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Denial-of-service (DoS) attacks pose a major threat to various kinds of computer 
networks. There are several kinds of networks that are victims of DoS attacks, 
one of them being the wireless sensor network (WSN). The main objective of this 
work is to detect such attacks in wireless sensor networks. These networks are 
susceptible to intrusion attacks because of their fragile defense mechanisms in 
unattended environments. Thus, a suitable intrusion detection system must be 
created to optimally detect DoS attacks and prevent them. This work proposes a 
hybrid technique called Grasshopper Optimization Algorithm-Genetic Algorithm 
(GOA-GA), which combines the advantages of two metaheuristic algorithms, 
namely, the Grasshopper Optimization Algorithm and the Genetic Algorithm, to 
optimize feature selection based on the given WSN dataset. After optimal feature 
selection and training, the machine learning classification algorithms classify 
whether the traffic is normal or benign in the form of four types of DoS attacks, 
namely, Blackhole, Scheduling, Flooding, and Grayhole attacks. The proposed 
model and algorithms used are further validated and compared based on standard 
performance metrics. The experiments conducted during the research show 
that the GOA-GA method, when combined with the KNN classifier, achieves an 
accuracy of 95.51% and a recall of 95.51%, exhibiting competitive performance 
relative to recent state-of-the-art approaches while reducing feature dimensionality 
and computational overhead. These results indicate that the proposed hybrid 
optimization strategy offers a robust and efficient solution for DoS attack detection 
in WSNs, contributing to ongoing research in information security.
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1 Introduction

Modern society is heavily reliant on information and numerous types of communication 
technologies for sharing data. With increased usage, accessibility, and popularity of the 
Internet, several networks, wired or wireless, have become more vulnerable to a wide variety 
of cyberattacks, especially over the last few decades. The proposed work focuses its study on 
a special type of such vulnerable wireless network known as the Wireless Sensor Network 
(WSN). They are comparable to wireless ad hoc networks (Di Pietro et al., 2014) in that they 
depend on a wireless connection and the emergence of networks on their own to enable the 
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wireless transmission of sensor data. Pressure, sound, and other 
environmental factors are all monitored by Wireless Sensor Networks 
(WSNs). Modern WSNs are bi-directional and simultaneously collect 
data (Di Francesco et al., 2011). These networks have become more 
significant as a study topic because of their multiple real-time 
applications in crucial military surveillance, battlefields, building 
security monitoring, monitoring forest fires, healthcare, and other 
useful environmental applications (Kandris et al., 2020). Achieving the 
objective of protecting WSNs from different security threats becomes 
a major challenge because of their constrained resources, including 
limited battery energy, memory, and processing capabilities (Butun et 
al., 2014).

The creation of WSNs was made possible by developments in 
hardware manufacturing, wireless communications, micro-electro-
mechanical devices, and information processing. A WSN is composed 
of several autonomous sensor nodes (SNs) that are scattered 
throughout different regions of interest to gather crucial data and 
jointly transfer it wirelessly to a more powerful node known as the 
sink node or base station (BS). There could be more than one base 
station in a WSN. The data transmitted across the network depends 
on specialized WSN protocols. Some of the well-known examples of 
WSN protocols are TEEN, APTEEN, LEACH, and PEGASIS (Khan 
et al., 2016). A few recent and energy-efficient protocols, such as the 
HEESR and DLCP protocols, have also been proposed (Ibrahim 
Khalaf and Muttashar Abdulsahib, 2020). This study shall focus on the 
WSNs following the LEACH (Low-Energy Adaptive Clustering 

Hierarchy) protocol (Heinzelman et al., 2000), particularly the 
LEACH-C, which is the centralized LEACH protocol. Moreover, there 
are several variants of the same protocol, such as LEACH-TLCH, 
V-LEACH, LEACH-H, LEACH-DCHS, etc., which have been studied 
as well (Fu et al., 2013; Arora et al., 2016; Varshney and Kuma, 2018). 
Most nodes communicate to cluster heads (CHs) via the hierarchical 
protocol LEACH, and the cluster heads then compile and pass the data 
to the base station. In order to predict whether a node will become a 
cluster head in a particular round, each node runs a stochastic 
algorithm. This protocol assumes that each node has a radio capable 
of directly connecting to the base station or the closest cluster head, 
but that continuous utilization of this radio at full power would be 
energy inefficient. Figure 1 illustrates the LEACH protocol 
configuration through a simple WSN node structure having three 
clusters and a single base station.

WSNs need to be protected against intrusion in order to stop 
hackers from falsifying sensor data or impeding the delivery of 
accurate sensor data. The majority of the routing protocols for WSNs 
optimize for the network’s application-specific nature, the network’s 
application-specificity, and the limited capabilities of its nodes, but 
they do not take into account the security aspects of the protocols. It 
is crucial to examine these protocols’ security characteristics, even 
though security was not a primary consideration when they were 
being built (Majumdar and Sarkar, 2015). Besides the security issues 
with the protocols, there are other issues and challenges associated 
with WSNs, including hardware and software issues, MAC layer issues, 

FIGURE 1

A simple illustration of the node structure of a WSN in the LEACH routing protocol.
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fault tolerance, and robustness (Sharma et al., 2014). Due to the nature 
of such networks, traditional security measures like encryption might 
not always be sufficient (Bukhari et al., 2024; Nguyen et al., 2025). 
Therefore, a strong security measure such as an Intrusion Detection 
System (IDS) is required. The role of an IDS is to detect and notify 
users of system or network intrusions. However, because of the 
constrained resources of the WSN nodes, developing IDSs for WSNs 
presents a unique difficulty. In order to increase the lifespan of a sensor 
network, IDS solutions should aim to reduce the battery usage of the 
sensor nodes. Designing an IDS that can identify an intruder that uses 
unknown attacks with a high degree of accuracy is difficult. It is also 
difficult to create the same IDS with a lightweight profile so that the 
infrastructure of WSNs is not burdened (Doddapaneni et al., 2012; 
Ghosal and Halder, 2013). Thus, an IDS for a WSN should be carefully 
designed considering the aforementioned research challenges.

The most prevalent and dangerous cyberattacks that pose a threat 
to the security of WSNs are those known as denial-of-service (DoS) 
attacks. The primary goal of these attacks, which come in a variety of 
forms, is to disrupt or restrict the services offered by WSNs (Farooq 
et al., 2014; Sen, 2016). The purpose of this work is to develop an IDS 
that can precisely identify several kinds of commonplace DoS attacks, 
such as flooding, scheduling, blackhole, and grayhole attacks, to 
improve the security of WSNs. The motivation behind this study is to 
address the particular security challenges that WSNs face because of 
their resource constraints. This research proposes a novel hybrid 
metaheuristic algorithm called GOA-GA approach that combines the 
complementary strengths of the Grasshopper Optimization 
Algorithm (GOA) and the Genetic Algorithm (GA). GOA provides 
effective global exploration of the search space, while GA enhances 
exploitation through crossover and mutation operations. By 
integrating these mechanisms, the proposed GOA–GA algorithm 
aims to achieve more stable convergence toward informative and 
compact feature subsets, thereby improving intrusion detection 
performance without imposing excessive computational burden. As 
a result, this optimizes feature selection and improve attack 
classification accuracy, in contrast to standard approaches that 
frequently ignore the security elements of WSN protocols. Recent 
reviews of nature-inspired metaheuristic algorithms show a rising 
trend in hybridization techniques (Rani et al., 2024), supporting the 
relevance of our GOA–GA hybridization for WSN IDS. This 
lightweight design is well suited to WSN intrusion detection, where 
achieving high accuracy with reduced feature dimensionality is 
essential for real-world applicability.

Hence, based on the above motivation, the SMART (abbreviation 
for Specific, Measurable, Achievable, Relevant, and Time-Bound) 
major contributions of this paper are listed as follows:

	 1	 Specific: To develop and demonstrate a methodology for 
detecting Denial-of-Service (DoS) attacks in Wireless Sensor 
Networks (WSNs) using machine learning and metaheuristic 
algorithms.

	 2	 Measurable: To propose and evaluate a novel hybrid algorithm, 
GOA-GA (Grasshopper Optimization Algorithm cum Genetic 
Algorithm), for optimizing feature selection in intrusion 
detection systems.

	 3	 Achievable: To accurately classify and differentiate between 
multiple types of DoS attacks, including Blackhole, Grayhole, 
Flooding, and Scheduling attacks, that threaten WSNs.

	 4	 Relevant: To validate the proposed methodology with extensive 
experiments, using standard validation techniques and 
performance metrics to ensure robustness and reliability.

	 5	 Time-Bound: To complete the development, implementation, 
and validation of the proposed IDS within a predefined 
timeframe, ensuring timely results and conclusions.

The rest of this research paper is structured as follows: Section 2 
provides the background and a thorough literature review on strategies 
adopted so far to tackle cyberattacks in WSNs and similar networks, 
with their merits and demerits. This section also summarizes the 
different datasets and simulation tools used for developing IDS for 
WSNs against various threats. Section 3 presents the framework for 
the proposed methodology, discusses the algorithms and software 
tools used during the research, as well as the limitations and potential 
challenges, and offers some insights into the model interpretability 
and practical implications of the proposed solution. Section 4 
describes the WSN dataset and DoS attacks, along with the 
implementation details and the incorporated validation techniques. 
Section 5 illustrates the experimental results so obtained and discusses 
the importance of the achieved results while comparing the proposed 
hybrid algorithm with that of the standard algorithms. Section 6 
discusses the limitations and the potential challenges of the proposed 
methodology. The conclusions of the work are presented in Section 7, 
along with suggestions for future work.

2 Literature survey

In this section, the background pertaining to WSNs and related 
works associated with WSN security against cyberattacks are 
discussed. Section 2.1 gives an overview of a typical IDS in a WSN, 
discusses machine learning, metaheuristic approaches, and deep 
learning techniques incorporated by several studies to protect WSNs 
from cyber threats. Section 2.2 does an additional literature review, 
further highlighting the drawbacks, and provides a comparative 
summary of the related works.

