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Deep learning for detecting early 
gastric cancer with white-light 
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and meta-analysis
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Background and objectives: The aim of this study is to evaluate the performance 
of DL algorithms in diagnosing early gastric cancer (EGC) using white light 
endoscopic images.
Methods: A systematic literature search was conducted in PubMed, Embase, 
Cochrane Library, and Web of Science up to July 25, 2025. Sensitivity and 
specificity were pooled for internal and external validation sets. The comparison 
between DL algorithms and expert endoscopists was performed using paired 
forest plots. Meta-regression was used to identify sources of heterogeneity.
Results: In the internal validation, 15 studies comprising 37,037 images (range: 
433–9,650) were included. Pooled sensitivity and specificity were 0.91 (95% CI: 
0.82–0.95) and 0.93 (95% CI: 0.87–0.97), respectively. Meta-regression showed 
that heterogeneity in sensitivity and specificity was significantly associated 
with training dataset size. For external validation, 4 studies with 3,579 images 
(range: 200–1,514) were included, yielding pooled sensitivity and specificity 
of 0.82 (95% CI: 0.61–0.93) and 0.83 (95% CI: 0.74–0.90), respectively. No 
significant difference was observed between deep learning models and expert 
endoscopists in diagnostic sensitivity and specificity.
Conclusion: Deep learning algorithms exhibit high diagnostic performance 
in detecting early gastric cancer using white-light endoscopy. The diagnostic 
accuracy of DL models is comparable to that of expert endoscopists, supporting 
their potential role as a clinical decision-support tool.
Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD420251112418, identifier CRD420251112418.
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Introduction

Gastric cancer (GC) is a major global health burden, ranking fifth in incidence and fourth 
in cancer-related mortality worldwide (Sung et al., 2021). Early gastric cancer (EGC) is defined 
as adenocarcinoma that infiltrates the mucosa or submucosa of the stomach with or without 
lymph node metastases (T1, any N), which is associated with a favorable prognosis and a five-
year survival rate of approximately 95% (Öhman et al., 1980; GASTRIC (Global Advanced/
Adjuvant Stomach Tumor Research International Collaboration) Group et al., 2013; Katai et 
al., 2018; Yang et al., 2021). Consequently, early detection of EGC is critical for improving 
patient clinical outcomes.
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Upper gastrointestinal endoscopy has been established as the gold 
standard for the diagnosis of EGC (Machlowska et al., 2020). Among 
its various imaging modalities, white-light endoscopy remains the 
preferred technique in routine clinical practice due to its widespread 
availability and ease of use (Nagula et al., 2024). Evidence from South 
Korea has demonstrated that screening upper gastrointestinal 
endoscopy has significantly increased the detection of EGC and 
reduced mortality by approximately 50% (OR = 0.53, 95% CI: 0.51–
0.56) (Jun et al., 2017; Arnold et al., 2020). However, EGC lesions 
often present with subtle mucosal changes, such as microsurface 
architectural disruption and color irregularities, making their 
detection challenging under standard white-light endoscopy during 
routine screening (Zhang et al., 2011; Liu et al., 2023). As a result, the 
accuracy of EGC detection is highly dependent on endoscopist 
expertise, resulting in variability in diagnostic performance. Indeed, 
previous studies have shown that senior endoscopists with more than 
10 years of experience achieved significantly higher diagnostic 
sensitivity in detecting EGC compared to junior endoscopists with 
only 2–3 years of training (Tang et al., 2020; Yuan et al., 2022).

To address the aforementioned challenges, deep learning (DL)-based 
artificial intelligence (AI) has been increasingly applied to medical 
imaging, showing substantial promise in improving diagnostic sensitivity 
and specificity (Esteva et al., 2019; Gandhi et al., 2025c). Compared to 
traditional machine learning, DL algorithms possess several advantages. 
First, they possess the ability to perform feature self-learning from 
medical image datasets, eliminating the need for manual feature 
extraction and avoiding potential performance degradation caused by 
inaccurate or inconsistent segmentation. Second, they can be trained in 
an end-to-end manner, mapping raw images to diagnostic outputs while 
jointly optimizing all components of the network (Baldominos et al., 
2019; Wang et al., 2019b; Zhou Z. et al., 2023). In recent years, DL 
algorithms have been widely investigated in the field of pathological 
image analysis. Numerous studies have consistently demonstrated high 
diagnostic accuracy in tumor detection across multiple cancer types, 
including breast, lung, and colorectal cancers, as well as glioma (Wang 
et al., 2019a; Im et al., 2021; Li et al., 2022, 2025; Thalakottor et al., 2023). 
In the diagnosis of EGC using endoscopic images, a previous meta-
analysis found that conventional AI achieved a sensitivity of 86% and a 
specificity of 90%, demonstrating diagnostic accuracy comparable to that 
of experienced endoscopists (Chen P.-C. et al., 2022). However, the 
aforementioned meta-analysis included a limited number of studies and 
did not specifically evaluate the performance of deep learning algorithms 
in detecting EGC under white-light endoscopy.

