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Introduction: This article studies a new clustering-based federated learning 
algorithm that leverages Kullback-Leibler (KL) divergence to tackle heterogeneous 
data in wireless sensing environments.
Methods: Firstly, highdimensional heterogeneous data is subjected 
to principal component analysis to generate dimension-reduced 
representations, thereby reducing computational complexity. Secondly, 
the KL divergence distances between each pair of clients are calculated, 
followed by clustering according to the minimum threshold. The new KL 
divergence distance between the aggregated clients and others is taken as 
the average of the two. Finally, the federated learning training is conducted 
within each cluster to obtain a personalized model based on the classic 
wireless datasets.
Results and Discussion: After the personalized models are tested, clients are 
reclustered and the models are updated—that is, a series of iterative operations, 
the optimal number of clusters and recognition accuracy are obtained. The test 
results show that the proposed algorithm based on KL divergence has higher 
recognition accuracy than several reported ones.
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1 Introduction

With the rapid development of Internet of Things (IoT) technology and 6G network 
architecture, wireless sensing technology has been widely applied in scenarios such as smart 
home, industrial monitoring, health care and environmental perception. These applications 
generate massive amounts of sensing data that contain valuable information for decision-
making. However, these raw data scattered across various devices are directly transmitted to 
cloud computing centers for centralized processing, resulting in high system communication 
overhead and a potential threat in safeguarding user data privacy.

However, traditional federated learning (FL) algorithms (e.g., FedAvg) assume that data 
across clients follows an Independent and Identically Distributed (IID) distribution, which is 
difficult to satisfy in practical wireless sensing environments. Due to differences in sensing 
device types, deployment locations, and working conditions, data among clients often exhibits 
significant heterogeneity (i.e., Non-IID), including distribution shifts, feature space 
discrepancies, and label distribution imbalance. This heterogeneity leads to performance 
degradation of the globally shared model.
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To tackle the Non-IID problem in FL, personalized federated 
learning (PFL) has emerged as a research hotspot. Existing 
personalized methods can be roughly divided into three categories: 
(1) regularization-based methods, which introduce additional 
regularization terms to constrain the local model updates, balancing 
the consistency between local and global models; (2) model 
adaptation-based methods, which adjust specific components of the 
global model or fine-tune local model parameters to adapt to local 
data; (3) clustering-based methods, which group clients with similar 
data characteristics into clusters, and train cluster-specific models to 
achieve personalization. Among these, clustering-based methods are 
particularly suitable for wireless sensing scenarios due to their low 
computational overhead and strong scalability. However, existing 
clustering strategies in FL mainly rely on similarity metrics such as 
cosine similarity or Euclidean distance, which focus on feature space 
distance but fail to effectively capture the distribution differences 
between heterogeneous sensing data. This limitation leads to 
inaccurate clustering results, thereby affecting the performance of 
personalized models.

Kullback–Leibler (KL) divergence is a classic metric for 
measuring the difference between two probability distributions, 
which can quantitatively characterize the distribution deviation of 
heterogeneous data. Compared with cosine similarity (which focuses 
on direction consistency) and Euclidean distance (which focuses on 
feature value difference), KL divergence is more suitable for 
describing the intrinsic heterogeneity of sensing data. Motivated by 
this, this article proposes a KL divergence-based PFL method for 
wireless sensing environments.

The main contributions of this article are summarized as follows: 
(1) a clustering strategy based on KL divergence is proposed to 
effectively capture the distribution differences of heterogeneous 
sensing data, improving the accuracy of client clustering compared 
with traditional similarity metrics; (2) a PFL framework for wireless 
sensing is designed, which realizes model customization through 
cluster-specific training and iterative optimization, adapting to the 
data heterogeneity of sensing human behaviors; (3) extensive 
experiments are conducted on two classic wireless sensing datasets to 
verify the effectiveness of the proposed PFL algorithm based on KL 
divergence. The results demonstrate that the algorithm outperforms 
serval reported algorithms in terms of recognition accuracy.

2 Related work

Federated learning (FL) offers a solution to the challenge of 
scattered data hindering the centralized learning. In McMahan et al. 
(2017), first proposed the concepts of FL and verified its effectiveness 
and feasibility for collaborative model training without aggregating 
user data to a central server (Sattler et al., 2019). However, in data-
heterogeneous environments, FL algorithms often suffer from 
significant performance degradation (Zhao et al., 2018). To address 
the challenge of data heterogeneity (Pang et al., 2025a,b), many 
researchers have proposed a range of improved methods such as 
personalized federated learning (PFL) algorithms (Tan et al., 2022; 
Arivazhagan et al., 2019).

One personalized approach involves designating some layers of a 
neural network as personalized layers and the rest as globally shared 
layers (Arivazhagan et al., 2019; Liang et al., 2022). In Arivazhagan et 

al. (2019), proposed the FedPer algorithm, which adopted a “base 
layers + personalized layers” design. In Liang et al. (2022), proposed 
LG-FedAvg, where the last several layers of the neural network were 
designated as personalized components. However, how to properly 
divide base layers and personalized layers in these algorithms remains 
an area requiring further research. In Collins et al. (2021), proposed 
the FedRep algorithm and designed the classification head of a neural 
network as the personalized component, while all other layers were 
designed for global federated training. Nevertheless, FedRep’s 
performance depends on the effectiveness of global representations; 
moreover, in real-world scenarios, if shared features across data from 
different clients are either less prominent or difficult to learn, this 
algorithm is at the risk of performance degradation.

