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A new clustered federated
learning algorithm for
heterogeneous data in
high-precision wireless sensing

Zongrui Tian and Jiasheng Tian*

School of Electronic Information and Communications, Huazhong University of Science and
Technology, Wuhan, China

Introduction: This article studies a new clustering-based federated learning
algorithm that leverages Kullback-Leibler (KL) divergence to tackle heterogeneous
data in wireless sensing environments.

Methods: Firstly, highdimensional heterogeneous data is subjected
to principal component analysis to generate dimension-reduced
representations, thereby reducing computational complexity. Secondly,
the KL divergence distances between each pair of clients are calculated,
followed by clustering according to the minimum threshold. The new KL
divergence distance between the aggregated clients and others is taken as
the average of the two. Finally, the federated learning training is conducted
within each cluster to obtain a personalized model based on the classic
wireless datasets.

Results and Discussion: After the personalized models are tested, clients are
reclustered and the models are updated—that is, a series of iterative operations,
the optimal number of clusters and recognition accuracy are obtained. The test
results show that the proposed algorithm based on KL divergence has higher
recognition accuracy than several reported ones.

KEYWORDS

data heterogeneity, federated learning algorithm, KL divergence, personalized
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1 Introduction

With the rapid development of Internet of Things (IoT) technology and 6G network
architecture, wireless sensing technology has been widely applied in scenarios such as smart
home, industrial monitoring, health care and environmental perception. These applications
generate massive amounts of sensing data that contain valuable information for decision-
making. However, these raw data scattered across various devices are directly transmitted to
cloud computing centers for centralized processing, resulting in high system communication
overhead and a potential threat in safeguarding user data privacy.

However, traditional federated learning (FL) algorithms (e.g., FedAvg) assume that data
across clients follows an Independent and Identically Distributed (IID) distribution, which is
difficult to satisfy in practical wireless sensing environments. Due to differences in sensing
device types, deployment locations, and working conditions, data among clients often exhibits
significant heterogeneity (i.e., Non-IID), including distribution shifts, feature space
discrepancies, and label distribution imbalance. This heterogeneity leads to performance
degradation of the globally shared model.
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To tackle the Non-IID problem in FL, personalized federated
learning (PFL) has emerged as a research hotspot. Existing
personalized methods can be roughly divided into three categories:
(1) regularization-based methods, which introduce additional
regularization terms to constrain the local model updates, balancing
the consistency between local and global models; (2) model
adaptation-based methods, which adjust specific components of the
global model or fine-tune local model parameters to adapt to local
data; (3) clustering-based methods, which group clients with similar
data characteristics into clusters, and train cluster-specific models to
achieve personalization. Among these, clustering-based methods are
particularly suitable for wireless sensing scenarios due to their low
computational overhead and strong scalability. However, existing
clustering strategies in FL mainly rely on similarity metrics such as
cosine similarity or Euclidean distance, which focus on feature space
distance but fail to effectively capture the distribution differences
between heterogeneous sensing data. This limitation leads to
inaccurate clustering results, thereby affecting the performance of
personalized models.

Kullback-Leibler (KL) divergence is a classic metric for
measuring the difference between two probability distributions,
which can quantitatively characterize the distribution deviation of
heterogeneous data. Compared with cosine similarity (which focuses
on direction consistency) and Euclidean distance (which focuses on
feature value difference), KL divergence is more suitable for
describing the intrinsic heterogeneity of sensing data. Motivated by
this, this article proposes a KL divergence-based PFL method for
wireless sensing environments.

The main contributions of this article are summarized as follows:
(1) a clustering strategy based on KL divergence is proposed to
effectively capture the distribution differences of heterogeneous
sensing data, improving the accuracy of client clustering compared
with traditional similarity metrics; (2) a PFL framework for wireless
sensing is designed, which realizes model customization through
cluster-specific training and iterative optimization, adapting to the
data heterogeneity of sensing human behaviors; (3) extensive
experiments are conducted on two classic wireless sensing datasets to
verify the effectiveness of the proposed PFL algorithm based on KL
divergence. The results demonstrate that the algorithm outperforms
serval reported algorithms in terms of recognition accuracy.

2 Related work

Federated learning (FL) offers a solution to the challenge of
scattered data hindering the centralized learning. In McMahan et al.
(2017), first proposed the concepts of FL and verified its effectiveness
and feasibility for collaborative model training without aggregating
user data to a central server (Sattler et al., 2019). However, in data-
heterogeneous environments, FL algorithms often suffer from
significant performance degradation (Zhao et al., 2018). To address
the challenge of data heterogeneity (Pang et al., 2025a,b), many
researchers have proposed a range of improved methods such as
personalized federated learning (PFL) algorithms (Tan et al., 2022;
Arivazhagan et al., 2019).

One personalized approach involves designating some layers of a
neural network as personalized layers and the rest as globally shared
layers (Arivazhagan et al., 2019; Liang et al., 2022). In Arivazhagan et
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al. (2019), proposed the FedPer algorithm, which adopted a “base
layers + personalized layers” design. In Liang et al. (2022), proposed
LG-FedAvg, where the last several layers of the neural network were
designated as personalized components. However, how to properly
divide base layers and personalized layers in these algorithms remains
an area requiring further research. In Collins et al. (2021), proposed
the FedRep algorithm and designed the classification head of a neural
network as the personalized component, while all other layers were
designed for global federated training. Nevertheless, FedReps
performance depends on the effectiveness of global representations;
moreover, in real-world scenarios, if shared features across data from
different clients are either less prominent or difficult to learn, this
algorithm is at the risk of performance degradation.