Therefore, this systematic review synthesizes the latest 
developments and analyzes the diagnostic performance of DL 
algorithms on white-light endoscopy image datasets in EGC diagnosis. 
Meanwhile, our study further compared the diagnostic performance 
for EGC between DL algorithms and expert endoscopists. The findings 
will provide evidence-based support for the clinical translation of DL 
algorithms in upper gastrointestinal endoscopy for EGC.

Methods

This meta-analysis was conducted in full compliance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
of Diagnostic Test Accuracy (PRISMA-DTA) guidelines 
(Supplementary Table 1) (Mdf et al., 2018). Additionally, the study 
protocol has been registered in the PROSPERO database 
(CRD420251112418).

Search strategy

We conducted a systematic literature search using the PubMed, 
Embase, Cochrane, and Web of Science databases, with the search 
completed on July 25, 2025. The search strategy involved three groups 
of keywords: AI-related terms (e.g., artificial intelligence, deep 
learning), examination-related terms (e.g., endoscopes, gastroscopy), 
and disease-related terms (e.g., stomach neoplasms, gastric cancer). 
Both free-text keywords and Medical Subject Headings (MeSH) terms 
were used to ensure precision. Detailed search strategies are available 
in Supplementary Table 2. Additionally, the references of included 
studies were reviewed to identify additional relevant literature.

Inclusion and exclusion criteria

The studies were systematically selected according to the PITROS 
framework to ensure methodological clarity and reporting 
transparency. Participants (P): The participants in this study are 
patients diagnosed with EGC based on pathological examination. 
Index test (I): The index test involved the application of DL algorithms 
to analyze white-light endoscopic images for the automated detection 
of EGC. Target condition (T): The target condition was the presence 
of EGC. Diagnosis was based on histopathology, with patients 
categorized as EGC-positive or EGC-negative accordingly. Outcomes 
(O): The primary outcomes include sensitivity and specificity for the 
diagnosis of EGC. Secondary outcomes included a comparative 
assessment of sensitivity and specificity between DL algorithms and 
expert endoscopists in the diagnosis of EGC. Setting (S): The study 
setting includes retrospective or prospective data sources, covering 
public databases or local hospitals.

Exclusion criteria included studies on animals, non-original 
articles (e.g., reviews, case reports, meta-analyses, and letters to 
editors), and non-English publications due to accessibility issues. 
Furthermore, studies using conventional AI approaches that are 
unrelated to deep learning algorithms, such as classic machine 
learning techniques (e.g., support vector machines, logistic regression, 
and random forests), were excluded. In addition, studies utilizing 
endoscopic techniques other than white-light endoscopy, such as 
narrow-band imaging (NBI) or magnifying endoscopy, were excluded.

Quality assessment

To ensure a rigorous evaluation of the methodological quality of 
the included studies, we utilized the Quality Assessment of Diagnostic 
Accuracy Studies-2 (QUADAS-2) tool to assess the risk of bias in 
predictive modeling (Whiting et al., 2011). The quality evaluation 

Abbreviations: AI, artificial intelligence; AUC, area under curve; CNNs, convolutional 

neural networks; DL, deep learning; EGC, early gastric cancer; FN, false negative; 

FP, false positive; GC, Gastric cancer; MeSH, Medical Subject Headings; NBI, 

narrow-band imaging; QUADAS-2, Quality Assessment of Diagnostic Accuracy 

Studies-2; SROC, summary receiver operating characteristic; TP, true positive; 

TN, true negative.
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criteria included four domains: patient selection, index test, reference 
standard, and flow and timing.

Data extraction

Two independent reviewers (JXL and YDZ) screened the titles 
and abstracts of the remaining articles to identify potentially eligible 
studies, with a third reviewer (DYL) acting as an arbitrator to resolve 
any discrepancies. Extracted data were grouped into three categories: 
(1) study characteristics (first author, publication year, study design, 
country of origin, number of centers, diagnostic definition for EGC, 
and diagnostic algorithm); (2) image dataset composition (number of 
images in training, internal validation, external validation, DL and 
endoscopists comparative test set, and tile size); and (3) diagnostic 
performance outcomes (raw numbers of true positives, false positives, 
true negatives, and false negatives). For studies lacking information 
necessary for meta-analysis, we contacted the corresponding authors 
by email to request the missing data.