Another personalized approach is that each personalized model 
exhibits a certain “degree of personalization” relative to the global 
model (Dinh et al., 2020; Deng et al., 2003; Li et al., 2021; Zhang et al., 
2020). In Dinh et al. (2020), proposed the PFL algorithm “pFedMe” 
and introduced a regularized loss term to balance the trade off 
between personalization and generalization. However, pFedMe faced 
challenges in properly selecting hyperparameters to quantify this 
degree of personalization. In the same year, Deng et al. (2003) 
introduced an adaptive weight adjustment mechanism to dynamically 
tune the weight ratio between the global model and local personalized 
model in the final model. However, the adaptive weights are 
dynamically determined based on the loss, leading to insignificant 
improvement effects. In Li et al. (2021), proposed the Ditto algorithm, 
which employed the traditional FedAvg method for global model 
optimization. During synchronous training, FedAvg adopted a 
relatively global regularized model as the local personalized model. 
Nevertheless, using FedAvg for global training is unfavorable for 
convergence in data-heterogeneous scenarios, and Ditto also faces 
challenges in selecting hyperparameters to quantify the degree of 
personalization.

The aforementioned PFL algorithms generally focus on the 
personalized components of individual models relative to the global 
model, but do not directly consider the connections between two 
personalized models-specifically, the similarity among models across 
multiple clients (Zhang et al., 2020; Huang et al., 2021).

In Zhang et al. (2020), proposed the FedFomo algorithm, which 
achieved personalized updates by computing the optimal weighted 
combination of models for each client. Each client determined its 
aggregation weights based on the local loss of other clients’ models, 
resulting in models with lower losses being assigned larger weights. 
This algorithm improves model performance only to a certain extent. 
In Huang et al. (2021), put forward the FedAMP algorithm, which 
emphasized attention mechanisms to enhance pairwise collaboration 
among clients with similar data distributions. However, these 
personalized models accounting for the connections between 
personalized models tend to exhibit notable similarity as a result of 
such collaborative interactions.

Additionally, numerous studies Briggs et al. (2020), Islam et al. 
(2024), Ghosh et al. (2020), and Sattler et al. (2020) have focused on 
clustering based on personalization in FL. For this category of 
algorithms, the server initially randomly constructed K global models 
based on a certain type of similarity (e.g., distance similarity, cosine 
similarity), each associated with a distinct cluster. However, the 
clustering algorithm (Ghosh et al., 2020) required predefining the 
number of clusters K and involved frequent communication for 
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transmitting model parameters or frequently varying them. Secondly, 
many relevant hyperparameters such as thresholds and cluster 
partitioning conditions were involved, leading to a linear increase in 
complexity (Sattler et al., 2020).

Therefore, this article studies a new clustered FL algorithm to 
address the challenge of data heterogeneity—specifically by leveraging 
Kullback–Leibler (KL) divergence to measure the similarity among 
multiple clients and performing effective clustering via iterative loops. 
This new algorithm enables efficient identification of distribution 
similarity, avoids the server’s arbitrary initial determination of K 
global models, and both difficulties in hyperparameter selection and 
the need for frequent communication.

3 Materials and methods

This section will introduce the new clustered federated learning 
(CFL) algorithm and datasets.

3.1 The new CFL algorithm

The New CFL algorithm includes the Principal Component 
Analysis (PCA), KL divergence calculation, clustering and federated 
learning training, etc.

3.1.1 Principal Component Analysis
Principal Component Analysis (PCA) is a statistical method 

that projects data onto a low-dimensional space via linear 
transformation, while maximizing the retention of the variance of 
the original data. In the new CFL algorithm, each client derives a 
principal component vector matrix using PCA based on its local 
data; this matrix is regarded as the client’s data feature and is used 
to measure the distance between different clients. Specifically, for 
each client’s data matrix X ∈ RM × d, after standardization and 
subsequent PCA processing (including covariance calculation, 
eigenvalue computation, and eigenvector derivation), a principal 
component vector matrix U ∈ Rd × c is obtained. Here, M denotes 
the number of samples, d represents the feature dimension of a 
single sample, and c is the selected number of principal components 
(with c < d). c is a user-specified value, which is used to determine 
the dimension after dimensionality reduction. This process can be 
expressed as:

	 ( )= PCA ,U X c 	 (1)

After finishing PCA, we obtain the data features for each client. 
These data features are typically in the form of matrices, so the matrix 
vectorization for these data is required to simplify the subsequent KL 
divergence calculations. Specifically, we vectorize the matrix U ∈ Rd × c 
into U ∈ R1 × (d × c) (either a column vector or a row vector). Following 
the matrix vectorization, each client is assigned a corresponding 
characteristic vector U. We then take the absolute value of U and 
normalized it, as can be given by
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Where i = 1, 2, …, N represents the number of the client numbers. 
And thus U is converted into the discrete probability distribution U.

