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An auditable and source-verified
framework for clinical Al decision
support: integrating
retrieval-augmented generation
with data provenance

Fidelis Fidelis Alu* and Sunkanmi Oluwadare

School of Information Technology, University of Cincinnati, Cincinnati, OH, United States

Artificial intelligence (Al) has shown promise in supporting clinical decision making,
yet adoption in healthcare remains limited by concerns regarding transparency,
verifiability, and accountability of Al-generated recommendations. In particular,
generative and data-driven CDS systems often provide outputs without clearly
exposing the evidentiary basis or reasoning process underlying their conclusions.
This article presents a conceptual framework for auditable and source-verified
Al-based clinical decision support, grounded in principles from evidence-based
medicine, data provenance, and trustworthy Al. The proposed architecture integrates
a curated medical knowledge base with explicit provenance metadata, a retrieval-
augmented reasoning (RAG) engine that links generated recommendations to
identifiable clinical guidelines and peer-reviewed sources, and a tamper-evident audit
logging mechanism that records system inputs, retrieved evidence, and inference
steps for retrospective review. This work does not introduce a new algorithm
nor report a prototype implementation; rather, it synthesizes existing technical
approaches into a coherent system design intended to improve traceability, clinician
trust, and regulatory readiness. Key feasibility challenges are discussed, including
knowledge-base governance and updating, citation fidelity in RAG architectures,
bias propagation from underlying evidence, latency and usability trade-offs, privacy
considerations, and alignment with emerging regulatory frameworks such as
FDA Software as a Medical Device guidance and the European Union Artificial
Intelligence Act. The article concludes by outlining a staged evaluation roadmap
involving simulation studies and clinician-centered user research to guide future
implementation and empirical validation.

KEYWORDS

artificial intelligence (Al), auditability, clinical decision support (CDS), data
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1 Introduction

Advances in machine learning (ML) and large language models (LLMs) have raised hopes
for Al-powered clinical decision support (CDS). These systems show promise in increasing
diagnostic accuracy, customizing treatment recommendations to individual patients, and
helping clinicians quickly find relevant medical information in fast-paced clinical settings
(Workum et al., 2025). Recent research indicates that advanced LLMs can sometimes
effectively match medical experts in performing tasks like case diagnosis (Workum et al.,
2025). Healthcare organizations have begun piloting generative AI (GenAl) to draft clinical
notes and answer clinicians’ questions, reflecting a growing interest in integrating Al assistants
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into clinical workflows. In a recent survey on GenAl and medical
references, one in 10 doctors already use ChatGPT or similar models
in their day-to-day work (Wu et al., 2024). High-profile cases, such as
instances where ChatGPT correctly identified a rare condition after
numerous doctors failed, have fueled optimism about the potential of
Al to aid in medical diagnosis (Wu et al., 2024).

However, even with the significant promise real-world adoption
has been slow because clinicians are wary of opaque algorithms that
they cannot verify (Tun et al., 2025). Traditional Al often generates
recommendations without explanation, leaving users unable to
validate the reasoning (Amann et al., 2022). This opacity can erode
trust; indeed, leading studies have repeatedly identified that lack of
transparency is a major barrier to AI-CDS adoption (Tun et al., 2025;
Amann et al, 2022). In practice, clinicians say they prefer
recommendations that explicitly cite medical guidelines or high-
quality studies (Hurt et al., 2025). This concept corresponds with the
theory of evidence-based medicine (EBM) established in the 1990s,
which asserts that therapeutic judgments must amalgamate personal
competence with the most reliable external evidence Sackett et al.
(1996). Initial informatics initiatives in Clinical Decision Support
(CDS) reflected this notion: Sim et al. (2001) advocated for the
incorporation of both literature-derived and practice-derived data
into machine-interpretable knowledge bases to facilitate decision-
making (Sim et al., 2001). Likewise, emerging guidelines from experts
and regulators emphasize that Al tools should be safe, validated, and
continuously monitored (Labkoff et al., 2024). In particular, regulators
are increasingly focusing on transparency and traceability. For
example, the U.S. FDAs Good Machine Learning Practice principles
for medical devices highlight that appropriate information about an
Al system’s logic (how outputs are reached) and performance should
be clearly communicated to users (U.S. Food and Drug Administration,
2024). Effective transparency ensures that information impacting
patient risks and outcomes is conveyed in a way that fits the clinical
user’s needs (U.S. Food and Drug Administration, 2024). Similarly, the
European Union’s AT Act (2024) will classify most clinical Al systems
as “high risk;” meaning they must meet rigorous requirements for risk
management, transparency, data quality, non-discrimination,
technical documentation, and human oversight. In medicine, where
decisions affect patient lives, any AI reccommendation must be reliable
and explainable. One way to build trust is to make every Al-generated
suggestion source-verified: each claim should trace back to a
trustworthy medical reference. Another is to make the system fully
auditable: every step from data input to final answer should be logged
so clinicians can later review why and how a decision was made.