Outcome measures

The primary outcome measures were sensitivity and specificity for 
internal and external validation sets. Sensitivity, also known as recall 
or the true positive rate, measures the probability of correctly 
identifying true EGC cases and is calculated as true positive (TP)/
(TP + false negative (FN)). Specificity, or the true negative rate, reflects 
the probability of correctly identifying non-EGC cases and is 
calculated as true negative (TN)/(TN + false positive (FP)). For studies 
comparing the performance of endoscopists and DL algorithms in 
diagnosing EGC, the diagnostic data of expert endoscopists and DL 
algorithms will be extracted and entered.

Statistical analysis

This study employed a bivariate random-effects model to perform 
the meta-analysis, which jointly pools sensitivity and specificity while 
accounting for their inherent negative correlation. This model was 
used to assess the diagnostic performance of deep learning for EGC 
detection on white-light endoscopy images and to generate a 
hierarchical summary receiver operating characteristic (HSROC) 
curve. Sensitivity and specificity were pooled separately for internal 
and external validation sets. Forest plots visually presented the study-
level and pooled estimates, while the SROC curve provided an overall 
summary with a 95% confidence region and a 95% prediction region. 
The between-study variance for logit-transformed sensitivity and 
specificity was quantified using the tau2 (τ2) statistic.

Heterogeneity across studies was evaluated using Higgins’ I2 
statistic, with I2 values of 25, 50, and 75% indicating low, moderate, 
and high heterogeneity, respectively (Huedo-Medina et al., 2006). 
Meta-regression analyses were conducted to identify sources of 
significant heterogeneity (I2 > 50%) (van Houwelingen et al., 2002). 
Meta-regression variables included the number of centers (single or 
multiple), size of the training dataset (large-scale public datasets or 
small-scale institutional datasets), validation method (with or without 
cross-validation), tile size (≤448 × 448 or >448 × 448), and risk of bias 

in patient selection (high risk or low risk). Potential publication bias 
was assessed using Deeks’ funnel plot asymmetry test. Furthermore, 
for comparative assessment of diagnostic performance, sensitivity and 
specificity were independently pooled for deep learning models and 
expert endoscopists. Paired forest plots were generated to facilitate 
direct, visual comparison of sensitivity and specificity across the two 
groups. Statistical analyses were performed using the Midas package 
in Stata (version 15.1) and the meta package in R, while risk of bias 
assessment was conducted with RevMan 5.4 from the Cochrane 
Collaboration. All statistical tests were two-sided, with p < 0.05 
considered statistically significant, and results were reported with 95% 
confidence intervals.

Results

Study selection

The initial database search identified 721 potentially relevant 
articles. After removing 138 duplicate records, 583 unique articles 
underwent preliminary screening. Application of the predefined 
inclusion criteria led to the exclusion of 521 articles. Subsequently, a 
comprehensive full-text assessment resulted in the further exclusion 
of 47 studies due to insufficient or incomplete diagnostic data (TP, FP, 
FN, TN) or the use of non-white-light endoscopy techniques. 
Ultimately, 15 studies meeting the eligibility criteria were included in 
the meta-analysis to evaluate the diagnostic performance of DL 
algorithms (Sakai et al., 2018; Cho et al., 2019; Tang et al., 2020; Zhang 
et al., 2021; Teramoto et al., 2022; Yuan et al., 2022; Takemoto et al., 
2023; Dong et al., 2023; Zhang et al., 2023; Zhou B. et al., 2023; Chang 
et al., 2024; Gong et al., 2024; Zhang et al., 2024; Ul Haq et al., 2024; 
Feng et al., 2025). The literature selection process was summarized 
using a PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) flow diagram, presented in Figure 1.

Study description and quality assessment

For internal validation, 15 studies involving 37,037 images (range: 
433–9,650) were included (Sakai et al., 2018; Cho et al., 2019; Tang et 
al., 2020; Zhang et al., 2021; Teramoto et al., 2022; Yuan et al., 2022; 
Takemoto et al., 2023; Dong et al., 2023; Zhang et al., 2023; Zhou B. et 
al., 2023; Chang et al., 2024; Gong et al., 2024; Zhang et al., 2024; Ul 
Haq et al., 2024; Feng et al., 2025); for external validation, 4 studies 
with 3,579 images (range: 200–1,514) were included (Cho et al., 2019; 
Tang et al., 2020; Yang et al., 2021; Dong et al., 2023; Gong et al., 2024). 
The studies were published between 2018 and 2025. Regarding study 
design, 14 studies were retrospective, whereas only one study was 
prospective in its external validation cohort (Cho et al., 2019). Only 
two studies utilized large-scale public datasets for training, while the 
remaining studies were trained using small-scale institutional datasets. 
All DL models employed in the studies were based on convolutional 
neural networks (CNNs). Study characteristics and diagnostic 
performance in internal and external validation are summarized in 
Tables 1, 2 and Supplementary Table 3, respectively. Notably, five 
studies included comparisons between DL algorithms and 
endoscopists in diagnostic performance (Cho et al., 2019; Tang et al., 
2020; Zhang et al., 2021; Yuan et al., 2022; Takemoto et al., 2023). The 
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diagnostic performance of DL algorithms and endoscopists is 
presented in Supplementary Table 4.

