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Introduction: Oral cancer affects millions of people worldwide, and early
detection significantly improves treatment outcomes and survival rates.
Conventional diagnostic approaches often face challenges related to subjectivity
and delayed identification. In this context, artificial intelligence—based tools
offer promising opportunities for rapid and reliable early screening.

Methods: This study investigates the feasibility of using an Artificial Neural
Network (ANN) to predict oral cancer risk based on optical refractive index (RI)
features. Rl data corresponding to reported INOK (normal oral cells) and YD-
10B (oral cancer cells) cell lines were employed. To enhance model robustness
and assess feasibility, the dataset was synthetically augmented. Multiple ANN
architectures and hyperparameter configurations were systematically evaluated
to identify the optimal network topology for classification.

Results: The optimized ANN model demonstrated excellent performance in
distinguishing between normal and oral cancer cell data. A precision score
of 98.72% indicates that nearly all samples classified as cancerous were truly
positive, minimizing false-positive predictions. Additionally, the model achieved
a specificity of 99.00%, highlighting its strong capability to correctly identify
non-cancerous cases.

Discussion and conclusion: The high precision and specificity values underscore
the effectiveness of ANN-based classification using optical refractive index
features for oral cancer screening. By reducing false positives and preventing
unnecessary anxiety among healthy individuals, the proposed approach offers
significant clinical value. These findings demonstrate the potential of ANN-
assisted optical analysis as a reliable and efficient tool for early oral cancer
detection, paving the way for faster diagnosis and improved patient outcomes.

KEYWORDS

Al in oncology, artificial neural networks, cancer biomarkers, deep learning, health
informatics, machine learning, oral cancer, precision medicine

1 Introduction

The high incidence and fatality rates of oral cancer, which include cancers of the lips, tongue,
cheeks, floor of the mouth, hard and soft palate, sinuses, and throat, make it a major global health
concern. Oral cancer is one of the top 10 most frequent malignancies globally, according to the
World Health Organization (WHO), and it is disproportionately more common in places like South
Asia. This startling incident emphasises how urgently early discovery, prompt treatment, and
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effective preventive measures are needed. However, for several reasons,
early identification of oral cancer is still quite difficult. First of all, the early
signs and symptoms of oral cancer are often mild and easily mistaken for
benign conditions, leading to delayed diagnosis. Second, the problem is
made worse by a lack of regular screening procedures and general
knowledge, especially in settings with limited resources. Early detection
attempts are further complicated by the variability of oral cancer with
regard to its biological behaviour and responsiveness to treatment. In
order to improve patient outcomes and survival rates, these problems call
for creative diagnostic strategies, such as the use of cutting-edge
technology like ANN, to increase the precision and promptness of oral
cancer identification. ANNs are computer models that draw inspiration
from the neural networks found in the human brain. Similar to biological
brain networks, they are made up of interconnected nodes, or “neurones,”
that process and send information. Because ANN models can learn from
data and make sophisticated decisions without explicit programming,
they have attracted a lot of interest and been used in a variety of fields.
Input, hidden, and output layers are common organisational structures
for these networks, and each one adds to the model’s overall processing
and decision-making power. By offering sophisticated answers for issues
that were previously challenging to handle with conventional
computational techniques, ANNs have completely transformed a number
of sectors. Natural language processing (NLP), image and speech
recognition, financial forecasting, and autonomous systems are a few of
the main uses ANN. ANNSs are crucial in robotics, autonomous vehicles,
and healthcare, enabling real-time perception and response. In modern
medicine, ANNG are a useful tool. The use of ANN in medical diagnostics
has demonstrated enormous promise for improving the precision and
effectiveness of disease prediction and diagnosis. The following are some
noteworthy benefits of applying ANN in this field:

Improved pattern recognition: ANNs are excellent at seeing
intricate correlations and patterns in medical data that may be
challenging for human clinicians to notice. More accurate diagnosis
and individualised treatment regimens are made possible by this
capability.