To address these trust requirements, we present a conceptual
framework and proposal for AI-based CDS that enforces two trust-
enabling features: source verification (every claim in the output traces
to an authoritative source) and auditability (all inputs, sources, and
reasoning steps are logged). This paper describes a theoretical design
rather than an implemented system. In our design, a user’s patient
query triggers a search of curated medical literature and databases; an
AI'module then synthesizes an answer that includes exact citations to
the retrieved sources. Meanwhile, a secure audit trail records which
data and references were used and how the final suggestion was
derived. This way, clinicians can see why a reccommendation was made
and trace it back to original evidence, rather than accepting an
unexplained suggestion. This design allows clinicians to both verify
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recommendations in real time and review them retrospectively,
providing transparency and accountability.

Our contributions are as follows: (1) we define design principles
for auditable, source-verified Al in healthcare, aligned with established
trust factors such as transparency, reliability, and human-centered
design (Tun et al, 2025; Amann et al., 2022); (2) we propose a
conceptual architecture for AI-CDSS that integrates evidence retrieval,
citation, and audit logging as a synthesis of existing concepts rather
than a built prototype; and (3) we situate this framework within the
context of regulatory expectations and provenance research, for
example, aligning with FDA's Software as a Medical Device guidance
and the EU AI Act’s transparency and oversight requirements
outlining a roadmap for future implementation and evaluation
through simulation studies and clinical user trials.

The following sections review related work on Al trust and
provenance, describe the proposed framework in detail, and discuss
implications, limitations, and future steps.

2 Background and related work

The pursuit of source verification in clinical decision support
(CDS) is not new; it has been a foundational principle of Evidence-
Based Medicine (EBM) since the 1990s (Sackett et al., 1996). Early
medical informatics initiatives focused on constructing machine-
interpretable knowledge bases encoded as static, rule-based systems
(Sim et al., 2001). Because these systems used deterministic logic
derived directly from curated guidelines, they were intrinsically
auditable: the chain from input to recommendation could be
reconstructed, and the underlying rules could be manually inspected.

The current generation of LLM based CDS systems presents a
qualitatively different paradigm. Rather than applying fixed rules,
LLMs engage in probabilistic reasoning over high-dimensional
representations. This flexibility enables richer clinical dialogue but
also introduces well-documented risks, including hallucination and
unstable citation behavior. Traditional EBM-style CDS architectures
were never designed to manage these risks. The novelty of the present
framework lies in explicitly anchoring probabilistic model behavior to
a deterministic evidence base, and in treating verifiable provenance
not as a user-interface feature but as a core architectural constraint.

Several systems already incorporate retrieval mechanisms or
citation displays alongside generated answers. These RAG systems
surface evidence-based documents with Al-generated summaries.
However, these approaches typically operate at the level of “citation-
assisted generation,” in which evidence is attached to the output after
the reasoning has already occurred. In contrast, the framework
proposed here embeds verification into the inference chain itself: the
model is constrained to reason only over verified retrieved sources,
and the full retrieval and decision pathway is recorded in an auditable
log. Thus, the contribution of this work is not merely adding citations,
but converting provenance into a first-class control mechanism for
clinical AI behavior.

Trust in CDS systems has received increasing attention in recent
years. Recent surveys and reviews identify core factors affecting
clinician trust: transparency (how the system’s output is generated),
usability, clinical reliability, validation, ethics, and human-centered
design. In one systematic review of 27 studies, Tun et al., (2025)
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summarize eight themes crucial to trust in AI-CDSS: (1) system
transparency, (2) user training, (3) usability and workflow integration,
(4) clinical reliability and consistency, (5) validation across contexts,
(6) ethical and fairness concerns, (7) patient-centeredness, and (8)
customization and clinician control (Tun et al., 2025). Common
barriers include algorithmic opacity and lack of user training, whereas
enabling factors include transparent design and proven reliability. In
particular, system transparency, often tied to explainability, repeatedly
comes up as essential for trust (Ferrario and Loi, 2022). Consistent
with this, many authors argue that AI recommendations should come
with explanations or source links so clinicians can verify them. For
example, Hurt et al. (2025) evaluated the OpenEvidence Al platform,
which provides answers explicitly citing evidence-based medicine
sources; physicians rated its recommendations as very clear, relevant,
and well-supported by citations. In feedback, users expressed that
seeing official guideline references boosted their confidence, helping
prevent “Al hallucinations” (false information) by anchoring each
claim to real documents. These findings suggest that integrating
evidence retrieval can make AI-CDSS outputs more trustworthy (Hurt
etal., 2025).

However, as Amann et al. (2022) point out, transparency is not
one-dimensional: “Explainability is but one measure of achieving
transparency; other measures include detailed documentation of
datasets and algorithms, as well as open communication of the
system’s capabilities and limitations” (Amann et al., 2022). In other
words, even if a system does not produce a human-readable
explanation, it can still be trustworthy if it documents its workings and
provides evidentiary support.

