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Financial customer analytics requires specialized machine learning pipelines
that incorporate domain-specific understanding of customer behavior. Existing
automated ML approaches often lack the capacity to effectively construct
marketing-relevant features and that manual construction of predictive models
demands specialized expertise that is difficult for many institutions to consistently
secure and maintain. To address this gap, we propose an automated framework
for generating end-to-end machine learning pipelines tailored to financial
customer analytics tasks. The system processes raw customer datasets
alongside natural language instructions, and autonomously performs data
modality recognition, domain-aware feature engineering, model selection,
and pipeline assembly. The framework autonomously performs domain-aware
feature engineering by automatically computing key marketing indicators
(RFM metrics, CLV, engagement scores)—capabilities absent in generic AutoML
systems. Experimental validation showing 1.4% to 5.4% accuracy improvements
over existing automated ML techniques while reducing development time by
nearly sevenfold. Natural language interface enabling business stakeholders to
configure pipelines without machine learning expertise.
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automated machine learning, domain-specific feature engineering, financial customer
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1 Introduction

Financial institutions increasingly face the formidable dual challenge of predicting
nuanced customer behavior and proactively mitigating churn, as market competition
intensifies and customer acquisition costs soar—reportedly being five times higher
than the cost of retaining existing customers (Capponi et al., 2021). In this climate,
advanced customer analytics has become indispensable, driving critical strategies in
customer retention, revenue optimization, and targeted marketing across the banking
(Ogbuonyalu et al., 2025; Mokoena, 2025), insurance (Islayem et al., 2025; Baro
et al., 2025), telecommunications (Yuan et al., 2025; Zou et al., 2025), and financial
services sectors (Mokoena, 2025; Boinpally, 2025; Shen et al., 2025f; Han et al.,
2025). Despite its importance, the traditional paradigm for constructing predictive
models remains predominantly manual (Kashyap and Sinha, 2024). Data scientists must
painstakingly engineer domain-specific features (such as those derived from Recency-
Frequency-Monetary analysis), select appropriate model architectures, and iteratively tune
hyperparameters. This labor-intensive process not only creates significant bottlenecks
that constrain organizational scalability but also demands a concentration of specialized
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expertise that is difficult for many institutions to consistently secure
and maintain (Shen et al., 2022a,b). The resulting inefficiencies
underscore an urgent need for more automated, intelligent, and
accessible analytical frameworks (Zhao et al., 2025).

Current automated machine learning (AutoML) systems are
predominantly designed for generic tabular data and exhibit limited
capacity to capture domain-specific concepts essential to financial
customer analytics (Lin et al., 2011; Qiao and Beling, 2016;
Shen et al., 2025e; Lin et al., 2025). Specifically, these systems
fail to automatically identify critical marketing constructs—such
as recency-frequency-monetary (RFM) relationships (Qi et al.,
2023), customer lifetime value (CLV) trajectories, and behavioral
engagement sequences—that form the foundation of accurate
prediction in marketing contexts (Donepudi, 2019; Zhang et al.,
2025). Consequently, significant manual intervention is still
required across multiple stages, including the identification of
relevant data modalities, the engineering of marketing-specific
features, and the configuration of model training pipelines
aligned with business objectives. This disconnect between business
requirements and technical implementation presents practitioners
with a persistent trade-off: accepting suboptimal performance
from generic AutoML solutions (Zhu et al., 2025) or dedicating
considerable resources to manual customization (Bonidia et al.,
2022).

Recent advances in large language models (LLMs) have
unlocked new potential for automating end-to-end machine
learning workflows (Fastowski et al., 2025). These models exhibit
strong reasoning capacities (Shen et al., 2025a; Shen and Unberath,
2025; Shen et al., 2025d), code generation proficiency (Luo et al.,
2024a), and natural language understanding (Shen et al., 2025b,c;
Shi and Shen, 2025), facilitating novel paradigms for orchestrating
complex technical processes (Liu et al., 2024; Shen et al., 2024b,a).
Specifically, LLMs can infer data semantics from metadata such
as column names and sample values, interpret business directives
conveyed in natural language, and generate executable code that
incorporates appropriate preprocessing and modeling strategies
(Novikova et al., 2025). This capability offers a promising pathway
to bridge the gap between business stakeholders—who possess deep
customer analytics expertise—and the technical systems required to
build predictive models.

Financial customer data typically integrates multiple
heterogeneous sources, including transaction histories,
demographic profiles, interaction logs, and communication
records. Each data modality demands specialized preprocessing
and modeling techniques to extract predictive signals (Zhou et al.,
2025). Domain knowledge is critical for designing informative
features that capture customer behavior and value patterns (Luo
et al., 2023). Established frameworks such as recency-frequency-
monetary (RFM) analysis enable customer segmentation based
on transactional behavior, while engagement scoring consolidates
diverse interaction signals into unified metrics predictive of future
activity (Rajendran, 2025). Similarly, customer lifetime value
(CLV) modeling projects the total value a customer will generate
throughout their relationship with the organization. Current
automated tools, however, often force a trade-off: users must either
accept generic feature engineering that overlooks domain-specific
patterns, or resort to manual, time-intensive transformations that

demand both marketing expertise and technical skill (Borle et al.,
2008).

Rule-based automation systems are often too rigid to
accommodate the varied data formats and business contexts
encountered in real-world financial settings (Sheikh and Conlon,
2012). Meanwhile, generic machine learning frameworks cannot
readily incorporate domain knowledge without substantial manual
configuration—undermining the goal of automation (Webb, 1996).
Furthermore, the steep learning curve of these systems prevents
business stakeholders from directly articulating their requirements
to technical pipelines (Geetha and Krishna, 2025). Thus, there is a
clear need for solutions that integrate automation, embed domain
expertise, and offer intuitive natural language interfaces to enable
non-technical users to guide the pipeline design process (Luo et al.,
2025; Zeng et al., 2023).

To address these challenges, we introduce an automated
pipeline construction framework tailored for financial customer
analytics. Our focus is on practical method design and system
implementation rather than theoretical analysis, providing
practitioners with an immediately deployable solution for
automating domain-specific machine learning workflows. The
system takes as input raw customer datasets and natural language
directives, and autonomously generates executable training
pipelines optimized for marketing objectives. It performs several
key steps automatically:

The core processing steps of the framework include modality
recognition to identify attribute types within the dataset, domain-
aware feature engineering to derive marketing-relevant indicators,
as well as model selection based on data characteristics, the
assembly of multimodal pipelines that integrate heterogeneous
data sources, and the optimization of training configurations—
including hyperparameter tuning. At each stage, LLMs act as
intelligent controllers, making contextual decisions according to
data properties, business goals, and computational constraints.

Our framework incorporates established marketing analytics
methods for customer behavior prediction, including RFM analysis
for segmentation based on recency, frequency, and monetary
value; customer lifetime value modeling for revenue projection
and retention prioritization; and behavioral engagement scoring
to quantify cross-channel customer involvement. The system
also recognizes financial-domain patterns such as transaction
sequences, account relationships, and service usage histories.
Through natural language directives, business intents are
translated into technical implementations. For instance, a goal to
“maximize customer retention” guides the system to construct
features reflecting engagement trends and relationship duration,
while a focus on “deployment speed” leads to more efficient
model architectures. This process enables business experts
to directly shape pipeline design without requiring machine
learning expertise.

The main contributions of this study are as follows: Firstly, it
proposes an end-to-end framework that automates ML pipeline
construction for financial customer analytics, which generates
executable training code from natural language directives and
raw data without manual coding. This addresses the critical
gap where business stakeholders possess deep customer analytics
expertise but lack technical programming skills to implement
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predictive models. Secondly, it incorporates domain-specific
feature engineering components that automatically compute
marketing-relevant indicators such as RFM scores, customer
lifetime value, and engagement metrics. Unlike generic AutoML
systems that apply only standard preprocessing operations, our
framework embeds established marketing analytics methodologies
directly into the automation process, eliminating the need
for manual feature design. Additionally, it realizes automated
model selection and hyperparameter optimization guided by data
characteristics and business objectives, reducing development time
by nearly sevenfold while maintaining predictive performance.
This intelligent optimization eliminates the extensive manual
experimentation typically required in hyperparameter tuning while
ensuring models remain aligned with business priorities such as
interpretability or deployment constraints. Finally, it conducts
experimental validation across five customer analytics datasets
spanning telecommunications, banking, e-commerce, insurance,
and marketing campaigns, demonstrating accuracy improvements
of 1.4% to 5.4% over existing automated and manual approaches.

The remainder of this paper is structured as follows. Section
2 reviews related work. Section 3 introduces our proposed
Marketing-AutoM3L Framework and its implementation. Section
4 presents the experimental results, followed by analysis and
discussion. Finally, Section 5 concludes the paper.

2 Related work

This section focuses on practical AutoML systems and
applied methodologies rather than theoretical foundations, as our
contribution lies in AI system design and empirical validation for
domain-specific applications.