Another personalized approach is that each personalized model
exhibits a certain “degree of personalization” relative to the global
model (Dinh et al., 2020; Deng et al., 2003; Li et al., 2021; Zhang et al.,
2020). In Dinh et al. (2020), proposed the PFL algorithm “pFedMe”
and introduced a regularized loss term to balance the trade off
between personalization and generalization. However, pFedMe faced
challenges in properly selecting hyperparameters to quantify this
degree of personalization. In the same year, Deng et al. (2003)
introduced an adaptive weight adjustment mechanism to dynamically
tune the weight ratio between the global model and local personalized
model in the final model. However, the adaptive weights are
dynamically determined based on the loss, leading to insignificant
improvement effects. In Li et al. (2021), proposed the Ditto algorithm,
which employed the traditional FedAvg method for global model
optimization. During synchronous training, FedAvg adopted a
relatively global regularized model as the local personalized model.
Nevertheless, using FedAvg for global training is unfavorable for
convergence in data-heterogeneous scenarios, and Ditto also faces
challenges in selecting hyperparameters to quantify the degree of
personalization.

The aforementioned PFL algorithms generally focus on the
personalized components of individual models relative to the global
model, but do not directly consider the connections between two
personalized models-specifically, the similarity among models across
multiple clients (Zhang et al., 2020; Huang et al., 2021).

In Zhang et al. (2020), proposed the FedFomo algorithm, which
achieved personalized updates by computing the optimal weighted
combination of models for each client. Each client determined its
aggregation weights based on the local loss of other clients’ models,
resulting in models with lower losses being assigned larger weights.
This algorithm improves model performance only to a certain extent.
In Huang et al. (2021), put forward the Fed AMP algorithm, which
emphasized attention mechanisms to enhance pairwise collaboration
among clients with similar data distributions. However, these
personalized models accounting for the connections between
personalized models tend to exhibit notable similarity as a result of
such collaborative interactions.

Additionally, numerous studies Briggs et al. (2020), Islam et al.
(2024), Ghosh et al. (2020), and Sattler et al. (2020) have focused on
clustering based on personalization in FL. For this category of
algorithms, the server initially randomly constructed K global models
based on a certain type of similarity (e.g., distance similarity, cosine
similarity), each associated with a distinct cluster. However, the
clustering algorithm (Ghosh et al., 2020) required predefining the
number of clusters K and involved frequent communication for
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transmitting model parameters or frequently varying them. Secondly,
many relevant hyperparameters such as thresholds and cluster
partitioning conditions were involved, leading to a linear increase in
complexity (Sattler et al., 2020).

Therefore, this article studies a new clustered FL algorithm to
address the challenge of data heterogeneity—specifically by leveraging
Kullback-Leibler (KL) divergence to measure the similarity among
multiple clients and performing effective clustering via iterative loops.
This new algorithm enables efficient identification of distribution
similarity, avoids the server’s arbitrary initial determination of K
global models, and both difficulties in hyperparameter selection and
the need for frequent communication.

3 Materials and methods

This section will introduce the new clustered federated learning
(CFL) algorithm and datasets.

3.1 The new CFL algorithm

The New CFL algorithm includes the Principal Component
Analysis (PCA), KL divergence calculation, clustering and federated
learning training, etc.

3.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method
that projects data onto a low-dimensional space via linear
transformation, while maximizing the retention of the variance of
the original data. In the new CFL algorithm, each client derives a
principal component vector matrix using PCA based on its local
data; this matrix is regarded as the client’s data feature and is used
to measure the distance between different clients. Specifically, for
each client’s data matrix X € RM*9, after standardization and
subsequent PCA processing (including covariance calculation,
eigenvalue computation, and eigenvector derivation), a principal
component vector matrix U € R**“ is obtained. Here, M denotes
the number of samples, d represents the feature dimension of a
single sample, and c is the selected number of principal components
(with ¢ < d). cis a user-specified value, which is used to determine
the dimension after dimensionality reduction. This process can be
expressed as:

U =PCA(X.c) 1)

After finishing PCA, we obtain the data features for each client.
These data features are typically in the form of matrices, so the matrix
vectorization for these data is required to simplify the subsequent KL
divergence calculations. Specifically, we vectorize the matrix U € R*¢
into U € R'*@*9 (either a column vector or a row vector). Following
the matrix vectorization, each client is assigned a corresponding
characteristic vector U. We then take the absolute value of U and
normalized it, as can be given by
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Where i = 1,2, ..., Nrepresents the number of the client numbers.
And thus U is converted into the discrete probability distribution U.