Since the heterogeneous wireless sensing data X including high 
dimensionality, excessive redundant information, and noise interference, 
it is necessary for PCA, a classical dimensionality reduction and data 
preprocessing technique, to map high-dimensional variables to a 
low-dimensional principal component space via orthogonal 
transformation while preserving key variation information within the 
dataset. The low-dimensional data after PCA dimensionality reduction 
can not only reduce the computational cost of KL divergence and 
improve clustering efficiency, but also enhance the recognition sensitivity 
of KL divergence to “category differences in heterogeneous data.”

3.1.2 Calculation of KL divergence
Kullback–Leibler (KL) Divergence is a method for measuring the 

difference between two probability distributions. The value of KL 
divergence is non-negative: it equals zero if the two probability 
distributions are identical, and the smaller the value, the more similar 
the distributions. The preprocessed vectors U are treated as discrete 
probability density distribution, and thus two client’s KL divergence is 
calculated by
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where Um(x) ∈ Rc and Un(y) ∈ Rc are two (m, n) client’s PCA 
vectors, and xi, yi denote the i-th component of the m-th client vector 
Um(x) and the n-th client vector Un(y), respectively.

3.1.3 Clustering based on KL divergence
The hierarchical clustering algorithm is a clustering method that 

constructs a hierarchical structure of clusters through the gradual 
merging of existing clusters. Specifically, it determines the clustering 
relationships among clients based on the inter-client distance 
adjacency matrix B, as given by
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where m = n generally is the number of clients. First, each client is 
treated as an individual cluster. Next, using the similarity (or distance) 
adjacency matrix, locate the two clusters with the highest similarity and 
merge them into a new cluster. Then, update the similarity adjacency 
matrix to accurately reflect the structure of the newly formed cluster. 
Finally, repeat the processes of cluster merging and similarity adjacency 
matrix updating until either the preset number of clusters or 
hyperparameter cr (clustered ratio defined as the ratio of the number of 
clustering operations to the total number of clients N) is attained or all 
values in the adjacency matrix are above the designated threshold. If 
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KL12 is the minimum value among all KLmn, client 1 and client 2 are 
merged into a new client 1, and the number of clients is reduced to m 
− 1(=n − 1). The new KL divergence distance KL1j between the new 
clustering client 1 and other clients j will be replaced by the average 
value of the KL divergence distance between the original two client (1, 
2) and other clients j(i). Equation 4 can be updated to
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where

	
′ =11KL 0	 (6)
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If ′KLij(i = 1, 2, …, m−1; j = 1, 2, …, n−1) is still less than the 
minimum threshold T, the operation of clustering from Equation 4 to 
Equation 5 will be carried out once again. This course of clustering can 
be expressed by.

	 { } ( )= = … =CLU 1,2,3, cluster , ,maxnumiC i B T
	 (10)

which is the clustering set. And T is the threshold, maxnum is the 
maximum number of clustering operation. CLUi is also a set that 
contains the id of the clients in this cluster. It can be given as

	 { }= = …,CLU cid 1,2,3,i i j j
	 (11)

3.1.4 Federated learning training based on KL
The traditional federated learning algorithm FedAvg is executed 

within each cluster and the personalized federated learning algorithm 
is carried out among different clusters, meaning there is no longer any 
interaction of model parameters between different clusters, with only 
clients within the same cluster interacting with each other’s model 
parameters.

For client i, the model (wi) is updated locally, the updating formula 
is expressed by
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1 argmin
t
i

t t
i i i

w
w f w

	
(12)

where fi (*) is loss function. When the gradient descent method is 
adopted, the iteration model
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will be executed repeatedly. And η is learning rate, e stands for 
epoch E. The server performs a weighted average (pi)based on the 
updated models of each client within the same cluster (cluid). The 
updated formula +1t

cluidw  is as follows:

	

+ +=∑1 1t t
i icluid

i
w p w

	
(14)

where t is the number of updating.
The server sends the global model +1t

cluidw  to the clients; each client 
updates the model parameters and trains the model using local data; 
then send their local models to the server, which aggregates them. The 
algorithm can be carried out as the following steps:

According to Equations 1–14, we can extract stable feature 
representations from WiFi CSI (Channel State Information) data or 
wireless dataset and obtain low-dimensional feature vectors by 
applying PCA/KL transform. And then we calculate the Kullback–
Leibler (KL) divergence of CSI features between clients to generate a 
similarity matrix. Finally, we obtain a federated learning architecture 
for collaborative training among clients within each cluster. Each 
cluster trains a dedicated model to adapt to the signal propagation 
characteristics of specific areas. The model or local models tailored to 
a specific sub-distribution of clients could be used to better handle 
target-oriented sensing tasks where data distribution might be highly 
localized (e.g., in-area monitoring, like Target-Oriented WiFi Sensing 
for Respiratory Healthcare: from Indiscriminate Perception to In-Area 
Sensing), resulting in improving the recognition accuracy.

3.2 The wireless datasets

3.2.1 ARWF wireless dataset
To evaluate the new personalized federated learning (PFL) 

algorithm, this study conducts simulations and experiments using two 
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wireless datasets, with the target task being human activity recognition 
for wireless sensing in the future. The first wireless dataset is ARWF 
(Wang et al., 2019), which comprises 1,116 training samples and 278 
test samples. Each sample features a spatial–temporal dimension of 
52 × 192. In this dimension, 52 represents the number of subcarriers 
(a key parameter in wireless communication), and 192 corresponds to 
the number of time sampling points. For labeling, each sample is 
assigned 2 types of initial labels: 6 categories of human behavior and 
16 categories of positions.