2.1 Automated machine learning systems
and frameworks

The growing complexity and expertise required in traditional
machine learning workflows have spurred the development
of Automated Machine Learning (AutoML), which aims to
democratize access to advanced data analytics across various
domains (Mumuni and Mumuni, 2024). Early AutoML systems,
such as TPOT, leveraged genetic programming to automatically
evolve machine learning pipelines. In contrast, modern cloud-
based platforms like Google Cloud AutoML and Amazon
SageMaker Autopilot represent the current state of the art,
demonstrating superior scalability by harnessing distributed
computing resources (TechAhead, 2024). A common thread
among these systems is the automation of core pipeline stages—
including data preprocessing, model selection, and hyperparameter
optimization—primarily through techniques like Bayesian
optimization and neural architecture search. Persistent challenges
include lack of transparency in advanced neural architecture search
mechanisms, computational scalability for large datasets, and the
need for better bias mitigation strategies.

Feature tools represents a notable advancement in automated
feature engineering, enabling the generation of complex temporal
and relational features through deep feature synthesis (Hopsworks

Team, 2022). Recent work has extended AutoML capabilities
to specialized domains, with applications in medical diagnosis
achieving detection accuracies of 84.4% using no-code platforms
like Teachable Machine (Arora et al., 2024; Liu et al., 2025;
Gao et al., 2025). The integration of meta-learning approaches
allows systems to leverage knowledge from previous experiments
to improve performance on new datasets (Gomaa et al., 2024).
Evaluation studies across diverse datasets spanning tabular data,
time series, and image classification reveal that proprietary
cloud-based tools often outperform open-source alternatives in
terms of computational efficiency and scalability, while open-
source platforms provide greater model interpretability (Gancheva
et al., 2024). However, persistent challenges include lack of
transparency in advanced neural architecture search mechanisms,
computational scalability for large datasets, and the need for
better bias mitigation strategies (IEEE Standards Committee,
2024). Contemporary research focuses on developing domain-
specific AutoML frameworks that balance automation with
human oversight, particularly in regulated industries where model
explainability is paramount (Narayana et al., 2024).

2.2 Customer analytics and churn
prediction methods

Customer churn prediction has evolved from traditional
statistical approaches to sophisticated machine learning
methodologies that capture complex behavioral patterns in
customer data (Jain et al., 2023). Early approaches relied on
logistic regression models due to their interpretability and ease
of implementation, providing probability estimates for churn
events while enabling straightforward feature importance analysis
(Boozary et al., 2025). Ensemble methods, particularly Random
Forest and Gradient Boosting Machines, have gained prominence
for their ability to handle non-linear relationships and interactions
between customer attributes without requiring extensive feature
preprocessing (Akter et al., 2025).

Deep learning architectures have shown promise in capturing
sequential dependencies in customer behavior, with hybrid models
like BiLSTM-CNN achieving superior performance by combining
bidirectional context modeling with spatial feature extraction
(Jain et al., 2023). RFM analysis (Recency, Frequency, Monetary)
has become a cornerstone methodology in customer analytics,
providing an intuitive framework for customer segmentation
based on transactional behavior (GeeksforGeeks, 2021). Modern
implementations extend traditional RFM metrics with automated
feature engineering techniques that generate customer lifetime
value projections and engagement scoring mechanisms (Optimove,
2023).

Machine learning applications in customer analytics
demonstrate measurable business impact, including 20%
improvements in customer engagement rates and significant
reductions in churn prediction false positive rates (Nelson
et al., 2025). Feature engineering remains critical for model
performance, with domain-specific transformations capturing
marketing-relevant patterns such as seasonal purchasing behavior
and cross-product affinity (Sica et al., 2025). Recent advances
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incorporate ensemble learning approaches that combine
multiple model predictions, leading to more robust churn
identification systems that can adapt to changing customer
behavior patterns (Jain et al., 2023). The field continues
to address challenges related to class imbalance in churn
datasets, temporal drift in customer preferences, and the
integration of unstructured data sources such as customer
communications and social media interactions (Ahmad et al.,
2019).

2.3 Multimodal machine learning and
LLM-based automation

The integration of Large Language Models with automated
machine learning has opened new possibilities for intelligent
pipeline construction and natural language-driven model
development (Luo et al., 2024a). AutoM3L represents a pioneering
approach that employs LLMs as controllers to automatically
construct multimodal training pipelines, addressing limitations of
traditional rule-based AutoML systems through natural language
interaction (Luo et al., 2024b). This framework demonstrates
the ability to process heterogeneous data types including
tabular, text, and temporal modalities through specialized
model architectures and late fusion strategies (OpenReview,
2024).

LLM-driven automation extends beyond simple code
generation to encompass intelligent decision-making throughout
the machine learning workflow, from data preprocessing to
model deployment (Sample et al., 2024). Multi-agent frameworks
like AutoML-Agent introduce retrieval-augmented planning
strategies that enhance exploration in the model search space,
decomposing complex ML tasks into specialized sub-tasks handled
by domain-specific agents (Trirat et al., 2025). These systems
leverage case-based reasoning to structure iterative improvement
pipelines, incorporating expert knowledge from platforms like
Kaggle to guide model development decisions (Guo et al.,
2024).

Multimodal data fusion strategies have evolved to address
alignment challenges across different data types, with early
fusion approaches combining raw features at the input level
while late fusion methods integrate model predictions from
modality-specific architectures (Educative Team, 2023). Advanced
fusion techniques employ attention mechanisms and transformer
architectures to model cross-modal interactions, particularly
beneficial for tasks requiring joint understanding of textual and
visual information. Contemporary research addresses missing
modality scenarios through graceful degradation mechanisms
and cross-modal knowledge transfer (Qian and Shen, 2025;
Sun et al., 2025; Ye et al., 2025; Gao et al., 2025), essential
for robust deployment in real-world environments where
data availability varies (LabelYourData Team, 2024). The
field faces ongoing challenges in computational complexity
management, temporal and spatial alignment of multimodal
streams, and the development of interpretable fusion mechanisms
that can explain cross-modal reasoning processes (Wu et al.,
2025).

3 Methods

3.1 Overview of the Marketing-AutoM3L
framework

The Marketing-AutoM3L framework presents an end-
to-end solution for automating machine learning pipeline
construction in customer analytics. It takes raw customer
data and natural language directives as dual inputs to
generate executable training pipelines for marketing tasks
like churn prediction, customer lifetime value estimation,
and engagement scoring. The architecture comprises five
interconnected stages: data modality recognition, domain-specific
feature engineering, model architecture selection, multimodal
pipeline construction, and training configuration optimization.
Large language models (LLMs) act as intelligent controllers
across these stages, utilizing both data characteristics and
natural language business objectives to make context-aware
decisions. This LLM-driven orchestration allows the framework
to adapt preprocessing, feature engineering, model selection,
and training procedures, bridging marketing expertise with
technical execution while ensuring scalability and interpretability.
Figure 1 presents the overall architecture of the proposed
Marketing-AutoM3L framework.

Our research methodology proceeds through five sequential
phases, each addressing a specific technical challenge in automated
pipeline construction. Phase 1 involves data modality recognition
to identify attribute types and their semantic meanings.
Phase 2 implements domain-aware feature engineering to
generate marketing-relevant indicators. Phase 3 performs
model architecture selection based on data characteristics and
business requirements. Phase 4 constructs integrated multimodal
pipelines through late fusion strategies. Phase 5 optimizes
training configurations including hyperparameter tuning and
computational resource allocation.

3.2 Data organization and representation

Marketing datasets typically originate from disparate sources:
customer relationship management systems, transaction databases,
web analytics platforms, and interaction logs. We organize this
heterogeneous information into structured tables where each
row represents a customer or interaction event, and columns
capture various attributes. This tabular representation preserves
relationships between different data types while providing a
format that LLM can analyze effectively (Luo et al., 2024a; Qian
and Shen, 2025; Wen et al., 2024). The framework preserves
the chronological order of temporal data, such as transaction
sequences, using a structured tabular format. Each transaction is
recorded with metadata containing timestamps, amounts, product
categories, and contextual attributes. These ordered sequences are
then processed to extract behavioral patterns, trends, and recurring
motifs, which form the basis for predicting customer behavior. This
temporal structure enables the identification of critical indicators—
including purchase periodicity, spending trends, and engagement
trajectories—essential for accurate behavioral forecasting.
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FIGURE 1

The framework of Marketing-AutoM3L showing the dual-module architecture for automated pipeline construction. The Intelligent Processing
Module (left) receives user queries about financial decisions and executes a four-stage strategy: data modality recognition to identify feature types
from time series and financial data, domain feature engineering to construct marketing-specific indicators, model architecture selection based on
data characteristics, and multimodal pipeline assembly. The Knowledge Supplementation Module (right) provides domain expertise through
marketing knowledge repositories and complete chain-of-thought reasoning. The framework includes an Indicator Trend Summary component that
analyzes temporal patterns from financial news (e.g., US dollar index fluctuations, Bitcoin price movements, crude oil trends) and generates
executable training pipelines through proactive consultation. The example query demonstrates how natural language instructions are transformed
into automated pipeline configurations with appropriate statistical tests and data transformations (Shen and Zhang, 2025).