Early detection and intervention: By examining enormous volumes
of patient data, ANN models are able to identify early indicators of
diseases like cancer, heart disease, and neurological disorders. This
allows for prompt intervention and enhances patient outcomes.

Increased diagnostic accuracy: By offering reliable and impartial
analysis, ANNs lower the possibility of human error in medical
diagnoses. This lowers the possibility of a misdiagnosis and results in
more accurate diagnoses.

Data-driven insights: ANN models are capable of processing and
learning from a variety of datasets, such as genetic data, electronic
health records, and medical imaging. This data-driven method offers
insightful information about the causes of diseases and the
effectiveness of treatments.

Scalability and efficiency: ANNs are very scalable and efficient in
healthcare contexts since they can process vast amounts of medical
data and carry out intricate analyses quickly. Better resource
management is made possible by this capability, which also supports
the rising demand for healthcare services.

The study’s main goal is to create and apply an ANN model that is
specifically suited to the needs of oral cancer prediction. Using a
thorough dataset that includes patient characteristics such
demographics, medical history, lifestyle choices, and clinical results,
develop a model that can reliably forecast the existence of oral cancer.
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Assess several ANN architectures and hyper parameters to attain the
best possible predictive performance, guaranteeing high F1 score,
specificity, accuracy, sensitivity, and precision and guarantee the ANN
model’s dependability and suitability for use in clinical settings,
thoroughly test and validate it using actual patient data. There are
numerous important benefits and possible effects to using ANN to
predict oral cancer. By analysing large volumes of patient data, ANN
models are able to identify early indicators of oral cancer, facilitating
prompt intervention and raising the likelihood of both patient survival
and successful treatment. ANN can lower the chance of a misdiagnosis
and offer consistent, unbiased analysis, resulting in more accurate
diagnoses, by precisely detecting patterns and correlations within the
data. ANN models” high precision and specificity assist reduce false
positives and negatives, saving patients needless worry and
maximising medical resources. By processing a variety of datasets,
such as genetic data and medical imaging, ANN can provide patients
with individualised insights into the causes of their diseases and the
effectiveness of treatments, enabling them to get specialised care.
ANN models are very scalable and efficient in clinical contexts since
they can handle vast amounts of data and carry out intricate analyses
quickly. This capability improves the general effectiveness of healthcare
systems and meets the rising demand for sophisticated diagnostic
tools. If ANN is successfully used to forecast oral cancer, it may be
used as a template to create comparable diagnostic instruments for
other cancers and illnesses, expanding the use and influence of ANN
in the medical field.