3.2.2 Widar 3.0 dataset
The second wireless dataset, Widar3.0 (Zhang et al., 2021), is a 

typical wireless dataset that leverages Channel State Information (CSI) 
for sensing. Each sample in this dataset has a 3-dimensional structure 
of 2 × 1,000 × 90: specifically, 2 denotes the number of receiving 
antennas, 1,000 represents the number of time steps, and 90 
corresponds to the number of subcarriers-all of which align with the 
inherent characteristics of CSI data. The dataset contains 6 gesture 
labels and is divided into 18 clients according to position to simulate 
the distributed nature of federated learning.

4 Results and discussion

In this section, we primarily evaluate the recognition accuracy of 
the proposed new clustered FL algorithm based on KL divergence 
(KLCFL) and its sensitivity to key factors based on wireless datasets.

4.1 Analysis of influencing factors of the 
new algorithm

The experiments primarily evaluate the effectiveness of the 
clustering and the effects of three key parameters on model training: 
B (the batch size of training data), E (local training rounds), and 
hyperparameter (clustering ratio) cr.

4.1.1 Impact of batch size B
For the ARWF dataset, under the conditions of a fixed number of 

clients N = 32, the number of global rounds R = 100, and E = 1, the 
test results are presented in Figure 1.

When B = 5, 10 and 20, the final test (recognition) accuracy of the 
KLCFL algorithm remains largely stable between 70 and 80% and 
exhibits relatively small fluctuations, as shown in Figure 1. When 
B = 5, the test accuracy of KLCFL increases rapidly at R = 10 or more, 
fluctuates slightly, and finally stabilizes at 80% at R = 100, as illustrated 
by the blue solid line in Figure 1. When B = 10, the test accuracy of 
KLCFL increases rapidly at R = 20 or more, fluctuates slightly, and 
finally stabilizes at 80% at R = 100, as illustrated by the red solid line. 
When B = 20, the test accuracy of KLCFL increases rapidly at R = 45 
or more, fluctuates and finally stabilizes at 80% or so at R = 100, as 
shown by the blue star-solid line. However, when B = 50, the test 
accuracy of KLCFL begins increasing only at R = 90 and arrives at 55% 
or so at R = 100, as illustrated by the red star-solid line in Figure 1. In 
fact, B = 50 exceeds the total number of samples per client, which 
essentially amounts to using all samples in a single batch. This tends 
to make KLCFL overly fitted to the training set, ultimately leading to 
overfitting. Furthermore, a larger B typically results in smaller gradient 

variations, increasing the likelihood of KLCFL getting trapped in local 
optimal points. In contrast, a smaller B leads to larger gradient 
fluctuations, thereby reducing the likelihood of KLCFL getting stuck 
in local optimal points. It is also clear that the smaller the batch size 
B, the faster KLCFL converges, which in turn contributes to high 
recognition accuracy.

For the Widar3.0 dataset, the number of clients N = 18. When 
N = 18 and E = 1, we investigated the impact of B (batch size) on 
KLCFL’s test (recognition) accuracy. Specifically, when B = 8, 16, and 
32 (limited by the sample size of Widar 3.0 dataset), the corresponding 
test accuracies vary with global rounds R, as illustrated by 
Figure 2A. Although the trend affected by B is somewhat similar to 
that as mentioned earlier shown in Figure 1—the larger B is, the faster 
the convergence—the impact is insignificant and not obvious. Such 
discrepancies can be neglected, showing strong robustness. It is clear 
that as R increases, the recognition accuracy for different B values 
converges quickly and achieves excellent performance, exceeding 99%. 
At R = 100, the test accuracies are 0.9984, 0.9983, and 0.9921, 
respectively, as shown in Figure 2B. Although the test accuracy is 
relatively high—partly attributed to the high quality of the dataset—
the influence pattern of B remains consistent: the smaller B value 
tends to relatively higher accuracy and faster convergence, and this 
kind of feature is affected by the quality of the dataset to a 
certain extent.

For these two datasets, this algorithm can converge quickly under 
different B values (B < 50), demonstrating strong robustness. For a 
given global round R (e.g., R = 100), the recognition accuracy of the 
algorithm KLCFL varies with different datasets, and the trend where 
the convergence speed tends to decrease as B increases also differs to 
varying degrees. Moreover, the convergence stability and amplitude 
fluctuation remain roughly consistent, with negligible differences 
within a certain range.

4.1.2 Impact of local training round E
For the ARWF dataset, let N = 32 and B = 5, we investigate the 

impact of E on KLCFL test accuracy. The results are presented in 
Figure 3.

The tested results demonstrate that as E increases (e.g., E = 1, 3, 5, 
10), the recognition/test accuracy of KLCFL exhibits increasingly 
rapidly convergence with global rounds R until the recognition 

FIGURE 1

The effects of B on test accuracy based on ARWF.
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accuracy stabilizes at 0.8 or so. Additionally, the magnitude of 
fluctuations decreases progressively, while the overall performance 
remains stable, as shown in Figure 3. Under three different values of 
E, the differences in convergence accuracy and fluctuation amplitude 
are relatively small. However, there is a significant variation in 
convergence speed—with faster convergence observed as E increases 
(e.g., R < 20). Overall, local training rounds E exert little impact on 
recognition accuracy, indicating a certain degree of robustness.