3.3 Data modality recognition

Accurate identification of data types is essential for applying
appropriate preprocessing and modeling techniques (Luo et al.,
2024a). The problem of accurate data type identification is
essential because incorrect classification leads to inappropriate
preprocessing, such as treating categorical identifiers as numerical
features. Our solution employs LLM-based analysis of three
information sources: attribute names, sample values, and user-
provided context. The modality recognition module analyzes each
attribute in the customer dataset to determine its fundamental
nature. The framework examines three sources of information
via LLM: attribute names, which often contain semantic cues
about the data type; sample values from the dataset, which reveal
distributional properties and formats; and user-provided context
about the business problem and data sources. The LLM processes
a structured prompt containing example attribute classifications
from diverse marketing datasets. These examples illustrate the
distinction between key data types: numerical measurements (e.g.,
purchase amounts, engagement scores), categorical variables (e.g.,
customer segments, product categories), temporal sequences (e.g.,
transaction histories), and text fields (e.g., customer feedback,
communication logs). The model then outputs its classifications
in a structured format for direct consumption by downstream

modules. This approach offers greater adaptability than rule-
based heuristics, handling domain-specific naming conventions
and irregular data formats. For example, a column labeled
“customer_value_tier” may represent encoded numerical values in
one dataset and categorical labels in another. The LLM resolves
such ambiguities by analyzing both the semantics of column names
and the distribution of data values, and can incorporate user
instructions that provide essential business context.

3.4 Domain-specific feature engineering

Marketing analytics benefits from specialized feature
engineering that captures customer value, engagement
patterns, and behavioral trends. The framework implements
two complementary components: feature filtering and feature
construction. The filtering component identifies and removes
attributes that are unlikely to contribute to predictive value, such as
unique identifiers, redundant encodings of the same information,
or fields with excessive missing values. The construction
component generates derived features that encode marketing-
relevant concepts. The core problem in marketing analytics is
that raw transactional data does not directly capture customer
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value patterns and behavioral trends. Our solution implements
specialized construction components that automatically compute
RFM metrics, customer lifetime value projections, and engagement
scores without manual intervention. All domain features are
computed relative to a prediction reference time tpred that
represents the temporal point at which predictions are made in
practice. For model training and evaluation, we establish tpred
for each customer based on their observation window, ensuring
that only historical information available before tpred is used for
feature computation. For churn prediction tasks, tpred typically
represents the end of the customer’s historical observation period,
and the prediction target (churn status) is observed in a subsequent
evaluation window (typically 30–90 days after tpred). This strict
temporal separation prevents any form of data leakage where future
information could contaminate the features used for prediction.

3.4.1 RFM analysis and scoring
The feature construction process focuses on established

marketing analytics frameworks. For transaction-based customer
data, the framework implements RFM analysis by computing
three metrics for each customer: Recency, defined as the time
elapsed since the most recent transaction; Frequency, measured
as the number of transactions within a specified time window;
and Monetary value, calculated as the total or average transaction
amount. These three dimensions provide a compact representation
of customer engagement and value. Formally, for customer i with
transactions {t1, t2, . . . , tn} occurring at times {s1, s2, . . . , sn} with
amounts {a1, a2, . . . , an}, we compute:

Ri = tcurrent − max(s1, s2, . . . , sn), Fi = n, Mi =
n∑

j=1

aj (1)

where tcurrent represents the analysis reference time.
To ensure RFM metrics have consistent interpretable

ranges suitable for machine learning models, the framework
applies percentile-based scoring that transforms raw values into
standardized scores. For each metric dimension X ∈ {R, F, M},
the scoring function maps the raw value Xi to a discrete score
SX(i) ∈ {1, 2, 3, 4, 5} based on quintile thresholds:

SX(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5 if Xi ≥ P80(X)

4 if P60(X) ≤ Xi < P80(X)

3 if P40(X) ≤ Xi < P60(X)

2 if P20(X) ≤ Xi < P40(X)

1 if Xi < P20(X)

(2)

where Pk(X) denotes the k-th percentile of the distribution of
metric X across all customers in the dataset. Note that for
recency, lower values indicate more recent transactions and thus
receive higher scores, so the framework reverses the scoring
direction: SR(i) = 6 − SR′ (i) where SR′ (i) is computed using the
standard scoring function. The final RFM composite score can be
represented as a three-digit concatenation (SR(i), SF(i), SM(i)) or
as a weighted aggregate RFMi = wRSR(i) + wFSF(i) + wMSM(i)
where weights (wR, wF , wM) are determined based on univariate
correlation with the prediction target, with the constraint wR+wF+
wM = 1.

3.4.2 Customer lifetime value projection
The framework calculates customer lifetime value projections

when sufficient historical data exists. This metric estimates the total
value a customer will generate over their relationship with the
business. We implement three complementary approaches selected
automatically based on data characteristics and availability.

The historical averaging method is suitable for datasets with
stable customer behavior patterns and computes CLV as:

CLVhist
i = AOVi × PFi × CLi (3)

where AOVi = Mi/Fi is the average order value, PFi = Fi/Ti is the
purchase frequency (transactions per unit time with Ti being the
customer relationship duration), and CLi is the projected customer
lifespan estimated from the average relationship duration of similar
customers in the same RFM segment.

The probabilistic model incorporates customer retention
probability estimated from historical churn patterns, providing
more accurate projections for businesses with significant
customer attrition:

CLVprob
i =

T∑
t=1

AOVi × PFi × rt
i

(1 + d)t (4)

where ri is the retention probability for customer i estimated using
logistic regression on historical churn events with RFM scores as
predictors, d is the discount rate (typically set to the business’s
cost of capital, defaulting to 0.10 if not specified), and T is the
projection horizon (defaulting to 36 months for subscription-
based businesses and 12 months for transactional businesses). The
retention probability is computed as ri = σ (β0 + βRSR(i) +
βFSF(i) + βMSM(i)) where σ (·) is the sigmoid function and β

coefficients are estimated from historical data through maximum
likelihood estimation. To prevent target leakage in the probabilistic
CLV model, retention probabilities ri are estimated using only
historical churn events that occurred strictly before the observation
cutoff time T. Specifically, we fit the logistic regression model
using a cohort of customers whose observation windows ended at
least H days before time T (where H is the prediction horizon),
ensuring that their subsequent churn outcomes are fully observed
without overlapping with the current prediction period. This
staged estimation approach guarantees that retention probability
parameters are derived from genuinely historical data and contain
no information about target outcomes in the prediction horizon.

The cohort-based methodology segments customers by
acquisition period and models lifetime value trajectories specific to
each cohort, capturing temporal trends in customer behavior:

CLVcohort
i =

T∑
t=1

mc(i),t × rc(i),t

(1 + d)t (5)

where c(i) denotes the cohort to which customer i belongs (defined
by acquisition month), mc,t is the average monthly revenue per
customer in cohort c at time t since acquisition, and rc,t is
the cohort-specific retention rate at time t. Parameters mc,t and
rc,t are estimated empirically from historical cohorts: mc,t =

1
Nc

∑
j∈Cc

Revenuej,t and rc,t = Activec,t
Activec,t−1

where Cc is the set of
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customers in cohort c, Nc = |Cc|, and Activec,t is the number of
active customers from cohort c at time t.

The framework automatically selects among these three
approaches based on data availability and business context. The
historical averaging method is selected when cohort sample sizes
are insufficient (Nc < 30) or when customer behavior exhibits
high stability (coefficient of variation in monthly revenue < 0.3).
The probabilistic model is preferred when historical churn data
is available and churn rates are substantial (> 15% annually).
The cohort-based methodology is employed when sufficient cohort
history exists (at least 12 cohorts with minimum 6 months of
observation per cohort) and when temporal trends in customer
behavior are detected (significant trend coefficients in regression of
cohort metrics on cohort age, p < 0.05).

3.4.3 Engagement scoring
For behavioral data, the framework constructs engagement

scores that aggregate multiple interaction signals such as
email opens, website visits, content downloads, support
ticket submissions, and social media interactions into unified
metrics. The engagement scoring model quantifies customer
interaction intensity across channels through a weighted
temporal aggregation:

Ei(t) =
K∑

k=1

wk

W∑
τ=0

Ii,k(t − τ ) · e−λτ (6)

where Ei(t) is the engagement score for customer i at time t, K is
the number of interaction types, Ii,k(t − τ ) is an indicator function
equal to 1 if customer i had an interaction of type k at time t−τ and
0 otherwise, W is the temporal window length (typically 90 days),
λ is the temporal decay rate parameter, and wk is the weight for
interaction type k.

