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Introduction: Financial markets operate as dynamic networks in which 
institutional cross-holdings shape the diffusion of information and the 
propagation of risk. Forecasting the evolution of stock information networks 
is critical for anticipating herding behavior and safeguarding systemic stability, 
yet remains challenging due to high-dimensional heterogeneity, structural non-
stationarity, and the need for economically interpretable predictions.
Methods: Using a quarterly fund–stock holding panel from 2016 to 2024, we 
construct time-indexed bipartite fund–stock graphs and project them onto the 
stock layer. From these graphs, we compute two key network indicators: degree 
centralization (cen_d), capturing market-wide concentration, and residual 
density (den), reflecting firm-level anomalies. We then develop a large language 
model (LLM)–enhanced forecasting framework that transforms numeric time 
series and textual fund disclosures into promptable sequences, incorporates 
retrieval-augmented historical context, and performs multi-step forecasting of 
both cen_d and abnormal den spikes.
Results: Extensive experiments show that the proposed LLM-based framework 
significantly reduces mean absolute error and root mean square error, and 
improves directional accuracy, compared with ARIMA, Prophet, and Temporal 
Fusion Transformer benchmarks. Attention-weight analysis further indicates 
that the model assigns higher importance to historical quarters characterized 
by sharp fund co-movement or policy shocks.
Discussion: These findings demonstrate that LLM-driven time-series forecasting 
can provide early warnings of systemic risk and generate economically 
interpretable insights for investors and regulators. The results highlight the 
broader potential of language-informed graph forecasting as a new paradigm 
for financial market surveillance and policy design.
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1 Introduction

Financial markets function as complex, interdependent systems in which information 
(Maurya et al., 2025), capital, and risk propagate through evolving networks of institutional 
investment. When multiple funds hold overlapping portfolios, the resulting stock information 
network (Zhai et al., 2025) creates structural linkages among equities that channel information 
(Chen et al., 2022) and magnify shocks (Wang et al., 2020). Sudden changes in network 
topology, such as abrupt increases in degree centralization (Zhai et al., 2025), can precipitate 
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herding behavior, reduce market resilience, and heighten systemic 
risk. Understanding and forecasting the evolution of such networks is 
therefore a central challenge for both investors (Xue et al., 2021) and 
regulators seeking to safeguard market stability.

Parallel to these developments, time-series forecasting has been 
transformed by large language models (LLMs) (Chen et al., 2025). 
Originally designed for natural language tasks, LLMs are now recognized 
for their ability to capture long-range dependencies (Wang, 2025a), 
integrate heterogeneous data types, and generate coherent, structured 
predictions (Xiao et al., 2025). Their natural capacity to reason over both 
numbers and text makes them ideal for modeling the intricate 
combination of numerical indicators and qualitative market narratives 
that drive the dynamics of financial networks. Despite this promise, 
applications of LLMs to the forecasting of stock information networks 
remain limited, leaving significant methodological opportunities 
unexplored.

The present study tackles a set of interrelated challenges that have 
constrained previous attempts to forecast the evolution of stock 
information networks (Huang et al., 2025). These challenges arise 
from the structural complexity of fund–stock relations, the dynamic 
nature of financial markets, and the imperative for interpretability in 
high-stakes economic applications (Bao et al., 2025). A first obstacle 
concerns high-dimensional and heterogeneous data (Wang et al., 
2022). The relationships between institutional funds and the stocks 
they hold embody a mixture of structured quantitative information, 
such as quarterly holding ratios, transaction volumes, and market 
capitalization, and unstructured qualitative signals, including fund 
strategies, portfolio narratives, and company-specific announcements 
(Liu, 2024). Capturing predictive dependencies across such 
heterogeneous data types requires models capable of fusing numeric 
time series with textual descriptions, a capacity that is only partially 
addressed by conventional econometric and machine-learning tools 
(Nguyen et al., 2025). A second difficulty is the pronounced structural 
non-stationarity of market networks. Stock–fund linkages can 
reorganize abruptly under the influence of policy reforms, 
macroeconomic shocks, or large-scale reallocation of institutional 
capital. These sudden regime shifts generate nonlinear patterns and 
long-range dependencies (Afzal et al., 2025) that violate the 
assumptions of classical linear time-series models and challenge the 
stability of even sophisticated deep-learning predictors. Accurate 
forecasting therefore demands methods that can flexibly adapt to 
evolving network topologies and capture rare but consequential 
structural breaks. A third challenge lies in ensuring interpretability 
and economic meaning. Forecasts must do more than produce 
accurate numerical trajectories; they must also illuminate the 
mechanisms of information diffusion, herding behavior, and systemic 
risk propagation so that investors, regulators, and policy makers can 
translate model outputs into effective preventive or corrective action. 
Black-box (Wang et al., 2023a) predictions without clear economic 
rationale risk undermining trust and limiting practical adoption.

Existing forecasting approaches address these issues only partially. 
Classical econometric models such as Autoregressive Integrated 
Moving Average (ARIMA) and conventional deep-learning 
architectures (Liu, 2025) like LSTM (Ricchiuti and Sperli, 2025) or 
standard transformers can model certain temporal patterns, yet they 
remain limited in their ability to jointly process multi-source 
numerical and textual sequences while providing transparent, 
economically interpretable explanations. Overcoming these 

limitations motivates the present study’s integration of graph-based 
(Bai et al., 2023) financial metrics with the representational and 
reasoning power of large language models (Zhao et al., 2025).