Regulatory and professional guidelines echo these points. Recent
mandates, such as the European Union (2024) and the U.S. Food and
Drug Administration guidelines for transparency in Al-enabled
medical devices (2024). Labkoff et al. (2024) also convened an expert
panel which issued recommendations for Al-enabled CDS. Key
among them are building safe and trustworthy systems and establishing
robust validation, verification, and certification processes. The panel
emphasized national-level monitoring (e.g., registries or mandatory
reporting for Al tools) and thorough documentation and training for
end users (Labkoff et al., 2024). Their envisioned framework covers
model training, explainability, continuous monitoring, and regulatory
oversight—essentially a lifecycle approach to Al safety (Labkoff et al.,
2024). Such measures align with our goals: by design we enforce both
transparency (through source links and documentation) and the
capacity for safety monitoring (through audit logs that regulators or
hospitals could review).

10.3389/frai.2026.1737532

Other researchers have explored related ideas. Explainable AI
(XAI) has been widely studied in clinical contexts, but simply
providing post-hoc explanations can be misleading or insufficient. A
different line of work focuses on provenance and evidence retrieval.
For example, OpenEvidence is an Al system that answers doctors’
questions by drawing on “trusted sources” in evidence-based medicine
(Hurt et al., 2025). In a recent evaluation, it returned clear, relevant
recommendations (with citations) for primary care cases, reinforcing
physician decisions (Hurt et al., 2025). This shows the promise of
source-driven Al clinicians value seeing concrete references. Our
approach builds on this concept but embeds it into a full CDS platform
with integrated logging for accountability (Figure 1).

Finally, data provenance tools and standards suggest technical
ways to implement auditability. A recent study defines data provenance
as “attributes about the origin of health information at the time it is
first created and tracks the uses and permutations of the health
information over its lifecycle” It is important to note that outside of
healthcare, the importance of provenance and audit logs for
accountability is long recognized in computer science and data
engineering. Provenance systems often rely on detailed logs,
cryptographic checks, or even blockchain techniques to ensure data
integrity and traceability (Ahmed et al., 2023). These mechanisms
provide accountability: every read or write action can be traced,
enabling audits in case of errors or misconduct (Ahmed et al., 2023).
In particular, tamper-evident audit logs can offer a comprehensive
record of system events, enabling traceability and accountability: any
read/write or inference step can be examined after the fact. By logging
each step of data collection and processing, provenance tools allow
investigators to trace errors or biases back to specific inputs. More
generally, audit logs (also called audit trails) catalog every system
event (data read/writes, inferences, user actions) with timestamps and
user IDs. Well-designed audit logs offer “transparency and integrity”
of records, serving as an evidential support layer (Regueiro et
al,, 2021).

To prevent tampering, modern approaches often use
cryptographic or distributed ledgers. For example, blockchain-
based audit mechanisms have been proposed for healthcare records
and Al systems. Regueiro et al. (2021) describe a blockchain audit-
trail system where each log entry is stored on a distributed ledger,
so it “cannot be modified at all” once written. This ensures
immutability: once information is on the chain, it “can never be
deleted” and thus any audit trail remains fully traceable In short,
blockchains offer integrity and non-repudiation for audit logs
(Regueiro et al., 2021). Similar ideas appear in other domains:

C) Al reasoning synthesizes
answer with inline citations

D) Final answer returned
/ with references to sources

source IDs

final output

inference steps
Immutable audit log
(queries, sources, steps, outputs)

>
B) Evidence retrieval from
curated knowledge base

S

A) Clinician enters _
patient data + question P

FIGURE 1

module logs all steps.

Illustrates the workflow: (A) Clinician enters patient data and question; (B) system retrieves relevant evidence from its curated database; (C) reasoning
engine synthesizes an answer, marking each point with reference IDs; (D) final answer and references are presented to the user, while a background

Frontiers in Artificial Intelligence

03

frontiersin.org


https://doi.org/10.3389/frai.2026.1737532
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Alu and Oluwadare

financial institutions, digital forensics, and distributed systems
routinely require tamper-evident logs (often append-only databases
or ledgers) to enforce accountability. However, the computational
overhead and latency of public blockchains can be a barrier in
clinical settings; thus, our framework prioritizes permissioned
architectures and hybrid storage models to ensure performance
matches the speed of clinical care. The cryptographic provenance
techniques developed in data engineering thus provide models for
clinical Al every data point, model update, and Al recommendation
can be cryptographically timestamped and logged so that any
downstream user (clinician, auditor or regulator) can retroactively
verify exactly what happened.

In summary, past work on XAI, trust surveys, regulatory
frameworks, and data provenance all point to the same conclusion: to
be accepted in medicine, Al systems must be transparent in evidence
and fully auditable in operation. We next describe our proposed
framework that puts these principles into practice.

3 Methods (framework design)

The framework was developed by synthesizing insights from the
above literature. We identified core requirements for trust
(transparency, reliability, user control) and translated them into
system design requirements. In brief, we require an AI-CDSS where:
(1) every recommendation is backed by identifiable sources; (2) every
stage of processing is recorded; and (3) outputs are delivered in a user-
friendly manner. To meet these goals, we sketched a high-level
architecture with three principal components: a Data/Knowledge
Layer for authoritative content, a Retrieval and Reasoning Engine to
answer queries with evidence, and a User Interface with Audit Logging
(Figure 2 presents the high-level architecture). Each design decision
is grounded in prior work: for example, our evidence retrieval
mechanism is inspired by platforms like OpenEvidence (Hurt et al.,
2025), and our audit log design follows best practices from provenance
research (Ahmed et al., 2023). We then iteratively refined this design
to ensure it could theoretically satisfy the trust themes identified by
Tun et al.,, (2025) and the recommendations of Labkoff et al. (2024).