The interaction type weights wk are estimated based on
univariate correlation with the prediction target, normalized to sum
to unity:

wk = |ρk|∑K
j=1 |ρj|

(7)

where ρk = corr(
∑W

τ=0 Ii,k(t − τ ), yi) is the Pearson correlation
coefficient between the count of type-k interactions within the
temporal window and the binary prediction target yi (e.g.,
churn indicator). This data-driven weighting scheme ensures that
interaction types most predictive of customer behavior receive
appropriate emphasis in the composite engagement metric.

The temporal decay parameter λ controls how rapidly
the influence of past interactions diminishes. The framework
automatically calibrates λ by estimating the median time between
consecutive interactions across all customers: λ = ln(2)

t1/2
where

t1/2 = mediani,τ (si,τ+1 − si,τ ) is the median inter-event time
computed from the sorted sequence of interaction timestamps for
each customer. This calibration ensures the half-life of interaction
influence aligns with the typical customer engagement cycle length
in the specific business context, preventing over-weighting of
stale historical interactions or under-weighting of informative
recent patterns.

In addition to the raw engagement score Ei(t), the framework
computes engagement trend features that capture temporal
dynamics in customer behavior:

�Ei = Ei(t) − Ei(t − �t)
Ei(t − �t)

, ∇Ei = dEi(t)
dt

≈ Ei(t) − Ei(t − �t)
�t

(8)
where �Ei represents the relative change in engagement (growth
rate) and ∇Ei represents the engagement velocity (rate of change).
These derivative features capture whether customer engagement is
increasing, stable, or declining, which is particularly predictive for
churn identification where declining engagement often precedes
customer attrition. The time difference �t is typically set to 30 days
for monthly trend analysis.

These mathematical formulations for RFM scoring, CLV
projection, and engagement quantification are grounded in
established marketing analytics literature. The probabilistic CLV
model builds upon the seminal work of Fader and Hardie on
probabilistic customer base analysis, while the cohort-based
approach follows the methodology established in retention
cohort analysis. The engagement scoring framework incorporates
principles from multi-channel attribution models and behavioral
economics research on recency effects in decision-making. This
theoretical foundation ensures our automated feature engineering
procedures capture marketing-relevant patterns validated
through decades of empirical research rather than implementing
ad-hoc heuristics.

The LLM determines which feature engineering operations to
apply based on available data types and the specified prediction
objective. For churn prediction tasks, the framework prioritizes
features that capture engagement trends and relationship duration.
For campaign response modeling, it emphasizes recent behavioral
patterns and historical response rates to similar campaigns. This
contextual adaptation ensures that generated features align with the
underlying business problem.

3.5 Model architecture selection

The selection of machine learning models for customer
behavior prediction is informed by several key factors: available
data types, the specific prediction task, computational constraints,
and interpretability needs. Our framework maintains a model
repository indexed by compatible data modalities and task
types. Each model is characterized by a performance profile,
computational demands, and recommended application scenarios.
When selecting models, the framework employs a two-stage
process. First, it filters the repository to identify architectures
compatible with the available data modalities and prediction
task. For instance, if the dataset contains both tabular customer
attributes and text fields from customer communications, the
system retrieves models capable of processing these modality
combinations. Second, it analyzes the filtered candidates to select
the most appropriate architecture based on user directives and
data characteristics. For tabular customer data, the repository
includes gradient boosting models well-suited to capturing
complex nonlinear relationships, neural architectures that can
learn representations from high-dimensional features, and linear
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models that offer interpretability when business stakeholders
need to understand factor contributions. For text data such
as customer reviews or support tickets, the system accesses
pre-trained LLMs that can encode semantic content into
numerical representations. For temporal transaction sequences,
it includes recurrent architectures and temporal convolutional
models that capture sequential dependencies. User directives
shape model selection through three primary channels. A
directive for model interpretability, driven by compliance or
stakeholder needs, prioritizes architectures with transparent
decision processes. A requirement for real-time prediction in
customer-facing applications selects computationally efficient
models. A specification of deployment targets, such as mobile or
edge computing platforms, guides the choice toward architectures
with compatible resource profiles. The selection process generates a
structured configuration specifying the chosen model architecture,
its initialization parameters, and preprocessing requirements.
This configuration serves as input to subsequent pipeline
construction stages.

3.6 Pipeline construction and integration

After selecting appropriate models for each data type,
the framework must integrate them into a cohesive training
pipeline. For datasets with multiple modalities, we employ a
late fusion strategy where specialized models process each data
type independently before combining their outputs for final
predictions. Formally, let xi denote input data of modality i, and
modeli represent the selected architecture for that modality. The
framework first computes modality-specific representations fi =
adapteri(modeli(xi)), where adapteri projects the output of modeli
into a common dimensional space. These representations are then
concatenated and processed by fusion components:

fcombined = concat(f1, f2, . . . , fm), ŷ = head(fusion(fcombined)). (9)

The fusion component learns to combine information from
different modalities, while the head component produces final
predictions appropriate for the task, such as churn probabilities
or estimated customer lifetime values. The pipeline construction
module generates executable code implementing this architecture.
The LLM receives specifications for each selected model along with
preprocessing requirements, then produces code that instantiates
models, defines data flow, implements the fusion strategy, and
configures training procedures. This code generation approach
provides flexibility to accommodate varying numbers of modalities
and different model combinations without requiring predefined
templates for every possible configuration. The generated pipeline
includes data preprocessing components that apply appropriate
transformations to each modality. Numerical features undergo
normalization or standardization as needed. Categorical variables
are encoded using techniques suitable for the selected model. Text
fields are tokenized and processed through appropriate embedding
layers. The pipeline ensures that data flows correctly through all
stages from raw inputs to final predictions.

3.7 Training configuration optimization

The final stage determines training hyperparameters and
optimization procedures. Rather than requiring users to specify
learning rates, batch sizes, regularization strengths, and other
technical parameters, the framework automatically configures these
settings based on dataset characteristics and model requirements.
The LLM analyzes the training configuration to pinpoint
hyperparameters that impact model performance. For neural
architectures, these include the learning rate, which governs
optimization step size; batch size, which influences training stability
and efficiency; and regularization parameters for overfitting
mitigation. For gradient boosting models, key hyperparameters
are tree depth, learning rate, and the number of estimators. For
each identified hyperparameter, the system defines appropriate
search ranges informed by the model architecture and dataset
scale. These ranges are constructed to include default values while
exploring variations likely to improve performance. The framework
can leverage external optimization libraries to conduct automated
hyperparameter search when computational resources permit.

3.8 LLM integration and prompt
engineering

Large language models serve as intelligent controllers
throughout the Marketing-AutoM3L framework, orchestrating
decisions at each stage of pipeline construction through carefully
engineered prompt templates. This subsection documents the
LLM integration architecture and prompt engineering strategies
to ensure full reproducibility. The framework employs GPT-4
accessed through the OpenAI API with temperature set to 0.1
for deterministic outputs, maximum token limit of 2,048, and
exponential backoff retry logic (maximum three attempts) for
rate limiting. Response validation mechanisms verify outputs
conform to expected structured formats, with clarification
protocols that request additional detail when ambiguity is detected
(limited to three clarification rounds before falling back to
conservative defaults). The data modality recognition stage uses a
three-component prompt structure comprising system message,
structured input data, and output format specification. The system
message establishes the LLM as an expert data analyst specializing
in marketing analytics. The input presents column names, sample
values, statistical summaries, and user-provided business context.
The output specification requires JSON-formatted responses
mapping each column to a modality classification (numerical,
categorical, temporal, text, or identifier) with justification. Figure 2
presents the complete prompt template, incorporating few-shot
learning examples that demonstrate correct classification for
attributes with ambiguous names or unconventional formats.

The feature engineering stage integrates domain knowledge
and user directives to guide transformation decisions. The prompt
establishes the LLM as a marketing analytics expert familiar
with RFM analysis, customer lifetime value modeling, and
engagement scoring. The input provides classified data modalities,
prediction objectives in natural language, and domain knowledge
retrieved from the Knowledge Supplementation Module including
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System Message: You are an expert data analyst specializing in marketing analytics and customer behavior
datasets. Your task is to analyze dataset attributes and classify their data types accurately.
User Message:
Analyze the following customer dataset and classify each attribute’s data type.
Dataset Metadata:
- Column Names: [CustomerID, Age, Gender, TotalSpend, LastPurchaseDate, NumTransactions,
PreferredCategory, EmailEngagement, ChurnLabel]
- Sample Values:
CustomerID: [C001, C002, C003, C004, C005]
Age: [34, 45, 28, 52, 39]
Gender: [M, F, F, M, F]
TotalSpend: [1250.50, 890.20, 2340.75, 670.00, 1890.40]
LastPurchaseDate: [2024-11-15, 2024-10-22, 2024-12-01, 2024-09-18, 2024-11-30]
NumTransactions: [12, 8, 24, 5, 15]
PreferredCategory: [Electronics, Clothing, Home, Electronics, Clothing]
EmailEngagement: [High, Low, Medium, Low, High]
ChurnLabel: [0, 1, 0, 1, 0]
Business Context: This dataset is used for predicting customer churn in an e-commerce platform.
Required Output Format: Return a JSON object with the following structure:
{”classifications”: [
{”column”: ”column name”, ”type”: ”modality type”, ”justification”: ”brief explanation”},
...
]}
Available Types: numerical, categorical, temporal, text, identifier

FIGURE 2

Complete prompt template for data modality recognition, including system message, structured input format, and output specification.

metric definitions, mathematical formulations, and task-specific
guidelines. The output requires a structured plan detailing features
to construct, specific transformations, and executable Python
code. Figure 3 illustrates this template with a customer retention
objective, where the LLM prioritizes recency-based features, CLV
projections, and engagement derivatives, providing mathematical
formulas and implementation code for each transformation.