2.1 Background

Wireless sensor networks have become a prominent piece of 
wireless technology because of their numerous real-life applications. 
However, because of their susceptible nature, a lot of research has been 
done and is still going on in building an efficient and lightweight 
intrusion detection system for WSNs to increase their security. 
Figure 2 shows a simple archetype model of a WSN with two clusters, 
two base stations, and an IDS to filter the data sent out by the cluster 
head to the base station so that reliable data can reach the user end 
safely. Most of the research studies concerning the development of an 
IDS for a WSN follow or have proposed a similar architecture as seen 
in Figure 2.

Machine Learning (ML) has been widely used for the detection of 
several types of cyberattacks, including DoS attacks in WSNs. Al-Issa 
et al. (2019) proposed well-known ML algorithms, namely Decision 
Tree and Support Vector Machine (SVM), to detect attack signatures 
on a specialized dataset created by them. Though their approach was 
less costly and less complex, limited attack scenarios and protocols 
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were considered. Next, Almomani et al. (2016) created the WSN-DS 
dataset and used Multilayer Perceptron artificial neural networks to 
detect four types of DoS attacks, viz. Grayhole, Blackhole, Flooding, 
and Scheduling attacks. The results achieved were appreciable but 
could have been compared with other state-of-the-art techniques as 
well. In a similar context, the authors in Alsulaiman and Al-Ahmadi 
(2021) used the same dataset and evaluated the performance of five 
popular ML algorithms, viz. Naïve Bayes (NB), SVM, Random Forest, 
J48, and K-Nearest Neighbors (KNN). A comprehensive evaluation 
was carried out for the algorithms in this paper, but they lacked 
optimization during feature selection. Zhang et al. (2020) suggested a 
hierarchical intrusion detection model that groups a WSN’s nodes 
according to their roles to decrease the energy consumption of nodes 
during detection processing. The use of the kernel extreme learning 
machine’s classification algorithm in conjunction with the Mercer 
Property to synthesize multi-kernel functions is taken into 
consideration in this study. Furthermore, in Lakshmi Narayanan et al. 
(2022), the Enhanced Code-based Round-Trip Time (EC-BRTT) 
method is used to prevent blackhole and wormhole attacks in WSNs 
with the help of the ML-based Naïve Bayes classifier. The key benefit 
of the suggested approach was a decrease in communication overhead.

Metaheuristic algorithms, inspired by natural processes, have 
been widely applied in optimization tasks due to their balance of 
exploration and exploitation. Foundational works, such as Yang 
(2020), provide a comprehensive theoretical framework for nature-
inspired optimization algorithms, offering insights into their 
hybridization potential for complex domains like WSN intrusion 
detection. Building on this theoretical foundation, nature-inspired 
evolutionary algorithms have come in handy for quite a few 
researchers in optimizing feature selection while building intrusion 
detection models for WSNs and similar wireless networks. For 
instance, Vijayanand et al. (2018) proposed a novel IDS with Genetic 
Algorithm with tournament-based feature selection and multiple 
SVM classifiers for wireless mesh networks. Although the suggested 
model exhibited a high accuracy for attack detection with strong 
validation against multiple datasets, the working of the proposed 

method might be indeterminate for WSNs, and further research might 
be required. Next, the authors in Zhang et al. (2020) studied a special 
type of WSN known as Mobile Wireless Sensor Networks (MWSNs). 
The lifetime optimization model for the MWSN is developed in this 
research using five evolutionary computing (EC) techniques. The 
benefits and drawbacks of these five techniques for solving the model 
are examined through numerical simulations. However, the 
applicability of this model in detecting cyberattacks is unknown.

A rather sophisticated approach has been adopted in Davahli et 
al. (2020) wherein the model proposed, known as GABGWO, 
combines the ideas of Genetic Algorithm (GA) and Grey Wolf 
Optimizer (GWO) mathematical equations to create a support vector 
machine (SVM)-based lightweight IDS (LIDS). It is also determined 
that the performance of this hybrid algorithm is superior to that of 
pure GA, GWO, and other modern approaches. Other hybrid IDS 
approaches, such as combining Grey Wolf Optimization with SVM, 
have shown improved detection performance in WSNs (Safaldin et al., 
2021). Our GOA–GA approach similarly leverages hybridization but 
targets faster convergence and better feature minimization.

Deep Learning (DL), which is essentially a subset of machine 
learning, has been employed by researchers to make security systems 
for WSNs. For example, in Salmi and Oughdir (2022), the authors used 
a combined technique called Convolutional Neural Network and Long 
Short-Term Memory (CNN-LSTM) to detect and classify DoS intrusion 
attacks on a WSN dataset. The results obtained from this hybrid deep-
learning model indicate its high efficiency and also make the model 
easy to comprehend. Though the model could have been compared 
with other existing systems as well in the study. Moreover, Ramesh et 
al. (2021) proposed an optimized Deep Neural Network algorithm for 
detecting DoS attacks in Wireless Multimedia Sensor Networks 
(WMSNs). Although their implementation might be intricate, they 
used consistency-based and correlation-based feature selection along 
with Multilayer Perceptron (MLP) and Stochastic Gradient Descent 
(SGD) to achieve highly useful outcomes. Further, to prevent attacks on 
WSNs, the study done in Pawar and Anuradha (2023) implements an 
optimized LSTM model for attack detection and prevention based on 

FIGURE 2

A typical WSN model integrated with an intrusion detection system (IDS), adapted from the general architecture described in the literature.
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the fitness rate-based Whale Optimization Algorithm (FR-WOA). This 
is how this paper sought to optimize multi-objective functions as 
intended. The investigation revealed that the optimized LSTM’s 
accuracy is superior to that of traditional LSTM, and the energy 
consumption of FR-WOA is superior to other evolutionary algorithms.

2.2 Related works

Besides machine learning, deep learning, and evolutionary 
computing techniques, several other logical methodologies have also 
been adopted by researchers to detect cyberattacks in WSNs for 
reliable data transmission. An effective trust-based attack detection 
module is described in Anand and Vasuki (2021) to identify DoS 
attacks such as selective forwarding and flooding attacks. Although a 
limited number of DoS attacks were considered for the analysis, the 
proposed attack detection model performed better than traditional 
detection methods. Next, Dhamodharan et al. (2022) discussed how 
Distributed Denial-of-service (DDoS) attacks impair the network’s 
functionality and the data being transmitted. To manage the attack 
proactively, the authors presented the Centralized Detect Eliminate 
and Control (CDEC) algorithm for authorization and a centralized 
monitoring component. This study emphasized the security and 
privacy of WSNs, but the network considered during the experiment 
was small. Similarly, Dhuria and Sachdeva (2018) presented two novel 
and effective methods to deal with DDoS attacks in WSNs. The first 
was a lightweight two-way authentication method that would shield 
WSNs from the majority of attacks, and the second was a traffic 
analysis-based data filtering method that would identify and shield 
WSNs from DDoS attacks. Furthermore, Pajila et al. (2022) used a 
fuzzy logic approach to quickly identify DDoS (Flooding) attacks and 
retrieve sensor node data. This Fuzzy-Based Detection and Recovery 
(FDBR) method saved energy and worked better than other similar 
schemes. But the drawback of this method is that DDoS attacks might 
not be mitigated in the early stages. Moving on, Altaf Khan et al. 
(2022) developed a unique method for distinguishing DDoS attacks 
from the flash crowd (FC) in data traffic by using a Bayesian model to 
detect aberrant data traffic in WSNs. The proposed novel mechanism 
is called DDoDF, and the simulation results were obtained by using 
realistic datasets. The drawbacks of this work include the negligence 
in considering payload patterns and hop count information. Further 
on, in Alaparthy and Morgera (2018) an attempt is made to protect a 
WSN utilizing an immunity theory technique known as Danger 
Theory. In other words, a multi-level IDS is created based on the 
characteristics of different immune cells. This technique is well-
thought-out and shows a high degree of reliability in detecting DoS 
and DDoS attacks in WSNs. Last but not least, in Osanaiye et al. (2019) 
the authors suggested a feature selection approach that combines the 
three filter methods of Gain ratio, Chi-squared, and ReliefF (triple-
filter) for a typical IDS to protect WSNs. As a result, system complexity 
would decrease and classification accuracy would rise. Additionally, 
the major advantage of this approach is that the total energy consumed 
by the sensor nodes during intrusion detection is decreased.

Apart from the significant contributions of the research works in 
the literature review, they have some limitations as well, which bring 
into the picture the following research gaps:

	 1	 Very few computer-generated WSN datasets for DoS detection 
have been developed, and meager research has been conducted 

on the same, wherein hybrid metaheuristic algorithms with ML 
classification algorithms have been implemented.

	 2	 Most of the related works used a standalone Genetic Algorithm 
in the intrusion detection system, except for a few.

	 3	 The evaluation of the proposed model for IDS in WSNs might 
not have received enough emphasis.

Solving these drawbacks forms the motivation of this research 
work. Hence, in this work, a new combined approach using the 
Grasshopper Optimization Algorithm and Genetic Algorithm 
(GOA-GA) has been proposed for feature selection. In addition, 
several ML classifiers such as Classification and Regression Tree 
(CART), KNN, Logistic Regression (LR), and MLP are used and 
compared to decide which algorithmic combination yields the best 
DoS attack detection. The hybrid model employed in this research 
work has also been given careful consideration, and before real-time 
usage, it would have undergone a thorough evaluation and 
comparison. Finally, the dataset used in this paper is that of WSN-DS, 
which was first used in Almomani et al. (2016) and has been 
researched by various other authors, as seen in Table 1. This shows that 
the dataset used is authentic for studying DoS attack detection 
in WSNs.

3 Proposed methodology

In this section, the methodology behind this research work is 
explained in detail. Section 3.1 presents the solution architecture of 
DoS attack detection in WSNs from the dataset provided. Section 3.2 
explains the metaheuristic algorithms used in the study, including the 
hybrid algorithm. Section 3.3 explains the machine learning classifiers 
used for training and classification purposes. Lastly, Section 3.4 
provides insights into the model’s interpretability and practical 
implications.