Since the heterogeneous wireless sensing data X including high
dimensionality, excessive redundant information, and noise interference,
it is necessary for PCA, a classical dimensionality reduction and data
preprocessing technique, to map high-dimensional variables to a
low-dimensional principal component space via orthogonal
transformation while preserving key variation information within the
dataset. The low-dimensional data after PCA dimensionality reduction
can not only reduce the computational cost of KL divergence and
improve clustering efficiency, but also enhance the recognition sensitivity

of KL divergence to “category differences in heterogeneous data”

3.1.2 Calculation of KL divergence

Kullback-Leibler (KL) Divergence is a method for measuring the
difference between two probability distributions. The value of KL
divergence is non-negative: it equals zero if the two probability
distributions are identical, and the smaller the value, the more similar
the distributions. The preprocessed vectors U are treated as discrete
probability density distribution, and thus two client’s KL divergence is
calculated by

KL(Um (x),Un(y)):éxi log(zz] (3)

where U,(x) € R and U,(y) € R° are two (m, n) clients PCA
vectors, and x;, y; denote the i-th component of the m-th client vector
U,,(x) and the n-th client vector U,(y), respectively.

3.1.3 Clustering based on KL divergence

The hierarchical clustering algorithm is a clustering method that
constructs a hierarchical structure of clusters through the gradual
merging of existing clusters. Specifically, it determines the clustering
relationships among clients based on the inter-client distance
adjacency matrix B, as given by

KL;; KLjp KLy,
KL KL ... KL

B= 21 22 2n (4)
KL,1 KL, KL,

where m = n generally is the number of clients. First, each client is
treated as an individual cluster. Next, using the similarity (or distance)
adjacency matrix, locate the two clusters with the highest similarity and
merge them into a new cluster. Then, update the similarity adjacency
matrix to accurately reflect the structure of the newly formed cluster.
Finally, repeat the processes of cluster merging and similarity adjacency
matrix updating until either the preset number of clusters or
hyperparameter cr (clustered ratio defined as the ratio of the number of
clustering operations to the total number of clients N) is attained or all
values in the adjacency matrix are above the designated threshold. If
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KL,, is the minimum value among all KL,,, client 1 and client 2 are
merged into a new client 1, and the number of clients is reduced to m
— 1(=n — 1). The new KL divergence distance KL,; between the new
clustering client 1 and other clients j will be replaced by the average
value of the KL divergence distance between the original two client (1,
2) and other clients j(i). Equation 4 can be updated to

KLy, KLy, KLy(n-1)
.| KL KL KL
B = 21 22 2(n-1) (5)
KLy Kl(my KL(n—1)(n-1)
where
KI:H = 0 (6)
KL’U:(KLIUH)+KL2(H>)/2, j=2on-1 @)
KLt =KLy + KL )12 i=2000m=1 ®)
and
KL; =KL(jy1)(js1)s i=20m=Lj=2,.n-1 ©9)

If KL'ij(i: 1,2, ..,m=1j=1,2,..,n-1) is still less than the
minimum threshold T, the operation of clustering from Equation 4 to
Equation 5 will be carried out once again. This course of clustering can
be expressed by.

C= {CLU,- |i =1,2,3,.. } = cluster(B,T,max num) (10)

which is the clustering set. And T is the threshold, maxnum is the
maximum number of clustering operation. CLU; is also a set that
contains the id of the clients in this cluster. It can be given as

CLU; ={cid; ;|j=123,...) (11)

3.1.4 Federated learning training based on KL

The traditional federated learning algorithm FedAvg is executed
within each cluster and the personalized federated learning algorithm
is carried out among different clusters, meaning there is no longer any
interaction of model parameters between different clusters, with only
clients within the same cluster interacting with each other’s model
parameters.

For client i, the model (w;) is updated locally, the updating formula
is expressed by

wf+1:argmin[f,-(wf)] (12)

w;

where f; (¥) is loss function. When the gradient descent method is
adopted, the iteration model
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6f,-(wf’e)

t,e+1 t,
' =W ‘ fe
ow;’

w; (13)

will be executed repeatedly. And 7 is learning rate, e stands for
epoch E. The server performs a weighted average (p;)based on the
updated models of each client within the same cluster (cluid). The
updated formula Wﬁszl 4 is as follows:

t+1 t+1
Weluid = Zpiwi (14)
i

where ¢ is the number of updating.

The server sends the global model Wﬁzﬁ, 410 the clients; each client
updates the model parameters and trains the model using local data;
then send their local models to the server, which aggregates them. The

algorithm can be carried out as the following steps:

Clustering Federated Learning Algorithm Based on KL Divergence

Input: N clients participating in federated learning, loss functions fi(.) for each client,
number of training rounds R, number of principal components ¢ selected by Principal
Component Analysis (PCA), and clustering ratio cr.

Output: Model parameters of each client[w1, wi, wi,...wn].

Initialization: Random point w°i.

1: for i=1,2,3,...N

2: Client 7 reads the training dataset and performs PCA using equation (1) to
obtain Ui.

3 Client / uploads U to the central server.

4:  end for

5:  Vectorize the matrix [Ui, U, Us,..., Uy], take the absolute value, and
normalize it.

6: Calculate the KL divergence between each pair in [Ui, U, Us,..., Uy] using
equation (3) to obtain the adjacency matrix B.
7:  Obtain the clustering set C={CLU;i[i=1,2,3,...} based on the adjacency matrix
B’ using equation(5).
8: For+=1,23,...Rdo
: for cluid=1,2,3,...,|C|(the number of elements in C)

10: All clients in cluster CLUcuia receive the parameters w'enia from the
central server.