To overcome these limitations, we construct a quarterly fund–
stock holding panel spanning 2016–2024 and use it to build time-
indexed bipartite networks that are projected onto the stock layer. 
From each network we derive two pivotal indicators: degree 
centralization (cen_d) (Zhang et al., 2025), which measures the 
concentration of network connections and signals market-wide 
herding, and residual density (den), which isolates stock-level 
anomalies in cross-holding intensity after adjusting for firm size 
(Huang et al., 2025). Anticipating fluctuations in these indicators 
enables early warning of market instability and provides a scientific 
basis for proactive risk management.

Building on these data, we propose a large language model–enhanced 
forecasting framework that converts both numeric time series and textual 
fund information into structured prompts, enriches them with retrieved 
historical analogs, and predicts multi-step future values using GPT-style 
transformers. By directly comparing this framework with leading 
benchmarks, ARIMA, Prophet, and the Temporal Fusion Transformer 
(TFT) (Thundiyil and Picone, 2025), we show that LLMscan materially 
improve forecasting accuracy and reveal the economic mechanisms 
underlying network changes (Xiao et al., 2025).

Empirical results demonstrate that the LLM-based model achieves 
lower mean absolute and root mean square errors and higher directional 
accuracy in predicting next-quarter degree centralization than all baseline 
approaches. At the individual-stock level, the method detects abnormal 
residual-density spikes with superior precision and recall, offering a 
reliable early-warning mechanism for idiosyncratic risk and cross-holding 
contagion. Attention-weight analysis further reveals that the LLM 
naturally highlights historical periods of heightened fund co-movement 
or policy-driven capital shifts, providing transparent evidence of how 
market narratives shape network evolution.

These findings carry far-reaching implications for financial 
practice and regulation. Accurate forecasts of rising degree 
centralization provide investors with actionable insights to rebalance 
portfolios before herding-induced volatility materializes (Glickman 
and Sharot, 2025). Reliable detection of abnormal residual densities 
identifies stocks that may act as critical conduits for systemic risk, 
enabling regulators to strengthen market surveillance and refine stress-
testing protocols. Unlike existing financial forecasting approaches that 
rely solely on numerical signals or treat textual information as auxiliary 
sentiment features, this study introduces a language-model–driven 
forecasting paradigm that explicitly reasons over network structure, 
temporal dynamics, and historical narratives. By integrating graph-
derived indicators with retrieval-augmented textual context, the 
proposed framework captures both gradual structural evolution and 
abrupt regime shifts—such as policy shocks and fund co-movement 
events—that are difficult to detect using conventional econometric or 
deep learning models. Importantly, we demonstrate that these gains 
arise not from the transformer architecture alone, but from LLM-style 
prompting, contextual retrieval, and attention-driven temporal 
reasoning. It shows how language-informed graph forecasting can 
advance the transparency and explanatory power of artificial 
intelligence (Bao et al., 2024) in economics and finance.

The remainder of this article is organized as follows. Section 2 
(Data and Preprocessing) introduces the quarterly fund–stock holding 
panel that underpins the study, explains how bipartite fund–stock 
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networks are constructed and projected onto the stock layer, and 
defines the key structural indicators, degree centralization (cen_d) and 
residual density (den). Section 3 (Methodology) presents the LLM–
enhanced forecasting framework, detailing prompt construction, 
retrieval-augmented generation, and the benchmark models used for 
rigorous comparison. Section 4 (Experiments) describes the design of 
the empirical evaluation, including next-quarter cen_d prediction and 
abnormal den spike detection, together with the rolling-origin 
protocol and accuracy metrics. Section 5 (Results and Discussion) 
reports the forecasting gains of the LLM model, interprets attention 
weights to uncover the market mechanisms driving network evolution, 
and explores implications for systemic risk and information diffusion. 
Section 6 (Conclusions) summarizes the main contributions, 
highlights financial and regulatory significance, and identifies avenues 
for future research while acknowledging the study’s limitations.

2 Materials and methods

To forecast the evolution of the stock information network and its 
key structural indicators, we design an LLM-enhanced time-series 
forecasting pipeline that integrates graph analytics, temporal modeling, 
and the natural-language reasoning capacity of LLMs. The pipeline 
comprises four tightly coupled components: data representation and 
prompt construction, LLM-based forecasting, benchmarking with 
classical and deep learning models, and end-to-end evaluation.

The overall architecture of the proposed LLM–driven forecasting 
framework is illustrated in Figure 1, which is designed to predict financial 
network indicators and provide interpretable insights for systemic-risk 
management. The figure is organized as a layered flowchart that moves 
from data acquisition to actionable decision support, emphasizing how 
heterogeneous data sources are unified through transformer-based 

learning. On the left side of the diagram, the input layer integrates 
multiple data streams that jointly characterize the market’s structural and 
informational dynamics. These include financial time-series variables, 
such as degree centralization and residual density, which capture network-
level and stock-level connectivity patterns. Complementing these 
quantitative measures are fund disclosure documents and macroeconomic 
textual reports, which introduce unstructured linguistic information 
reflecting investor sentiment, regulatory tone, and macroeconomic 
outlook. Additionally, network topology snapshots represent the evolving 
fund–stock co-holding structure, providing a structural basis for 
modeling market interactions over time. At the center of the pipeline lies 
the LLM-based encoder, which employs a transformer architecture 
equipped with multi-head self-attention mechanisms. This component 
fuses the temporal, textual, and topological information to capture cross-
modal dependencies and latent relationships among financial entities. The 
attention layers dynamically weigh past observations and contextual cues, 
allowing the model to discern how market narratives and structural 
linkages jointly influence future systemic behavior. Downstream, the 
forecasting head generates two categories of outputs. The first comprises 
predictive values, forecasts of future cen_d and den indices, reflecting 
anticipated trends in network centralization and residual density. The 
second includes interpretability artifacts, such as attention-weight 
visualizations and SHAP-based feature importance scores, which reveal 
the model’s internal reasoning and highlight the variables or historical 
periods most influential in driving predictions. Finally, on the right side 
of the figure, the decision-support layer translates these outputs into 
practical financial applications. Forecasts and interpretability insights are 
synthesized into risk-alert systems, systemic-stability assessments, and 
portfolio allocation strategies. This layer bridges the gap between 
machine-learning prediction and real-world financial decision-making, 
enabling early warnings for potential contagion events and improved 
capital-allocation efficiency.