10.3389/frai.2026.1737532

No empirical experiments or data collection were involved, as this is
a conceptual, future-oriented system design.

3.1 Proposed framework

The system architecture (see Figure 2) consists of the following
major modules:

3.1.1 Data and knowledge layer

This layer serves as the frameworK’s foundational repository,
curated to ensure both clinical validity and technical traceability. It
integrates structured data (e.g., clinical guidelines, drug interaction
databases) with unstructured sources (e.g., PubMed abstracts and
peer-reviewed medical textbooks).

Provenance and evidence grading: Every content item is tagged
with comprehensive provenance metadata, including authors,
publication dates, and source types. To address the requirement for
high-quality evidence, we also incorporate evidence grading [e.g.,
GRADE levels (Guyatt et al., 2008)] into the metadata. This allows the
system to record not just where a fact came from, but the clinical
strength of that evidence. For example, if the system utilizes a specific
fluid resuscitation guideline, it records the exact section and version,
ensuring that the “source of truth” remains unambiguous during a
retrospective audit.

Terminology services: This layer houses the standardized
ontologies, specifically SNOMED-CT (Donnelly, 2006) and UMLS
(Bodenreider, 2004), that the system uses to bridge the gap between
messy clinical language and formal medical evidence. By maintaining
these terminology services at the data layer, the system can map
heterogeneous user queries (e.g., “high blood pressure”) to unified
concepts (e.g., “Hypertension”), ensuring that retrieval is based on
semantic meaning rather than just keyword matching.

Bias mitigation and curation: To address the potential for AI to
amplify medical disparities, this layer includes a Bias Auditing
Protocol. During the curation process, sources are screened for
representative diversity in their study populations. If a guideline or
study is identified as having significant demographic gaps, it is flagged

Data & Knowledge Layer

Curated Repository
(guidelines, studies,

drug refs, textbooks) search

Provenance Metadata
(authors, source, date,
version, section)

relevant excerpts

provenance filters Retrieval
synonym mappint (keyword + semantic)

Terminology Services
(SNOMED, UMLS, etc.)

FIGURE 2

Al Reasoning Module
(LLM/ inference engine)

query + optional patient context

Retrieval & Reasoning Engine

Citation Generator
= (inline refs / IDs)

answer draft
final output

reasoning steps Audit Logging

e
Immutable Audit Log
(timestamped steps,
source IDs, outputs)

anigwer + citations
User Interface

Clinician UI
(Query, Answer, Citations)

query

retrieved source IDs

Shows a block diagram with modules and data flow: user interface, knowledge base, retrieval engine, Al model, citation generator, and audit logger.
The diagram shows the major components and data flow. The clinician interacts via a user interface which sends the query (with relevant patient data)
to the system. The nowledge ase (curated medical repository) is queried by the etrieval odule, which returns relevant documents. The Al easoning
ngine (LLM) then generates an answer using those documents, and a itation enerator ensures references are attached to the answer. Meanwhile, an
udit ogger records each step (query, retrieved sources, generated answer, etc.) into a secure log storage. Finally, the answer with its citations is
displayed to the clinician. The numbered sequence (1-4) indicates the workflow: (1) ser's query in, (2) evidence retrieved, (3) answer produced with
citations, (4) answer and references returned to user, with all steps logged in the background.
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within the metadata. This allows the Reasoning Engine to either weigh
that evidence differently or provide an explicit “Bias Warning” to the
clinician, ensuring that “source-verification” also encompasses an
assessment of evidence equity.

Maintenance and integrity: The knowledge base is not static; it is
updated continuously as new evidence emerges. Critically, these
update operations are themselves recorded as transactions in the audit
log. This creates a history of “knowledge evolution,” allowing an
auditor to see exactly what the “state of medical knowledge” was at the
time any specific recommendation was made. This ensures the system
remains current while maintaining a clear, identifiable provenance
trail for every fact in the repository.

3.1.2 Retrieval and reasoning engine

When a clinician poses a patient-specific question (e.g., “What is
the next best step for a diabetic patient with high cholesterol?”), the
system first retrieves relevant evidence. Initiates a multi-stage
processing pipeline. To address the inherent ambiguity of clinical
language, the system first passes the query through a Semantic
Mapping and Disambiguation sub-layer. Rather than relying on
simple keyword matching, which fails to account for synonyms (e.g.,
“SOB” vs. “Shortness of Breath”) or polysemy (e.g., “MS” meaning
Multiple Sclerosis or Mitral Stenosis), the engine utilizes terminology
services integrated with SNOMED-CT (Donnelly, 2006) and UMLS
(Bodenreider, 2004). This layer performs “entity linking,” mapping
unstructured user input and patient record data into normalized
medical concepts. This ensures the system understands the clinical
intent before it ever queries the knowledge base.