11: for client i€ CLUcwia in parallel do

12: wi'! = argmin[ f; (w))]

13: Client i sends the parameters w; " to the central server.

14: end for

15: Perform weighted averaging of the models in cluster CLUcpia_:

According to Equations 1-14, we can extract stable feature
representations from WiFi CSI (Channel State Information) data or
wireless dataset and obtain low-dimensional feature vectors by
applying PCA/KL transform. And then we calculate the Kullback-
Leibler (KL) divergence of CSI features between clients to generate a
similarity matrix. Finally, we obtain a federated learning architecture
for collaborative training among clients within each cluster. Each
cluster trains a dedicated model to adapt to the signal propagation
characteristics of specific areas. The model or local models tailored to
a specific sub-distribution of clients could be used to better handle
target-oriented sensing tasks where data distribution might be highly
localized (e.g., in-area monitoring, like Target-Oriented WiFi Sensing
for Respiratory Healthcare: from Indiscriminate Perception to In-Area
Sensing), resulting in improving the recognition accuracy.

3.2 The wireless datasets

3.2.1 ARWF wireless dataset
To evaluate the new personalized federated learning (PFL)
algorithm, this study conducts simulations and experiments using two
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wireless datasets, with the target task being human activity recognition
for wireless sensing in the future. The first wireless dataset is ARWF
(Wang et al., 2019), which comprises 1,116 training samples and 278
test samples. Each sample features a spatial-temporal dimension of
52 x 192. In this dimension, 52 represents the number of subcarriers
(akey parameter in wireless communication), and 192 corresponds to
the number of time sampling points. For labeling, each sample is
assigned 2 types of initial labels: 6 categories of human behavior and
16 categories of positions.

3.2.2 Widar 3.0 dataset

The second wireless dataset, Widar3.0 (Zhang et al., 2021), is a
typical wireless dataset that leverages Channel State Information (CSI)
for sensing. Each sample in this dataset has a 3-dimensional structure
of 2% 1,000 x 90: specifically, 2 denotes the number of receiving
antennas, 1,000 represents the number of time steps, and 90
corresponds to the number of subcarriers-all of which align with the
inherent characteristics of CSI data. The dataset contains 6 gesture
labels and is divided into 18 clients according to position to simulate
the distributed nature of federated learning.

4 Results and discussion

In this section, we primarily evaluate the recognition accuracy of
the proposed new clustered FL algorithm based on KL divergence
(KLCFL) and its sensitivity to key factors based on wireless datasets.

4.1 Analysis of influencing factors of the
new algorithm

The experiments primarily evaluate the effectiveness of the
clustering and the effects of three key parameters on model training:
B (the batch size of training data), E (local training rounds), and
hyperparameter (clustering ratio) cr.

4.1.1 Impact of batch size B

For the ARWF dataset, under the conditions of a fixed number of
clients N = 32, the number of global rounds R = 100, and E = 1, the
test results are presented in Figure 1.

When B = 5, 10 and 20, the final test (recognition) accuracy of the
KLCFL algorithm remains largely stable between 70 and 80% and
exhibits relatively small fluctuations, as shown in Figure 1. When
B =5, the test accuracy of KLCFL increases rapidly at R = 10 or more,
fluctuates slightly, and finally stabilizes at 80% at R = 100, as illustrated
by the blue solid line in Figure 1. When B = 10, the test accuracy of
KLCFL increases rapidly at R = 20 or more, fluctuates slightly, and
finally stabilizes at 80% at R = 100, as illustrated by the red solid line.
When B = 20, the test accuracy of KLCFL increases rapidly at R = 45
or more, fluctuates and finally stabilizes at 80% or so at R = 100, as
shown by the blue star-solid line. However, when B = 50, the test
accuracy of KLCFL begins increasing only at R = 90 and arrives at 55%
or so at R = 100, as illustrated by the red star-solid line in Figure 1. In
fact, B =50 exceeds the total number of samples per client, which
essentially amounts to using all samples in a single batch. This tends
to make KLCFL overly fitted to the training set, ultimately leading to
overfitting. Furthermore, a larger B typically results in smaller gradient
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FIGURE 1

The effects of B on test accuracy based on ARWF.

variations, increasing the likelihood of KLCFL getting trapped in local
optimal points. In contrast, a smaller B leads to larger gradient
fluctuations, thereby reducing the likelihood of KLCFL getting stuck
in local optimal points. It is also clear that the smaller the batch size
B, the faster KLCFL converges, which in turn contributes to high
recognition accuracy.

For the Widar3.0 dataset, the number of clients N = 18. When
N =18 and E = 1, we investigated the impact of B (batch size) on
KLCFLs test (recognition) accuracy. Specifically, when B = 8, 16, and
32 (limited by the sample size of Widar 3.0 dataset), the corresponding
test accuracies vary with global rounds R, as illustrated by
Figure 2A. Although the trend affected by B is somewhat similar to
that as mentioned earlier shown in Figure 1—the larger B s, the faster
the convergence—the impact is insignificant and not obvious. Such
discrepancies can be neglected, showing strong robustness. It is clear
that as R increases, the recognition accuracy for different B values
converges quickly and achieves excellent performance, exceeding 99%.
At R=100, the test accuracies are 0.9984, 0.9983, and 0.9921,
respectively, as shown in Figure 2B. Although the test accuracy is
relatively high—partly attributed to the high quality of the dataset—
the influence pattern of B remains consistent: the smaller B value
tends to relatively higher accuracy and faster convergence, and this
kind of feature is affected by the quality of the dataset to a
certain extent.