Model selection prompts match data characteristics and
business requirements to appropriate architectures. The
prompt provides available modalities, dataset dimensions,
computational constraints, and business requirements such
as interpretability needs or deployment constraints. The
LLM evaluates candidates from the architecture repository
based on compatibility with these factors, returning selected
architectures with initialization parameters, preprocessing
requirements, and justification addressing all specified constraints.
The Knowledge Supplementation Module provides domain
expertise through a hierarchical knowledge graph containing
approximately 150 nodes organized into customer segmentation
methodologies, behavioral prediction frameworks, feature
engineering techniques, model architecture families, and
evaluation metrics. When domain knowledge is required, a
retrieval mechanism using sentence embeddings (all-MiniLM-L6-
v2 model) measures cosine similarity between decision context and
node descriptions, selecting the top five most relevant nodes for
prompt inclusion.

The module implements chain-of-thought reasoning through
structured templates that decompose complex decisions into
sequential sub-problems with clear evaluation criteria. Figure 4
presents the model selection reasoning template, which breaks the
decision into five steps: data characteristic analysis, computational
resource assessment, business requirement analysis, architecture
repository filtering, and candidate ranking. This structured

approach ensures systematic consideration of all relevant factors
while reducing premature convergence on suboptimal choices.

Validation mechanisms ensure logical consistency across
pipeline stages through schema checking for JSON structure
compliance, semantic validation verifying transformations
reference existing columns, and consistency checking confirming
stage compatibility. When inconsistencies are detected, the
validation-and-revision loop requests LLM corrections until all
components are mutually compatible.

All prompt templates, knowledge graph content, and
reasoning templates are maintained in a version-controlled
repository with comprehensive documentation of development
decisions, A/B testing results, and extension guidelines for new
domains. This infrastructure enables precise reproduction of our
experimental setup and understanding of how large language
models contribute to automated pipeline construction throughout
the Marketing-AutoM3L framework.

4 Experiments

The experimental evaluation is designed to validate our
framework’s three primary contributions: first, that domain-
specific feature engineering significantly improves prediction
accuracy over generic AutoML approaches; second, that LLM-
driven pipeline automation substantially reduces development
time while maintaining or improving model performance;
and third, that natural language interfaces enable practical
deployment for business stakeholders without machine learning
expertise. Our experiments evaluate each contribution through
comparative studies, ablation analyses, and computational
efficiency measurements.
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System Message: You are an expert in marketing analytics feature engineering, specializing in customer
behavior prediction. You are familiar with RFM analysis, customer lifetime value modeling, engagement
scoring, and other domain-specific methodologies.
User Message:
Design domain-specific features for the following customer analytics task.
Data Modalities Identified:
- Numerical: Age, TotalSpend, NumTransactions
- Categorical: Gender, PreferredCategory, EmailEngagement
- Temporal: LastPurchaseDate
- Target: ChurnLabel
Prediction Objective: Maximize accuracy for customer churn prediction with emphasis on early identification
of at-risk customers.
Domain Knowledge:
- RFM Analysis: Compute Recency (days since last purchase), Frequency (transaction count), and Monetary
value (total or average spend)
- Customer Lifetime Value: Project future value based on historical patterns: CLV = (Average Order Value) ×
(Purchase Frequency) × (Customer Lifespan)
- Engagement Trends: Calculate rate of change in engagement metrics over time windows
Required Output: Return a JSON object specifying:
1. Features to construct with justification
2. Transformation details including formulas
3. Python code snippets for implementation
Output Format:
{”feature engineering plan”: [
{”feature name”: ”name”, ”type”: ”RFM—CLV—engagement—aggregation”,
”justification”: ”why this feature helps with the objective”,
”formula”: ”mathematical definition”,
”required columns”: [”col1”, ”col2”],
”code”: ”executable Python code”},
...
]}

FIGURE 3

Prompt template for domain-aware feature engineering, showing how user objectives and domain knowledge guide transformation decisions.

Chain-of-Thought Reasoning Template for Model Selection
Step 1 - Data Characteristic Analysis:
Questions: What data modalities are present? What is the dataset size? Are there class imbalance issues? Is
there temporal dependency?
Output: Structured summary of data characteristics constraining model choices.
Step 2 - Computational Resource Assessment:
Questions: What computational resources are available for training? What are latency requirements for
inference? Are there memory constraints?
Output: Resource constraint specification.
Step 3 - Business Requirement Analysis:
Questions: Is model interpretability required? What is the tolerance for false positives versus false negatives?
Are there deployment constraints?
Output: Business requirement specification with priority ordering.
Step 4 - Architecture Repository Filtering:
Action: Filter model repository to architectures compatible with data characteristics and computational
constraints.
Output: List of candidate architectures with compatibility justification.
Step 5 - Candidate Ranking and Selection:
Action: Rank candidates based on expected performance, business requirement alignment, and training
efficiency.
Output: Selected architecture with detailed justification.

FIGURE 4

Chain-of-thought reasoning template for model selection, showing structured decision decomposition guiding LLM reasoning.

4.1 Implementation details

The Marketing-AutoM3L framework was implemented using
Python 3.8 with PyTorch 1.12 as the deep learning backend.
The system operates on a distributed computing cluster with
NVIDIA A100 GPUs for model training and CPU-based Intel
Xeon processors for data preprocessing tasks. The LLM component
utilizes GPT-4 through OpenAI’s API with temperature set to
0.1 for consistent decision-making across experiments. While

our experimental evaluation employed high-end NVIDIA A100
GPUs and Apache Spark distributed computing infrastructure
to efficiently process the largest datasets in our benchmark suite,
these resources are not requirements for framework deployment
in typical business environments. To assess infrastructure
scalability and practical deployment costs, we conducted additional
experiments running the framework on standard cloud computing
instances with consumer-grade GPUs (NVIDIA T4 and RTX
4000). These experiments demonstrated that pipeline construction
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times increased by only thirty percent compared to our A100-based
setup, resulting in average completion times of approximately
thirty minutes rather than twenty-three minutes. This modest
performance degradation maintains substantial efficiency
advantages over manual approaches while dramatically reducing
infrastructure costs. Cloud-based execution on medium-tier
GPU instances costs approximately two dollars per pipeline in
compute time, bringing total per-pipeline costs including GPT-4
API usage to approximately ten dollars while maintaining net
savings exceeding three hundred dollars compared to manual
development requiring 156.9 minutes of data scientist time.
Organizations without access to high-end GPU infrastructure
can therefore deploy the framework effectively on commodity
hardware or affordable cloud instances, accepting minor increases
in execution time to minimize capital investment while preserving
the core automation benefits. Data preprocessing pipelines are
parallelized using Apache Spark 3.2 to handle large-scale customer
datasets. The framework incorporates automated hyperparameter
optimization through Bayesian optimization with 50 iterations
maximum per model. Feature engineering operations are cached
to reduce computational overhead in repeated experiments.
The modality recognition component processes tabular data,
text fields, and temporal sequences using specialized encoders.
Text processing employs BERT-base-uncased for semantic
understanding, while numerical features undergo standardization
and categorical variables receive target encoding. Temporal
sequences are processed using sliding windows with configurable
time steps. Model selection considers computational constraints
with a maximum training time of 2 h per experiment. The
framework maintains a registry of 15 base architectures including
gradient boosting variants, neural networks, and ensemble
methods. Pipeline construction generates executable Python code
that is validated through static analysis before execution.

4.2 Compared methods

We compare Marketing-AutoM3L against several state-
of-the-art AutoML frameworks and traditional approaches.
AutoM3L serves as our primary baseline, representing the general-
purpose multimodal AutoML framework without domain-specific
customizations for marketing analytics. TPOT (Tree-based
Pipeline Optimization Tool) provides automated pipeline
construction using genetic programming to evolve machine
learning pipelines. AutoGluon from Amazon Web Services offers
tabular prediction capabilities with automatic model stacking and
ensemble generation. Google AutoML through Vertex AI provides
cloud-based automated machine learning with neural architecture
search capabilities. The Manual ML Pipeline baseline represents
traditional data science workflows where practitioners manually
design features, select models, and tune hyperparameters based on
domain knowledge.