3.1 Architecture

This paper presents a solution wherein an IDS can detect cyber 
threats like DoS attacks in WSNs by following a proposed 
architecture, as observed in Figure 3. Figure 3 illustrates the process 
of dividing the dataset into training and testing sets, then 
pre-processing the data, followed by dimensionality reduction and 
training of classifiers, and ultimately building the anomaly detection 
model to classify the results as either normal or indicate the 
presence of an attack. In case of an attack, the attack can be further 
classified into four types as per the information present in the 
dataset. The following architecture is inspired by the work done in 
Dwivedi et al. (2020).

The implementation of this research work is based on four 
modules in total, which are in accordance with Figure 3. Firstly, in the 
data pre-processing module, four sub-steps are involved:

	 i	 Loading and Inspection: The dataset is imported as a data frame, 
and its structure is studied.

	 ii	 Feature Analysis: Attributes are examined and separated into 
input features and target labels.

	 iii	 Data Transformation: Necessary normalization or scaling is 
applied to ensure uniform feature distribution.
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TABLE 1  Summary of the literature review for various intrusion detection systems used in WSNs.

Sr. 
No.

References Year Dataset Attacks 
analyzed

Detection/
prevention 
technique

Accuracy Recall 
(detection 
rate)

Simulation 
tool

Limitations

1 Al-Issa et al. 

(2019)

2019 WSN-DS Blackhole, 

Flooding, 

Scheduling, 

and Grayhole 

attacks

Decision Tree; 

Support Vector 

Machine

Decision Tree: 

0.997

SVM: 0.973

Decision Tree: 

0.997

SVM: 0.971

WEKA toolbox Focused only on 

limited attack 

types; results 

dataset-specific, 

not validated on 

real deployments

2 Alsulaiman and 

Al-Ahmadi 

(2021)

2021 WSN-DS Blackhole, 

Flooding, 

Scheduling, 

and Grayhole 

attacks

Naïve Bayes; 

Support Vector 

Machine; 

Random Forest; 

J48; K-Nearest 

Neighbors

99.72% Highest average 

recall: 0.997

WEKA toolbox Evaluation 

limited to a 

single dataset; 

scalability and 

energy efficiency 

in real WSNs not 

addressed

3 Zhang et al. 

(2020)

2020 NSL-KDD; 

UNSW-NB 

15

DoS, Probe, 

R2L, and U2R 

attacks

Multi-Kernel 

Extreme 

Learning 

Machine (MK-

ELM)

98.3% overall 98.03% for DoS 

attacks

MATLAB 

R2014b version

Used generic 

datasets (not 

WSN-specific); 

applicability to 

constrained 

WSN 

environments 

uncertain

4 Lakshmi 

Narayanan et al. 

(2022)

2021 Not specified Blackhole 

attacks; 

Wormhole 

attacks

Naïve Bayes; 

Enhanced Code-

based Round 

Trip Time (EC-

BRTT)

EC-RTT: 0.91 

for 100 nodes

EC-RTT: 0.91 

for 100 nodes

NS-2 Dataset not 

specified; tested 

on small-scale 

scenarios; lacks 

validation on 

diverse 

topologies

5 Davahli et al. 

(2020)

2020 KDDcup99 Not specified Genetic 

Algorithm; Grey 

Wolf Optimizer

99.09% 99.30% WEKA toolbox Relies on the 

outdated 

KDDcup99 

dataset; lacks 

validation 

against modern 

WSN-specific 

attacks

6 Salmi and 

Oughdir (2022)

2022 WSN-DS Blackhole, 

Flooding, 

Scheduling, 

and Grayhole 

attacks

Convolutional 

Neural Network; 

Long Short-

Term Memory

0.944 0.922 Python 3.7.7, 

Python (Google 

Colab)

High 

computation and 

energy cost; not 

suitable for 

resource-

constrained 

WSN nodes

7 Pawar and 

Anuradha (2023)

2023 Created and 

used an 

experimental 

dataset

Blackhole 

attacks; 

Wormhole 

attacks

Long Short-

Term Memory; 

Fitness Rate-

based Whale 

Optimization 

Algorithm (FR-

WOA)

Not specified Not specified Python Results dataset-

specific; no 

standard dataset 

used; 

performance 

comparison with 

benchmarks 

missing

(Continued)
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	 iv	 Balancing: If the dataset is imbalanced, resampling techniques 
(e.g., oversampling, undersampling) are applied to achieve class 
balance.

Next, in the second module, the dimensionality reduction is 
achieved through optimized feature selection using metaheuristic 
algorithms such as the Grasshopper Optimization Algorithm, Genetic 
Algorithm, Differential Evolution, and the proposed hybrid approach. 
Dimensionality reduction is important as it simplifies models by 
decreasing input features, which improves efficiency and performance, 
mitigates overfitting, enhances accuracy, and interpretability. This 

approach makes it easier to handle high-dimensional data, speeds up 
computation, helps models generalize better, and makes them easier 
to understand, particularly in real-time applications like detecting 
DoS attacks in WSNs. An optimized decision tree (CART) algorithm 
is used as the fitness function in all four metaheuristic algorithms 
required for feature selection. CART was selected because it offers 
interpretable feature importance, efficient computation on high-
dimensional data, and robustness to mixed-type attributes and class 
imbalance. Its splitting criteria, based directly on classification 
accuracy (e.g., Gini impurity), make it a practical and meaningful 
metric for guiding optimization. Recent studies reinforce its 

TABLE 1  (Continued)

Sr. 
No.

References Year Dataset Attacks 
analyzed

Detection/
prevention 
technique

Accuracy Recall 
(detection 
rate)

Simulation 
tool

Limitations

8 Anand and 

Vasuki (2021)

2021 Not specified Selective 

Forwarding 

attacks; 

Flooding 

attacks

Multi-

dimensional 

Trust Parameters

Not specified Between 95 to 

100%

NS-2.33 Limited attack 

types analyzed; 

energy overhead 

of trust 

calculation not 

considered

9 Dhamodharan et 

al. (2022)

2021 Not specified DDoS attacks Centralized 

Detect Eliminate 

and Control 

(CDEC) 

Algorithm

Not specified Not specified NS-2.34 Centralized 

approach—single 

point of failure; 

scalability in 

large WSNs 

questionable

10 Dhuria and 

Sachdeva (2018)

2018 Not specified DDoS attacks Two-Way 

Authentication 

Method; Traffic 

Analysis-Based 

Data

Filtering Method

Not specified Not specified NS-2 Lacks 

experimental 

dataset 

validation; 

energy 

consumption 

overhead is not 

studied

11 Pajila et al. (2022) 2022 Not specified DDoS attacks Fuzzy-based 

DDoS Attack 

Detection and 

Recovery 

Mechanism 

(FBDR)

Not specified Close to 99% as 

per the given 

graph

MATLAB Performance 

validated only 

via simulation 

graphs; lacks 

comparison with 

ML/DL models

12 Alaparthy and 

Morgera (2018)

2018 Not specified Blackhole, 

Wormhole, 

DDoS and 

Selective 

Forwarding 

attacks

Danger Theory; 

Artificial 

Immune System

Not specified Not specified Cooja High algorithmic 

complexity; 

computational 

cost unsuitable 

for low-power 

WSN nodes

13 Osanaiye et al. 

(2019)

2019 NSL-KDD DoS, Probe, 

R2L, and U2R 

attacks

Three filter 

methods, 

namely, Gain 

Ratio, Chi-

Squared, and 

ReliefF (Triple-

Filter)

99.67% 99.76% WEKA toolbox Based on the 

generic NSL-

KDD dataset, not 

validated on real 

WSN traffic; 

ignores energy/

resource 

constraints

https://doi.org/10.3389/frai.2026.1738152
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Prasad et al.� 10.3389/frai.2026.1738152

Frontiers in Artificial Intelligence 08 frontiersin.org

effectiveness: Velasco-Mata et al. (2021) demonstrated high F1 
performance with small feature subsets evaluated via decision trees, 
and other works validate its role as a strong baseline compared to 
more complex methods like Boruta-Random Forest in WSN IDS 
scenarios (Subbiah et al., 2022). The broader literature emphasizes the 
value of CART’s transparency and performance in security 
applications (Li et al., 2024; Emirmahmutoğlu and Atay, 2025). The 
output of this second module would be the best subset of input 
features based on which the model shall be trained for optimal results. 
Only the top 4 features from the dataset are decided to be used for 
further use by ML classifiers to reduce the overhead on the WSNs. A 
point to note here is that feature selection using these four 
metaheuristic algorithms was performed exclusively on the training 
data to avoid introducing information from the test set during the 
optimization process.

In the third module, the training of ML classifiers takes place. ML 
classification algorithms such as LR, CART, KNN, and MLP are used 
in the training of the models, with each of the metaheuristic 
algorithms used. So, in total, there are 16 combinations of 
metaheuristic algorithms and ML classifiers. To validate the training 
performance, cross-validation techniques could be used. Next, in the 
fourth module, the trained models are tested against the test dataset. 
The models are further evaluated based on well-known performance 
measures and finally compared with each other based on these 
metrics. Thus, from the results, we could conclude which model(s) are 
proficient in predicting DoS attacks in WSNs.

3.2 Hybrid GOA-GA and other 
metaheuristic algorithms

The main proposed methodology in this research work lies in the 
hybrid GOA-GA approach. Apart from that, the other three 
metaheuristic algorithms were also used during the experiment and 
hence are discussed below.

3.2.1 Grasshopper optimization algorithm
The Grasshopper Optimization Algorithm (GOA) is a cutting-

edge, effective metaheuristic algorithm inspired by grasshoppers. 