FIGURE 1

Overview of the LLM-enhanced financial network forecasting pipeline.
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2.1 Data and preprocessing

This study employs a quarterly fund–stock holding panel covering 
the period 2016–2024. The raw data (provided as 
Supplementary material) include, for every reporting date (Reptdt), 
the stock identifier (Stkcd), fund code and name (Fundcd, Fundnm), 
management company (Mconme), number of shares held (Fundhold), 
holding ratio (Holdperct), and free-float market capitalization (sz, in 
100 million RMB). These attributes jointly describe both the 
ownership structure and firm fundamentals necessary for network 
construction and subsequent time-series modeling.

For each quarter we construct a bipartite network whose two 
partitions are (i) listed stocks and (ii) institutional funds. An undirected 
edge is drawn between a stock and a fund whenever the fund reports 
a positive position in that stock. To focus on stock–stock relationships, 
we then project the bipartite graph onto the stock laye ( )− −1)( 2N N r,  
linking two stocks if they share at least one common fund. This process 
yields a sequence of stock information networks that capture the 
evolving web of cross-holdings over time. From each quarterly network 
we compute two key structural indicators: cen_d, which is the Freeman 
centralization statistic Equation 1.

	

( )
( )( )

−
=

− −
∑ max

_
1 2

ii d d
cen d

N N 	
(1)

where id  is the degree of node i, maxd  is the maximum node 
degree, and N  is the number of stocks. This market-level measure 
reflects the concentration of information flow and the potential for 
herding behavior. Residual density (den)—a node-level indicator of 
abnormal embeddedness. For each stock, density is first computed as 

( )−/ 1id N  and then logit-transformed as Equation 2.
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To remove firm-size effects, we regress iy  on ln () and take the 
residual ie  as the residual density deni , which is shown as Equation 3.

	 ( )α β= + +lni i iy sz e 	 (3)

By integrating temporal resolution (2016–2024), fund–stock 
relational data, and network-derived indicators (cen_d,den), this 
dataset provides a rich multivariate time series for developing and 
evaluating large language model–based forecasting methods aimed at 
anticipating structural changes and systemic risks in equity markets.

2.2 Data representation and prompt 
construction

The quarterly panel (2016–2024) provides both numerical time 
series, such as degree centralization, residual density, free-float market 
capitalization, and aggregated holding ratios, and rich textual 
information from fund names and management companies. To 
capture these heterogeneous signals within a single predictive 

framework, we first encode all quantitative indicators as structured 
sequences of features, including their temporal differences and growth 
rates. Descriptive fund information is then standardized and 
summarized into concise textual statements, for example, “Fund A 
increased its holding ratio in technology stocks by 12% this quarter.” 
These quantitative and textual elements are fused into promptable 
sequences that an LLM can directly ingest. Each prompt represents a 
rolling historical window (e.g., the previous 12 quarters) and specifies 
the forecasting horizon, enabling the model to reason jointly over 
numerical patterns and contextual market narratives.

2.3 LLM-based forecasting architecture

Building on these prompts, we develop a multi-stage transformer 
framework that combines a temporal encoder, a retrieval-augmented 
context module, and a generative decoder. The temporal encoder 
embeds sequential numerical data and learned graph features, 
capturing long-range dependencies and nonlinear cross-series 
interactions. A retrieval-augmented generation (RAG) (Hajaghaie and 
Thulasiram, 2025) module then identifies semantically and statistically 
similar quarters from the historical database and relevant market 
commentary, appending these as auxiliary context to the prompt. 
Finally, a GPT-style decoder, fine-tuned for quantitative forecasting, 
outputs predictions of future market-level degree centralization and 
the distribution of node-level residual densities, along with natural-
language rationales that enhance interpretability. This design enables 
the model to detect structural breaks and subtle dependencies that are 
difficult to capture with purely statistical approaches. Unlike standard 
transformer forecasters that operate purely on numerical tensors, the 
proposed architecture reformulates forecasting as a conditional 
language-generation task, enabling the model to leverage pre-trained 
reasoning capabilities and contextual attention learned from large-
scale corpora.

2.4 Benchmarking with classical and deep 
learning baselines

To rigorously evaluate predictive performance, we compare the 
LLM-enhanced model with several established forecasting methods. 
ARIMA provides a transparent econometric benchmark for short-
memory temporal correlations. Prophet, an additive model designed 
for business time series, offers robust handling of multiple seasonalities 
and calendar effects. TFT represents a state-of-the-art deep learning 
baseline that integrates recurrent layers with interpretable attention 
mechanisms. All models are trained on identical rolling windows, and 
hyperparameters are tuned through cross-validation to ensure fair 
comparison.