The risk of bias, assessed using the revised QUADAS-2 tool, is 
illustrated in Figure 2. In the patient selection domain, four studies 
were classified as “high” due to insufficient reporting on patient 
recruitment (e.g., whether enrollment was conducted consecutively). 
All studies were deemed to have a low risk of bias in the index test, 
reference standard, and flow and timing domains.

Diagnostic performance of deep learning 
algorithms in the internal validation set for 
early gastric cancer detection

For the internal validation dataset, DL algorithms based on white 
endoscopy images achieved a sensitivity of 0.91 (95% CI: 0.82–0.95) 
and a specificity of 0.93 (95% CI: 0.87–0.97) in detecting EGC patients 
(Figure 3). The area under curve (AUC) was 0.97 (95% CI: 0.95–0.98) 
(Figure 4a). With a pre-test probability of 36%, representing the 
average incidence rate across all studies included in the internal 
validation dataset, the Fagan nomogram demonstrated a positive 
likelihood ratio of 88% and a negative likelihood ratio of 5% 
(Figure 5a).

High heterogeneity was observed in both sensitivity (I2 = 99.33%, 
τ2 = 1.89) and specificity (I2 = 99.13%, τ2 = 2.46) within the internal 

validation dataset. Meta-regression analysis revealed that 
heterogeneity in both sensitivity and specificity was significantly 
associated with the size of the training dataset (large-scale public 
datasets vs. small-scale institutional datasets, p < 0.05) and validation 
method (cross-validation vs. without cross-validation, p ≤ 0.05) 
(Table 3). Level-one out sensitivity analysis did not identify any 
influential studies or potential sources of heterogeneity 
(Supplementary Table 5). In addition, after excluding studies with a 
high risk of bias, the sensitivity was 0.86 (95% CI: 0.72–0.94) and the 
specificity was 0.90 (95% CI: 0.85–0.93), yielding a summary AUC of 
0.94 (95% CI: 0.92–0.96).

Diagnostic performance of deep learning 
algorithms in the external validation set for 
early gastric cancer detection

For the external validation dataset, DL algorithms based on white 
endoscopy images achieved a sensitivity of 0.82 (95% CI: 0.61–0.93) 
and a specificity of 0.83 (95% CI: 0.74–0.90) in detecting EGC 
patients (Figure 6). The AUC was 0.89 (95% CI: 0.86–0.91) 
(Figure 4b). With a pre-test probability (prevalence) of 36%, the 
Fagan nomogram demonstrated a positive post-test probability of 
73% and a negative post-test probability of 11% (Figure 5b). High 
heterogeneity was observed in both sensitivity (I2 = 95.56%, τ2 = 1.09) 

FIGURE 1

PRISMA flow diagram illustrating the study selection process.
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and specificity (I2 = 97.25%, τ2 = 0.31) within the external validation 
dataset. Due to the limited number of included studies, meta-
regression analysis was not performed to explore potential sources of 
heterogeneity.

Deep learning algorithms versus 
endoscopists: performance in early gastric 
cancer detection in the test set

In the comparison between the DL model and endoscopists on the 
test set, substantial heterogeneity was observed in diagnostic 
sensitivity (I2 = 89.2%, p < 0.0001) (Figure 7). A random-effects model 
was used for primary analysis, which showed no statistically significant 
difference between the two groups (pooled OR = 2.21, 95% CI: 0.86–
5.69), indicating comparable sensitivity performance.

Similarly, for diagnostic specificity, significant heterogeneity was 
present (I2 = 94.9%, p < 0.0001) (Figure 8). The random-effects model 
revealed no significant difference between DL and endoscopists 

(pooled OR = 0.66, 95% CI: 0.22–1.97), suggesting similar specificity 
performance.

Publication bias

The Deeks’ funnel plot asymmetry test showed no significant 
publication bias in the internal validation dataset based on white light 
endoscopy images for DL (p > 0.05) (Supplementary Figure 1). In 
contrast, the Deeks’ funnel plot asymmetry test revealed significant 
publication bias in the external validation dataset, which consisted of 
only four studies utilizing white light endoscopy images (p < 0.05; 
Supplementary Figure 2).

Discussion

To the best of our knowledge, this is the first meta-analysis to 
comprehensively evaluate the performance of DL algorithms in 

TABLE 1  Characteristics of the included studies.