There are two stages in the grasshopper life cycle: nymph and adult. 
While the swarm expands slowly during the nymph phase, it 
expands quickly during the adult phase, taking large steps (Fathy, 
2018). GOA, which was modeled after a metaheuristic based on 
nature, can be used in two stages: exploration and exploitation. 
Swarms move quickly during the exploration phase, but only locally 
during the exploitation phase. Numerous researchers have become 
interested in it to find solutions to numerous real-world problems as 
a result of the vast investigation and quick convergence. Therefore, 
GOA has been used in this work because of such advantages and 
also for assessing its applicability in feature optimization for WSNs. 
The mathematical model of GOA (Ewees et al., 2018) which mimics 
the behavior of grasshoppers consists of the variable iX  which 
denotes the position of the ith grasshopper or solution and is 
given by:

	 = + +i i i iX S G A 	 (1)

where iG  is the gravitational pull on the solution, iA  denotes wind 
advection, and iS denotes social interaction between the solution and 
the other grasshoppers. The location of each solution after random 
behavior has been included is represented by the Equation 2 below:

	 = + +1 2 3i i i iX r S r G r A 	 (2)

where [0, 1] is the range for the random integers 1r , 2r , and 3r . The 
social interaction between the solution and the other grasshoppers is 
represented by the Equations 3, 4 below:

	
( )

=
= ≠∑

1

ˆ , where
N

i ij ij
j

S s d d i j
	

(3)

	

−
−= −

r
rls fe e 	 (4)

where 
−

=
j i

ij
ij

x x
d

d
represents the unit vector and = −ij j id x x  

indicates the distance between the ith and jth grasshoppers. 
Additionally, l is the appealing length scale and f  is the degree of 

FIGURE 3

Proposed solution architecture to detect DoS attacks in a WSN based on a given dataset.
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attraction, and s reflects the strength of two social factors (repulsion 
and attraction between grasshoppers). The following Equation 5 
demonstrates how to determine the gravitational force iG :

	
= −i gG ge 	 (5)

where ge  is a unit vector pointing toward the earth’s center and g  
stands for the gravitational constant. How to determine iA  is shown 
in the equation below:

	 =i wA ue 	 (6)

where we  is the unit vector in the wind direction and u stands for 
the drift constant. Equations 3–6 are combined to get Equation 1 as 
follows:

	

( )  

( )  

=

=

= − +

−
= − − + ≠

∑

∑

1

1
, where

N

i ij ij g w
j
N j i

j i g w
ijj

X s d d ge ue

x x
s x x ge ue i j

d
	

(7)

To address optimization concerns, prevent grasshoppers from fast 
reaching their comfort zone and the swarm from failing to converge 
to the target site, and solve optimization problems, Equation 7 is 
adjusted as follows:

	
( )

=

 −− = − + + ≠
 
 
∑

1
, where

2

N j id d dd d
i j i

ijj

x xUB LBX c c s x x G A i j
d

	
(8)

where = 0G  and A is the best solution in the dth dimension, dUB  
and dLB  are the corresponding upper and lower limits in the dth 
dimension. The model for c is mentioned in Equation 9:

	

−
= − max min

max maxiter

c cc c iter
	

(9)

where iter is the current iteration, maxiter  denotes the maximum 
number of iterations, and maxc  and minc  denote the maximum and 
minimum values of c, respectively. The steps of the Algorithm 1 for 
GOA are given as follows:

3.2.2 Genetic algorithm
In the larger category of evolutionary algorithms (EA), a 

genetic algorithm (GA) is a metaheuristic that draws inspiration 
from the process of natural selection. Utilizing biologically 
inspired operators such as mutation, crossover, and selection, 
genetic algorithms are frequently employed to produce high-
quality solutions to optimization and search problems (Bhola et 
al., 2020). Given their ability to handle a high number of 
characteristics and their effectiveness in swiftly searching through 
the feature space to find the most pertinent features, genetic 
algorithms can be employed to identify the most relevant features 

required for DoS attack detection in WSNs. Additionally, GA is 
used in this work because they are simple to use and can be 
integrated with other strategies, like machine learning, to enhance 
performance. The mathematical model concerning the different 
phases of GA is presented as follows:

	•	 Initialization: Generate an initial population of candidate 
solutions as mentioned in Equation 10:

	 = …0 0 0
0 1 2, , , nP x x x 	 (10)

where 0P  is the initial population of candidate solutions; n is the 
number of individuals in the population; 0

ix  is the ith candidate 
solution in the initial population.

	•	 Evaluation: Evaluate the fitness of each candidate solution:

	 ( ) = …1,2, ,t
if x for i n

	
(11)

where t
ix  is the fitness of the ith candidate solution at generation t .

	•	 Selection: Select the best-performing candidates to generate a 
mating pool:

	 ⊆s tP P 	 (12)

where sP is the mating pool, a subset of the population, and tP is 
the population at generation t.

	•	 Crossover: Generate offspring by combining the traits of parents 
in the mating pool:

	 ( )+ =
1 2

1 ,t t t
i j jx C x x

	
(13)

where +1t
ix is an offspring produced by combining the traits of 

two parents; C is a crossover operator that takes two parent solutions 
and generates an offspring solution that combines their traits; 1j and 
2j . These are indices of the two parent solutions that are used to 

generate the offspring solution.

	•	 Mutation: Introduce small random changes in some of the 
offspring:

	 ( )+ +=1 1t t
i ix M x

	
(14)

where M is a mutation operator that takes an offspring solution 
and makes a small random change to it, introducing new genetic 
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material that was not present in the parents. The steps of the 
Algorithm 2 for GA are given as follows:

3.2.3 Hybrid grasshopper optimization algorithm 
cum genetic algorithm

The GOA-GA is the main and proposed algorithm of this research 
work. The major reason why this hybridization concept came into the 
picture with GOA and GA is because of the unique and novel 
combination that they have. This research work might be one of the 
first works to propose a hybrid GOA-GA algorithm for feature 
selection for detecting DoS attacks in WSNs. This hybrid algorithm 
may be able to overcome the drawbacks of each individual approach 
and produce better results more quickly by combining the advantages 
of the two algorithms. Furthermore, using our hybrid approach for 
feature selection with machine learning models may enhance the 
precision and effectiveness of identifying DoS attacks in WSNs.

Rationale for choosing GOA-GA for this study: The Grasshopper 
Optimization Algorithm (GOA) is effective for global exploration due 
to its adaptive social interaction mechanism, but it often suffers from 

slow convergence and premature stagnation near local optima. 
Conversely, the Genetic Algorithm (GA) excels at local exploitation 
through evolutionary operators such as crossover and mutation, yet it 
may lack strong global search capability and can converge slowly when 
the search space is large. By hybridizing GOA and GA, we exploit 
GOA’s strong exploration ability while leveraging GA’s exploitation 
mechanisms to refine candidate solutions. Thus, GOA and GA 
compensate for each other’s shortcomings—GOA prevents GA from 
being trapped in local optima, while GA accelerates convergence by 
refining GOA’s diverse candidate solutions. This synergy enhances 
both convergence speed and accuracy, making the hybrid algorithm 
particularly suitable for high-dimensional feature selection problems 
in WSN intrusion detection, where balancing exploration and 
exploitation is critical.

The steps of the Algorithm 3 for GOA-GA are given as follows, 
and the same is depicted in the form of a flowchart in Figure 4.

In step 5 of the algorithm, the same Equation 8 is used, which was 
earlier used in GOA for updating the positions of the agents in the 
search space. Equations 11–14 pertaining to evaluation, selection, 

ALGORITHM 1

Grasshopper optimization algorithm.
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crossover, and mutation are employed for Step 9, which involves 
solution evolution utilizing GA. Thus, the hybridization process 
mathematically alternates between GOA exploration (Equation 8) and 
GA exploitation (Equations 11–15) until convergence criteria are met. 
In addition, the elitist strategy is also included in this step. The elitist 
selection approach, which is straightforward, makes sure that the best 
answer so far is always included in the following group of candidate 
solutions. This helps stop the gradual loss of effective solutions. The 
elitist strategy can be expressed mathematically as follows:

	
∗

+ ′= ∪1t tP P x 	 (15)

where ∗
tx  is the best solution so far discovered in the optimization 

process, +1tP  is the next generation of candidate solutions, and ′P  is the 
collection of candidate solutions produced through selection, 
crossover, and mutation processes. The set union is represented by the 
operator ∪.

Limitations addressed by the proposed hybrid approach:

	•	 GOA limitation: Prone to premature convergence, weak 
exploitation near optima.

	•	 GA limitation: Slow convergence in large search spaces, risk of 
losing diversity.

	•	 Proposed hybrid: GOA ensures a diverse search of the feature 
space; GA enhances local search and solution refinement; elitist 
strategy prevents the loss of good solutions. Together, they 
achieve better feature subset optimization for IDS in WSNs.

3.2.4 Differential evolution
Differential Evolution (DE) is an evolutionary algorithm that was 

developed by Storn and Price and is an effective, straightforward, and 
quick global search evolutionary algorithm. The differential mutation 
operator used by DE, which possesses the properties of search 

direction and search step-size adaptivity, is what sets it apart from 
other algorithms the most. DE has the benefits of a straightforward 
structure, user-friendliness, and high robustness (Zhang et al., 2020; 
Deng et al., 2021). DE is very similar to GA as both algorithms 
involve a selection process that identifies the best-performing 
individuals from the population, and then uses them to generate new 
candidate solutions for the next iteration. The implementation of DE 
also has similarities with that of the GA. Due to this reason and for 
comparison purposes with other metaheuristic algorithms, DE is 
included in this work. The steps of the Algorithm 4 for DE are given 
as follows:

3.3 Machine learning classifiers

During the experiment study, four of the well-known machine 
learning classification algorithms were used, which are discussed as 
follows. Note that each of the following algorithms is a supervised 
learning algorithm, but at the same time, it is based on different 
concepts.