In addition to neural forecasting models, we constructed a 
non-neural baseline to evaluate whether the performance gains of the 
proposed approach arise from language-formatting alone or from the 
reasoning capability of LLMs. Specifically, we developed a first-order 
statistical text generator, an n-gram–based model that produces 
forecasts using simple transition probabilities without any neural 
embeddings, attention mechanisms, or contextual feature learning. 
This model receives the same text-encoded input sequences as the 
LLM but lacks the architectural capacity to model nonlinear 
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dependencies or structural shifts. By including this purely statistical 
“LLM-like” generator, we are able to distinguish improvements due to 
transformer-based reasoning from those attributable merely to textual 
reformatting of time-series data.

To ensure that the predictive gains of the proposed method are not 
solely attributable to the transformer backbone, we extended the 
benchmarking study to include three additional artificial neural 
network (ANN) architectures: (i) Long Short-Term Memory (LSTM), 
(ii) Gated Recurrent Unit (GRU), and (iii) a plain Transformer 
encoder without prompting, retrieval augmentation, or instruction 
tuning. All models were trained under the same rolling-origin 
evaluation protocol, and their hyperparameters were optimized via 
nested cross-validation to ensure comparability.

2.5 End-to-end evaluation

The forecasting pipeline proceeds as follows: (i) quarterly fund–
stock holdings are transformed into bipartite networks and projected 
onto the stock layer; (ii) graph-based metrics such as cen_d and den 
are computed and aligned as multivariate time series; (iii) numerical 
and textual data are integrated into prompts, enriched with retrieved 
historical analogs; and (iv) the LLM-based and baseline models are 
trained to generate multi-step forecasts. Predictive accuracy is assessed 
using standard error metrics, mean absolute error (MAE), root mean 
square error (RMSE), and mean directional accuracy (MDA), and by 
backtesting the model’s ability to provide early warnings of abnormal 
increases in network centralization that may signal systemic risk.

By transforming complex graph-structured financial data into 
language-like sequences, the proposed framework enables large 
language models to reason across quantitative and textual domains, to 
exploit long-range temporal dependencies, and to provide transparent 
and actionable forecasts. This methodology demonstrates a scalable 
pathway for applying LLMs to financial time-series forecasting, 
delivering both enhanced predictive accuracy and valuable economic 
insights into the evolving structure of capital markets.

3 Experiments

To rigorously evaluate the proposed LLM-enhanced forecasting 
pipeline, we conducted a comprehensive series of experiments using 
the quarterly fund–stock holding panel from 2016 to 2024. The goal 
was to assess the model’s ability to anticipate structural changes in the 
stock information network and to provide early warnings of 
systemic risks.

3.1 Forecasting tasks and experimental 
setup

Two complementary tasks were examined. The first focused on 
one-quarter-ahead prediction of market-level degree centralization, 
an indicator of the concentration of informational linkages and 
herding potential. The second involved detection of abnormal 
residual-density spikes at the individual-stock level, which often signal 
emerging stress or unusual cross-holding patterns. For each quarterly 
time point, we constructed the bipartite fund–stock graph, projected 

it to the stock layer, and computed cen_d and den as described in the 
Methodology. We then applied a rolling-origin evaluation: at every 
step, all data up to quarter t were used to forecast quarter t + 1, 
ensuring strict out-of-sample testing.

3.2 Models and training protocol

The proposed LLM forecaster (Wang, 2025b) combines numerical 
time-series encoding, retrieval-augmented context enrichment, and a 
GPT-style generative decoder (Wang et al., 2025b). Competing 
baselines included ARIMA, Prophet, and the TFT, which represents a 
strong deep-learning benchmark. All models used identical rolling 
training windows and were tuned via nested cross-validation. The 
LLM was fine-tuned on domain-specific prompts with a maximum 
context of 12 historical quarters, allowing it to capture long-range 
dependencies and regime shifts.

3.3 Evaluation metrics

Forecast accuracy was assessed using multiple criteria: mean 
absolute error (MAE) and root mean square error (RMSE) to capture 
overall predictive precision, mean absolute percentage error (MAPE) 
to facilitate cross-scale comparisons, and directional accuracy (DA) to 
evaluate whether predicted changes correctly reflected the actual 
direction of network evolution. For the abnormal-den detection task, 
we further reported precision, recall, and F1-score, measuring the 
model’s effectiveness in identifying forthcoming anomalous spikes.

3.4 Results for next-quarter cen_d 
forecasting

The LLM forecaster consistently outperformed all benchmarks. 
Over the entire 2016–2024 evaluation period, it achieved an MAE of 
0.012 and an RMSE of 0.019, compared with 0.021 and 0.033 for TFT, 
0.028 and 0.041 for Prophet, and 0.035 and 0.050 for ARIMA. Its 
MAPE averaged 4.8%, almost halving the error of the best classical 
competitor. Directional accuracy reached 87%, demonstrating reliable 
anticipation of both rising and declining centralization phases. 
Notably, the LLM captured key inflection points around 2018 Q4 and 
2022 Q1, periods associated with heightened market volatility, while 
the baselines tended to lag.

3.5 Results for abnormal den spike 
detection

At the individual-stock level, the LLM forecaster also delivered 
superior early-warning capability. Using a 95th-percentile historical 
threshold to define abnormal spikes, it achieved precision of 82%, 
recall of 79%, and an F1-score of 0.80, outperforming TFT (0.71), 
Prophet (0.64), and ARIMA (0.59). Case studies showed that the LLM 
accurately signaled forthcoming residual-density surges in large-cap 
technology and financial stocks one quarter in advance, allowing 
hypothetical risk-mitigation actions such as portfolio rebalancing or 
liquidity provisioning.
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3.6 Discussion of empirical findings

These results confirm that LLM-based time-series forecasting 
substantially improves both point prediction and event detection 
in complex financial networks. The model’s ability to merge graph-
derived numerical indicators with textual fund narratives and 
long-range historical analogs was critical to capturing structural 
breaks and nonlinear contagion patterns. Backtesting further 
revealed that forecasts of impending rises in cen_d could have 
reduced portfolio drawdowns by an estimated 15% during high-
volatility episodes, underscoring the economic value of accurate 
network forecasts.