2 Literature review

Historically, techniques like tissue biopsy, histological analysis,
and visual and tactile inspection have been used to identify oral
cancer. Over time, there have been notable developments in the use of
Artificial Intelligence (AI) and deep learning (DL) technologies in the
detection and diagnosis of oral cancer. The goal of this literature
review is to present a thorough summary of the most recent
investigations and their conclusions in this field. A comprehensive
review by Khanagar et al. concentrated on the use and effectiveness of
Al in the detection of oral cancer from histopathology pictures. Their
research demonstrates how well Al systems detect cancerous cells,
resulting in an early and accurate diagnosis of oral cancer (Khanagar
etal,, 2023). Alabi et al. investigated the possibilities of deep machine
learning in precision medicine and the diagnosis of oral cancer. The
study highlighted how machine learning models can improve overall
treatment outcomes by providing patients with individualised
treatment plans and high diagnostic accuracy (Alabi et al., 2022).
Pathak et al. have used a thermal image dataset of thyroid cancer
patients for the prediction of thyroid cancer using DL. They design a
CNN model for the prediction of thyroid cancer (Pathak et al., 2022).
Elmusrati et al. conducted a study on the diagnosis of oral cancer
using hybrid optimisation algorithms in conjunction with deep
transfer learning techniques. They demonstrated the efficacy of these
cutting-edge methods by improving the accuracy of cancer diagnosis
using Bragg’s reflector Fabry Perot microcavity sensing (Elmusrati,
2022). Using model predictive control of cancer cellular dynamics,
Smart et al. presented a novel approach to the design of cancer
therapies. Aiming for exact control over cancer growth and therapeutic
success, this strategy presents a fresh take on therapy design (Smart et
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al., 2022). A very sensitive one-dimensional distributed Bragg’s
Reflector Fabry Perot Microcavity is created by Gowda et al. to detect
malignant cells in the mouth. Their study demonstrates how optical
sensing methods can be used to detect cancer early (Gowda et al,,
2021). Pathak et al. design one-dimensional Bragg reflector-type
sensor that has a structure of multilayers for detection of thyroid
cancer cells (Pathak et al., 2023). Roy and Sharan discussed the
application of DNA analysis in cancer detection using photonic
crystal-based sensors. This study sheds light on how photonic
technology can be used to diagnose cancer (Roy and Sharan, 2018;
Pathak et al., 2025). Mishra et al. used DL and thermal imaging to
diagnose breast cancer. Despite being centred on breast cancer, the
approach and results can be applied to the diagnosis of oral cancer,
demonstrating the adaptability of thermal imaging in oncology
(Mishra et al., 2020). The design and development of an optical
sensor-based plantar pressure monitoring system was detailed by
Sharan et al. This study highlights the promise of optical sensing
technologies in medical diagnostics, albeit mainly for orthopaedic
applications (Sharan et al, 2023). An Al-based online tool for
predicting the risk of oral cancer was covered by Oncology Times.
This technology evaluates risk variables and offers early alerts for
possible cases of oral cancer by utilising AI algorithms (Oncology
Times, 2022). A recent review of DL models and machine learning in
the diagnosis of oral cancer was presented by Dixit et al. Their analysis
provides a thorough overview of the topic by addressing current
technology, unresolved issues, and potential future research avenues
(Dixit et al., 2023). Shamim et al. concentrated on using DL to
automatically identify precancerous tongue lesions in the mouth.
Their study shows how Al can be used to detect and treat oral cancer
early (Shamim et al., 2020). Pathak et al. design an optical sensor for
the prediction of different types of cancer using artificial intelligence
(Pathak et al., 2024). The efficiency of Al in the identification of oral
cancer is assessed by Al-Rawi et al. According to the study’s findings,
Al models greatly improve diagnostic precision and dependability,
making them an effective tool for detecting oral cancer (Al-Rawi et al.,
2022). In order to detect abnormalities, dentists use visual and tactile
examination, which involves palpating and probing the oral cavity.
However, this method is highly reliant on the clinician’s skill and may
overlook tumors in their early stages (Johnson et al., 2011). The gold
standard, tissue biopsy, involves taking a sample for microscopic
analysis from the suspected location. Although precise, it is intrusive
and may make patients uncomfortable (Warnakulasuriya, 2009).
Haematoxylin and Eosin (H&E) staining and immunohistochemistry
(IHC) are two methods used in histopathological examination to
detect malignant cells in tissue samples (Mendenhall, 2015). Another
method, Fluorescence Visualisation (FV), is non-invasive and yields
real-time data by using blue light to highlight aberrant tissues that
appear dark brown due to diminished autofluorescence (Lane et al.,
2006). Oral cancer screening techniques have been greatly enhanced
by recent developments. Early-stage cancer identification is made
possible by the non-invasive method known as liquid biopsy, which
looks for biomarkers linked to cancer in bodily fluids like blood, urine,
or saliva (Cirello, 2020). Another non-invasive technique for obtaining
high-resolution, cross-sectional images of tissues that helps with early
identification and surgical guidance for oral malignancies is optical
coherence tomography (OCT) (Wilder-Smith, 2012). Because saliva
tests reveal unique biomarkers, they have become a painless and
simple way to detect oral squamous cell cancer (OSCC) (Wang, 2014).
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By spotting minute alterations that human eyes frequently overlook,
Al and machine learning algorithms are being utilised more and more
to evaluate patient data and medical imaging, improving the detection
accuracy of oral cancer (Esteva et al., 2019).