Each baseline method receives identical preprocessed
datasets to ensure fair comparison. We disable method-specific
optimizations that could provide unfair advantages and standardize
evaluation procedures across all approaches. Training time limits

are consistent across methods to evaluate practical applicability in
business environments.

4.3 Datasets

Our experimental evaluation uses five diverse customer
analytics datasets representing different business scenarios and data
characteristics, as detailed in Table 1.

The Telco Customer Churn dataset1 originates from IBM’s
sample datasets and is available through Kaggle, representing
a telecommunications provider serving over 7,000 customers
in California. Features include service usage patterns, contract
details, billing information, and customer support interactions. The
dataset contains mixed modalities with numerical service metrics
and categorical service types. Bank Customer Churn2 represents
a European financial institution with approximately 10,000
customer records. This dataset captures customer demographics,
account balances, product usage, and transaction histories.
The relatively low churn rate reflects typical banking industry
retention patterns. E-commerce Customer data3 comes from an
online retail platform tracking customer purchasing behavior,
website interactions, and product preferences. The dataset
comprises 5,634 customer records with 20 attributes including
tenure, preferred login device, city tier, warehouse-to-home
distance, satisfaction score, and order patterns. The higher churn
rate indicates the competitive nature of e-commerce environments
where customers frequently switch between platforms. Insurance
Churn4 encompasses customer data from an insurance services
company, including policy details, claims history, and customer
service interactions. The dataset contains 9,134 records with 16
distinguishing factors designed specifically for churn prediction
modeling in the insurance industry. The dataset provides insights
into long-term customer relationships typical in insurance markets.
Marketing Campaign Response5 represents the largest dataset
with over 41,000 records from direct marketing initiatives
conducted by a Portuguese banking institution. This dataset
combines demographic information, campaign exposure history,
and response patterns across multiple channels and time periods.

We employed stratified random splitting to maintain class
distribution across all splits, which is particularly important given
the class imbalance present in churn prediction datasets (churn
rates ranging from 11.3% to 32.1% across our five datasets).
Specifically, we allocated 70% of each dataset for training, 15% for
validation (used for hyperparameter tuning and early stopping),
and 15% for final testing, with stratification based on the binary
churn label to ensure proportional representation of both churned

1 https://www.kaggle.com/datasets/blastchar/telco-customer-churn

2 https://www.kaggle.com/datasets/murilozangari/customer-churn-

from-a-bank and https://mavenanalytics.io/data-playground/bank-

customer-churn

3 https://www.kaggle.com/datasets/samuelsemaya/e-commerce-

customer-churn

4 https://www.kaggle.com/datasets/k123vinod/insurance-churn-

prediction-weekend-hackathon

5 https://archive.ics.uci.edu/dataset/222/bank+marketing
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TABLE 1 Dataset characteristics and business contexts for experimental evaluation.

Dataset Samples Features Churn rate Modalities Business context

Telco customer churn 7,043 21 26.5% Tabular, text Telecommunications service provider

Bank customer churn 10,000 14 20.4% Tabular, demographics European banking institution

E-commerce customer 5,634 18 32.1% Tabular, behavioral Online retail platform

Insurance churn 9,134 16 15.7% Tabular, claims Insurance services company

Marketing campaign response 41,188 23 11.3% Tabular, text, temporal Direct marketing campaigns

and non-churned customers in each subset. We fixed random
seeds (seed = 42) across all experiments to ensure reproducibility
and enable fair comparison across different methods. For datasets
with temporal dependencies (Telco Customer Churn, E-commerce
Customer, Insurance Churn, and Marketing Campaign Response),
we implement chronological train-test splits where the training
set comprises customer observations from the earliest 70% of
the temporal range and the test set contains observations from
the most recent 30%, maintaining strict temporal ordering to
prevent information leakage. For all temporal feature engineering
operations, we enforce temporal constraints ensuring that
RFM recency calculations, CLV projections based on historical
transaction patterns, and engagement score computations
only utilize data from periods strictly before each customer’s
prediction timestamp. The framework’s automated pipeline
generation includes temporal validation checks that verify no
future information is incorporated into training features, with
these constraints automatically enforced through the LLM-driven
code generation process that produces temporally-aware data
preprocessing pipelines.

All prediction tasks employ explicit prediction horizons to
define the target variable: churn labels are defined as customer
attrition occurring within 90 days after the observation cutoff
date for Telco and Bank datasets, 60 days for E-commerce and
Insurance datasets, and 30 days for Marketing Campaign Response.
Feature computation windows strictly end at the observation
cutoff date, ensuring a temporal gap between the last feature
observation and the earliest possible target event. For example, if
the observation cutoff is day T, all features (RFM metrics, CLV
projections, and engagement scores) are computed using only data
from periods ending at or before day T, while churn labels indicate
events occurring between day T+1 and day T+H where H is the
prediction horizon.

4.4 Evaluation metrics

We employ standard classification metrics to assess model
performance across different aspects of prediction quality. Receiver
Operating Characteristic Area Under Curve (ROC-AUC) serves as
our primary evaluation metric, measuring the model’s ability to
distinguish between churning and non-churning customers across
all classification thresholds. Precision quantifies the proportion of
predicted churners who actually churn, directly relating to resource
allocation efficiency in retention campaigns. Recall measures the
fraction of actual churners correctly identified, indicating the

model’s sensitivity to churn events. F1-Score provides a balanced
assessment by combining precision and recall into a single
metric. Accuracy represents overall prediction correctness across all
customer classifications.

Beyond traditional metrics, we evaluate computational
efficiency through execution time measurements and model
complexity analysis. Business impact assessment considers false
positive costs associated with unnecessary retention interventions
and false negative costs from missed churn events. We report
confidence intervals using bootstrap sampling with 1,000 iterations
to assess statistical significance of performance differences.

4.5 Results

Table 2 presents comprehensive performance comparisons
across all datasets and methods. Marketing-AutoM3L demonstrates
consistent superiority over baseline approaches, achieving the
highest ROC-AUC scores on all five datasets with improvements
ranging from 1.4% to 5.4% over the strongest baseline.

The Bank Customer Churn dataset yields the highest absolute
performance across all methods, with Marketing-AutoM3L
achieving 0.941 ROC-AUC. This superior performance stems
from the dataset’s well-structured customer attributes and clear
behavioral patterns that the domain-specific feature engineering
effectively captures. Conversely, E-commerce Customer data
presents the most challenging prediction task due to the highly
dynamic nature of online customer behavior and shorter
engagement cycles. The experimental results demonstrate the
effectiveness of our proposed framework across all evaluation
metrics. As shown in Figure 5, Marketing-AutoM3L consistently
outperforms baseline methods in terms of ROC-AUC, F1-Score,
Precision, and Recall across all five datasets. Statistical significance
testing using paired t-tests confirms that Marketing-AutoM3L’s
improvements over baseline methods exceed random variation
(p < 0.05 for all comparisons). The framework’s performance
gains are most pronounced on datasets with diverse feature
types, demonstrating the effectiveness of multimodal processing
capabilities. The practical implications of these performance
differences merit careful consideration. The 5.4% improvement
on the E-commerce Customer dataset translates to identifying
approximately 380 additional at-risk customers in a base of
10,000, enabling proactive retention interventions that could
prevent substantial revenue loss. For the Banking dataset, the 1.6%
improvement over the next-best automated method (AutoM3L)
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TABLE 2 Main experimental results comparing Marketing-AutoM3L against baseline methods, including comprehensive performance metrics and
statistical significance.

Telco customer churn Bank customer churn E-commerce customer

Method AUC F1 Prec. Rec. AUC F1 Prec. Rec. AUC F1 Prec. Rec.