Overall, the experiments demonstrate that the proposed 
LLM-enhanced framework not only outperforms state-of-the-art deep 
learning and classical baselines in standard statistical metrics, but also 
provides financially actionable insights into the evolving topology of 
stock information networks. By forecasting both gradual trends and 
abrupt anomalies, the model offers a robust decision-support tool for 
market participants and regulators seeking to monitor and mitigate 
systemic risk.

3.7 Computational cost analysis

To evaluate the practicality of deploying the proposed 
LLM-enhanced forecasting framework in real-world financial 
monitoring systems, we conducted a detailed analysis of both training 
and inference costs. All experiments were performed on a single 
NVIDIA A100 GPU with 80 GB of memory, ensuring a consistent 
computational environment across models.

The LLM forecaster was fine-tuned using LoRA with 4-bit 
quantization, a parameter-efficient strategy that significantly reduces 
memory usage while maintaining predictive accuracy. The complete 
fine-tuning process required approximately 2.1 h, with peak GPU 
utilization remaining well within the available hardware envelope. 
This efficiency demonstrates that the model can be adapted to new 
financial environments or extended forecasting windows without 
prohibitive computational expense.

Inference was evaluated under the same hardware configuration. 
A single one-step-ahead forecast—consisting of (i) numerical time-
series encoding, (ii) retrieval-augmented context construction, and 
(iii) decoder-based generation—required an average of ~35 ms per 
prompt. The total memory footprint during inference was 
approximately 8.2 GB, indicating that the model can be deployed on 
high-end workstation GPUs or cloud instances without specialized 
infrastructure.

Because the model integrates historical analogs via retrieval, we 
also measured the cost of vector lookups. Across all experiments, RAG 
retrieval latency averaged 1.8 ms per query, with negligible variance. 
The retrieval corpus consists of approximately 120 quarterly fund-
disclosure documents, resulting in a lightweight index that introduces 
virtually no overhead in end-to-end inference time.

These findings confirm that the proposed forecasting pipeline is 
computationally efficient and suitable for near–real-time financial 
network monitoring. The modest training requirements enable 
periodic re-tuning as new data become available, while the low 
inference latency supports continuous deployment in risk dashboards, 
supervisory systems, or automated alert pipelines.

Table 1 reports the computational cost of training and 
deploying the proposed LLM-enhanced forecasting system. Results 
show that LoRA-based fine-tuning is efficient, and inference 
latency remains low even with retrieval-augmented context, 
enabling near–real-time monitoring of financial network 
indicators.

3.8 Scalability with market size

Given the potentially large dimensionality of fund–stock 
ecosystems, it is essential to evaluate how the proposed forecasting 
framework scales with the size of the investment universe and the 
length of the time series. To this end, we conducted both theoretical 
and empirical analyses to characterize computational complexity 
across key components of the pipeline.

The overall computational cost can be decomposed into two 
major components: graph construction and LLM-based forecasting. 
Constructing the bipartite fund–stock network and projecting it onto 
the stock layer has a worst-case complexity of ( )2O N , because the 
projection requires evaluating co-holding relationships among all 
stock pairs. However, in practice, institutional portfolios are sparse, 
and the adjacency matrix is highly structured. By applying adjacency-
list compression, the effective complexity reduces to ( )O E , E  denotes 
the number of observed fund–stock co-holding edges. Under typical 
fund-holding densities, this leads to subquadratic empirical scaling.

Importantly, the cost of the LLM forecaster does not scale with N .  
Only aggregated market-level indicators—degree centralization 
(cen_d) and the distributional summary of residual density (den)—
are provided as model inputs. Results show that inference latency is 
constant with respect to the number of stocks, forecasting cost remains 
nearly identical for universes of 300, 600, or 1,000 assets. This 
decoupling enables the system to scale efficiently to large markets 
without modifying the underlying model architecture.

Transformer-based inference theoretically scales as ( )2O T d , 
where T  is the context window length and d  is the hidden dimension. 
To maintain tractability, we cap the historical context at 12 quarters, 
which renders the computation effectively linear in practice. This 
window length was found to be sufficient for capturing structural 
shifts and long-range dependencies in financial network indicators.

To validate these theoretical considerations, we measured 
end-to-end runtime as the number of assets increased from 300 to 
1,200. Graph preprocessing time rose from 0.11 s to 0.45 s per quarter. 
LLM inference latency remained nearly constant at 35–38 ms per 
forecast.

These results confirm that the proposed framework scales 
gracefully with market size: the graph-construction stage dominates 
variability, while the LLM component introduces negligible 
incremental cost. These scalability characteristics ensure that the 
proposed framework can be applied to increasingly complex financial 
markets, providing a computational foundation that complements the 
empirical performance gains reported in the Results.

4 Results

The experimental evaluation demonstrates that the proposed 
LLM-enhanced forecasting pipeline delivers substantial gains in 
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predictive accuracy and interpretability compared with both classical 
and state-of-the-art deep learning baselines.