For these two datasets, this algorithm can converge quickly under
different B values (B < 50), demonstrating strong robustness. For a
given global round R (e.g., R = 100), the recognition accuracy of the
algorithm KLCFL varies with different datasets, and the trend where
the convergence speed tends to decrease as B increases also differs to
varying degrees. Moreover, the convergence stability and amplitude
fluctuation remain roughly consistent, with negligible differences
within a certain range.

4.1.2 Impact of local training round E

For the ARWF dataset, let N = 32 and B = 5, we investigate the
impact of E on KLCFL test accuracy. The results are presented in
Figure 3.

The tested results demonstrate that as E increases (e.g., E= 1, 3, 5,
10), the recognition/test accuracy of KLCFL exhibits increasingly
rapidly convergence with global rounds R until the recognition
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FIGURE 2
The effects of B on test accuracy based on Widar3.0 dataset (a/b).
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accuracy stabilizes at 0.8 or so. Additionally, the magnitude of
fluctuations decreases progressively, while the overall performance
remains stable, as shown in Figure 3. Under three different values of
E, the differences in convergence accuracy and fluctuation amplitude
are relatively small. However, there is a significant variation in
convergence speed—with faster convergence observed as E increases
(e.g., R < 20). Overall, local training rounds E exert little impact on
recognition accuracy, indicating a certain degree of robustness.
Similarly, for the Widar3.0 dataset, when N = 18 and B = 5, the
KLCFL
Figure 4A. Additionally, it converges faster as E increases (e.g., E =1,
3,5, 10 at R < 20), although negligible differences still exist. Moreover,
fluctuation magnitudes decrease progressively with R increasing and

algorithm  converges rapidly, as shown in

these differences can be negligible for E = 1, 3, 5.10. For a given global
round R = 100, across all tested values of local training rounds E (e.g.,
E=1, 3, 5, 10), the KLCFL algorithm achieves a high recognition
accuracy exceeding 98%. This illustrates that the impact of local
training rounds E on recognition accuracy is minimal and can be
neglected, as shown in Figure 4B. In Figure 4B, when R = 100, the test
accuracy of the KLCFL algorithm is 98.96, 99.78, 99.83 and 99.62%
for E =1, 3, 5.10, respectively. In terms of being affected by E, the
KLCFL algorithm is less affected by it and exhibits greater robustness.

4.1.3 Impact of clustering ratio cr

For the ARWF dataset, with N=32, E=1, and B=5, we
conducted simulation experiments by varying the clustering ratio (cr)
of the KLCFL algorithm- defined as the ratio of the number of
clustering operations to the total number of clients N. Specifically, cr
x N denotes the number of clustering operation, with 9 clusters
obtained when cr = 0.3. Figure 5 presents the curves illustrating test
accuracy variations under different cr settings.

The new clustered federal learning algorithm KLCFL was
tested with clustering ratio cr set to 0.1, 0.3, 0.5, 07, and 0.9 based
on ARWF dataset. The test results indicate that KLCFLs
recognition/test accuracy increases as cr rises—particularly for cr
<0.5—and maintains a relatively high level of approximately 80%,
as shown in Figure 5. However, when c¢r=0.7 and 0.9, the
recognition accuracy begins to decline, dropping significantly to
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The effects of E on test accuracy based on ARWF.

roughly 50%. This indicates that an excessively large cr exerts a
substantial negative impact on model performance. A higher
number of clusters means many clients with highly heterogeneous
data may be grouped into the same cluster. This will inevitably
lead to the same model being used to predict heterogeneous data,
resulting in a decrease in recognition accuracy. It is clear that the
performance of KLCFL degrades noticeably when the clustering
ratio cr is excessively large. Therefore, the reasonable selection of
the clustering ratio is of crucial importance, as it directly affects
the algorithm’s recognition accuracy. From Figure 5, it is clear
that the KLCFL algorithm can achieve satisfactory recognition
accuracy when cr falls within the typical range of 0.01-0.5,
demonstrating that the KLCFL algorithm exhibits moderate
robustness in a certain degree.

For the Widar3.0 dataset with N =18, as cr increases, the
differences in the algorithm’s convergence speed become increasingly
pronounced, as shown in the Figure 6A. The convergence speed of the
algorithm becomes increasingly slow as the clustering ratio (cr)
increases, and the accuracy also decreases—for example, the
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Curves of test accuracy variations of the KLCFL with different CR
based on the ARWF dataset.

recognition accuracy of the KLCFL algorithm is 86.83% at cr = 0.9,
and is more than 97% at cr <0.7, which is consistent with the previous
simulation results. Therefore, the reasonable selection of the clustering
ratio cr is of crucial importance, as it directly affects the algorithm’s
recognition accuracy and convergence speed, as shown in
Figure 6A. However, when R = 100, the algorithm achieves relatively
high recognition accuracy (as high as 97%) for this dataset. Specifically,
KLCFL achieves a recognition accuracy of 98% across all tested cr
values (cr=0.1, 0.3, and 0.5). Only when cr=0.9 does the test
accuracy decrease slightly, dropping to around 86%, as shown in
Figure 6B.