Following disambiguation, the search module matches keywords
in the query (including data from the patient’s record) against the
knowledge base and fetches all pertinent sources (for instance, the
latest diabetes and lipid management guidelines, and recent clinical
trials on cholesterol-lowering therapy). These documents serve as the
factual foundation. Next, an Al reasoning module (built on a RAG
architecture) processes the retrieved texts together with the patient
data to generate a recommendation. Crucially, the output is formulated
to link each claim back to specific sources: the text includes inline
citations or reference IDs corresponding to the original documents.
This is analogous to how a clinician might cite a guideline when
explaining a decision. By construction, every assertion in the
recommendation is supported by a known source from the curated
repository. In practice, the answer might appear as plain-language
guidance with superscript numbers or footnotes pointing to
referenced studies. This approach mirrors evidence-based practice and
was shown effective in prior work: for example, Hurt et al. (2025)
found that providing clear citations in Al-generated answers made
them highly credible to physicians (Hurt et al., 2025). Because all
sources are recorded, the chain of reasoning can be revisited later if
needed. However, a significant technical challenge persists: RAG
systems can sometimes misattribute citations or fail to retrieve the
most relevant context. Our framework incorporates specific mitigation
strategies:

1. Confidence scoring: Each retrieved passage is assigned a
relevance score; only those above a high-certainty threshold are used
in reasoning.

2. Ensemble retrieval: Using multiple search algorithms (e.g.,
semantic search plus BM25) to ensure the most relevant context is
captured.
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3. Post-hoc verification: A secondary “critic” agent verifies that the
final generated recommendation is actually supported by the cited text
before it is displayed to the clinician.

3.1.3 Audit logging Interface

The system maintains an immutable audit log capturing the full
decision process. At runtime, every action is recorded with a timestamp.
The log includes the original user query, any patient data elements
accessed (stored as cryptographic hashes to protect privacy), the unique
identifiers (IDs) of retrieved sources, and the exact steps the reasoning
engine took. Concretely, the inference_chain field would capture the
specific retrieved sentences or data points used to support each claim in
the final output, along with any intermediate reasoning steps.

In technical terms, the system writes structured log entries (akin
to database transaction logs) for each operation. A typical log entry
would contain fields such as:

{timestamp, user_id, session_id, query, patient_data_accessed
(hashed), retrieved_doc_IDs, inference_chain, final_output_ID}.

To address concerns regarding computational overhead and clinical
latency, this framework proposes a hybrid storage model utilizing a
permissioned distributed ledger (e.g., Hyperledger Fabric) (Androulaki
etal,, 2018). Unlike public blockchains, a permissioned DLT ensures that
only authorized institutional nodes participate, providing sub-second
latency required for time-sensitive clinical settings. In this model, the
“heavy” clinical data remains in secure, HIPAA-compliant off-chain
storage, while only the cryptographic “hash” (the digital fingerprint) of
the log entry is committed to the ledger.

This architecture makes the log tamper-evident and facilitates
efficient querying during audits. Each log entry uses unique identifiers
so that an answer (e.g., “Answer #1234”) can be linked to its constituent
sources (“used Guideline A, sec 5.3; Trial B, NEJM 2018, etc.). Access
controls and digital signatures ensure that if a clinician or regulator
later questions a recommendation, they can “replay” the audit record.
They would see exactly what information the AI saw and how it
combined those facts, satisfying the transparency requirements of the
European Union (2024) and the U.S. Food and Drug Administration
(2024) guidelines As Ahmed et al. (2023) note, logs of this kind
provide a “comprehensive record” that enables traceability,
accountability, and auditing of the system. In our design, the log
operates invisibly in the background: users receive only the final
answer and its citations, but the full provenance is preserved behind
the scenes for review if necessary.

By combining these components, the framework achieves the
stated goals. Source verification is ensured because every output
includes explicit references to the original literature. Auditability is
ensured because the entire chain of data and reasoning is recorded.
The user interface is kept straightforward: clinicians see clear
recommendations in everyday language, numbered by reference (not
raw model outputs or code). In summary, the system is designed so
that users can trust an Al answer in the same way they trust clinical
guidelines, by checking the cited evidence and, if necessary, reviewing
the logged reasoning.

The above three modules work in concert to fulfill our key objectives.
The output to the clinician is a concise, plain-language recommendation
(e.g., a diagnostic or treatment suggestion) with clearly marked references
supporting each part of it. The clinician can click on a reference to see,
for example, the guideline excerpt or PubMed abstract that was the
source. In this way, source verification is achieved at the point of care.
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Simultaneously, auditability is achieved behind the scenes by logging
everything. If questions arise later (e.g., “Why did the Al recommend
this? On what basis?”), the log can be consulted to reconstruct the
scenario. The user interface remains as straightforward as possible; it
might look like a normal CDS advisory or an entry in a clinical note with
superscript citations. We intentionally do not expose raw model internals
or complicated probability scores to the end-user, as that could confuse
or overwhelm clinicians. Instead, clinicians see advice that resembles an
annotated guideline or an evidence-based summary. This respects the
fact that usability and workflow integration are critical for adoption. The
design lets physicians focus on the content of the recommendation, with
the option to drill down into sources if they want more detail.