4.1 Overall predictive performance

As shown in Table 2, the proposed LLM-based forecaster achieves 
the strongest overall performance in predicting next-quarter market-
level degree centralization. It attains an MAE of 0.012, RMSE of 0.019, 
and MAPE of 4.8%, outperforming all classical and deep-learning 
benchmarks, including the Temporal Fusion Transformer, Prophet, 
and ARIMA. Its directional accuracy reaches 87%, indicating a high 
degree of reliability in anticipating whether network centralization 
will rise or fall in the subsequent quarter.

For the stock-level residual-density (den) spike detection task, the 
LLM forecaster again delivers the best performance, achieving 
precision of 82%, recall of 79%, and an F1-score of 0.80, substantially 
exceeding the alternative models. These improvements demonstrate 
the model’s ability to capture both gradual structural trends and 
abrupt anomalies within the stock information network.

Overall, the results highlight that the LLM architecture not only 
provides superior predictive accuracy but also excels at early detection 
of structural breaks—capabilities that conventional time-series models 
and standard ANN architectures struggle to match. These comparisons 
confirm that performance improvements cannot be attributed to 
neural sequence modeling alone (An et al., 2025), but rather to the 
integration of language-based prompting and retrieval-augmented 
contextual reasoning.

4.2 Interpretation of attention patterns

Beyond raw accuracy, the transformer’s attention mechanisms 
provide insight into the drivers of network evolution. Visualization of 
cross-temporal attention weights shows that the model consistently 
assigns higher weight to quarters characterized by sharp changes in 
fund co-holding patterns and surges in sector-specific capital flows. 
For example, attention maps frequently highlight historical quarters 
preceding major policy announcements or industry-wide reallocations 

of institutional funds. At the node level, stocks with persistent high 
residual density (den) receive disproportionate attention, suggesting 
that the model identifies them as critical conduits of information 
diffusion and potential contagion points within the market network. 
These interpretable signals not only validate the model’s internal 
reasoning but also provide actionable leads for risk managers.

4.3 Economic and financial implications

The ability to forecast spikes in cen_d and den carries significant 
market-risk management value. Periods of rising degree 
centralization often correspond to heightened herding behavior and 
lower market resilience, conditions that amplify systemic risk and 
can precipitate liquidity crises. These scalability findings 
demonstrate that the proposed framework remains computationally 
efficient even as market size grows, thereby supporting its practical 
deployment in large-scale financial systems and motivating the 
empirical analyses presented in the Results. Early detection of 
abnormal den spikes highlights individual equities whose cross-
holding structures deviate from fundamentals, offering a 
pre-emptive warning of idiosyncratic risk or speculative bubbles. 
Backtesting indicates that incorporating the LLM’s forecasts into a 
portfolio allocation strategy could have reduced drawdowns by 
roughly 15% during episodes of market turbulence, underscoring 
tangible economic benefits.

4.4 Information diffusion and market 
microstructure

From a microstructural perspective, the forecasts illuminate how 
information propagates through the fund–stock ecosystem. Stocks 
identified with high predicted residual density often act as “bridges” 
that transmit shocks across sectors. Understanding these conduits can 
inform regulatory surveillance, capital adequacy planning, and stress 
testing. Moreover, the observed alignment between attention peaks 
and historical policy or macroeconomic events suggests that market 
information is not only price-driven but also textually encoded in 

TABLE 1  Computational cost summary of the proposed LLM-based forecasting framework.

Component Metric Value Description/notes

Training Hardware NVIDIA A100 (80 GB VRAM) Single-GPU environment used throughout experiments

Fine-tuning time ~2.1 h LoRA fine-tuning with 4-bit quantization

Peak GPU memory (training) ~38 GB Includes optimizer states and LoRA adapters

Inference Per-prompt latency ~35 ms End-to-end: numerical encoding + RAG retrieval + decoding

GPU memory (inference) ~8.2 GB Stable across forecasting tasks

Batch size during inference 1 Forecasting tasks executed per quarter

RAG module Retrieval latency ~1.8 ms Vector search per query

Retrieval corpus size ~120 documents Quarterly fund disclosures (2016–2024)

Index type FAISS flat index Enables fast similarity search

Overall efficiency Scalability Linear in window size; constant w.r.t. 

number of assets

cen_d and den summaries decouple inference cost from N

Deployment feasibility Real-time compatible Suitable for dashboards and continuous risk monitoring
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fund disclosures and company narratives, precisely the domain in 
which LLMs excel.

4.5 Synthesis

The comparison with the non-neural statistical text generator 
provides further evidence that the predictive advantage of the 
proposed LLM-based framework stems from its ability to perform 
contextual reasoning rather than from the textual representation of 
the data alone. While the n-gram–based model receives identical 
text-formatted inputs, its performance closely mirrors that of ARIMA 
and Prophet and fails to detect structural breaks in cen_d or 
abnormal spikes in den. This contrast demonstrates that textual 
encoding is not sufficient to improve financial time-series forecasting. 
Instead, the gains arise from the LLM’s attention-driven temporal 
modeling, retrieval-augmented contextualization, and emergent 
reasoning abilities, which enable the system to integrate numerical, 
structural, and linguistic information in a way that traditional 
statistical or shallow sequence models cannot.

Thereby, these findings demonstrate that large language models 
can serve as next-generation engines for financial time-series 
forecasting, providing both superior predictive accuracy and 
interpretive transparency. By revealing how structural signals such as 
degree centralization and residual density interact with 
macroeconomic and institutional factors, the proposed framework 
contributes to the literature on market stability, systemic-risk 
monitoring, and information diffusion in complex financial networks. 
The combination of forecasting performance, attention-based 
interpretability, and clear economic meaning positions this approach 
as a powerful tool for both academic research and real-world financial 
supervision. Beyond statistical accuracy, the results highlight the 
economic relevance of language-informed forecasting. Attention-
weight patterns consistently emphasize periods associated with 

regulatory changes and coordinated fund reallocations, suggesting 
that the model internalizes narrative signals that precede structural 
network shifts. This capability is particularly valuable for systemic-
risk monitoring, where early recognition of emerging concentration 
patterns can inform timely regulatory or portfolio-level interventions.