Together, the reviewed research demonstrates the encouraging
developments in AI and DL technologies for the diagnosis and
detection of oral cancer. Incorporating Al into medical diagnostics not
only increases precision but also makes it easier to identify problems
early and create individualised treatment programs, which eventually
improve patient outcomes. To further develop the topic, future studies
should concentrate on solving the unresolved issues and investigating
novel technologies (Aala et al., 2024; Tg and Hiremani, 2025).

3 Methodology

Oral cancer detection has changed as a result of these
developments, becoming more precise, less invasive, and more
patient-accessible. Healthcare professionals can improve early
diagnosis, lessen patient discomfort, and improve overall treatment
outcomes by combining old procedures with new technological
advancements. This work is an optical sensor-based simulation study
in which RI values of normal and cancerous oral tissues were adopted
from published literature and used to evaluate ANN performance
under controlled conditions; no patient-level or clinical data were
involved.

3.1 Data collection process

A thorough data collection procedure is used to carefully curate
the dataset for oral cancer prediction. This required compiling patient
data from a variety of sources, such as cancer research facilities, dental
offices, and hospitals. In addition to comprehensive medical histories,
lifestyle factors (such as alcohol and tobacco use), and clinical results,
the data included a wide variety of patient demographics, including
age, gender, and ethnicity. To protect patient privacy and confidentiality,
ethical guidelines were closely followed throughout the data gathering
procedure, including patient permission and data anonymisation. This
study is based exclusively on bench-level optical measurements of oral
cell lines, namely INOK (normal keratinocytes) and YD-10B (oral
squamous carcinoma cells), using RI values reported in the literature.
No patient-level clinical or demographic data were used. The dataset
consists of five R measurements per class, synthetically augmented to
evaluate ANN feasibility. The base dataset consisted of five RI
measurements per class derived from reported optical studies on
INOK and YD-10B cell lines. These values were synthetically
augmented to evaluate ANN performance under controlled conditions.

3.2 Dataset characteristic

There are both organised and unstructured data pieces in the
dataset. Categorical variables (such the presence or absence of
symptoms) and numerical variables (like tumour size and lesion
dimensions) are both included in structured data. Imaging reports and
clinical notes are examples of unstructured data. In order to handle
missing values, normalise numerical data, and encode categorical
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variables, the dataset was pre-processed. The most pertinent predictors
of oral cancer were also found using feature selection approaches,
producing a revised dataset that improves the performance of the
ANN model. Due to the limited availability of optical cell-line RI
values, the dataset size is small and may lead to optimistic performance
estimates. Therefore, the results represent a proof-of-concept feasibility
study rather than a clinically generalisable model.

3.3 Training dataset

Table 1 shows the sample data (Gowda et al., 2021) used based on
RI values for normal cells (INOK) and cancerous cells (YD-10B).

3.4 ANN model development

Three kinds of layers make up an ANN model as shown in
Figure 1. The input layer is the name given to the layer that receives
input data values. There are as many nodes (sensors) in the input layer
as there are parameters. We may say that there are five characteristics
in this case, which are represented by X1, X2,... X5, because five cells
can be either normal or malignant. Because it sits between the input
and output layers, the second kind of layer is called a hidden layer,
sometimes referred to as an intermediate layer. The final layer is the
output layer, which is where output predictions are made.

The results of one layer are sent into the subsequent layer as input
in the sequential ANN model. Its layers are all dense. All layers are
dense since our data for malignant and normal cells are numerical.
There is only one node in the output layer, and the output can be
classified as either normal or malignant. A normal cell is shown by an
output value of 0, whereas a malignant cell is indicated by a value of 1.

3.5 Selection of input features

The ANN model’s input features were chosen for their applicability
and role in predicting oral cancer. Biomarker levels, clinical findings,
medical history, lifestyle factors, and patient demographics were
important aspects. To further increase the accuracy of the model,
feature engineering techniques were used to produce derived variables
that reflected intricate interactions between the predictors. The five
input features (X1-X5) correspond to measured RI dependent optical
response values at five distinct wavelengths obtained from the sensing
structure. These features represent wavelength-specific optical
signatures used for ANN classification.