3.3.1 Multilayer perceptron
MLP is a type of artificial neural network that consists of at least 

three layers of neurons: an input layer, one or more hidden layers, and 
an output layer (Singh and De, 2017). This method’s fundamental 
strategy is to transform a large number of real-valued inputs into outputs 
by varying the weights of its internal nodes. During the training of a 
dataset using the back-propagation learning technique (Singh and De, 
2017), MLP obtains a function ( ) →: i tf x R R , where i, t  ∈ 
Q + represents input and output dimensions separately. The equation for 
this is given as (Equation 16):

	
( ){ } ( )δ δ

=
= + = +∑ 1

m T
iiy w X b W X b

	
(16)

ALGORITHM 2

Genetic algorithm.
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where δ  represents the activation function, w stands for the 
weight vectors, X  for the input vectors, and b for the bias. This neural 
classifier has been used widely in practice in several disciplines, 
including pattern classification, identification, and prediction. For 
this work, the MLP classifier is chosen because MLPs are capable of 
learning complex, non-linear relationships between the input features 
and the target variable. This is important in the given research case 
because it is likely that the input features may not have a simple, 
linear relationship with the target variable (i.e., the presence or 
absence of a DoS attack). Also, they are well-suited for detecting 
patterns and relationships in high-dimensional data, which is often 

the case in WSNs where there may be many different sensors 
generating data.

3.3.2 K-nearest neighbors
In KNN classification, all computation is postponed until after the 

function has been evaluated, and the function is only locally 
approximated. Since this approach depends on distance for classification, 
normalizing the training data can significantly increase accuracy if the 
features reflect several physical units or have wildly different sizes. 
However, several factors, such as the choice of the k value, the choice of 
distance metrics, and others, can impact how well the KNN classification 

ALGORITHM 3

Hybrid grasshopper optimization algorithm cum genetic algorithm (proposed).
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performs. The distance between two data points x  and y in a feature 
space of d  dimensions is given by the Euclidean distance as given in 
Equation 17:

	
( ) ( )

+

=
= −∑

1
2

1
,

d

i i
i

d x y x y
	

(17)

which is the most used distance metric in KNN. Indicated as 
( ),kN x D , the collection of k-nearest neighbors is defined as in 

Equation 17a:
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In other words, ( ),kN x D  is the set of 𝑘 data points in 𝐷 that have 
the smallest distance to 𝑥. The reason why KNN is used for this 
research work is that it is simple to implement and can be effective in 
cases where the decision boundary between classes is not well defined, 
as seen in the dataset used. This could be the case for detecting DoS 
attacks, where the patterns of attack may not be easily characterized 
by a specific model or algorithm.

3.3.3 Logistic regression
Logistic regression is mainly used for classification purposes 

(Zou et al., 2019). The probability of an event occurring 
depending on one or more input features can be modeled using 
this well-liked and often-used classification approach. In the 
given situation, where machine learning is applied to the WSN 
dataset to detect DoS attacks, LR can be helpful since it enables 
forecasting the likelihood that a specific network packet or 
communication will be used in a DoS attack. In addition to being 
reasonably simple to understand, LR can shed light on the 
connection between the input features and the expected chance 
of a DoS attack taking place. This can help in determining which 
characteristics are most crucial for spotting DoS attacks in WSNs 
and can help in the creation of stronger defenses against them. 
The logistic function has the following formula as given in 
Equation 18:

	

( ) ( )µ−
−

=

+

1
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x

s

p x

e 	

(18)

where s is a scale parameter and µ  is a location parameter (the 
midpoint of the curve, where p(µ) = 1/2). Maximizing the likelihood 

FIGURE 4

Flowchart of the proposed GOA-GA approach.
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function represents the likelihood that the provided data set was 
generated by a specific logistic function as given in Equation 19:

	
( )

= =
= −∏ ∏

: 1 : 0
1

k k

k k
k y k y

L p p
	

(19)

when the likelihood function L is used. In the kth observation, ky  
is the binary answer variable and kp  is the anticipated probability of 
the positive class, or the likelihood that =1ky .

3.3.4 Classification and regression tree
CART is a type of decision tree algorithm used for both 

classification and regression purposes (Breiman et al., 2017). To 
construct a decision tree based on the Gini impurity index, the 
CART method comes into the picture. It offers a wide range of 
useful applications and is a fundamental machine learning 
algorithm. As the CART classifier is already used for fitness 
functions while implementing the metaheuristic algorithms, it is 
one of the reasons why optimized CART is employed for 
classification in this research case. It can be advantageous to use the 
same classifier for all of the classification tasks because it keeps the 
methodology consistent. As a classification technique, decision 
trees also have several benefits, including their interpretability and 

capacity for both categorical and numerical data. Additionally, they 
can handle huge datasets and train quickly. Decision trees function 
better when their CART is optimized since it reduces overfitting 
and increases generalization. The following is a definition of Gini 
impurity:

	 ( ) ( )=
= −∑ 1 1c

G i iiI p p p 	 (20)

where c is the number of classes and ip  denotes the percentage of 
samples that belong to class i. In CART, the quality of a split is 
evaluated using the information gain. The decrease in entropy (or Gini 
impurity) brought on by the split is referred to as information gain. 
The formula for information gain is as follows:

	
( ) { } ( )∈

∆ = −∑ ,
j

jj L R
N

I I p I p
N 	

(21)

where ( )I p  is the parent node’s impurity, jN  denotes the number 
of samples in the jth child node, N  denotes the total number of 
samples, and jp  denotes the percentage of samples in the j-th 
child node.

ALGORITHM 4

Differential evolution.
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3.4 Model interpretability and practical 
implications

In this section, the interpretability, and practical implications of 
the IDS in real-world situations are covered. It is discussed here that 
adaptive learning and frequent upgrades of the IDS could improve its 
efficacy in addressing evolving cyber threats. Its usefulness can be 
increased by working with cybersecurity specialists and industry 
stakeholders to validate it in various contexts. Finally, upholding 
ethical and data privacy laws will increase the validity and reliability 
of the results.

3.4.1 Interpretability of the model
The interpretability of machine learning classifiers and hybrid 

metaheuristic algorithms is still a challenge, despite their ability to 
detect DoS attacks with high accuracy. Gaining trust and assuring 
the model’s dependability require an understanding of how it makes 
decisions. To improve the model’s interpretability, strategies like 
feature importance analysis, SHAP (SHapley Additive exPlanations), 
and LIME (Local Interpretable Model-agnostic Explanations) 
might be used. Network administrators can gain a better 
understanding of and confidence in the IDS’s decision by receiving 
insights into the features that have the greatest impact on threat 
detection.

3.4.2 Practical implications of deploying the IDS
Incorporating the suggested IDS into actual WSNs necessitates 

considering many pragmatic factors. These consist of the necessary 
processing resources, the simplicity of integration with the current 
network architecture, and the possible influence on the overall 
performance of the network. The suggested approach should be made 
to use the least number of resources possible while integrating easily 
with the hardware and communication protocols already in place in 
the WSN. Furthermore, it’s crucial to make sure the IDS does not add 
a lot of cost or delay that can interfere with regular network operations.

3.4.3 Adaptive learning and continuous updating
It is essential to include techniques for adaptive learning and 

constant updating of the IDS due to the dynamic nature of cyber 
threats. Attack methods and patterns change often; therefore, an 
inactive IDS can easily become outdated. By putting adaptive learning 
strategies into practice, such as reinforcement learning and online 
learning algorithms, IDS may update its detection models in real-time 
and learn from new attack patterns. This flexibility will improve the 
IDS’s long-term effectiveness and resistance to new threats. Moreover, 
applied IDS deployments have already demonstrated tangible benefits 
in WSN environments. For instance, an IDS integrated with a CLGO-
enhanced SVM achieved practical improvements in packet delivery 
rate and energy consumption (Gupta et al., 2023), underscoring the 
potential of hybrid optimization and adaptive learning in real-world 
scenarios.

3.4.4 Collaboration with industry stakeholders 
and cybersecurity experts

It is essential to collaborate with cybersecurity experts and 
industry stakeholders in order to validate and improve the suggested 
methodology. Through industry relationships, access to operational 
insights, real-world data, and practical difficulties that are not usually 

met in academic research can be made possible. Working 
collaboratively to validate the proposed IDS in various operating 
situations will help find any flaws and make it easier to refine it to 
comply with industry standards and specifications.

3.4.5 Ethical considerations and data privacy
Developing and implementing intrusion detection systems 

requires careful attention to ethical issues and data protection laws. 
The suggested IDS needs to make sure it does not invade user privacy 
or gather pointless data. Respecting data privacy laws, such as the 
General Data Privacy Regulation (GDPR), is crucial to keeping the 
validity and reliability of study findings. The responsible use and 
deployment of the IDS should also be guided by ethical concerns to 
make sure that it does not get misused and that neither people nor 
systems are harmed.

4 Experimental analysis and validation

In this section, experimental analysis and validation techniques 
related to this work’s implementation are discussed. Section 4.1 briefly 
discusses the experimental setup and tools used. Section 4.2 illustrates 
the dataset used in the experimental study and its related features. 
Next, in Section 4.3, the selection of hyperparameters for each of the 
ML classifiers during their training is discussed. Lastly, Section 4.4 
describes the standard performance metrics and validation techniques 
used during the experiment to evaluate the models.

4.1 Experimental setup and tools used

The HP laptop used for this project’s studies has an Intel(R) Core 
(TM) i5-8265UC processor running at 2.4 GHz, 16.0 gigabytes of 
RAM, and 256 gigabytes of solid-state drive (SSD) memory storage 
capacity. The crucial Python modules and Jupyter Notebook 6.5.2, a 
web-based, interactive computing notebook environment, were 
installed locally using Anaconda Navigator 2.3.2. The project’s 
execution took place in the same computing environment, and the 
notebook’s operating system was Windows 10 (Version 22H2).

Python programming (version 3.9.16) was used for the entire 
project’s implementation and coding. Throughout the implementation, 
crucial libraries including pandas, NumPy, Matplotlib, scikit-learn, 
and DEAP were used.

4.2 The WSN-DS dataset

The dataset utilized in this research work is known as WSN-DS 
and was cited in Almomani et al. (2016). Essentially, it is a dataset for 
wireless sensor networks used by intrusion detection systems. 374,661 
records and 19 columns make up the dataset. It was discovered during 
data pre-processing that the dataset did not contain any null or NA 
values. Figure 5 shows the distribution of the data points together with 
the count value for each class label.