5 Discussion

5.1 Superiority of LLM-based forecasting

The experimental outcomes demonstrate that the proposed 
LLM-driven forecasting pipeline (Wang et al., 2025a) substantially 
enhances predictive performance compared with traditional and 
contemporary deep learning benchmarks. The marked improvements 
in MAE and RMSE for the cen_d task indicate that LLMs possess a 
superior capacity to capture both smooth and abrupt temporal 
dynamics in complex financial systems. Unlike conventional 
statistical models such as ARIMA or Prophet, which assume 
stationarity or rely on limited autoregressive components, the LLM 
architecture effectively integrates multi-horizon dependencies and 
contextual relationships embedded in financial text, fund disclosures, 
and network features. The high directional accuracy (87%) further 
underscores its robustness in capturing the underlying behavioral 
inertia and cyclical nature of financial networks.

The results of these experiments, reported in Section 4.1, Table 2, 
reveal several important patterns. First, both LSTM and GRU 
outperform the classical econometric baselines (ARIMA and 
Prophet), indicating that nonlinear sequence modeling contributes 
meaningfully to forecasting performance. However, these recurrent 
models still fall substantially short of the proposed LLM-based 
forecaster across all accuracy metrics. Second, the plain Transformer 
encoder achieves stronger performance than LSTM and GRU, 
reflecting its advantage in modeling long-range temporal 

TABLE 2  Performance comparison of LLM-based forecasting and baseline models.

Task Model MAE RMSE MAPE 
(%)

Directional 
accuracy (%)

Precision (%) Recall (%) F1-score

Market-level degree 

centralization (cen_d) 

forecasting

LLM forecaster (proposed) 0.012 0.019 4.8 87 — — —

Plain transformer encoder 0.018 0.029 6.7 79 — — —

LSTM 0.024 0.038 8.9 71 — — —

GRU 0.023 0.036 8.5 72 — — —

Temporal fusion transformer 

(TFT)

0.021 0.033 7.6 74 — — —

Prophet 0.028 0.041 9.4 68 — — —

ARIMA 0.035 0.05 12.1 63 — — —

Stock-level residual-

density (den) spike 

detection

LLM forecaster (proposed) — — — — 82 79 0.8

Plain transformer encoder — — — — 74 69 0.71

LSTM — — — — 67 61 0.64

GRU — — — — 68 62 0.65

Temporal fusion transformer 

(TFT)

— — — — 71 66 0.68

Prophet — — — — 65 61 0.63

ARIMA — — — — 59 55 0.57
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dependencies. Nevertheless, even this architecture trails the proposed 
model, particularly in directional accuracy for degree-centralization 
forecasting and in the early detection of abnormal residual-
density spikes.

Thus, these findings demonstrate that the improvement achieved 
by our method cannot be attributed to the transformer architecture 
alone. Rather, the performance gains arise from the integration of 
numerical–textual prompting, retrieval-augmented historical 
context, and the LLM’s enhanced temporal-reasoning capabilities, 
which collectively enable more accurate prediction of structural shifts 
in financial networks.

5.2 Interpretability and mechanistic 
insights

A significant contribution of this work lies in its interpretability 
(Wang, 2025b). The attention visualizations provide an interpretable 
window (Wang, 2025c) into how the model processes temporal 
dependencies and identifies key inflection points. The model’s 
preferential attention to quarters preceding major macroeconomic 
policy shifts or sectoral reallocations aligns with established market 
behavior theories, validating its internal reasoning. The persistent 
high attention assigned to nodes with elevated residual density values 
reveals the model’s implicit recognition of central nodes in the 
financial network, those that function as conduits for information 
diffusion and systemic contagion. This transparency (Wang et al., 
2023a) bridges the long-standing gap between predictive modeling 
and explainable financial intelligence, enabling users to understand 
not only what is predicted but why those predictions emerge.

5.3 Financial and economic implications

The forecasting of cen_d and den carries substantial implications 
for market stability and systemic-risk management. Periods of rising 
degree centralization often coincide with intensified herding 
behavior, diminished market resilience, and increased susceptibility 
to liquidity shocks. By accurately predicting such trends, the LLM 
forecaster can serve as an early-warning system for financial 
supervisors and institutional investors. Moreover, the model’s ability 
to identify spikes in residual density offers a mechanism for detecting 
idiosyncratic risks at the stock level, signaling potential speculative 
bubbles or structural imbalances. The backtesting results, showing a 
15% reduction in drawdowns during turbulent periods, affirm that 
integrating LLM forecasts into portfolio optimization strategies could 
enhance capital preservation and risk-adjusted returns.

5.4 Broader theoretical contributions

From a theoretical standpoint, this research demonstrates that 
large language models, originally designed for textual data, can 
generalize effectively to quantitative domains such as financial time-
series forecasting. Their ability to encode latent semantic relationships 
extends beyond natural language, capturing cross-modal patterns 
linking textual narratives, macroeconomic indicators, and numerical 
network metrics. This supports the emerging view that LLMs serve 

as universal pattern recognizers capable of unifying language, 
structure, and temporal information within a single reasoning 
framework. The interpretive alignment between attention patterns 
and historical macroeconomic events further illustrates that market 
behavior, to some extent, is linguistically mediated, echoing the 
hypothesis that “financial information is textually encoded.”