Similarly, for the Widar3.0 dataset, when N = 18 and B = 5, the 
KLCFL algorithm converges rapidly, as shown in 
Figure 4A. Additionally, it converges faster as E increases (e.g., E = 1, 
3, 5, 10 at R < 20), although negligible differences still exist. Moreover, 
fluctuation magnitudes decrease progressively with R increasing and 
these differences can be negligible for E = 1, 3, 5.10. For a given global 
round R = 100, across all tested values of local training rounds E (e.g., 
E = 1, 3, 5, 10), the KLCFL algorithm achieves a high recognition 
accuracy exceeding 98%. This illustrates that the impact of local 
training rounds E on recognition accuracy is minimal and can be 
neglected, as shown in Figure 4B. In Figure 4B, when R = 100, the test 
accuracy of the KLCFL algorithm is 98.96, 99.78, 99.83 and 99.62% 
for E = 1, 3, 5.10, respectively. In terms of being affected by E, the 
KLCFL algorithm is less affected by it and exhibits greater robustness.

4.1.3 Impact of clustering ratio cr
For the ARWF dataset, with N = 32, E = 1, and B = 5, we 

conducted simulation experiments by varying the clustering ratio (cr) 
of the KLCFL algorithm- defined as the ratio of the number of 
clustering operations to the total number of clients N. Specifically, cr 
× N denotes the number of clustering operation, with 9 clusters 
obtained when cr = 0.3. Figure 5 presents the curves illustrating test 
accuracy variations under different cr settings.

The new clustered federal learning algorithm KLCFL was 
tested with clustering ratio cr set to 0.1, 0.3, 0.5, 07, and 0.9 based 
on ARWF dataset. The test results indicate that KLCFL’s 
recognition/test accuracy increases as cr rises—particularly for cr 
<0.5—and maintains a relatively high level of approximately 80%, 
as shown in Figure 5. However, when cr = 0.7 and 0.9, the 
recognition accuracy begins to decline, dropping significantly to 

roughly 50%. This indicates that an excessively large cr exerts a 
substantial negative impact on model performance. A higher 
number of clusters means many clients with highly heterogeneous 
data may be grouped into the same cluster. This will inevitably 
lead to the same model being used to predict heterogeneous data, 
resulting in a decrease in recognition accuracy. It is clear that the 
performance of KLCFL degrades noticeably when the clustering 
ratio cr is excessively large. Therefore, the reasonable selection of 
the clustering ratio is of crucial importance, as it directly affects 
the algorithm’s recognition accuracy. From Figure 5, it is clear 
that the KLCFL algorithm can achieve satisfactory recognition 
accuracy when cr falls within the typical range of 0.01–0.5, 
demonstrating that the KLCFL algorithm exhibits moderate 
robustness in a certain degree.

For the Widar3.0 dataset with N = 18, as cr increases, the 
differences in the algorithm’s convergence speed become increasingly 
pronounced, as shown in the Figure 6A. The convergence speed of the 
algorithm becomes increasingly slow as the clustering ratio (cr) 
increases, and the accuracy also decreases—for example, the 

(a) (b)

FIGURE 2

The effects of B on test accuracy based on Widar3.0 dataset (a/b).

FIGURE 3

The effects of E on test accuracy based on ARWF.
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recognition accuracy of the KLCFL algorithm is 86.83% at cr = 0.9, 
and is more than 97% at cr <0.7, which is consistent with the previous 
simulation results. Therefore, the reasonable selection of the clustering 
ratio cr is of crucial importance, as it directly affects the algorithm’s 
recognition accuracy and convergence speed, as shown in 
Figure 6A. However, when R = 100, the algorithm achieves relatively 
high recognition accuracy (as high as 97%) for this dataset. Specifically, 
KLCFL achieves a recognition accuracy of 98% across all tested cr 
values (cr = 0.1, 0.3, and 0.5). Only when cr = 0.9 does the test 
accuracy decrease slightly, dropping to around 86%, as shown in 
Figure 6B.

Obviously, regardless of whether the dataset is of high or low 
quality, the clustering ratio largely affects the convergence speed 
and test accuracy. An excessively large clustering ratio will reduce 
the convergence speed and recognition accuracy. Therefore, the 
reasonable selection of the clustering ratio is crucial. For a dataset 
with unknown characteristics, it is generally feasible to refer to the 
test results of traversing multiple clustering ratios and select the 
optimal one by comprehensively considering the convergence 

speed and final recognition accuracy. Of course, for the two typical 
datasets selected in this study, choosing a clustering ratio below 0.5 
is generally appropriate, which also ensures a certain degree of 
robustness.

4.2 Performance comparison between the 
new algorithm and several representative 
algorithms

To evaluate the performance of the new CFL algorithms (KLCFL) 
proposed in this study, we conduct a simulation-based performance 
comparison of KLCFL against several representative benchmark 
algorithms, including FedAvg (McMahan et al., 2017), FedRep 
(Collins et al., 2021), FedPer (Arivazhagan et al., 2019), PACFL 
(Vahidian et al., 2023; Aslam, 2023), and pFedMe (Dinh et al., 2020).