Author Year Country Center Tile 
size

Specific 
model

Model 
type

Number of images 
(early gastric cancer vs. 

control)

Endoscopist 
comparison

Training Validation

Sakai et al. 2018 Japan Single 224 * 224 GoogLeNet CNNa 9,587 vs. 9,800 NRb No

Cho et al. 2019 Korea Multiple
1,280 * 

640

Inception-

Resnet-v2
CNN 919 vs. 3,286 NR YES

Tang et al. 2020 China Multiple 416 * 416 Darknet-53 CNN
26,172 vs. 

9,651
NR YES

Zhang et al. 2021 China Single NR ResNet34 CNN
6,139 vs. 

15,078
NR YES

Zhou et al. 2022 China Single 512 * 512 EfficientDet-D2 CNN 1,390 vs. 2,232 347 vs. 558 No

Yuan et al. 2022 China Single 640 * 640 YOLO CNN
2,015 vs. 

27,794
NR YES

Teramoto et 

al.
2022 Japan Single 512 * 512 DenseNet-121 CNN

Imagenet 

database

5-fold cross-

validation
No

Takemoto et 

al.
2023 Japan Single 224 * 224 GoogLeNet CNN

534,926 vs. 

593,874

10-fold cross-

validation
YES

Gong et al. 2023 Korea Multiple 512 * 431 NR CNN
1,766 vs. 

13,193
221 vs. 1,650 No

Dong et al. 2023 China Multiple NR
YOLO-v3 and 

Resnet-50
CNN 1,933 vs. 1,679 NR No

Zhang et al. 2023 China Multiple NR Resnet50 CNN 2,070 vs. 7,966 NR No

Zhang et al. 2024 China Single
1,080 * 

1,080
Faster RCNN CNN

Private 

database and 

public Kvasir-

SEG dataset

5-fold cross-

validation
No

Chang et al. 2024 Korea Multiple NR
YOLO-v5 and 

EfficientNetB0
CNN 3,920 vs. 5,026 NR No

Haq et al. 2024 China Single 224*224 Faster RCNN CNN NR NR No

Feng et al. 2025 China Single 448*448 ResNet18 CNN 3,400 vs. 8,400 NR No

aCNN: convolutional neural network.
bNR: Not Reported.
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diagnosing EGC using white light endoscopic images. The results 
indicate that DL algorithms exhibit excellent diagnostic performance 
in the internal validation set, with a sensitivity of 0.91, a specificity of 
0.93, and an AUC of 0.97. In the external validation set, the diagnostic 
sensitivity, specificity, and AUC were 0.82, 0.83, and 0.89, respectively, 
which were lower than those in the internal validation set. 
Furthermore, no significant differences were observed between DL 
algorithms and expert endoscopists in terms of diagnostic sensitivity 
or specificity. Meta-regression analysis indicates that the sample size 
of the training dataset contributes to the high heterogeneity in 
sensitivity and specificity observed in the internal validation sets. In 
summary, these results suggest that DL algorithms demonstrate good 
diagnostic performance in detecting EGC using white-light 
endoscopic images, indicating their potential as a reliable auxiliary 
diagnostic tool.

Sensitivity and specificity are key metrics for evaluating diagnostic 
performance. In this study, the DL model demonstrated high 
sensitivity and specificity in the internal validation set. High sensitivity 
indicates a low risk of missed diagnosis, facilitating the detection of 
EGC with atypical morphology or indistinct borders. High specificity 
reflects a low false-positive rate, conducive to reducing unnecessary 
biopsy procedures and thereby preventing overdiagnosis and 
overtreatment. The strong performance observed in the internal 
validation may be attributed to consistent data preprocessing, 
standardized image acquisition protocols, and uniform endoscopic 
imaging conditions (Li et al., 2025). These factors help minimize 
technical variability, enabling the model to more accurately distinguish 
EGC from non-EGC findings. However, in the external validation set, 
both sensitivity and specificity were lower than those observed in the 
internal validation. This performance decline is likely due to real-
world variations across institutions, such as differences in endoscopist 
expertise, types of endoscopic equipment, and image quality 
(Campanella et al., 2019). These heterogeneities introduce noise and 

complexity that the model may not have fully accounted for during 
training. These findings underscore the importance of standardized 
data pipelines and the use of diverse, multi-center datasets during 
model development to improve model generalizability and robustness.