Obviously, regardless of whether the dataset is of high or low
quality, the clustering ratio largely affects the convergence speed
and test accuracy. An excessively large clustering ratio will reduce
the convergence speed and recognition accuracy. Therefore, the
reasonable selection of the clustering ratio is crucial. For a dataset
with unknown characteristics, it is generally feasible to refer to the
test results of traversing multiple clustering ratios and select the
optimal one by comprehensively considering the convergence
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speed and final recognition accuracy. Of course, for the two typical
datasets selected in this study, choosing a clustering ratio below 0.5
is generally appropriate, which also ensures a certain degree of
robustness.

4.2 Performance comparison between the
new algorithm and several representative
algorithms

To evaluate the performance of the new CFL algorithms (KLCFL)
proposed in this study, we conduct a simulation-based performance
comparison of KLCFL against several representative benchmark
algorithms, including FedAvg (McMahan et al.,, 2017), FedRep
(Collins et al., 2021), FedPer (Arivazhagan et al.,, 2019), PACFL
(Vahidian et al., 2023; Aslam, 2023), and pFedMe (Dinh et al., 2020).

For the wireless dataset ARWE, we again observe that the KLCFL
algorithm converges rapidly to notably high recognition accuracies:
83.05% (N = 16 defined by 16 positions) and 77.33% (N = 32, due to
two clients at each position) at R = 100, as shown in Table 1. Among
all the algorithms selected for comparison, the KLCFL algorithm
proposed in this paper basically achieves the optimal/highest
recognition accuracy and is worthy of application in practice. Table 1
presents the recognition accuracies of other six additional benchmark
algorithms at R = 100 and N = 32, all of which are significantly lower
than that of the KLCFL algorithm: (McMahan et al, 2017) a
conventional FL algorithm, lacks sufficient consideration of
personalization. FedPer (Arivazhagan et al., 2019) incorporates
personalization, dividing the neural network model into base layers
and personalized layers. The base layers are shared among all clients
and updated by aggregation (e.g., by using FedAvg) on the server side.
The personalized layers are trained only locally using the client’s own
data, and do not participate in server-side aggregation. This
architecture enables the model to both benefit from global
collaboration and adapt to the specific data distribution of each client.
The number of personalized layers (denoted as KP) is adjustable,
which effectively addresses the data heterogeneity (Non-Independently
and Identically Distributed-Non-IID) issue in federated learning.
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TABLE 1 Test accuracy of KLCFL and several algorithms based on ARWF
dataset (R = 100).

Algorithm N = 16 clients N = 32 clients
FedAvg 0.4590 0.5534
FedRep 0.8461 0.7926
FedPer 0.7978 0.7626
FedFomo 0.3849 0.4245
PACFL 0.6782 0.7334
pFedMe 0.6822 0.6547
KLCFL 0.8305 0.7953

However, for FedPer (Arivazhagan et al., 2019) the precise partitioning
of the “base layer and personalized layer” remains an open research
question: the fixed division lacks theoretical basis and cannot be
adjusted according to the training process or data characteristics.
Moreover, the optimal KP value varies across different datasets and
model architectures. To improve the recognition accuracy of FedPer,
the basis for division and adaptive dynamic adjustment of KP should
be performed according to changes in the training process and data
characteristics. The algorithm pFedMe (Liang et al., 2022) encounters
difficulties in selecting appropriate hyperparameters to quantify the
degree of personalization. FedFomo (Zhang et al., 2020) biases
personalized weights toward models with smaller losses. FedRep
(Collins et al., 2021) fully addresses personalization (by designating
the classification head as the personalized component) and effectively
mitigates data heterogeneity in a certain degree. Its recognition
accuracy is the closest to that of the KLCFL algorithm. The PACFL
algorithm (Wang et al., 2019) primarily identifies distributional
similarity by analyzing the principal angles between client data
subspaces, which is called as cosine similarity.

After PCA vectors are normalized (e.g, low-dimensional
representations), the Kullback-Leibler (KL) divergence can directly
capture the “degree of information difference” between distributions.
Cosine similarity (CS) only focuses on the consistency of vector
directions, ignoring the difference in distribution intensity. In addition, in
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relation to the KL divergence, Euclidean distance (ED) merely measures
the geometric spatial distance of vectors, failing to account for the
probabilistic characteristics of distributions. Neither of CS and ED can
address the core of the Non-IID problem: distribution deviation.

Additionally, KL divergence also has the advantage of effectively
handling heterogeneous data. KL divergence is sensitive to the
asymmetry and tail characteristics of distributions, effectively
distinguishing between “distribution shift” and “pure numerical
differences” represented by PCA vectors. Cosine similarity is
insensitive to scale and ignores the distributional significance of the
magnitudes of principal components in PCA vectors (e.g., the
principal component magnitudes of a customer’s model concentrated
in a few dimensions may correspond to specific distribution patterns).
Euclidean distance is significantly affected by feature scales; even after
PCA standardization, it may misclassify non-distributional numerical
differences as heterogeneity. Moreover, the quantitative result of KL
divergence directly reflects the “difficulty of distribution alignment,”
enabling more accurate screening of customers with shareable model
parameters after clustering. Cosine similarity may group customers
“with consistent directions but significant differences in distribution
shapes” into one cluster, while Euclidean distance may misclassify
customers “that are geometrically close but distributional
heterogeneous.”