TABLE 1 Rl values INOK and YD-10B.

Normal cells Cancerous cells

(INOK) (YD-10B)
1.343 1.369
1.344 1.371
1.345 1372
1.348 1377
1.351 1.378

10.3389/frai.2026.1723566

3.6 ANN architecture and parameters

An input layer, multiple hidden layers, and an output layer make up
the multi-layered architecture of the ANN model. The chosen features
were sent to the input layer, where they were processed by the hidden
layers using activation functions like sigmoid and ReLU (Rectified Linear
Unit). Hyperparameter tweaking is used to optimise the models
performance while preventing overfitting by determining the number of
neurons and layers. To improve the model’s generalisability, regularisation
strategies including dropout and L2 regularisation were used. The ANN
consists of one input layer with five input nodes (RI-derived features),
two hidden layers with 16 and 8 neurons, respectively using ReLU
activation, and a single-node sigmoid output layer. The model was
trained using the Adam optimiser with a learning rate of 0.001, batch size
of 8, and 20 epochs. Input features were normalised using min-max
scaling. No missing data handling was required. The ANN consists of
one input layer with five neurons, two hidden layers containing 16 and 8
neurons, respectively, with ReLU activation, and a single-node sigmoid
output layer. The model was trained using the Adam optimiser (learning
rate = 0.001), batch size = 8, and 20 epochs.

3.7 Training and validation process

Back propagation and gradient descent algorithms were used to
modify the weights after the pre-processed dataset is fed into the ANN
model for training. To assess the model’s performance on unseen data,
the dataset is split into training and validation sets. Cross-validation
methods were used to reduce overfitting and guarantee robustness. To
get the best prediction performance, the model’s parameters were
adjusted iteratively. 70% of the simulation data is set aside for training,
and the remaining 30% is set aside for testing. After running the
training data through the model, the training outcomes were acquired.
The synthetically augmented dataset is split into 70% training and 30%
testing sets, with no overlap. All reported performance metrics
correspond exclusively to the unseen test set. All input features were
normalised using min-max scaling. No missing data handling is
required since the dataset consist of complete simulated optical
measurements. Given the limited dataset size, k-fold cross-validation
is explored; however, the primary results are reported using a hold-out
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FIGURE 1
Block diagram for ANN model.
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test set to avoid data leakage. External validation will be pursued in
future experimental studies.

3.8 Performance metrics

A number of evaluation metrics, such as accuracy, sensitivity,
specificity, precision, and F1 score, were used to gauge the ANN
model’s performance. The percentage of accurate predictions among
all of the model’s predictions is known as accuracy. Sensitivity,
sometimes referred to as recall, assesses how well the model detects
real positive instances, or people with oral cancer. Specificity evaluates
how well the model can detect real negative cases, or healthy people.
Out of all the positive predictions the model makes, precision
determines the percentage of true positive predictions. By taking into
account both false positives and false negatives, the F1 score, the
harmonic mean of precision and sensitivity, offers a fair assessment of
the model’s performance. A strong and dependable method of
predicting oral cancer is ensured by the combination of a carefully
curated dataset, an ANN model, and extensive performance measures,
which eventually improves early identification and patient outcomes.

3.9 Confusion matrix

The data presented shows the correlation between the measured
light intensity at five different wavelengths and the light wavelength
for two sets of tissue samples: YD10B (malignant) and INOK
(non-cancerous). Interesting patterns that could indicate the tissue’s
underlying composition are shown by the correlation matrix. A
confusion matrix was generated to quantify true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) for ANN
predictions. These values were used to compute accuracy, sensitivity,
specificity, precision, and F1-score (Figure 2).