Currently, due to limitations in technical skills and clinical 
experience, trainee endoscopists exhibit significantly lower sensitivity 
and specificity in diagnosing EGC compared to expert endoscopists 
(Ende et al., 2018; Tang et al., 2020; Yuan et al., 2022). This 
performance gap contributes to instability in clinical endoscopic 
practice and increases the risk of missed or incorrect diagnoses, 
especially in primary care hospitals. Previous studies revealed that, 
with AI assistance, trained novices can produce expert-level lung and 
cardiac ultrasound images that can be used to assess pathology after a 
short training session, thereby enhancing access to diagnosis in 
resource-constrained settings (Narang et al., 2021; Baloescu et al., 
2025). In this study, our results demonstrate that DL algorithms 
achieve sensitivity and specificity comparable to those of expert 
endoscopists. Therefore, it is reasonable to hypothesize that AI may 
serve as an effective assistive tool to enhance the sensitivity and 
specificity of trainee endoscopists in the detection of EGC during 
white-light endoscopy screening, thereby minimizing the likelihood 
of missed or incorrect diagnoses and facilitating earlier detection and 
timely intervention.

In the internal validation of deep-learning algorithms, meta-
regression analysis demonstrated that models trained on large-scale 
public datasets exhibited significantly superior diagnostic sensitivity 
and specificity compared to those trained on small-scale institutional 
datasets. This finding indicates that the size of the training dataset 
may be one of the key factors determining the diagnostic performance 
of the deep-learning algorithms. Previous studies revealed that merely 
expanding the size of the training dataset can improve the 
classification performance of the DL network (Kiryati and Landau, 
2021; Pei et al., 2021). However, due to the challenges in acquiring 

TABLE 2  Diagnostic performance of the included studies.

Author Year Interval validation sets External validation sets

TP FP TN FN TP FP TN FN

Sakai et al. 2018 3,723 262 4,735 930 NR NR NR NR

Cho et al. 2019 97 88 559 68 13 33 136 18

Tang et al. 2020 3,967 961 4,303 186 678 98 659 79

Zhang et al. 2021 92 74 766 158 NR NR NR NR

Zhou et al. 2022 376 76 722 69 NR NR NR NR

Yuan et al. 2022 177 146 1,124 9 NR NR NR NR

Teramoto et al. 2022 531 0 1,845 1 NR NR NR NR

Takemoto et al. 2023 387 89 307 75 NR NR NR NR

Gong et al. 2023 164 48 1,602 57 165 119 1,104 39

Dong et al. 2023 104 74 244 11 117 101 211 9

Zhang et al. 2023 365 241 1,373 40 NR NR NR NR

Zhang et al. 2024 263 20 247 13 NR NR NR NR

Chang et al. 2024 451 96 1,665 26 NR NR NR NR

Haq et al. 2024 865 21 829 26 NR NR NR NR

Feng et al. 2025 564 68 617 40 NR NR NR NR

TP, true positive; TN, true negative; FP, false positive; FN, false negative; NR, Not Reported.
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and annotating medical imaging data, particularly in the three-
dimensional context of endoscopic examinations, constructing large 
and high-quality training datasets was difficult (Tajbakhsh et al., 
2016; Chen X. et al., 2022). In contrast, public datasets offered a viable 
pathway to overcome these difficulties. ImageNet is a large-scale 
hierarchical visual recognition database developed in the United 
States, comprising 14 million manually labeled images (Kang et al., 
2021). Kvasir-SEG is a publicly accessible high-quality gastrointestinal 
endoscopy dataset originating from Norway, comprising 1,000 
images annotated with pixel-level segmentation masks (Jha et al., 
2019). Consequently, in this meta-analysis, deep-learning algorithms 

trained on ImageNet and Kvasir-SEG datasets achieve superior 
performance in EGC detection. Furthermore, although cross-
validation is an important technique for evaluating model robustness, 
particularly in studies with small datasets, our analysis did not 
observe a significant influence of cross-validation on heterogeneity 
within the internal dataset (Aggarwal et al., 2022). Similarly, factors 
including the number of participating centers, image size, and study 
quality did not contribute significantly to internal heterogeneity. 
However, this heterogeneity may stem from other potential factors 
such as clinical staging of EGC, image quality, and variations in the 
definition of EGC.

FIGURE 2

Risk of bias and applicability concerns in the included studies, assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool.
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FIGURE 3

Forest plot of sensitivity and specificity of deep learning algorithms for detecting early gastric cancer (EGC) in the internal validation set. Squares 
represent individual study estimates, with horizontal lines indicating 95% confidence intervals; the diamond denotes the pooled estimate.