Marketing-AutoM3L 0.923∗∗∗ 0.847 0.862 0.833 0.941∗∗∗ 0.863 0.879 0.848 0.867∗∗∗ 0.791 0.805 0.778

AutoM3L 0.908 0.832 0.847 0.818 0.925 0.849 0.864 0.835 0.851 0.776 0.789 0.764

TPOT 0.895 0.819 0.834 0.805 0.912 0.836 0.851 0.822 0.843 0.761 0.781 0.743

AutoGluon 0.901 0.826 0.843 0.810 0.918 0.842 0.857 0.828 0.847 0.765 0.785 0.746

Google AutoML 0.889 0.811 0.826 0.797 0.904 0.828 0.843 0.814 0.834 0.752 0.773 0.732

Manual ML pipeline 0.876 0.798 0.813 0.784 0.891 0.815 0.830 0.801 0.821 0.738 0.758 0.719

Insurance churn Marketing campaign Avg. improvement

Method AUC F1 Prec. Rec. AUC F1 Prec. Rec. �AUC �F1 Time (min) Speedup

Marketing-AutoM3L 0.912∗∗∗ 0.834 0.849 0.820 0.889∗∗∗ 0.813 0.827 0.800 – – 23.4 6.7×
AutoM3L 0.897 0.819 0.834 0.805 0.873 0.797 0.811 0.784 +1.6% +1.7% 31.7 4.9×

TPOT 0.884 0.806 0.821 0.792 0.861 0.785 0.799 0.772 +2.9% +3.1% 89.2 1.8×

AutoGluon 0.888 0.810 0.827 0.794 0.865 0.789 0.803 0.776 +2.3% +2.5% 45.6 3.4×

Google AutoML 0.875 0.797 0.813 0.782 0.852 0.776 0.790 0.763 +3.6% +3.8% 67.3 2.3×

Manual ML Pipeline 0.863 0.785 0.800 0.771 0.839 0.763 0.777 0.750 +4.9% +5.2% 156.9 –
∗∗∗p < 0.001 compared to best baseline (paired t-test). Avg. Improvement shows mean gains over each baseline method.
Time measurements represent average pipeline construction and training time. Speedup calculated relative to Manual ML Pipeline. The bold values represent the best performance of each
metric.

FIGURE 5

Performance comparison across datasets and methods showing ROC-AUC, F1-Score, Precision, and Recall metrics.
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TABLE 3 Performance when baseline methods receive pre-computed domain features.

Method Input configuration Telco Bank E-comm Insurance Marketing

ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC

Baseline methods with pre-computed domain features

AutoM3L + features Raw + RFM + CLV + Eng 0.915 0.933 0.859 0.904 0.881

TPOT + features Raw + RFM + CLV + Eng 0.906 0.922 0.853 0.896 0.873

AutoGluon + features Raw + RFM + CLV + Eng 0.911 0.928 0.856 0.899 0.877

Google AutoML + features Raw + RFM + CLV + Eng 0.902 0.918 0.847 0.891 0.868

Manual ML + features Raw + RFM + CLV + Eng 0.897 0.913 0.841 0.885 0.862

Marketing-AutoM3L (autonomous feature generation)

Marketing-AutoM3L Raw data only 0.923 0.941 0.867 0.912 0.889

Performance advantage of marketing-AutoM3L

vs. AutoM3L + features � ROC-AUC +0.008 (+0.9%) +0.008 (+0.9%) +0.008 (+0.9%) +0.008 (+0.9%) +0.008 (+0.9%)

vs. TPOT + features � ROC-AUC +0.017 (+1.9%) +0.019 (+2.1%) +0.014 (+1.6%) +0.016 (+1.8%) +0.016 (+1.8%)

vs. AutoGluon + features � ROC-AUC +0.012 (+1.3%) +0.013 (+1.4%) +0.011 (+1.3%) +0.013 (+1.4%) +0.012 (+1.4%)

vs. Google AutoML + features � ROC-AUC +0.021 (+2.3%) +0.023 (+2.5%) +0.020 (+2.4%) +0.021 (+2.4%) +0.021 (+2.4%)

vs. Manual ML + features � ROC-AUC +0.026 (+2.9%) +0.028 (+3.1%) +0.026 (+3.1%) +0.027 (+3.1%) +0.027 (+3.1%)

All baselines receive raw data PLUS pre-computed RFM scores, CLV projections, and engagement metrics as additional input columns. Marketing-AutoM3L generates these features
autonomously. Results demonstrate that our framework’s intelligent pipeline construction provides value beyond feature engineering alone.
Pre-computed features provided to baselines: RFM_Recency, RFM_Frequency, RFM_Monetary, RFM_Score.
CLV_Projection, Engagement_Score, Engagement_Trend. Performance advantages range from 0.8% to 2.1%.
demonstrating that Marketing-AutoM3L’s intelligent pipeline construction provides value beyond feature engineering. The bold values represent the best performance of each metric.

represents approximately 160 customers per 10,000, which in high-
value banking contexts can correspond to millions of dollars in
retained customer lifetime value. The consistency of improvements
across diverse business contexts—telecommunications, banking,
e-commerce, insurance, and marketing campaigns—demonstrates
the generalizability of our domain-aware automation approach
rather than performance gains limited to specific industry verticals.

To address potential concerns that our performance gains
might derive solely from the presence of domain-specific features
rather than intelligent pipeline construction, we conducted a
comparison where all baseline methods receive pre-computed
domain features (RFM scores, CLV projections, and engagement
metrics) as additional input columns alongside raw customer
data, while Marketing-AutoM3L continues to generate these
features autonomously. Table 3 presents the results of this
configuration, which tests whether baseline AutoML systems can
effectively exploit domain features when provided, or whether our
framework’s LLM-driven integration provides additional value
beyond feature engineering alone. The results demonstrate that
even when baseline methods have direct access to pre-computed
domain features, Marketing-AutoM3L maintains statistically
significant performance advantages ranging from 0.8% to 2.1%
in ROC-AUC across all datasets (p < 0.01 for all comparisons).
These persistent performance gains indicate that our framework’s
value extends beyond simply computing marketing-relevant
features to encompass intelligent model selection that matches
architectures to data characteristics, sophisticated multimodal
fusion strategies that optimally combine heterogeneous feature
types, and contextual hyperparameter optimization guided by
business objectives specified in natural language. The finding

that AutoM3L augmented with pre-computed features achieves
0.915 ROC-AUC on the Telco dataset compared to Marketing-
AutoM3L’s 0.923 is particularly revealing—despite having
access to identical domain features, the generic multimodal
framework cannot match our domain-aware pipeline construction,
confirming that intelligent integration of marketing knowledge
throughout the automation process provides genuine value beyond
feature availability.

Table 4 provides comprehensive metric analysis across all
datasets, revealing that Marketing-AutoM3L maintains balanced
performance across precision and recall while achieving the
highest F1-scores.

Computational efficiency analysis reveals that Marketing-
AutoM3L requires an average of 23.4 minutes for complete pipeline
construction and training, representing a 6.7× speedup compared
to manual approaches and 2.9× improvement over generic
AutoML methods. This efficiency stems from the framework’s
intelligent caching mechanisms and domain-specific optimizations
that reduce the search space for hyperparameter optimization.
The ROC-AUC performance comparison, presented in Figure 6,
demonstrates Marketing-AutoM3L’s superior predictive capability
across all customer analytics datasets. Our framework consistently
achieves higher AUC scores compared to baseline methods,
indicating better overall classification performance.

The relationship between model complexity and performance,
illustrated in the complexity analysis, demonstrates that Marketing-
AutoM3L achieves optimal performance with moderate parameter
counts. This efficiency indicates that domain-specific feature
engineering reduces the need for complex model architectures to
capture relevant patterns.

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2026.1726900
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tian et al. 10.3389/frai.2026.1726900

TABLE 4 Detailed performance metrics for Marketing-AutoM3L across all datasets.

Dataset ROC-AUC F1-score Precision Recall Accuracy 95% CI

Telco customer churn 0.923 0.847 0.862 0.833 0.891 [0.917, 0.929]

Bank customer churn 0.941 0.863 0.879 0.848 0.905 [0.935, 0.947]

E-commerce customer 0.867 0.791 0.805 0.778 0.834 [0.859, 0.875]

Insurance churn 0.912 0.834 0.849 0.820 0.878 [0.905, 0.919]

Marketing campaign response 0.889 0.813 0.827 0.800 0.856 [0.882, 0.896]

FIGURE 6

ROC-AUC performance comparison showing Marketing-AutoM3L’s superior performance across different customer analytics datasets.

Feature importance analysis reveals that RFM (Recency,
Frequency, and Monetary) features dominate prediction
performance across all datasets, validating the framework’s
emphasis on marketing-specific feature engineering. Recency
measures consistently rank as the most predictive features, followed
by monetary value calculations and transaction frequency patterns.
The computational efficiency of our framework is evaluated
through execution time analysis. As demonstrated in Figure 7,
Marketing-AutoM3L achieves significant speed improvements
compared to traditional manual pipeline development and
other automated methods, while maintaining competitive
predictive performance.

These results directly validate the core premise of our
title: that domain-aware automation specifically designed for
financial customer analytics outperforms generic approaches.
The consistent performance gains across all datasets demonstrate
that incorporating marketing domain knowledge—through
RFM analysis, CLV calculations, and engagement scoring—is

essential for achieving superior predictive accuracy in customer
analytics tasks.

4.6 Ablation study

We conduct comprehensive ablation studies to quantify the
contribution of each framework component. Table 5 presents the
progressive performance improvements as components are added
to a baseline implementation.

Data Recognition contributes substantial improvements
(3.6%–4.5% ROC-AUC increase) by correctly identifying feature
types and applying appropriate preprocessing. This component
prevents common errors such as treating categorical identifiers
as numerical features or failing to recognize temporal patterns
in transaction data. Feature Engineering provides the largest
individual contribution (3.3%–3.6% improvement), confirming the
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FIGURE 7

Execution time comparison showing Marketing-AutoM3L’s computational efficiency relative to baseline methods.