Figure 7 compares the convergence processes and recognition
accuracies of the new algorithm KLCFL with several representative
algorithms. It is evident that KLCFL basically outperforms those
alternatives in four key aspects: recognition accuracy, convergence
speed, stability, and amplitude fluctuation. In Figure 7, although the
convergence speed of the KLCFL algorithm ranks the second (not the
fastest) and its recognition accuracy is not the highest, its convergence
process shows that the algorithm has a relatively fast convergence
speed, a smaller jitter amplitude, and a relatively high final recognition
accuracy, which is also relatively consistent with the ideal recognition
accuracy. However, most other algorithms (such as FedAvg, FedFomo,
and pFedMe) converge slowly and achieve much lower final
recognition accuracy.

Furthermore, to further verify the performance of the new
algorithm, we again conducted tests using the Widar3.0 dataset. The test
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results demonstrate that by adjusting parameter cr (cr = 0.1), the KLCFL
algorithm can effectively address data heterogeneity and achieve high
recognition accuracy, as shown in Figure 8. Figure 8 presents a
comparison of the recognition accuracies between the KLCFL algorithm
and several other representative algorithms. It is clear that the
recognition accuracy and stability of the KLCFL algorithm are
significantly higher than that of the other several algorithms.

In Figure 8, the pFedMe algorithm converges relatively fast and
achieves high recognition accuracy (0.965), but its amplitude fluctuation
is somewhat significant—it still fluctuates when R reaches 100. The
KL-based algorithm ranks the third fastest in convergence, with the
smallest amplitude fluctuation, and stably converges to the final ideal
recognition accuracy (0.998). FedFomo converges relatively fast, but its
recognition accuracy is unsatisfactory (around 80%). FedRep exhibits a
moderate convergence speed and good stability, with an acceptable final
recognition accuracy (0.975). As for the other three algorithms, by
comparison, they converge slowly and yield low recognition accuracy
(FedFomo: 0.897, Fedavg:0.867, Fedper0.799) at R = 100.

In addition, on ARWF dataset, PACFL converges the fastest with
small amplitude fluctuation and achieves excellent final accuracy.
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However, on Widar 3.0 dataset, it converges slowly with somewhat
significant fluctuation, and the final recognition accuracy is not
satisfactory. Similarly, pFedMe exhibits a moderate convergence speed
on ARWF dataset but with relatively large fluctuation, and its final
recognition accuracy is unsatisfactory and relatively low at R = 100.
That is to say, these two algorithms show considerable variations in
recognition performance across different datasets, indicating poor
robustness. In contrast, the KLCFL algorithm proposed in this paper
demonstrates the most outstanding recognition performance and
stability on both datasets, boasting strong robustness and the ability
to stably and effectively handle heterogeneous data.

Of course, the recognition accuracy of other algorithms may be
improved to some extent through parameter optimization, but the
KLCFL algorithm in this paper already achieves a relatively ideal high
recognition accuracy. Even if one or two other algorithms are
optimized and their accuracy may exceed that of this KLCFL
algorithm, the improvement will be limited. In particular, compared
with PACFL, a clustering algorithm of the same type with optimized
parameters, the proposed algorithm exhibits higher accuracy and
better convergence performance, effectively addresses the data
heterogeneity issue, and possesses a certain degree of robustness.

5 Conclusion

Wireless data from different regions typically exhibits high
heterogeneity, with limited labeled data available (details are reported
in a separate study). Traditional FL struggles to achieve efficient and
fast distributed model training under such circumstances. How to
develop efficient training and adaptation methods for distributed
wireless sensing models has become a major challenge in the
development of 6G integrated communication and sensing networks.
To tackle the challenges brought by heterogeneous wireless data, this
study proposes an improved Personalized Federated Learning (PFL)
algorithm.

This KLCFL algorithm incorporates the Kullback-Leibler (KL)
divergence distance between each pair of clients, thereby enabling
flexible clustering of clients with similar characteristics and
significantly improving the recognition accuracy of wireless sensing
in a great degree. For the ARWF dataset and Widar 3.0 dataset, KLCFL
can all converges rapidly with small amplitude fluctuation and
achieves excellent final accuracy, ranking among the excellent
clustering algorithms.