FIGURE 4

Summary receiver operating characteristic (SROC) curves of deep learning algorithms for detecting early gastric cancer (EGC) in the internal (a) and 
external (b) validation sets.
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To our knowledge, this is the first meta-analysis specifically 
evaluating the diagnostic performance of DL algorithms for EGC. In 
contrast, a prior meta-analysis of 12 studies reported that AI—
encompassing both machine learning and DL algorithms—achieved 
a sensitivity of 0.86 and a specificity of 0.90 in the diagnosis of EGC, 
values notably lower than the 0.91 and 0.93 observed in this study 
(Chen P.-C. et al., 2022). This discrepancy may be attributed to 
differences in algorithmic model selection (DL versus a combination 
of machine learning and DL). At the algorithmic level, traditional 
machine learning methods rely on handcrafted feature engineering 
and exhibit limited generalizability, particularly when applied to 
complex and heterogeneous medical imaging data (Moawad et al., 
2022). In contrast, the DL models evaluated in this study enable 
end-to-end learning by automatically extracting hierarchical feature 
representations directly from raw images, thereby achieving enhanced 
robustness and higher diagnostic accuracy in complex visual 
recognition tasks (Wang et al., 2019b).

With a pre-test probability of 36%, the Fagan nomogram 
demonstrated a positive post-test probability of 73% and a negative 
post-test probability of 11%. This provides a practical tool for 
clinicians: for a patient with a pre-test suspicion of 36%, a positive 
result from the DL model would increase the probability of EGC to 
73%, warranting a confirmatory biopsy. Conversely, a negative result 
would lower the probability to 11%, potentially supporting a decision 
for surveillance rather than immediate intervention, depending on the 
clinical context. From a clinical implementation perspective, these 
findings support the role of DL-based systems as decision-support 
tools rather than standalone diagnostic solutions. Practical 
deployment would require targeted training for endoscopists on 

AI-assisted interpretation within endoscopy suites, alongside clearly 
defined safety workflows to ensure clinician oversight (Olawuyi and 
Viriri, 2025). Moreover, regulatory approval is a prerequisite for 
clinical adoption. Similar to AI-based electrocardiogram detection 
systems, AI models for early gastric cancer detection require formal 
evaluation and regulatory clearance from authorities such as the FDA 
or CE bodies (Singla et al., 2025). Such approval usually depends on 
robust external and prospective validation, which remains limited in 
current studies. From a methodological perspective, future 
improvements in DL-based EGC detection may benefit from 
incorporating Transformer-based architectures (e.g., Vision 
Transformer and Swin Transformer), which have shown strong 
performance in medical image analysis by capturing long-range 
spatial dependencies (Gandhi et al., 2025a). In addition, generative 
data augmentation techniques could help mitigate data imbalance and 
enhance model robustness (Gandhi et al., 2025b). The integration of 
multimodal learning frameworks, combining endoscopic video data 
with relevant clinical information, may further improve diagnostic 
accuracy and clinical relevance (Qin et al., 2025). To address data 
privacy and enhance generalizability, federated learning offers a 
promising strategy for leveraging multicenter data without direct data 
sharing (Assaf et al., 2025). Finally, adoption of standardized reporting 
guidelines, such as CONSORT-AI, DECIDE-AI, and STARD-AI, is 
essential to improve transparency, reproducibility, and clinical 
interpretability of future studies (Goh et al., 2025).

In addition, it is important to note that the generalizability of 
these performance estimates may be further challenged by the lack 
of temporal validation in most included studies. Robust clinical 
prediction systems require testing on data from future time periods 

FIGURE 5

Fagan’s nomogram illustrating the clinical utility of deep learning algorithms for detecting early gastric cancer (EGC) in the internal (a) and external (b) 
validation sets.

https://doi.org/10.3389/frai.2026.1734591
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Liu et al.� 10.3389/frai.2026.1734591

Frontiers in Artificial Intelligence 10 frontiersin.org

to ensure stability against shifts in clinical practice, equipment, or 
patient demographics. In our review, only one study employed a 
prospective external validation set (Sakai et al., 2018). Future studies 
should prioritize this design to provide a more rigorous and clinically 
realistic assessment of model performance over time. Furthermore, 
the presence of publication bias in the external validation dataset 
likely stems from the limited number of available studies and 
potential selective reporting of higher-performing models in 
externally validated literature. The observed bias suggests that the 
overall diagnostic performance of DL models in external validation 
settings may be overestimated in the current literature. Therefore, the 
establishment of multi-center, large-scale external validation cohorts 
is essential for a comprehensive evaluation of DL model performance.

Several limitations of this meta-analysis should be acknowledged 
when interpreting the findings.