In theory, this architecture addresses multiple trust themes. It
provides transparency (via explicit citation of sources), reliability (by
grounding outputs in vetted, up-to-date evidence), and accountability
(through the audit log of decision-making). These theoretical
strengths, of course, must be proven in practice. We stress again that
this work is conceptual. We have not built or tested this system yet, so
its practical effectiveness is unconfirmed. The framework assumes the
existence of a comprehensive, well-maintained knowledge base and
an Al model that can integrate with it, both of which pose non-trivial
challenges. In the next sections, we discuss these feasibility issues and
outline how we plan to evaluate the approach.

3.1.4 Integration and interoperability

A practical deployment of the proposed framework requires
integration with existing clinical information systems, particularly
electronic health record (EHR) platforms. In real-world environments,
EHR interoperability remains a significant barrier to clinical decision
support adoption, and any trustworthy Al architecture must therefore
explicitly account for these constraints. Rather than assuming
frictionless integration, our framework is designed to align with
established interoperability standards such as HL7 v2, HL7 FHIR, and
SMART-on-FHIR.

In an implemented system, FHIR resources (e.g., Patient,
Observation, Condition, MedicationRequest) would be used to ingest
structured patient context data into the reasoning pipeline. However,
variation in vendor-specific FHIR implementations, incomplete data
fields, and site-specific customization pose substantive challenges.
Additionally, a substantial proportion of clinically relevant
information exists in unstructured clinical notes, which requires
entity extraction and disambiguation prior to use. Mapping between
terminologies such as SNOMED CT, ICD-10, RxNorm, and UMLS
is similarly non-trivial and introduces opportunities for
semantic drift.

Accordingly, interoperability in this framework is not treated as
an engineering inevitability but as a design constraint. Future
prototype development will include incremental integration layers
tested in controlled pilot environments rather than assuming universal
deployment across heterogeneous EHR infrastructures.

3.1.5 Human-centered design: mitigating
cognitive load

Clinicians operate under significant time pressure, and any
decision support tool that increases cognitive load risks non-adoption
regardless of technical sophistication. While our framework
emphasizes explicit source citation and auditability, presenting full
evidentiary chains by default could overwhelm users rather than assist
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them. To address this, the envisioned implementation adopts a design
principle of progressive disclosure of information.

In practice, this means that the system would initially present
concise, high-level recommendations accompanied by a small number
of primary citations with the highest evidence strength. Users could
then expand additional layers such as detailed rationale, secondary
sources, evidence synthesis, and full audit trail only when desired. This
approach balances transparency with efficiency by surfacing depth
only when needed. In addition, user interface mechanisms such as
collapsible sections, summarization of long passages, warning banners
for low-confidence recommendations, and optional “audit view”
modes are intended to support rapid clinical decision making without
sacrificing traceability.

By explicitly prioritizing workflow alignment and cognitive load
reduction, the framework seeks not only to be technically trustworthy
but practically usable in real clinical environments.

3.2 Planned evaluation

Our goal with this evaluation plan is to show that this framework
is not just a concept, but something that can actually work in practice.
We focus on three things: whether the system technically does what
we claim, whether clinicians can realistically use it, and whether it
improves decision-making in a measurable way. We are not claiming
full live deployment yet; instead, we are building strong feasibility
evidence step-by-step.

3.2.1 Phase 1: Simulation testing

First, we will test the system in-silico using PubMedQA (Jin et al.,
2019) and MedQA (Jin et al., 2020), along with clinical vignettes. Here we
will look at accuracy of answers, but more importantly, how well citations
actually support the statements the model makes. We will measure
citation precision and recall, hallucinated citations, consistency across
repeated runs, and the extra time added by verification and logging. We
will also run the system with and without the verification layer so we can
clearly see what the verification component is adding.

3.2.2 Phase 2: Clinician study with sample size
and power

Next, we will study how clinicians actually use the system. We
plan to recruit about 50-60 clinicians (a mix of residents and
attendings). Reviewer 3 asked specifically about power, so we address
that directly here: based on effect sizes reported in earlier work on
AI-CDSS trust and workload measures, a sample of this size should
give us around 80% power to detect meaningful differences in trust
and cognitive workload at @ = 0.05. In this study, clinicians will work
through realistic cases using (a) no Al support, (b) a normal RAG tool
with citations, and (c) our framework. We will measure time-to-
decision, usability (SUS), cognitive load (NASA-TLX), and trust in
automation. We will also actually ask them how it felt to use it—did
transparency help, or did it slow them down?

3.2.3 Phase 3: Decision quality and outcome
proxies

Finally, we will look at whether the system improves decision
quality. We are realistic here: full patient-outcome trials are beyond the
scope of this paper. So instead we will use reasonable proxies, such as

frontiersin.org


https://doi.org/10.3389/frai.2026.1737532
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Alu and Oluwadare

guideline-concordant decisions, avoiding contraindicated medications,
correct dosing, correct screening intervals, and when clinicians choose
to override the AL These are practical indicators that link directly to
patient safety without pretending we are already running a live trial.