The attributes of the dataset are split into input/independent 
variables and a target/output variable since the categorization of class 
labels is the ultimate objective. The following variables (18 in number) 
were included in the input: “id,” “Time,” “Is_CH,” “who CH,” 
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“Dist_To_CH,” “ADV_S,” “ADV_R,” “JOIN_S,” “JOIN_R,” “SCH_S,” 
“SCH_R,” “Rank,” “send_code,” “DATA_S,” “DATA_R,” “Data_Sent_
To_BS,” “dist_CH_To_BS” and “Expaned Energy.” The “Attack type” 
attribute made up the target variable.

Ultimately, 4 out of the 18 input features were chosen in order to 
lessen the burden on WSNs and lower the number of features required 
to forecast attacks. A great compromise between high model 
performance and computational efficiency has been demonstrated by the 
thorough experimentation and cross-validation that supported this 
decision. A model’s capacity to be applied to new data must be 
maintained by preventing overfitting, which is achieved by choosing four 
features. The interpretability of the model is also improved, and the 
influence of each feature on DoS attack detection is easier to comprehend 
with a reduced feature set. With respect to the restricted processing 
power and energy constraints typical of WSNs, this method greatly 
minimizes computational complexity and resource usage. A small feature 
set of this size provides a good trade-off between performance and 
complexity. The hybrid GOA-GA algorithm effectively identified these 
four features namely, “send_code,” “Time,” “Data_Sent_To_BS,” and 
“JOIN_R” as the most relevant and impactful subset, ensuring a robust 
and efficient detection mechanism without redundancy.

While the proposed GOA-GA approach demonstrated strong 
classification performance, metaheuristic algorithms are inherently 
stochastic and can yield different feature subsets across runs. To 
evaluate the stability of our selected features, we performed multiple 
independent runs (N = 20) and computed the Jaccard similarity 
coefficient between the resulting subsets. Across repeated runs, the 
average pairwise Jaccard similarity of selected feature subsets was 
approximately 0.70, indicating that while minor variations occurred, 
the algorithm consistently converged on a stable core set of features. 
This suggests that the algorithm consistently prioritized a core group 
of features, with minor variation in less informative attributes. This 

aligns with observations in prior studies on stochastic feature selection 
(Yang, 2020).

The dataset is divided 8:2 in ratio. Accordingly, 80% of the dataset 
will be used for training and the remaining 20% for testing. The rationale 
for this ratio’s selection is to ensure that the models receive a sufficient 
number of samples during the training phase, allowing them to make as 
accurate a classification prediction as feasible for the testing set. 
Additionally, the usual ratio used in the majority of the research reviews 
is 8:2. The overall data count for the various classes for the training and 
testing sets is displayed in Table 2. The 20% test set was held out as an 
independent evaluation set and was not used at any stage of feature 
selection, data balancing, hyperparameter tuning, or model optimization. 
All model development and selection procedures were performed 
exclusively on the training data to ensure an unbiased final evaluation.

Also, from Figure 4, it is observed that the dataset is highly 
imbalanced. To deal with this issue, the dataset is balanced after 
splitting the dataset into training and testing sets so that the testing set 
is not affected. The technique used for balancing the dataset is called 
Adaptive Synthetic Sampling (ADASYN). For machine learning 
algorithms to learn from the data and achieve high accuracy in 
predicting the minority class in such circumstances can be difficult. 
By creating artificial examples of the minority class based on the 
density distribution of the samples, the ADASYN algorithm solves this 
issue. Following the addition of these artificial cases, the classes in the 
initial dataset are balanced, which enhances the effectiveness of 
machine learning algorithms so that they can better recognize the 
minority class rather than being biased toward the majority. To 
prevent data leakage, ADASYN was applied only to the training subset 
after the train–test split, while the test set retained its original class 
distribution and remained completely untouched.

To evaluate the impact of balancing, we compared model 
performance with and without ADASYN. Models trained on the 

FIGURE 5

The WSN-DS dataset’s “Attack type” attribute’s composition.
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balanced dataset showed a clear improvement in recall and F1-score 
for the minority class, while overall accuracy remained consistent. 
This indicates that balancing primarily improved minority detection 
without degrading majority class performance.

Regarding the risk of overfitting to synthetic samples, the use of 
ADASYN after the train–test split prevents contamination of the test 
set. Moreover, repeated runs showed stable results across folds, 
suggesting that the models generalized well rather than overfitting to 
synthetic examples.

4.3 Hyperparameter tuning

In this section, the hyperparameters concerning different algorithms 
are discussed. For GOA, GOA-GA, and DE, the maximum number of 
iterations and number of agents are 50 and 50, respectively. On similar 
lines, the GA had 50 generations in total. The maximum iteration for 
each algorithm is 50. The lower bound and upper bound for GOA are 0 
and 1, respectively. The probabilities of crossover and mutation for 
GOA-GA are 0.8 and 0.1, respectively. For DE, the F (scaling factor) and 
CR (crossover rate) are chosen as 0.5 and 0.7, respectively.

Next, coming to the machine learning algorithms, for the MLP 
classifier, the hidden layer sizes is (10, 5), activation is set to “relu,” 
solver is “adam,” learning rate is “adaptive” with constant value of 
0.0001, alpha is set to 0.01, maximum iterations is 10,000 and random 
state of 42. For the LR classifier, a pipeline is used for scaling and 
classification, with maximum iterations to be 500. Then, 
GridSearchCV is used to find the best hyperparameters to get the best 
training performance. For the KNN, the value of k is 5, i.e., 5 
neighbors are taken into consideration. Lastly, for the CART 
algorithm, the default hyperparameters are used as defined by the 
decision tree classifier function in the Python scikit-learn library. All 
hyperparameter tuning and model selection were conducted strictly 
within the training data. GridSearchCV with 5-fold cross-validation 
was applied only to the training set, and each cross-validation fold 
operated exclusively on training samples. The held-out test set was 
not accessed during feature selection or hyperparameter optimization 
and was used only once for final performance evaluation.

4.4 Performance measures and validation 
techniques

For understanding how better the machine learning classifiers are 
trained, we used the k-fold cross-validation technique with k = 5. The 
reason behind choosing this technique is that it is a commonly used 

technique to measure training performance and is easy to implement 
and comprehend. Besides, the value of k is considered to be 5 for the 
sake of convenience.

The experiment used the following performance measures 
mentioned in Equations 22–29 to evaluate each technique or 
algorithmic combination for the testing dataset:
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where iO  and iT  are the output and target values, respectively, and 
n is the total number of data points.

Note that the calculation of precision, recall, F1-score (f-measure), 
and AUC is done using the weighted average concept, as it is a convenient 
averaging method for multi-class classification problems in the case of 
an imbalanced dataset. In order to ensure that the performance of the 
model on the minority classes is given more priority when evaluating the 
overall performance, a weighted average applies higher weights to classes 
with fewer data. Therefore, a weighted average may be suited if the 
dataset is imbalanced with respect to different types of attacks.

5 Results and discussion

In this section, we discuss the various results obtained from the 
experiment concerning the detection of DoS attacks from the 
WSN-DS dataset using the aforementioned metaheuristic algorithms 
and ML classifiers.

Table 3 lists the features that were chosen by each of the four 
metaheuristic algorithms. Take note that each time an algorithm is 
run, the features that are chosen may change.

TABLE 2  WSN-DS dataset separated into 80% training set and 20% 
testing set.

The attack type Training set (80%) Testing set (20%)

Normal 272,101 67,965

Grayhole 11,594 3,002

Blackhole 8,025 2,024

TDMA 5,352 1,286

Flooding 2,656 656

Sum 299,728 74,933
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Next, Tables 4, 5 provide the performance measures results 
obtained from the experiment.

While Tables 4, 5 report weighted-average metrics, such 
aggregates can obscure the behavior of intrusion detection systems on 
minority attack classes in highly imbalanced datasets. To address this 
concern, Table 6 presents per-class precision, recall, and F1-score for 
the proposed GOA-GA method with the KNN classifier. The support 
column indicates the number of test samples belonging to each class. 
The results show near-perfect detection of normal traffic and strong 
performance for Grayhole attacks, which are among the most 
prevalent attack types in the dataset. Moderate recall values are 
observed for Blackhole and Scheduling (TDMA) attacks, indicating 
partial overlap in feature characteristics with other traffic patterns.

The Flooding attack class exhibits comparatively lower recall and 
F1-score, which can be attributed to its severe class imbalance and 
feature-level similarity with normal traffic in the WSN-DS dataset. 
Flooding attacks often manifest as short-duration bursts that overlap 
with legitimate traffic patterns, making them more difficult to distinguish 
using static feature subsets. Despite the use of ADASYN to mitigate class 
imbalance, limited intrinsic separability of Flooding instances remains a 
challenge, as also reported in prior WSN intrusion detection studies. 
These results highlight the importance of incorporating temporal 
features, cost-sensitive learning, or ensemble-based strategies in future 
work to further enhance minority-class detection.

Figure 6 and Table 4 show that the majority of the approaches are 
performing well in terms of accuracy. With every ML classification 
algorithm applied, GOA and DE perform equally well. The least 
accurate classification algorithm is MLP in GA. The suggested 
approach, GOA-GA, performs nearly as good as or in some 
circumstances better than GOA, GA, and DE alone. The maximum 
accuracy for GOA-GA using the KNN classification algorithm 
is 95.51%.

Additionally, the F-measure and Area Under the Curve (AUC) 
score of the GOA-GA method are seen in Table 5. The model 
demonstrates strong discrimination capability across normal traffic 
and multiple DoS attack classes, as reflected by high macro-averaged 
AUC and per-class performance metrics. Additionally, a high 
F-measure and AUC score show that the model is doing well at 
correctly identifying instances, and the likelihood of false positives 
and false negatives is minimal.