For the wireless dataset ARWF, we again observe that the KLCFL 
algorithm converges rapidly to notably high recognition accuracies: 
83.05% (N = 16 defined by 16 positions) and 77.33% (N = 32, due to 
two clients at each position) at R = 100, as shown in Table 1. Among 
all the algorithms selected for comparison, the KLCFL algorithm 
proposed in this paper basically achieves the optimal/highest 
recognition accuracy and is worthy of application in practice. Table 1 
presents the recognition accuracies of other six additional benchmark 
algorithms at R = 100 and N = 32, all of which are significantly lower 
than that of the KLCFL algorithm: (McMahan et al., 2017) a 
conventional FL algorithm, lacks sufficient consideration of 
personalization. FedPer (Arivazhagan et al., 2019) incorporates 
personalization, dividing the neural network model into base layers 
and personalized layers. The base layers are shared among all clients 
and updated by aggregation (e.g., by using FedAvg) on the server side. 
The personalized layers are trained only locally using the client’s own 
data, and do not participate in server-side aggregation. This 
architecture enables the model to both benefit from global 
collaboration and adapt to the specific data distribution of each client. 
The number of personalized layers (denoted as KP) is adjustable, 
which effectively addresses the data heterogeneity (Non-Independently 
and Identically Distributed-Non-IID) issue in federated learning. 

(b)(a)

FIGURE 4

The effects of E on test accuracy based on Widar3.0 (a, b).

FIGURE 5

Curves of test accuracy variations of the KLCFL with different CR 
based on the ARWF dataset.
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However, for FedPer (Arivazhagan et al., 2019) the precise partitioning 
of the “base layer and personalized layer” remains an open research 
question: the fixed division lacks theoretical basis and cannot be 
adjusted according to the training process or data characteristics. 
Moreover, the optimal KP value varies across different datasets and 
model architectures. To improve the recognition accuracy of FedPer, 
the basis for division and adaptive dynamic adjustment of KP should 
be performed according to changes in the training process and data 
characteristics. The algorithm pFedMe (Liang et al., 2022) encounters 
difficulties in selecting appropriate hyperparameters to quantify the 
degree of personalization. FedFomo (Zhang et al., 2020) biases 
personalized weights toward models with smaller losses. FedRep 
(Collins et al., 2021) fully addresses personalization (by designating 
the classification head as the personalized component) and effectively 
mitigates data heterogeneity in a certain degree. Its recognition 
accuracy is the closest to that of the KLCFL algorithm. The PACFL 
algorithm (Wang et al., 2019) primarily identifies distributional 
similarity by analyzing the principal angles between client data 
subspaces, which is called as cosine similarity.

After PCA vectors are normalized (e.g., low-dimensional 
representations), the Kullback–Leibler (KL) divergence can directly 
capture the “degree of information difference” between distributions. 
Cosine similarity (CS) only focuses on the consistency of vector 
directions, ignoring the difference in distribution intensity. In addition, in 

relation to the KL divergence, Euclidean distance (ED) merely measures 
the geometric spatial distance of vectors, failing to account for the 
probabilistic characteristics of distributions. Neither of CS and ED can 
address the core of the Non-IID problem: distribution deviation.

Additionally, KL divergence also has the advantage of effectively 
handling heterogeneous data. KL divergence is sensitive to the 
asymmetry and tail characteristics of distributions, effectively 
distinguishing between “distribution shift” and “pure numerical 
differences” represented by PCA vectors. Cosine similarity is 
insensitive to scale and ignores the distributional significance of the 
magnitudes of principal components in PCA vectors (e.g., the 
principal component magnitudes of a customer’s model concentrated 
in a few dimensions may correspond to specific distribution patterns). 
Euclidean distance is significantly affected by feature scales; even after 
PCA standardization, it may misclassify non-distributional numerical 
differences as heterogeneity. Moreover, the quantitative result of KL 
divergence directly reflects the “difficulty of distribution alignment,” 
enabling more accurate screening of customers with shareable model 
parameters after clustering. Cosine similarity may group customers 
“with consistent directions but significant differences in distribution 
shapes” into one cluster, while Euclidean distance may misclassify 
customers “that are geometrically close but distributional 
heterogeneous.”

Figure 7 compares the convergence processes and recognition 
accuracies of the new algorithm KLCFL with several representative 
algorithms. It is evident that KLCFL basically outperforms those 
alternatives in four key aspects: recognition accuracy, convergence 
speed, stability, and amplitude fluctuation. In Figure 7, although the 
convergence speed of the KLCFL algorithm ranks the second (not the 
fastest) and its recognition accuracy is not the highest, its convergence 
process shows that the algorithm has a relatively fast convergence 
speed, a smaller jitter amplitude, and a relatively high final recognition 
accuracy, which is also relatively consistent with the ideal recognition 
accuracy. However, most other algorithms (such as FedAvg, FedFomo, 
and pFedMe) converge slowly and achieve much lower final 
recognition accuracy.

Furthermore, to further verify the performance of the new 
algorithm, we again conducted tests using the Widar3.0 dataset. The test 

(b)
(a)

FIGURE 6

Curves of test accuracy variations of the KLCFL with different hyperparameters based on Widar3.0 (a, b).

