can be used to assess and test the
suggested technique. Future work can compare the efficiency and
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cost of the proposed GOA-GA to other cutting-edge methods for
dimensionality reduction, such as Principal Component Analysis.
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