First, a fundamental limitation of this analysis is that all included 
studies utilized retrospective datasets for both model development 
and validation. This retrospective design inherently carries risks of 

selection bias and spectrum bias, where the case mix may not fully 
represent the broader clinical population encountered in practice. 
Therefore, while our meta-analysis suggests promising diagnostic 
potential, the reported high accuracy likely represents a “best-case” 
scenario. Forthcoming multi-center, prospective trials are crucial to 
rigorously evaluate model performance in unselected, consecutive 
patients under real-world conditions (Tong et al., 2023). Second, 
there was variability in the definition of EGC across the included 
studies, and the inclusion criteria for control groups were 
inconsistent. This heterogeneity in the control population—ranging 
from purely normal mucosa to a mix of benign lesions (e.g., gastric 
ulcers, low-grade epithelial neoplasia, gastric polyps)—constitutes a 
potential source of classification bias. Such inconsistency may lead to 
systematic differences in model training and evaluation, as models 
trained against purely normal mucosa might achieve higher 
specificity in distinguishing cancer from normal tissue but potentially 
lower sensitivity for discriminating early cancer from challenging 
benign or precancerous conditions. Third, the current analysis was 

TABLE 3  Meta-regression analysis of diagnostic performance of deep learning models for early gastric cancer (EGC) in internal validation cohorts.

Subgroup Studies, n Sensitivity 
(95%CI)

Meta-regression 
p-value

Specificity 
(95%CI)

Meta-regression 
p-value

Center 0.96 1.00

Single-center 9 0.92 (0.85–0.99) 0.95 (0.91–0.99)

Multi-center 6 0.88 (0.75–1.00) 0.89 (0.79–1.00)

Training dataset 0.01 0.00

Large-scale public 

datasets

2 0.99 (0.97–1.00) 0.99 (0.98–1.00)

Small-scale institutional 

datasets

13 0.87 (0.80–0.95) 0.91 (0.85–0.96)

Validation method 0.05 0.09

Cross-validation 3 0.97 (0.93–1.00) 0.98 (0.94–1.00)

Without cross-validation 12 0.88 (0.79–0.96) 0.91 (0.85–0.97)

Tile size 0.84 0.33

≤448*448 5 0.92 (0.84–1.00) 0.96 (0.92–1.00)

>448*448 6 0.92 (0.83–1.00) 0.91 (0.79–1.00)

Risk of bias in patient 

selection

0.87 0.99

High 4 0.87 (0.71–1.00) 0.90 (0.78–1.00)

Unclear or low 11 0.92 (0.85–0.98) 0.94 (0.89–0.99)

Control group 

composition

0.87 0.99

Normal mucosa 4 0.87 (0.71–1.00) 0.94 (0.89–0.99)

Mixed normal and 

precancerous mucosa

11 0.92 (0.85–0.98) 0.90 (0.78–1.00)

Year of publication 0.47 0.68

≤2020 3 0.83 (0.61–1.00) 0.89 (0.73–1.00)

>2020 12 0.92 (0.86–0.98) 0.94 (0.89–0.98)

DL model types 0.80 0.57

Image classification 

models

10 0.88 (0.79–0.97) 0.93 (0.87–0.99)

Lesion detection models 5 0.94 (0.88–1.00) 0.94 (0.86–1.00)
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restricted to image-level evaluation of DL models due to incomplete 
patient-level data in the included studies. However, patient-level 
assessment better aligns with clinical practice. Image-based training 
risks overfitting to specific features within individual patients, which 
may limit the model’s applicability to external datasets (Lengerich et 
al., 2018). Fourth, all included studies focused on detecting gastric 
lesions from static, high-quality white-light endoscopic images, 
which inherently cannot reproduce the complexity of real-time 
endoscopy. In actual clinical practice, endoscopic observation is 
dynamic and often affected by motion blur caused by scope 
movement, variations in illumination, changes in viewing angle, and 

transient interference from mucus, blood, bubbles, or food residue. 
These in situ factors substantially increase diagnostic difficulty but 
were largely excluded from the training and validation datasets of the 
included studies. Consequently, the reported diagnostic performance 
of AI models derived from idealized image datasets may overestimate 
their effectiveness in real-world, real-time clinical settings. Future 
studies should therefore prioritize validation using video-based or 
real-time endoscopic data that better reflect routine clinical 
conditions.

In conclusion, our meta-analysis provides robust evidence that 
DL algorithms exhibit high diagnostic efficacy in detecting EGC 

FIGURE 6

Forest plot of sensitivity and specificity of deep learning algorithms for detecting early gastric cancer (EGC) in the external validation set. Squares 
represent individual study estimates, with horizontal lines indicating 95% confidence intervals; the diamond denotes the pooled estimate.

FIGURE 7

Forest plot comparing the sensitivity of artificial intelligence and endoscopists in detecting early gastric cancer (EGC) in the test set.
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from white-light endoscopic images. Moreover, the sensitivity and 
specificity of these algorithms are comparable to those of expert 
endoscopists. These findings highlight the potential for DL 
algorithms to serve as a clinical decision-support tool in routine 
practice.
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