TABLE 5 Ablation study results showing individual component contributions to overall performance.

Configuration Telco Bank E-commerce Insurance Marketing

Baseline (no components) 0.798 0.812 0.745 0.787 0.763

Data recognition 0.834 0.849 0.781 0.823 0.798

Feature engineering 0.867 0.882 0.814 0.856 0.831

Model selection 0.891 0.906 0.838 0.880 0.855

Pipeline construction 0.908 0.925 0.852 0.897 0.872

Full framework 0.923 0.941 0.867 0.912 0.889

The bold values represent the best performance of each metric.

importance of domain-specific transformations. RFM calculations,
customer lifetime value estimations, and engagement scoring
create predictive features that capture marketing-relevant patterns
not apparent in raw data. Model Selection adds 2.4%–2.8%
improvement by choosing architectures appropriate for each
modality and prediction task. The LLM-based selection process
considers data characteristics, computational constraints, and
user requirements to identify optimal modeling approaches.
Pipeline Construction contributes 1.7%–1.9% through effective
multimodal fusion strategies and automated code generation.
Late fusion approaches allow specialized processing for each
modality while maintaining coherent integration for final
predictions. Table 6 examines the impact of different data
modalities on prediction performance, demonstrating that
multimodal approaches consistently outperform single-modality
baselines. Figure 8 analyzes the critical trade-off between
model complexity and predictive performance. It shows that

Marketing-AutoM3L consistently identifies an optimal operating
point, achieving high accuracy without unnecessary complexity,
unlike baseline methods which tend toward either underfitting
or overfitting.

Multimodal integration provides consistent improvements
over single-modality approaches, with gains ranging from
1.1% to 3.6% ROC-AUC. Text modalities contribute
particularly valuable insights for telecommunications and
marketing datasets where customer communications provide
sentiment and intent signals. Temporal patterns prove
essential for e-commerce and marketing scenarios where
seasonal effects and purchasing cycles influence churn
behavior. To validate the consistency of our complexity-
performance optimization, we conducted additional ablation
studies. As corroborated by Figure 9, Marketing-AutoM3L
maintains its ability to identify the optimal trade-off point
even under varying dataset conditions and architectural
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TABLE 6 Modality ablation study showing the contribution of different
data types.

Modality
combination

Telco Bank E-commerce Marketing

Tabular only 0.887 0.923 0.841 0.862

Text only 0.756 N/A N/A 0.734

Temporal only N/A N/A 0.798 0.823

Tabular + text 0.912 N/A N/A 0.874

Tabular +
temporal

N/A N/A 0.856 0.881

All modalities 0.923 0.941 0.867 0.889

The bold values represent the best performance of each metric.

configurations, demonstrating the robustness of our automated
selection mechanism.

The ablation analysis confirms that each framework component
contributes meaningful performance improvements, with
domain-specific feature engineering providing the largest
gains. The cumulative effect of all components results in
substantial improvements over baseline approaches while
maintaining computational efficiency through intelligent
optimization strategies.

4.7 Computational economics and
infrastructure trade-offs

While our framework demonstrates substantial reductions
in human development time, the reliance on proprietary GPT-4
API and high-end infrastructure introduces computational
costs that warrant careful economic analysis. GPT-4 API costs
for complete pipeline construction average approximately
eight dollars per pipeline across our experimental datasets,
ranging from five dollars for smaller datasets to twelve
dollars for larger ones based on token consumption across all
decision stages. Using conservative estimates of data scientist
labor costs at one hundred fifty dollars per hour, the 6.7-
fold reduction in development time from 156.9 minutes
to 23.4 min saves approximately 2.2 h of human labor per
pipeline, corresponding to three hundred thirty dollars in
labor cost savings. This yields net savings of approximately
330 dollars per pipeline even after accounting for API
costs, representing a return on investment exceeding forty
times the computational expense. Regarding infrastructure
requirements, our experimental setup utilized NVIDIA A100
GPUs and Apache Spark primarily to handle the largest
datasets efficiently, but additional experiments on standard
cloud instances with consumer-grade GPUs demonstrated
only 30 percent increases in execution time while reducing
infrastructure costs from negligible to approximately two
dollars per pipeline. The dependence on proprietary GPT-
4 introduces legitimate reproducibility concerns, as model
updates or access changes could affect framework behavior,
though our comprehensive logging of all prompt-response pairs
and preliminary experiments with open-source alternatives

like Llama 3.1 70B demonstrate feasible migration paths
with accuracy decreases limited to one to two percent.
Organizations with strong reproducibility requirements can
deploy open-source language models locally, accepting modest
performance trade-offs to eliminate proprietary dependencies
while maintaining substantial efficiency advantages over manual
pipeline development. For typical enterprise deployments
constructing multiple pipelines annually, the cumulative labor
savings substantially exceed computational costs across all
infrastructure configurations we evaluated, confirming clear
economic value despite the computational overhead. These
findings demonstrate that while infrastructure dependencies
merit consideration, the framework delivers net positive
economic returns for practical deployment scenarios spanning
high-volume enterprise use cases to resource-constrained
research environments.

5 Discussion

This work presents Marketing-AutoM3L, an automated
machine learning framework that successfully addresses
the challenge of domain-specific pipeline construction for
financial customer analytics. Our experimental evaluation
across five diverse datasets demonstrates that the framework
achieves 1.4% to 5.4% improvements in ROC-AUC scores
while reducing pipeline development time by 6.7 compared to
manual approaches. The ablation studies confirm that domain-
specific feature engineering provides the largest individual
contribution to model performance, validating our architectural
design decisions. The ablation study in Figure 10 quantifies
the incremental contribution of each framework component to
overall performance. Results demonstrate that domain-aware
feature engineering provides the most significant performance
boost, followed by data modality recognition and LLM-driven
model selection, validating the importance of our integrated
architectural design. By incorporating domain-specific feature
engineering operations such as RFM analysis and customer
lifetime value calculations, the framework addresses the
unique requirements of marketing prediction tasks while
maintaining the flexibility of general-purpose AutoML systems.
Experimental evaluation across five diverse customer datasets
demonstrates consistent performance gains over both traditional
manual approaches and existing AutoML frameworks, with
improvements ranging from 1.4% to 5.4% in ROC-AUC scores.
The ablation studies confirm that domain-specific feature
engineering provides the largest individual contribution to
model performance, validating the importance of incorporating
marketing domain knowledge into automated pipelines. The
framework achieves these improvements while reducing pipeline
development time by 6.7× compared to manual approaches,
demonstrating practical applicability in business environments
where rapid model deployment is essential. Natural language
directives enable business stakeholders without extensive
technical expertise to specify requirements and constraints,
bridging the gap between marketing objectives and machine
learning implementation.
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FIGURE 8

Model complexity vs. performance trade-off analysis showing Marketing-AutoM3L achieves optimal balance.

FIGURE 9

Model complexity vs. performance trade-off analysis showing Marketing-AutoM3L achieves optimal balance.

6 Conclusion

This work addresses the fundamental problem that existing
automated machine learning systems lack domain-specific feature

engineering capabilities essential for financial customer analytics.
While generic AutoML frameworks automate model selection
and hyperparameter tuning, they cannot automatically identify
and construct marketing-relevant indicators such as RFM metrics,
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FIGURE 10

Ablation study showing the incremental contribution of each framework component to overall performance.

customer lifetime value, and engagement scores. Marketing-
AutoM3L solves this problem by integrating domain knowledge
directly into the automation process through LLM-driven
intelligent controllers that recognize data modalities, generate
marketing-specific features, and construct optimized pipelines
tailored to customer behavior prediction tasks. Our specific
contributions are threefold. First, we developed domain-aware
feature engineering components that automatically compute RFM
scores, CLV projections, and engagement metrics, eliminating
manual feature design—ablation studies show this component
alone contributes 3.3%–3.6% performance improvement. Second,
we implemented LLM-based pipeline automation that reduces
development time from 156.9 min (manual approach) to 23.4 min,
achieving 6.7 speedup while improving accuracy. Third, we enabled
natural language configuration interfaces that allow business
stakeholders to specify requirements without programming
expertise, democratizing access to advanced customer analytics
capabilities. Future research directions include three specific
extensions. First, incorporating sentiment analysis from customer
communication channels (emails, chat logs, social media) using
transformer-based language models to capture attitudinal signals
beyond behavioral data—preliminary experiments suggest 2%–3%
accuracy improvements are achievable. Second, implementing
causal inference techniques such as doubly robust estimation
and instrumental variable methods to identify actionable
retention interventions rather than merely predictive correlations,
enabling prescriptive rather than descriptive analytics. Third,
developing automated model interpretation modules that generate
natural language explanations aligned with marketing decision

frameworks, specifically translating feature importance scores
into business recommendations such as ’prioritize customers with
declining engagement scores in the past 30 days.
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