Figure 7 shows that all methods are operating with high precision 
(> 90%), as may be seen. Because GOA is more effective at completely 
scanning the space, it achieves the best precision when used with the 
KNN classifier. Since genetic algorithms are known to be susceptible 
to premature convergence, which means that they may converge to a 
suboptimal solution before achieving the global optimum, the lowest 
precision is reached in the case of GA using the KNN algorithm. The 
highest precision values are seen with the MLP classifier for the 
proposed technique, GOA-GA, with all four ML classifiers.

TABLE 3  Description of the best attributes chosen by metaheuristic 
algorithms from the WSN-DS dataset.

Metaheuristic 
algorithm

Selected 
attribute index

Attribute name

Grasshopper optimization 

algorithm

2 “Is_CH”

5 “ADV_S”

7 “JOIN_S”

10 “SCH_R”

Genetic algorithm 0 “id”

2 “Is_CH”

3 “who CH”

4 “Dist_To_CH”

Hybrid grasshopper 

optimization algorithm and 

genetic algorithm (GOA-GA)

12 “send_code”

1 “Time”

15 “Data_Sent_To_BS”

8 “JOIN_R”

Differential evolution 2 “Is_CH”

1 “Time”

9 “SCH_S”

17 “Expaned Energy”

TABLE 4  Comparison of the accuracy, recall (detection rate), and 
precision of various algorithms.

Measures 
(%)

GOA GA GOA-
GA

DE Algorithms

Accuracy 93.15 73.08 92.67 94.22 MLP

Recall 93.15 73.08 92.67 94.22

Precision 95.89 94.94 96.24 95.76

Accuracy 93.15 91.92 81.82 93.57 LR

Recall 93.15 91.92 81.82 93.57

Precision 95.89 94.88 92.74 95.03

Accuracy 93.15 90.08 90.98 89.99 CART

Recall 93.15 90.08 90.98 89.99

Precision 95.89 93.33 95.76 96.42

Accuracy 91.73 86.78 95.51 91.41 KNN

Recall 91.73 86.78 95.51 91.41

Precision 97.64 92.14 95.52 96.50

TABLE 5  Comparison of several techniques based on F-measure, AUC 
results, and RMSE values.

Measures GOA GA GOA-
GA

DE Algorithms

F-measure 0.9252 0.7980 0.9403 0.9477 MLP

AUC 0.9772 0.8987 0.9913 0.9900

RMSE 0.4497 1.3911 0.5983 0.4715

F-measure 0.9252 0.9225 0.8629 0.9383 LR

AUC 0.9772 0.9666 0.9458 0.9830

RMSE 0.4497 0.5784 0.6948 0.4820

F-measure 0.9252 0.9150 0.9283 0.9247 CART

AUC 0.9773 0.9665 0.9843 0.9424

RMSE 0.4497 0.6538 0.5940 0.4278

F-measure 0.9122 0.8916 0.9551 0.9333 KNN

AUC 0.9782 0.9480 0.9733 0.9819

RMSE 0.7994 0.7517 0.5270 0.4173
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The 3D surface plot in Figure 8 and Table 5 shows that the GA 
with the MLP classifier has the largest RMSE value, which has resulted 
in lower accuracy. The example of DE with the KNN classifier has the 
lowest RMSE value, which shows that the model has a better ability to 
predict values because the predicted values are closer to the real 
values. With all the ML classifiers combined, the suggested technique, 
GOA-GA, has significantly lower RMSE values, indicating higher 
model accuracy.

One benefit of utilizing this method is that GOA-GA has the 
shortest computing time for feature selection, as can be seen in 
Figure 9. However, using GA and GOA separately requires more 
computation time than using GA and GOA together. Due to the 
algorithm’s requirement to evaluate the fitness function for each 
candidate solution in each generation, which can be computationally 
expensive, particularly for high-dimensional or complex problems, 
the GA takes the longest to compute. Due to its effectiveness for high-
dimensional problems, DE has the second-lowest computing time.

In addition to the empirical runtime comparison shown in 
Figure 9, we provide a more detailed computational complexity 
analysis. Let N  denote the population size, G the number of 
generations, and d the dimensionality of the feature space. For all 
population-based metaheuristics considered (GA, GOA, DE, and the 
hybrid GOA-GA), the dominant cost arises from evaluating the fitness 
function, which requires ( ).O N d  operations per generation. Hence, 
the overall time complexity is approximately ( ). .O N G d . In practice, 
the constants and the number of functional operations differ across 
algorithms. For example, GA requires multiple crossover and 
mutation operations, which introduce additional overhead and lead 
to longer runtimes. GOA involves modeling the grasshopper 
swarming mechanism, which scales linearly with the population size 
and dimensionality but is relatively lightweight in per-iteration cost. 
DE benefits from its efficient mutation and crossover strategy, making 
it competitive for high-dimensional spaces. The hybrid GOA-GA 
leverages GOA’s exploration with GA’s exploitation, reducing the 
number of generations required for convergence, which explains its 
superior runtime in Figure 9.

Regarding space complexity, all methods maintain a population 
of candidate solutions of size N , each of dimensionality d , leading to 
a space requirement of ( ).O N d . This requirement is similar across 
algorithms, although GA may require additional storage for offspring 
populations. Overall, GOA-GA achieves favorable trade-offs in both 
time and space due to faster convergence and reduced redundant 
evaluations.

Figure 10 illustrates the convergence behavior of GA, GOA, 
GOA-GA, and DE in terms of the best fitness value obtained during 
feature selection. The fitness value corresponds to the training error 
minimized during optimization. As observed, GA converges slowly 
and exhibits noticeable oscillations, indicating premature convergence. 
GOA demonstrates stronger exploration in early iterations but 
requires more iterations to refine solutions. DE achieves competitive 
performance but shows higher variability. In contrast, the proposed 
GOA-GA algorithm converges more rapidly and smoothly, reaching 
lower fitness values in fewer iterations. This behavior highlights the 
effectiveness of hybridizing GOA’s exploration capability with GA’s 
exploitation mechanism, resulting in improved convergence speed 
and stability. Here, fitness corresponds to the objective function 
minimized during feature selection, defined as the classification error 
computed on the training dataset. The convergence curves correspond 
to a representative optimization run using identical parameter settings 
for all algorithms. Such empirical convergence analysis based on 
fitness evolution is a standard practice for assessing the efficiency and 
stability of metaheuristic optimization algorithms.

Since the WSN-DS dataset involves a multiclass classification 
problem (normal traffic and four types of DoS attacks), ROC curves 
and AUC values were computed using a one-vs-rest (OvR) strategy. 
In this approach, each class is treated as the positive class against all 
remaining classes, and the corresponding ROC curve is obtained. The 
reported AUC values represent the macro-averaged AUC, calculated 
by averaging the AUC scores across all classes, thereby assigning equal 
importance to each class irrespective of class imbalance.

Figures 11a–d shows the ROC curves for all four machine learning 
classifiers (MLP, LR, CART, KNN) combined with all four 
metaheuristic algorithms (GOA, GA, GOA-GA, DE). For each 
classifier–metaheuristic combination, class-wise TPR (True Positive 
Rate) and FPR (False Positive Rate) values were computed under the 
one-vs-rest setting and aggregated to construct the macro-averaged 
ROC curves. As the ROC curve approaches the upper left corner of 
the plot, the model’s performance improves. A ROC curve that runs 
straight up the y-axis and then straight up the x-axis to the right would 
be the optimum ROC curve for a classifier. The Area Under the ROC 
Curve (AUC) shows how well the model can distinguish between 
positive and negative cases, i.e., it serves as a quantitative measure of 
separability between normal and attack instances. An AUC of 1 would 
represent a flawless classifier, whereas an AUC of 0.5 would represent 
a completely random classifier.

From the plots, several trends are evident:

	(i)	 MLP-based models (Figure 11a): GOA–GA + MLP consistently 
achieves near-perfect discrimination, reflected in its ROC 
curve hugging the top-left corner. In contrast, GA + MLP 
demonstrates much weaker performance, with a shallower 
slope and smaller AUC, indicating difficulty in reducing false 
positives. This suggests that hybridization (GOA–GA) 

TABLE 6  Per-class precision, recall, and F1-score for GOA-GA with KNN 
classifier.

Class Precision Recall F1-
score

Support

Blackhole 

attack

0.5226 0.5707 0.5456 2,024

Flooding 

attack

0.2396 0.2195 0.2291 656

Grayhole 

attack

0.7697 0.7392 0.7541 3,002

Scheduling 

(TDMA) 

attack

0.5798 0.5622 0.5709 1,286

Normal 0.9902 0.9906 0.9904 67,965

Macro 

average

0.6204 0.6164 0.6180 74,933

Weighted 

average

0.9552 0.9551 0.9551 74,933
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FIGURE 6

Comparison of the accuracy of GOA-GA with other measurement techniques.

FIGURE 7

Analysis of the precision of GOA-GA in comparison to other methods.
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improves convergence toward informative features, directly 
benefiting nonlinear classifiers like MLP.

	(ii)	 LR-based models (Figure 11b): While DE + LR and GOA + LR 
show strong AUC values (~0.95+), GOA–GA + LR 
underperforms slightly, with more fluctuations along the curve. 
This indicates that the linear decision boundary of LR may not 
fully exploit the hybrid-selected features, and precision–recall 
trade-offs could be less favorable in high recall regions.

	(iii)	CART-based models (Figure 11c): All metaheuristic-assisted 
versions (GOA, DE, GOA–GA) produce tightly clustered ROC 

curves with high AUC, indicating that tree-based models 
handle the selected subsets robustly. DE + CART shows slightly 
lower discrimination compared to GOA–GA, but still 
maintains a strong balance between precision and recall.

	(iv)	KNN-based models (Figure 11d): GOA–GA + KNN achieves 
the steepest curve with an AUC approaching 1, outperforming 
standalone GA and DE. This highlights the strength of the 
hybrid feature selection in supporting distance-based classifiers, 
which are otherwise sensitive to noisy or redundant features.