3.3 Clinical simulation

To demonstrate the feasibility of the proposed framework, we
provide a functional walkthrough using a high-stakes clinical scenario:
the management of a patient with suspected sepsis in an Emergency
Department. While this is a conceptual analysis, the simulation
illustrates how the disparate layers of the architecture, Semantic
Mapping, Retrieval-Augmented Generation (RAG), and Distributed
Ledger Technology (DLT), function as a unified system to ensure
safety and accountability.

3.3.1 Step 1: Input and semantic disambiguation

The process begins when a clinician enters a bedside query: “The
patient has suspected sepsis and low blood pressure. What is the
recommended fluid protocol?” Before retrieval occurs, the engine
identifies the patient’s vitals from the integrated Electronic Health
Record (EHR), noting a mean arterial pressure (MAP) of 60 mmHg.

To resolve the inherent linguistic ambiguity in clinical language,
the Semantic Mapping Layer maps the clinician’s term “low blood
pressure” to the normalized concept “Hypotension” (SNOMED-CT:
45007003) (Donnelly, 2006). This step ensures that the subsequent
retrieval is based on standardized medical terminology rather than a
simple keyword match, grounding the ATs “understanding” in
recognized clinical ontologies (Bodenreider, 2004).

3.3.2 Step 2: Source-verified retrieval (RAG)

The Retrieval Layer queries the curated Knowledge Base, fetching
the Surviving Sepsis Campaign (SSC) International Guidelines (Evans
etal, 2021). Using a RAG architecture, the system extracts the specific
intervention for fluid management.

Simultaneously, a Bias Mitigation protocol evaluates the metadata
of the retrieved source. In this instance, it confirms the SSC guidelines
are a high-grade consensus source but flags the “Low Quality of
Evidence” associated with the specific fluid volume recommendation
(30 mL/kg) as defined by the GRADE levels (Guyatt et al., 2008). This
proactive check ensures the recommendation is presented with its
necessary clinical nuances, preventing the system from treating all
guidelines as having equal evidentiary weight.

3.3.3 Step 3: Recommendation and user interface
The system generates a concise, actionable recommendation for
the clinician:

Recommendation: Initiate 30 mL/kg IV crystalloid fluid
immediately for suspected sepsis-induced hypoperfusion. Source:
Surviving Sepsis Campaign 2021, Recommendation #12 (GRADE:
Strong recommendation, Low quality of evidence) [View Full Text]

This interface design prioritizes usability and minimizes cognitive
load. By presenting the recommendation first while keeping the
supporting evidence accessible via a direct link, the system provides
“just-in-time” guidance that respects the time constraints of acute
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care. This transparent linkage fulfills the requirement for human-in-
the-loop oversight mandated by emerging regulatory frameworks
such as the European Union (2024).

3.3.4 Step 4: Forensic audit logging

As the clinician acts on the recommendation, the Audit Logging
Interface executes a background transaction. To ensure the sub-second
latency required in time-sensitive clinical settings, the framework
utilizes a hybrid storage model on a permissioned distributed ledger
(Hyperledger Fabric) (Androulaki et al., 2018).

While the “heavy” clinical data remains in the hospital’s HIPAA-
compliant storage, a structured log entry, containing the original
query, the specific retrieved passage from the SSC guidelines, and a
cryptographic hash of the reasoning chain, is committed to the ledger.
This creates an immutable, timestamped record of the exact evidence
provided to the clinician. This “source-to-decision” trail provides the
technical provenance necessary to satisfy FDA transparency guidelines
(2024) and institutional liability requirements.

4 Discussion

Although no working system has been built, the proposed design
illustrates how known methods could be combined to meet trust
requirements for medical Al First, by anchoring each claim in verified
sources, the system would mitigate the risk of unsupported
“hallucinations” associated with most LLMs. Any factual statement it
makes can be directly checked against the cited guideline or study text.
This is a critical safeguard: physicians participating in Hurt et al’s
(2025) study noted that seeing official citations increased their
confidence in the AT's suggestions (Hurt et al., 2025). In effect, the AI
operates like a junior physician who always cites a textbook when
giving advice. Second, the transparent linkage to evidence addresses
a top concern from the trust literature. Tun et al., (2025) emphasize
that system transparency, being able to understand how outputs are
derived is essential for user trust (Tun et al., 2025). Our design
provides transparency at two levels: both by exposing evidence sources
to the user and by maintaining an internal log for deeper inspection.

Moreover, this framework aligns with recommendations from
informatics experts. Labkoff et al. (2024) advocated a lifecycle approach
where Al tools are continuously monitored and validated (Labkoff et
al,, 2024). A full audit log, as we describe, is exactly the kind of safety
monitoring tool they envisage: it would allow healthcare organizations
to track AI performance over time and investigate any adverse events.
From an ethical standpoint, detailed logging and source documentation
also support fairness and liability concerns by showing exactly what
information influenced a decision (Ahmed et al., 2023).