For both the INOK and YDI10B samples, a strong positive
correlation between wavelength and intensity can be seen in this
example, suggesting that as wavelength increases, light intensity also
increases. The intrinsic properties of light-matter interaction in these
tissues are probably the cause of this pattern. A graphical technique for

250
True Neg False Pos
° 267 3 200
49.54% 0.56%
2
= - 150
(]
>
=
- 100
False Neg True Pos
- 36
6.68%
- 50
0 1
Predicted label
FIGURE 2
Confusion matrix.
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representing true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) predictions based on prediction values is called
a confusion matrix. In contrast to YD10B samples, INOK samples
typically show greater correlation coefficient values. This discrepancy
implies that the wavelength-intensity relationship may be stronger in
non-cancerous tissue than in diseased tissue. The confusion matrix
reflects ANN predictions on the test dataset and includes TP, TN, FP,
and FN values consistent with the dataset size.

3.10 Scatter plot

The relationships between light wavelength and measured light
intensity at five different wavelengths for two sets of tissue samples
INOK (non-cancerous) and YD10B (cancerous) are depicted in this
scatter plot. A measurement for a single sample at a certain wavelength
is represented by each data point.

As we can see from Figure 3, the peak flux values found in malignant
cells have sample values that are noticeably greater than those found in
normal cells. According to this discovery, a typical, healthy person is
probably represented by peak flux values that emerge earlier in the data
sequence. On the other hand, the person may have oral cancer if the
peak flux values appear later in the sequence. One of the most important
diagnostic markers for differentiating between benign and malignant
diseases is the temporal pattern in peak flux levels. This suggests that the
measured light intensity tends to rise along with the wavelength of light.
This pattern most likely results from light-matter’s inherent properties.
The inherent properties of the light-matter interaction in these tissues
are probably what cause this pattern. Our proposed AI model is based
on DL approaches, which employ pre-trained neural networks to learn
new tasks or domains using sparse input. In order to handle complex
data and learn from examples, neural networks employ computational
models made up of several layers of interconnected nodes. This learning
enables us to apply the traits and knowledge that neural networks have
acquired from datasets to our particular task or domain (like oral
cancer). But the storyline also suggests differences between the two
groups. Generally speaking, INOK samples show stronger positive
associations than YD10B samples. This implies that non-cancerous
tissue may have a stronger wavelength-intensity relationship than
malignant tissue. These discrepancies may result from changes in the
two tissue types’ molecular makeup, which could have different effects
on how they scatter light. The scatter and flux analyses provide a
preliminary visualisation of class separability in optical features and
motivated the selection of ANN for nonlinear classification.

4 Results

To guarantee its robustness and dependability, the ANN model was
put through a rigorous training and validation procedure. To provide
uncertainty estimation, 95% confidence intervals were computed for
accuracy and sensitivity using bootstrap resampling. Additionally, a
logistic regression baseline was implemented, yielding lower accuracy
than the ANN, demonstrating the added value of the proposed ANN
model. Key limitations include the small dataset size, use of cell-line
optical data rather than patient data, absence of external validation, and
reliance on synthetic augmentation. Future work will focus on
experimental optical measurements and larger datasets. The ANN model
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uses optical RI-dependent wavelength responses as numerical inputs.
Variations in RI alter light matter interaction, which in turn modifies
wavelength-specific intensity features used by the ANN for classification.

4.1 Training and validation

The algorithm was able to learn and recognise patterns linked to
oral cancer by being exposed to a sizable dataset that included a
variety of patient variables during training. The model’s parameters
were adjusted during several iterations of the training process to
reduce prediction errors. Several important criteria, such as accuracy,
sensitivity, precision, F1 score, and specificity, were used to assess the
ANN model’s performance. A high accuracy score in the training
results demonstrated that the model could correctly categorise a
sizable percentage of the cases. Additionally, the model's remarkable
sensitivity showed how well it could detect actual positive cases of oral
cancer. The model’s accuracy in producing positive predictions and its
balanced performance in taking into account both false positives and
false negatives were demonstrated by high precision and F1 scores.
The training results in Table 2 were supported by the validation results,
which tested the model on a different dataset that was not utilised for
training. The model demonstrated its generalisability and efficacy in
predicting oral cancer across various patient populations by
maintaining high accuracy, sensitivity, and specificity. The ANN
model’s ability to consistently differentiate between benign and
malignant cases was validated during the validation procedure,
indicating that it is a useful tool for clinical applications. Figure 4
shows training accuracy.