5.5 Implications for market microstructure 
and regulation

At the microstructural level, the model reveals how fund–stock 
interaction networks evolve over time and how shocks propagate 
through systemically important nodes. The identification of high-
residual-density equities as transmission hubs can assist regulators 
and central banks in designing targeted interventions to mitigate 
contagion. In addition, the alignment between predictive attention 
peaks and known policy periods implies that textual disclosure and 
narrative communication in markets are not peripheral but 
foundational to systemic dynamics, offering a novel analytical 
dimension for financial stability monitoring.

5.6 Limitations and future work

Despite the promising results, several limitations merit 
discussion. First, while the model demonstrates strong generalization 
across temporal horizons, its performance may vary under regime 
shifts not captured in the training data, such as unprecedented policy 
interventions or geopolitical crises. Second, the interpretability 
analysis, though insightful, remains qualitative; future work could 
incorporate quantitative explainability metrics or causal inference 
frameworks to strengthen the validity of attention-based 
interpretations. Lastly, expanding the framework to multi-market or 
cross-border datasets would further test its scalability and 
applicability in global systemic-risk contexts.

Thus, the findings suggest that LLMs represent a transformative 
advance in financial time-series forecasting, capable of simultaneously 
delivering accuracy, interpretability, and actionable insights. By 
combining predictive modeling with explainable mechanisms and 
economically meaningful signals, the proposed framework 
contributes to a new paradigm in financial analytics, one that 
emphasizes both performance and understanding in complex market 
systems.

6 Conclusion

This study demonstrates that large language models can 
significantly advance time-series forecasting of complex financial 
networks. Using a quarterly fund–stock holding panel covering 
2016–2024, we constructed dynamic stock information networks and 
derived key structural indicators, degree centralization and residual 
density, which capture both market-wide concentration of 
informational linkages and firm-level anomalies in cross-holdings. 
Building on these network foundations, we proposed an 
LLM-enhanced forecasting pipeline that transforms numeric time 
series and textual fund disclosures into promptable sequences, 
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integrates historical analog retrieval, and generates multi-step 
forecasts via GPT-style transformers.

Extensive experiments established the superiority of the 
proposed approach over classical econometric and deep learning 
baselines. The model not only lowered mean absolute and root 
mean square errors in predicting next-quarter cen_d, but also 
detected abnormal den spikes with higher precision and recall. 
Visualization of attention weights revealed that the LLM effectively 
prioritizes historical periods of heightened fund co-movement and 
policy-induced capital shifts, lending interpretive transparency to 
its predictions. These empirical gains confirm that LLMs can 
simultaneously improve forecasting accuracy and provide 
economically meaningful insights into market microstructure and 
information diffusion.

The findings carry broader implications for financial practice and 
regulation. Accurate forecasts of rising network centralization 
provide early warning of potential herding behavior, liquidity stress, 
and systemic risk, enabling market participants to rebalance 
portfolios and regulators to pre-empt cascading failures. Detection of 
firm-specific residual-density anomalies can help supervisory 
agencies identify stocks that act as critical bridges for risk 
propagation, supporting targeted interventions and stress testing. The 
pipeline’s ability to merge structured numerical indicators with 
unstructured textual narratives also points toward new standards of 
transparency and explainability in AI-driven market surveillance.

Despite its promising results, this study has several limitations 
that should be acknowledged. First, the analysis relies on quarterly 
fund–stock disclosures, which provide only discrete snapshots of 
holdings and may miss rapid within-quarter reallocations or high-
frequency trading effects. Second, while large language models 
enable the fusion of numerical and textual information, their 
forecasts depend on the quality and completeness of the textual 
fund descriptions; biases or omissions in disclosures could 
propagate through the model. Third, the training horizon (2016–
2024), though substantial, still spans a finite set of market regimes 
and policy cycles, limiting the ability to capture rare tail events or 
structural regime shifts. Fourth, the LLM architecture is 
computationally intensive, requiring significant resources for 
fine-tuning and real-time deployment. Finally, our current 
evaluation focuses on in-sample and short-horizon forecasts; 
long-term stability, transferability to other markets, and real-time 
regulatory integration remain to be validated.

Future work will address these constraints by incorporating 
higher-frequency and multi-market data, improving data quality 
control, and developing more efficient and robust LLM 
architectures. Looking ahead, this research opens several 
promising avenues. Methodologically, extending the framework 
to high-frequency data (e.g., daily or intraday fund flows) and to 
multi-asset networks could enhance real-time monitoring and 
short-horizon forecasting. Incorporating cross-market linkages, 
such as derivatives positions, bond-equity interactions, or 
international fund exposures, would provide a more holistic 
picture of global financial contagion. From a regulatory 
perspective, integrating LLM-based early-warning indicators into 
macroprudential dashboards could support evidence-based policy 
decisions and systemic-risk stress testing. Finally, the general 
principle of language-informed graph forecasting may be applied 
beyond equity markets, including supply-chain risk assessment, 

energy trading networks, and emerging decentralized finance 
ecosystems.

In summary, this work establishes a novel, explainable, and 
economically grounded methodology for forecasting the evolution of 
stock information networks. By uniting graph-theoretic metrics, rich 
textual disclosures, and the predictive power of large language models, 
the study contributes both to the academic literature on financial 
network dynamics and to the practical toolkit of investors, regulators, 
and policy makers seeking to safeguard market stability in an 
increasingly interconnected global economy.
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