Firstly, this paper carried out the PCA of the two datasets (ARWF
and Widar3.0) and obtain a principal component vector matrix. And
then it finished calculating the Kullback-Leibler (KL) divergence
distance for clustering. Secondly, these two sets of wireless datasets
were used to study the impacts of variations in batch size (B), local
training epochs (E) and clustering ratio cr on the recognition accuracy
of KLCFL. For the ARWF dataset, at B=5 or 10, E =2 or <4, and
cr = 0.3 or <0.5, the KLCFL algorithm can achieve optimal recognition
performance (77% ~ 83%). With respect to the Widar 3.0 Dataset,
since it features relatively low interference levels and high data quality,
the three key influencing factors exert minimal impact on the KLCFL
algorithm’s recognition accuracy—thus enabling the KLCFL algorithm
to exhibit good robustness. Generally, when B < 30, E < 10, and c¢r <
0.5, the KLCFL algorithm achieves a recognition accuracy of 98% or
higher. Finally, the recognition accuracy of the KLCFL algorithm was
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compared and analyzed with that of several reported algorithms. For
the ARWF Wireless Dataset, the recognition accuracy of the KLCFL
algorithm reaches 83.05% (N = 16) and 79.53% (N = 32) when the
global round R = 100, which is higher than those of other algorithms,
as shown in Figure 7, Table 1. Moreover, KLCFL converges faster than
other algorithms and exhibits smaller fluctuations in amplitude. For
the Widar3.0 wireless dataset, the recognition accuracy of the KLCFL
algorithm is 99%, outperforming several reported algorithms, as
shown in Figure 8.

From Figures 7, 8, this KLCFL algorithm not only demonstrates
high recognition accuracy and fast convergence, but also exhibits
small fluctuations and high stability.

Based on these datasets KLCFL not only achieves higher
recognition accuracy than the current reported algorithms, but also
exhibits a faster convergence speed, smaller fluctuation amplitude, and
greater stability during the convergence process.

It is clear that the proposed KLCFL is an excellent PFL algorithm
that can effectively address the heterogeneity of wireless data and
achieve high recognition accuracy.

Firstly, this KLCFL algorithm can quantify differences among
heterogeneous distributions and provide theoretic support for the
rationality of clustering: In federated scenarios, data from
individual clients often exhibits Non-IID (Non-Independently
and Identically Distributed) characteristics. KL divergence can
accurately measure the asymmetric differences in data
distributions across various clients, provide a quantitative basis
for cross-client data clustering, overcome the limitations of
traditional similarity metrics (e.g., Euclidean distance) regarding
data distribution assumptions, and theoretically validate the
feasibility of heterogeneous data clustering.

Secondly, the KLCFL algorithm can guide the direction of
collaborative optimization for heterogeneous data: Based on clustering
results derived from KL divergence, the distribution patterns of data
heterogeneity in federated systems (such as the degree of local data
deviation, variations in category distribution, and so on) can be
revealed. This provides theoretical guidance for data partitioning and
the collaborative updating of model parameters in federated training.

Finally, the KLCFL algorithm can improve the theoretical
framework of federated clustering: Most existing federated clustering
methods rely on the assumption of independent and identical data
distribution. By integrating distribution difference measurement into
the federated clustering framework, KL divergence clustering fills the
theoretical gap in federated clustering for heterogeneous data and
offers a referable theoretical paradigm for the design of clustering
strategies in subsequent heterogeneous federated learning.

However, the Kullback-Leibler (KL) divergence is inherently
asymmetric, which gives rise to unstable optimization trajectories
during model training. Additionally, when two discrete distributions
are non-overlapping or contain zero-probability entries, the KL
divergence fails to effectively quantify the magnitude of their
discrepancy—often resulting in undefined or infinite values.
Furthermore, its robustness against noise, interference, and
distribution shifts remains insufficient, posing significant challenges
in real-world scenarios characterized by inherent perturbations.

To address these limitations, potential future research
directions are outlined as follows: First, developing symmetric
variants of the KL divergence (e.g., symmetric KL divergence or
extensions inspired by the Jensen-Shannon divergence) to mitigate
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optimization instability induced by asymmetry. Second, adopting
a minimal value substitution strategy (e.g., replacing zero entries
with an infinitesimally small positive value) to avoid undefined
results when zero-probability events occur. Third, when WiFi data
exhibits distribution shifts due to dynamic environmental changes
(e.g., personnel movement, signal occlusion), the KL divergence
struggles to distinguish between “true class differences” and
“distribution differences caused by scene interference” This
limitation is particularly prominent in dynamic scenarios and can
be addressed by integrating improved KL measurement methods
with scenario features and data characteristics, which may serve as
a viable solution. Fourth, future research could focus on enhancing
resilience against noise and interference by targeting physical
attack scenarios—such as defending against physical layer attacks
(PhyFinAtt) and keystroke sniffing (KeystrokeSniffer) (Liu et al.,
2025; Chai et al., 2025). PhyFinAtt is an undetectable attack
framework specifically designed to undermine PHY layer
fingerprint-based ~ WiFi  authentication. = KeystrokeSniffer
demonstrates how an off-the-shelf smartphone can eavesdrop on
keyboard input from anywhere. By applying PCA/KL to stabilize
CSI features, KLCFL may make PHY fingerprints more resistant to
environmental manipulation. By Clustering techniques may
identify when an environment is being perturbed to attack PHY
fingerprints, implementing online PCA updates would allow the
system to continuously adapt to changing environments. For
mitigation of Keystroke Sniffing, PCA/KL could transform WiFi
signals in a way that obscures keystroke-related patterns.
Clustering techniques could distinguish between harmless
environmental variations and suspicious keystroke-related signal
patterns, etc.

The proposed KLCFL and its PCA/KL approach reveal a
promising direction for addressing the challenges of heterogeneous
WiFi sensing data in security applications. By systematically reducing
noise, stabilizing features, and clustering similar patterns, KLCFL
could significantly enhance defenses against both PhyFinAtt and
keystroke sniffing attacks.
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