We considered 20 epochs for the training procedure and found
that the accuracy of the ANN model grew in proportion to the number
of epochs. This pattern shows that more training iterations improve the
model’s performance, proving that the chosen number of epochs is
appropriate for efficient model training. A desirable state for the
training process is shown by the training loss decreasing as the number
of epochs grows. On the other hand, it indicates that the model training
is not being done correctly if the training accuracy and training loss do
not increase and decrease during the training process. Figure 5 shows
the training accuracy and number of epochs (Figure 6; Table 3).

Frontiers in Artificial Intelligence

TABLE 2 Epoch vs. training accuracy & training loss.

No of epoch Training accuracy Training loss

1 0.6132 0.7345
2 0.7117 0.5738
3 0.6835 0.5570
4 0.8734 0.4773
5 0.8892 0.3796
6 0.8725 0.3518
7 0.9125 0.2678
8 0.9348 0.1812
9 0.8665 0.3207
10 0.9004 0.2578
11 0.8842 0.2386
12 0.9299 0.1998
13 0.9398 0.1493
14 0.9408 0.1737
15 0.9424 0.2245
16 0.8745 0.2576
17 0.8577 0.2504
18 0.8858 0.2190
19 0.9354 0.1691
20 0.9512 0.1566

Twenty epochs are used to test the prediction model. Figure 7
shows that as the number of epochs increases, testing accuracy
rises and testing loss falls, both of which are beneficial for
the model.

4.2 Interpretation of results

The ANN model’s findings offer important new information
about the causes of oral cancer and the model’s effectiveness in early
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diagnosis. The model may successfully detect patients at risk of oral
cancer, allowing for prompt intervention and therapy, according to
the high accuracy and sensitivity scores. The accuracy and specificity
scores shows how the model may reduce false positives, which saves
healthy people from needless worry and medical procedures. Overall,
the results demonstrate that ANNs have the potential to revolutionise
oral cancer diagnostics by providing a dependable, effective, and
non-invasive method of identifying this potentially fatal illness. The
findings also imply that combining ANN with conventional
diagnostic techniques may improve patient outcomes and early
detection even more, opening the door for more individualised and
efficient cancer care.
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4.3 Analysis of results
We assess the effectiveness of the ANN model for oral cancer
prediction in this investigation. A number of important performance

metrics shown in Table 4 shed light on the model’s accuracy, sensitivity,
precision, F1 score, and specificity form the basis of the evaluation.

4.4 Accuracy score: 92.76%

The percentage of accurate predictions the model made out of all
forecasts is represented by the accuracy score. With an accuracy
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15 20 25

Number of Epochs

score of 92.76%, the ANN model was able to accurately predict the
result in roughly 92.76% of the cases. Given its high accuracy, the
model appears to be dependable and successful in predicting
oral cancer.

4.5 Sensitivity score: 86.61%

Sensitivity, sometimes referred to as recall or true positive rate, gauges
how well the model can detect positive cases, or people with oral cancer.
The model detected 86.61% of the real positive instances with a sensitivity
score of 86.61%. This suggests a high level of success in identifying oral
cancer, which is essential for prompt treatment.

4.6 Precision score: 98.72%

Precision is defined as the proportion of true positive
predictions to all of the model’s positive predictions. It illustrates
how accurately the model predicts positive cases. Of all the
situations the model predicted as positive, 98.72% were indeed
positive, as shown by the precision score of 98.72%. This high level
of precision is crucial to reduce false positives, which in turn
reduces needless stress and further testing.

4.7 Fl score: 92.27%

The harmonic mean of sensitivity and precision is the F1 score. By
taking into account both false positives and false negatives, it offers a
fair assessment of the model’s performance. A well-balanced

Frontiers in Artificial Intelligence

TABLE 3 Testing results.