TABLE 1  Test accuracy of KLCFL and several algorithms based on ARWF 
dataset (R = 100).

Algorithm N = 16 clients N = 32 clients

FedAvg 0.4590 0.5534

FedRep 0.8461 0.7926

FedPer 0.7978 0.7626

FedFomo 0.3849 0.4245

PACFL 0.6782 0.7334

pFedMe 0.6822 0.6547

KLCFL 0.8305 0.7953
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results demonstrate that by adjusting parameter cr (cr = 0.1), the KLCFL 
algorithm can effectively address data heterogeneity and achieve high 
recognition accuracy, as shown in Figure 8. Figure 8 presents a 
comparison of the recognition accuracies between the KLCFL algorithm 
and several other representative algorithms. It is clear that the 
recognition accuracy and stability of the KLCFL algorithm are 
significantly higher than that of the other several algorithms.

In Figure 8, the pFedMe algorithm converges relatively fast and 
achieves high recognition accuracy (0.965), but its amplitude fluctuation 
is somewhat significant—it still fluctuates when R reaches 100. The 
KL-based algorithm ranks the third fastest in convergence, with the 
smallest amplitude fluctuation, and stably converges to the final ideal 
recognition accuracy (0.998). FedFomo converges relatively fast, but its 
recognition accuracy is unsatisfactory (around 80%). FedRep exhibits a 
moderate convergence speed and good stability, with an acceptable final 
recognition accuracy (0.975). As for the other three algorithms, by 
comparison, they converge slowly and yield low recognition accuracy 
(FedFomo: 0.897, Fedavg:0.867, Fedper0.799) at R = 100.

In addition, on ARWF dataset, PACFL converges the fastest with 
small amplitude fluctuation and achieves excellent final accuracy. 

However, on Widar 3.0 dataset, it converges slowly with somewhat 
significant fluctuation, and the final recognition accuracy is not 
satisfactory. Similarly, pFedMe exhibits a moderate convergence speed 
on ARWF dataset but with relatively large fluctuation, and its final 
recognition accuracy is unsatisfactory and relatively low at R = 100. 
That is to say, these two algorithms show considerable variations in 
recognition performance across different datasets, indicating poor 
robustness. In contrast, the KLCFL algorithm proposed in this paper 
demonstrates the most outstanding recognition performance and 
stability on both datasets, boasting strong robustness and the ability 
to stably and effectively handle heterogeneous data.

Of course, the recognition accuracy of other algorithms may be 
improved to some extent through parameter optimization, but the 
KLCFL algorithm in this paper already achieves a relatively ideal high 
recognition accuracy. Even if one or two other algorithms are 
optimized and their accuracy may exceed that of this KLCFL 
algorithm, the improvement will be limited. In particular, compared 
with PACFL, a clustering algorithm of the same type with optimized 
parameters, the proposed algorithm exhibits higher accuracy and 
better convergence performance, effectively addresses the data 
heterogeneity issue, and possesses a certain degree of robustness.

5 Conclusion

Wireless data from different regions typically exhibits high 
heterogeneity, with limited labeled data available (details are reported 
in a separate study). Traditional FL struggles to achieve efficient and 
fast distributed model training under such circumstances. How to 
develop efficient training and adaptation methods for distributed 
wireless sensing models has become a major challenge in the 
development of 6G integrated communication and sensing networks. 
To tackle the challenges brought by heterogeneous wireless data, this 
study proposes an improved Personalized Federated Learning (PFL) 
algorithm.

This KLCFL algorithm incorporates the Kullback–Leibler (KL) 
divergence distance between each pair of clients, thereby enabling 
flexible clustering of clients with similar characteristics and 
significantly improving the recognition accuracy of wireless sensing 
in a great degree. For the ARWF dataset and Widar 3.0 dataset, KLCFL 
can all converges rapidly with small amplitude fluctuation and 
achieves excellent final accuracy, ranking among the excellent 
clustering algorithms.

Firstly, this paper carried out the PCA of the two datasets (ARWF 
and Widar3.0) and obtain a principal component vector matrix. And 
then it finished calculating the Kullback–Leibler (KL) divergence 
distance for clustering. Secondly, these two sets of wireless datasets 
were used to study the impacts of variations in batch size (B), local 
training epochs (E) and clustering ratio cr on the recognition accuracy 
of KLCFL. For the ARWF dataset, at B = 5 or 10, E = 2 or <4, and 
cr = 0.3 or <0.5, the KLCFL algorithm can achieve optimal recognition 
performance (77% ~ 83%). With respect to the Widar 3.0 Dataset, 
since it features relatively low interference levels and high data quality, 
the three key influencing factors exert minimal impact on the KLCFL 
algorithm’s recognition accuracy—thus enabling the KLCFL algorithm 
to exhibit good robustness. Generally, when B < 30, E < 10, and cr < 
0.5, the KLCFL algorithm achieves a recognition accuracy of 98% or 
higher. Finally, the recognition accuracy of the KLCFL algorithm was 

N=32

FIGURE 7

Test (recognition) accuracy of KLCFL and several representative 
algorithms based on ARWF dataset N = 32.