Overall, the ROC analysis shows that GOA–GA consistently 
enhances classifier performance, particularly for nonlinear learners 
like MLP and KNN. However, for LR, the hybrid approach yields 
marginal improvements or even instability, suggesting the importance 
of aligning feature selection with classifier characteristics. In terms of 
precision–recall trade-offs, GOA–GA reduces false negatives 
effectively, which is critical in WSN intrusion detection, where missed 
attacks can be more damaging than false alarms. Although ROC–
AUC provides an overall measure of separability, per-class recall 
values are particularly important in WSN intrusion detection, as 
missed detections of minority attack types can have severe operational 
consequences.

According to Table 7, the suggested strategy, which combines 
GOA-GA and KNN, is more accurate than other methods when 
applied to the WSN-DS dataset. Deep learning techniques are the 
foundation of the methods that are compared to the one that is 
suggested in this research work.

Besides, it is important to highlight that while KNN may have 
longer computational times and generally be slower when compared 

FIGURE 8

Comparative analysis of GOA-GA with respect to other methods in terms of RMSE values.

FIGURE 9

Performance analysis of the metaheuristic algorithms in terms of 
computational time on the WSN-DS dataset.
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to MLP, LR, and CART classifiers, it indeed provided the best accuracy 
when used with the GOA-GA hybrid algorithm and thus can be 
considered as a “fast” method to achieve dimensionality reduction 
with primary focus on achieving the best accuracy in detecting DoS 
attacks. Consequently, this demonstrates the effectiveness of the 
proposed hybrid approach in achieving high accuracy even with a 
computationally intensive classifier.

As a result, the hybrid GOA-GA is a new and effective feature 
selection mechanism used to minimize the number of attributes for 
WSNs during the detection of DoS attacks.

From a practical deployment perspective, the proposed 
intrusion detection framework is well suited for hierarchical 
wireless sensor network architectures. Given the computational 
complexity of metaheuristic-based feature selection, the GOA-GA 
optimization process is intended to be executed offline or at a 
resource-rich entity such as the base station or cluster head, rather 
than on individual sensor nodes. Once an optimal subset of features 
is identified, lightweight classifiers can be deployed for online 
intrusion detection using the reduced feature set. In real-world 
WSN deployments, model retraining and feature re-optimization 
can be performed periodically or triggered by changes in network 
behavior, while real-time monitoring is handled by cluster heads or 
sink nodes. This design minimizes energy consumption and 
computational overhead at sensor nodes, which typically operate 
under strict resource constraints. Moreover, the reduced feature 
dimensionality achieved by the proposed approach supports faster 
decision-making and facilitates integration with existing network 
management and security mechanisms. These considerations 
indicate that the proposed framework is not only effective in 

experimental settings but also feasible for practical WSN 
applications such as environmental monitoring, industrial sensing, 
and smart infrastructure.

Trade-off analysis (high accuracy vs. higher computational 
demand): While the proposed GOA-GA with KNN achieved superior 
detection accuracy, the computational cost remains relatively high 
due to the iterative nature of metaheuristic optimization and the 
distance-based evaluations in KNN. This limitation is common in 
high-dimensional WSN datasets where KNN’s complexity scales with 
the number of samples. To address this, future work could investigate 
approximate nearest neighbor search methods (e.g., KD-trees, 
locality-sensitive hashing) to accelerate classification. Alternatively, 
dimensionality reduction techniques such as Principal Component 
Analysis (PCA) or autoencoders may further minimize feature space 
before classification, reducing runtime. Another direction could 
involve integrating lighter classifiers, such as Random Forests post 
feature-selection, or parallelizing the metaheuristic search. Such 
strategies may retain the accuracy benefits of GOA-GA while 
improving scalability for real-world deployment in resource-
constrained WSN environments.

6 Limitations and potential challenges

The proposed methodology in this research work has its 
limitations and potential challenges in terms of scalability, robustness 
to varying network conditions, dependency on the chosen routing 
protocol, and generalizability across different WSN environments, as 
discussed below.

FIGURE 10

Convergence behavior of GA, GOA, GOA-GA, and DE in terms of best fitness value over iterations during feature selection on the WSN-DS training set.
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6.1 Scalability

The scalability of the presented methodology is one of its main 
drawbacks. While machine learning approaches and the hybrid 
metaheuristic algorithm (GOA-GA) have demonstrated promising 
results in identifying DoS attacks in WSNs, their performance may 
deteriorate as the size of the network increases. Larger WSNs with more 
nodes and intricate communication patterns can introduce higher 
computational overhead and latency in the detection process. Future 
work should concentrate on improving the algorithm’s efficiency, 
reducing its computational complexity, and exploring distributed or 
hierarchical IDS models to ensure scalability for large-scale deployments.

6.2 Robustness to varying network 
conditions and node mobility

WSNs often operate in dynamic environments where network 
conditions change significantly due to node failures, mobility, 
environmental interference, or fluctuating traffic loads. The proposed 
IDS, though effective in static topologies, has not been fully validated 
under scenarios involving frequent node mobility and topology 
reconfiguration, which may lead to detection delays or degraded 
accuracy. Future extensions should evaluate the methodology under 
such dynamic conditions to ensure resilience and adaptability across 
diverse real-world applications.

FIGURE 11

(a) AUC-ROC curves for the metaheuristic algorithms with the MLP classifier. (b) AUC-ROC curves for the metaheuristic algorithms with the LR 
classifier. (c) AUC-ROC curves for the metaheuristic algorithms with the CART classifier. (d) AUC-ROC curves for the metaheuristic algorithms with the 
KNN classifier.
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6.3 Dependency on routing protocol 
(LEACH-specific)

Our evaluation is conducted using the LEACH (Low-Energy 
Adaptive Clustering Hierarchy) protocol. While widely used in 
research, real-world WSNs may rely on alternative routing 
protocols such as PEGASIS or AODV, each with different 
clustering mechanisms, energy consumption patterns, and traffic 
dynamics. For instance, PEGASIS arranges nodes in chains rather 
than clusters, which affects communication flow and could alter 
IDS performance; AODV supports on-demand routing and 
dynamic topologies, relevant in mobile or large-scale settings 
(Oztoprak et al., 2024). It is essential to evaluate the IDS with 
multiple routing protocols to confirm its adaptability across WSN 
architectures.

6.4 Generalizability across different WSN 
environments

One critical challenge is the ability of the IDS to be 
generalized across different environments of WSN. Various types 
of WSN applications, such as those used in military, healthcare, 
environmental monitoring, and industrial automation, must have 
their proposed methodology effectiveness validated. There are 
unique attributes and demands for every application that could 
influence IDS performance. For example, routing protocols 
beyond LEACH, such as TEEN, PEGASIS, and HEED, pose 
unique vulnerabilities that attackers may exploit, requiring 
tailored intrusion detection strategies (Alansari et al., 2022). As 
a result, rigorous testing and validation in mixed operational 
settings are required to ensure the relevance and applicability of 
this proposed IDS across different WSN environments.

6.5 Stochastic variability and statistical 
validation

The proposed feature selection methods are based on 
metaheuristic optimization, which is inherently stochastic and 
may lead to variations in selected feature subsets and 
classification outcomes across different runs. Although multiple 
experimental executions were performed during model 
development, the primary results reported in this study focus on 
peak performance metrics rather than aggregated statistical 
summaries. Incorporating repeated end-to-end evaluations with 
explicit reporting of mean and standard deviation, along with 

formal statistical significance testing, would further strengthen 
the robustness and reproducibility of the conclusions. 
Addressing this aspect constitutes an important direction for 
future work.

7 Conclusion and future work

This research presents an effective intrusion detection 
methodology for identifying DoS attacks in wireless sensor 
networks by integrating machine learning–based classification 
with metaheuristic optimization. A novel hybrid metaheuristic 
feature selection method, GOA-GA, combining the Grasshopper 
Optimization Algorithm and Genetic Algorithm, was introduced. 
The study focused on four types of DoS attacks - Blackhole, 
Grayhole, Flooding, and Scheduling - tested on the WSN-DS 
dataset. Among the four ML classifiers evaluated (MLP, KNN, 
CART, and LR) and various metaheuristic algorithms (GOA, GA, 
and Differential Evolution), the GOA-GA with KNN achieved the 
highest overall classification accuracy of 95.51% and the least 
computational time. While the proposed approach does not 
universally outperform all reported methods, the results show 
that it is competitive with recent state-of-the-art techniques and 
offers a favorable balance between detection accuracy and 
computational efficiency. These findings emphasize the 
significance of selecting minimal yet significant features for 
effective and early detection of DoS attacks in resource-
constrained WSNs. The results indicate a promising direction for 
IDS performance, highlighting the advantages of GOA-GA in 
reducing computational time while maintaining high accuracy. 
Limitations include the computational intensity of KNN, 
suggesting the need for further optimization. The trends indicate 
that metaheuristic algorithms can significantly enhance IDS 
effectiveness, with implications for developing more efficient and 
accurate security systems in WSNs.

In the future, the performance of the features chosen from the 
proposed algorithm, GOA-GA, can be evaluated against other 
well-known ML classifiers such as Support Vector Machine, 
Random Forest, and Naive Bayes. Future work should also 
explore optimizing the KNN implementation or using other fast, 
accurate classifiers to enhance efficiency further. On the same 
dataset, the performance of GOA-GA can be compared to that of 
other evolutionary algorithms and well-known metaheuristic 
algorithms, including the hybrid ones. In addition to the 
WSN-DS dataset utilized in the study, other datasets that record 
cyber-attacks on WSNs can be used to assess and test the 
suggested technique. Future work can compare the efficiency and 

TABLE 7  Comparison of the proposed method with state-of-the-art techniques.

Dataset Related works Detection/prevention technique Best accuracy

WSN-DS Almomani et al. (2016) Multilayer Perceptron; Artificial Neural Network (ANN) 91.96% (average of classification accuracies for 

all 4 attacks)

Davahli et al. (2020) Convolutional Neural Network (CNN); Long Short-Term Memory 

(LSTM)

94.4%

Proposed method Hybrid Grasshopper Optimization Algorithm and Genetic 

Algorithm (GOA-GA) + KNN

95.51%
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cost of the proposed GOA-GA to other cutting-edge methods for 
dimensionality reduction, such as Principal Component Analysis.
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