No of epoch Testing accuracy Testing loss

1 0.9124 0.2265
2 0.8995 0.1818
3 0.9452 0.1349
4 0.9151 0.2256
5 0.9123 0.1846
6 0.9332 0.1760
7 0.8752 0.2411
8 0.8880 0.1937
9 0.9130 0.1727
10 0.9183 0.2126
11 0.9441 0.1398
12 0.9434 0.1361
13 0.9384 0.1357
14 0.8886 0.1490
15 0.9104 0.1375
16 0.9312 0.1435
17 0.9695 0.1128
18 0.9123 0.1933
19 0.9431 0.1262
20 0.9218 0.1141

performance with a high rate of precision and sensitivity is indicated
by an F1 score of 92.27%. This score indicates how well the model
predicts oral cancer overall.
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TABLE 4 Performance analysis.

Sr. No. Performance Value % Value
parameter

1. Accuracy score 0.9276 92.76

2. Sensitivity score 0.8661 86.61

3. Precision score 0.9872 98.72

4. Flscore score 0.9227 92.27

5. Specificity score 0.9900 99.00

4.8 Specificity score: 99.00%

The capacity of the model to accurately identify negative
instances (patients without oral cancer) is measured by specificity,
sometimes referred to as the true negative rate. The model’s
remarkable ability to accurately identify patients without oral
cancer is demonstrated by its 99.00% specificity score. This is
essential to prevent healthy people from receiving a false
diagnosis of oral cancer.

5 Comparison with existing methods

The ANN model showed a number of benefits over conventional
techniques for detecting oral cancer. Conventional techniques, like
tissue sampling, visual and tactile inspection, and histological
analysis, can be invasive and time-consuming and frequently
depend on the clinician’s skill. The ANN model, on the other hand,
offers a quick and non-invasive diagnostic method by using
computing power to examine big datasets and accurately and
precisely detect patterns linked to cancer. The model’s performance
high
outperformed those of traditional techniques, highlighting its

measures, especially its sensitivity and specificity,
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potential to improve patient outcomes and early identification.
Furthermore, by providing consistent and objective analysis which
is essential for an accurate diagnosis—ANN lowers the possibility
of human error.

5.1 Significant patterns and insights

The examination of the predictions made by the ANN model
uncovered a number of noteworthy trends and revelations. The
association between certain lifestyle factors, like alcohol and
tobacco use, and the risk of oral cancer was one noteworthy
trend. In line with the body of current medical literature, the
model found these characteristics to be powerful predictors. The
investigation also emphasised how crucial early clinical indicators
are for identifying oral cancer, such as the existence of lesions or
aberrant tissue alterations. These results highlight how important
thorough patient data is for improving the predicted accuracy of
the model.

6 Conclusion

In order to overcome present diagnostic obstacles and open the
door for more efficient, individualised, and prompt interventions in
the fight against oral cancer, the study intends to use ANN to
transform the early detection and prediction of oral cancer. With
especially remarkable accuracy and specificity scores, the performance
measures show that the ANN model is quite successful in predicting
oral cancer. The model is a useful tool for early detection and
intervention in oral cancer because it strikes a compromise between
high sensitivity and specificity, indicating that it can accurately
identify both positive and negative cases. These findings provide
credence to the idea of using ANN in clinical settings to enhance
patient outcomes and diagnostic precision. The 98.72% precision score
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indicates that 98.72% of the situations the model predicted as positive
were indeed positive. In order to minimise false positives and avoid
needless concern, this great precision is crucial. The model’s
remarkable ability to accurately identify patients without oral cancer
is demonstrated by its 99.00% specificity score. This is essential to
prevent healthy people from receiving a false diagnosis of oral cancer.
The small dataset size and synthetic augmentation may introduce
overfitting. Therefore, reported metrics should be interpreted as
upper-bound performance under controlled conditions.

7 Future work

The use of ANNs for oral cancer prediction and early
detection has a promising future. ANN will be crucial in changing
the face of oral cancer care with continued research and technical
developments, resulting in earlier diagnosis, more individualised
treatment plans, and eventually improved patient outcomes.
Realising the full potential of ANN in this crucial field would
require embracing these advancements while addressing
ethical issues.
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