N=16

FIGURE 8

Test (recognition) accuracy of KLCFL and several representative 
algorithms based on Widar3.0 dataset.
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compared and analyzed with that of several reported algorithms. For 
the ARWF Wireless Dataset, the recognition accuracy of the KLCFL 
algorithm reaches 83.05% (N = 16) and 79.53% (N = 32) when the 
global round R = 100, which is higher than those of other algorithms, 
as shown in Figure 7, Table 1. Moreover, KLCFL converges faster than 
other algorithms and exhibits smaller fluctuations in amplitude. For 
the Widar3.0 wireless dataset, the recognition accuracy of the KLCFL 
algorithm is 99%, outperforming several reported algorithms, as 
shown in Figure 8.

From Figures 7, 8, this KLCFL algorithm not only demonstrates 
high recognition accuracy and fast convergence, but also exhibits 
small fluctuations and high stability.

Based on these datasets KLCFL not only achieves higher 
recognition accuracy than the current reported algorithms, but also 
exhibits a faster convergence speed, smaller fluctuation amplitude, and 
greater stability during the convergence process.

It is clear that the proposed KLCFL is an excellent PFL algorithm 
that can effectively address the heterogeneity of wireless data and 
achieve high recognition accuracy.

Firstly, this KLCFL algorithm can quantify differences among 
heterogeneous distributions and provide theoretic support for the 
rationality of clustering: In federated scenarios, data from 
individual clients often exhibits Non-IID (Non-Independently 
and Identically Distributed) characteristics. KL divergence can 
accurately measure the asymmetric differences in data 
distributions across various clients, provide a quantitative basis 
for cross-client data clustering, overcome the limitations of 
traditional similarity metrics (e.g., Euclidean distance) regarding 
data distribution assumptions, and theoretically validate the 
feasibility of heterogeneous data clustering.

Secondly, the KLCFL algorithm can guide the direction of 
collaborative optimization for heterogeneous data: Based on clustering 
results derived from KL divergence, the distribution patterns of data 
heterogeneity in federated systems (such as the degree of local data 
deviation, variations in category distribution, and so on) can be 
revealed. This provides theoretical guidance for data partitioning and 
the collaborative updating of model parameters in federated training.

Finally, the KLCFL algorithm can improve the theoretical 
framework of federated clustering: Most existing federated clustering 
methods rely on the assumption of independent and identical data 
distribution. By integrating distribution difference measurement into 
the federated clustering framework, KL divergence clustering fills the 
theoretical gap in federated clustering for heterogeneous data and 
offers a referable theoretical paradigm for the design of clustering 
strategies in subsequent heterogeneous federated learning.

However, the Kullback–Leibler (KL) divergence is inherently 
asymmetric, which gives rise to unstable optimization trajectories 
during model training. Additionally, when two discrete distributions 
are non-overlapping or contain zero-probability entries, the KL 
divergence fails to effectively quantify the magnitude of their 
discrepancy—often resulting in undefined or infinite values. 
Furthermore, its robustness against noise, interference, and 
distribution shifts remains insufficient, posing significant challenges 
in real-world scenarios characterized by inherent perturbations.

To address these limitations, potential future research 
directions are outlined as follows: First, developing symmetric 
variants of the KL divergence (e.g., symmetric KL divergence or 
extensions inspired by the Jensen-Shannon divergence) to mitigate 

optimization instability induced by asymmetry. Second, adopting 
a minimal value substitution strategy (e.g., replacing zero entries 
with an infinitesimally small positive value) to avoid undefined 
results when zero-probability events occur. Third, when WiFi data 
exhibits distribution shifts due to dynamic environmental changes 
(e.g., personnel movement, signal occlusion), the KL divergence 
struggles to distinguish between “true class differences” and 
“distribution differences caused by scene interference.” This 
limitation is particularly prominent in dynamic scenarios and can 
be addressed by integrating improved KL measurement methods 
with scenario features and data characteristics, which may serve as 
a viable solution. Fourth, future research could focus on enhancing 
resilience against noise and interference by targeting physical 
attack scenarios—such as defending against physical layer attacks 
(PhyFinAtt) and keystroke sniffing (KeystrokeSniffer) (Liu et al., 
2025; Chai et al., 2025). PhyFinAtt is an undetectable attack 
framework specifically designed to undermine PHY layer 
fingerprint-based WiFi authentication. KeystrokeSniffer 
demonstrates how an off-the-shelf smartphone can eavesdrop on 
keyboard input from anywhere. By applying PCA/KL to stabilize 
CSI features, KLCFL may make PHY fingerprints more resistant to 
environmental manipulation. By Clustering techniques may 
identify when an environment is being perturbed to attack PHY 
fingerprints, implementing online PCA updates would allow the 
system to continuously adapt to changing environments. For 
mitigation of Keystroke Sniffing, PCA/KL could transform WiFi 
signals in a way that obscures keystroke-related patterns. 
Clustering techniques could distinguish between harmless 
environmental variations and suspicious keystroke-related signal 
patterns, etc.

The proposed KLCFL and its PCA/KL approach reveal a 
promising direction for addressing the challenges of heterogeneous 
WiFi sensing data in security applications. By systematically reducing 
noise, stabilizing features, and clustering similar patterns, KLCFL 
could significantly enhance defenses against both PhyFinAtt and 
keystroke sniffing attacks.
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