Finally, the user experience is kept clinician-centered. Rather than
presenting complex model internals, the system outputs resemble
annotated clinical guidelines. Physicians can focus on the medical
content and (if desired) review the cited references themselves. This
respects the finding that usability and workflow integration are key
enablers for Al adoption (Tun et al., 2025). In summary, the proposed
architecture conceptually addresses multiple trust themes identified
in recent reviews like that of Tun et al., (2025). It offers transparency
through explicit citation, reliability by grounding outputs in vetted
guidelines, and accountability through audit logging. These theoretical
strengths must ultimately be confirmed in practice. 4.1 Limitations.
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This work is purely conceptual. We have not implemented,
tested, or empirically validated the proposed system. As such, its
practical effectiveness is unknown. The framework assumes the
existence of a comprehensive, up-to-date medical knowledge base;
building and maintaining that repository (with accurate provenance
metadata) would itself be a major challenge. This knowledge base
curation presents a monumental task involving content licensing,
continuous updates to reflect new evidence, resolution of conflicting
guidelines, and mitigation of inherent biases in the source materials.
The system’s reliability is entirely contingent on overcoming these
challenges.

We have also assumed that a language model can reliably
synthesize coherent recommendations from retrieved text; in practice,
integrating GenAlI with strict citation requirements may require
careful engineering. As noted in Section 3.1, the inherent limitations
of RAG architectures, particularly citation misattribution, pose a
significant technical risk to the core source verification feature.
Mitigation strategies will be essential in any future implementation.

Other limitations include performance and usability trade-offs.
Retrieving and logging every step could introduce latency or complexity
that might impede real-time clinical use. Users may also be
overwhelmed by too many references or auditing details if the interface
is not well-designed. Moreover, linking to sources does not automatically
ensure correctness if the underlying evidence is outdated or biased. This
“garbage in, garbage out” problem means the frameworK’s reliability is
entirely contingent on the quality and lack of bias in the underlying
knowledge base. Finally, strict logging raises privacy and security
considerations; the design would need to ensure patient data are
handled in compliance with regulations like HIPAA and GDPR. All
these issues would need to be addressed in future implementations.

4.1 Future work

Key next steps include implementation and evaluation. We plan
to develop a prototype system based on this framework and integrate
it with electronic health records for specific use cases (e.g., managing
hypertension or diabetes). User testing with clinicians will be needed
to assess whether the source-verification and audit features actually
improve trust and decision quality in practice. Quantitative
evaluations could compare the accuracy, usability, and user confidence
of our system versus a conventional AI-CDS.

Other research directions include optimizing the retrieval and
reasoning components (e.g., experimenting with different retrieval
algorithms and language models) and developing robust methods to
mitigate RAG limitations, such as citation verification modules.
Improving the audit log. We will also need to explore how to update
the knowledge base continually and how to streamline the user
interface so clinicians can easily navigate the references and logs
without undue burden. Finally, it will be important to engage with
ethicists and regulators to ensure that the framework meets legal and
professional standards for Al in medicine.

4.2 Bias mitigation and evidence equity

A significant concern in clinical Al is that “source-verification”
alone does not guarantee accuracy if the underlying evidence is
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fundamentally flawed. Reviewers and ethicists correctly point out
that medical literature often contains inherent biases, particularly
regarding demographic representation. If the knowledge base consists
with “verified”

recommendations will merely amplify those disparities, a technical

of studies skewed populations, the AIs
“garbage in, garbage out” scenario.

To address this, our framework proposes a Diversity-Audit
during the knowledge base curation phase. This is a proactive
metadata layer that flags the demographic composition of the
source material. The necessity for this is underscored by current
statistics: for example, according to FDA 2020 drug trial snapshot
while Black/African American individuals make up approximately
13% of the U.S. population, they accounted for only 8% of clinical
trial participants for FDA-approved drugs in 2020. Similarly,
Hispanic/Latino participation was roughly 11% despite
representing 19% of the population (US. Food and Drug
Administration, 2020).

By implementing a Diversity-Audit, the system can alert clinicians
when a recommendation is based on evidence with poor representative
parity. This allows the framework to move beyond simple technical
verification toward a model of “Evidence Equity; where the AI
provides not just the most cited answer, but the one most relevant to
the specific demographic context of the patient being treated.

5 Conclusion

Trustworthy Al for medicine requires careful design. We have
presented a theoretical design for an Al-powered clinical decision
support system that is auditable and source-verified. By linking every
recommendation to explicit medical evidence and by logging all
reasoning steps, this approach could help ensure that AI enhances
medical decision making without compromising safety or
transparency. The framework synthesizes ideas from trustworthy AI
research and data provenance literature. Although yet to be
implemented and tested, it suggests one path toward AI-CDSS tools
that clinicians might genuinely trust: ones where every claim can be
traced to its origin, and every decision can be retrospectively
examined. As Al tools become more common in clinics, adopting
these standards will be crucial. In the future, we envision that
combining this framework with broader evaluations and continuous
monitoring should help ensure that AI truly enhances, rather than
undermines, medical decision making.
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