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Background: Process mining has emerged as a powerful analytical technique
for understanding complex healthcare workflows. However, its application
faces significant barriers, including technical complexity, a lack of standardized
approaches, and limited access to practical training resources. To address
unfamiliarity and improve accessibility, we proposed a new framework for
translating technical analyses into text outputs that users can understand.
Objective: We introduce HealthProcessAl, a GenAl framework designed
to simplify process mining applications in healthcare and epidemiology by
providing a comprehensive wrapper around existing Python (PM4PY) and
R (bupaR) libraries. To address unfamiliarity and improve accessibility, the
framework integrates multiple Large Language Models (LLMs) for automated
process map interpretation and report generation, helping translate technical
analyses into outputs that diverse users can readily understand.

Methods: HealthProcessAl implements modular architecture with the following
components: (1) data loading and preparation, (2) process mining analysis, (3)
integration of LLM for interpretation, (4) advanced analytics, (5) multimodal report
orchestration, and (6) the validation framework. We validated the framework
using sepsis progression data as a proof-of-concept example and compared the
outputs of five state-of-the-art LLM models through the OpenRouter platform.
This study presents a technical validation using automated LLM evaluation, and
clinical validation by healthcare professionals is planned as future work.
Results: To test its functionality, the framework successfully processed sepsis
data across four proof-of-concept cases. A total of 32 reports were generated,
demonstrating robust technical performance and its capability to generate
reports through automated LLM analysis. In concrete terms, there are eight
reports per case and four reports per LLM model. LLM evaluation using seven
independent LLMs as automated evaluators revealed distinct model strengths:
Claude Sonnet-4 and Gemini 2.5-Pro achieved the highest consistency
scores (3.72/4.0 and 3.49/4.0) when evaluated by automated LLM assessors.
It is important to note that outputs were not clinically validated by healthcare
professionals.

Conclusion: HealthProcessAl provides a standardized framework that reduces
technical and training barriers in healthcare process mining while maintaining
scientific objectivity. By integrating multiple LLMs for automated interpretation
and report generation, the framework addresses widespread unfamiliarity with
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process mining outputs, demonstrating technical feasibility for making them
more accessible to clinicians, data scientists and researchers pending clinical
validation. This structured analytics and Al-driven interpretation combination
represents a novel methodological advance in translating complex process
mining results into potentially actionable insights for healthcare applications.
However, future work should involve systematic evaluation by clinicians.

KEYWORDS

epidemiology, generative Al, healthcare analytics, large language models, process

mining

1 Introduction

The ongoing digitalization of healthcare systems worldwide
generates substantial volumes of unstructured data through electronic
health records (EHRs), clinical information systems, laboratory
results, and patient monitoring devices (Modi et al., 2024). These data
encapsulate complex patient journeys and clinical workflows, offering
significant potential to improve healthcare quality and outcomes.
Despite global healthcare expenditures averaging approximately 10%
of GDP and increasing accessibility of electronic data, clinicians
continue to face limited access to practical tools for interpreting these
complex datasets (Wibawa et al., 2024). Process mining is a discipline
at the intersection of data mining and business process management
(Van der Aalst, 2016), which has shown potential as a powerful
method for extracting insights from event logs in healthcare (Rojas et
al., 2016; Mufioz-Gama et al., 2022).

The application of process mining in healthcare has shown
substantial promise in various domains, including emergency
department workflows (Samara and Harry, 2025), surgical procedures
(Kurniati et al., 2019), and chronic disease progression (Chen et al.,
2024a). Process mining has evolved from business process
management to healthcare applications since the early 2000s, enabling
the discovery, conformance checking, and enhancement of clinical
pathways across over 270 healthcare studies analyzed in recent
systematic reviews (Ghasemi and Amyot, 2016).

Nevertheless, several critical barriers hinder its broader
implementation in clinical practice. First, the technical complexity of
existing tools demands expertise that many healthcare professionals
and data scientists do not possess (Erdogan and Tarhan, 2018).
Second, interpreting process mining outputs often requires a deep
understanding of algorithmic principles and clinical contexts,
presenting a knowledge gap that limits usability. Third, a lack of
standardization and comprehensive educational frameworks
contributes to methodological heterogeneity, hindering reproducibility
and cross-study comparisons.

Recent advancements in large language models (LLMs) offer
novel opportunities to bridge these gaps (Brown et al., 2020; Lee et al.,
2023). LLMs have demonstrated remarkable capabilities in
comprehending complex medical language and contextualizing
heterogeneous healthcare data (Singhal et al., 2023). However, their
integration with process mining methodologies remains largely
unexplored, particularly in clinical decision support and educational
applications.

Despite the maturity of process mining in analyzing patient flows,
such as in oncology, mental health services, and emergency care, the
interpretability of outputs remains limited (Mans et al., 2015).
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Emerging platforms like OpenRouter (OpenRouter, Inc., CA, United
States) have democratized access to multiple LLM providers, enabling
multimodal experimentation and cost-effective deployment, thus
creating new possibilities for the synergistic use of LLMs and process
mining. This convergence opens a unique opportunity: to develop
frameworks that integrate the analytical rigor of process mining with
the semantic and interpretive capabilities of modern Al systems. Such
integration directly addresses current limitations in clinical
interpretability, which remains a persistent challenge in healthcare
analytics.

Current process mining tools such as PM4PY (Berti et al., 2019)
and bupaR (Janssenswillen et al,, 2019) generate sophisticated
analytical outputs but require substantial programming knowledge,
impeding adoption among healthcare practitioners. Moreover, the
outputs often lack direct clinical relevance and are rarely translated
into actionable insights. To address these limitations, this study
proposes a novel approach leveraging LLMs to transform process
mining outputs into clinically interpretable reports enriched with
structured outputs. This Al-enhanced framework offers an
interpretable layer on top of complex data models by maintaining the
relationships between clinical processes and entities. Such systems
have shown potential in integrating and analyzing fragmented
healthcare data,
decision-making.

facilitating more informed and timely

We hypothesize that it is possible to transform process mining
results into semantically rich, clinically interpretable reports using
LLMs. This transformation requires the definition of a structured
educational framework tailored for healthcare professionals and
researchers. Through LLM-based reasoning, process mining datasets
can be linked to broader healthcare knowledge bases, allowing clinical
pathways to be associated with outcomes or care quality metrics via
evidence-based mechanisms. We present the first comprehensive
framework for LLM-enhanced healthcare process mining to evaluate
this hypothesis. Our contributions are threefold:

1. Multi-LLM Interpretation Methodology: We introduce a multi-
model approach for the automated interpretation of process
mining results, with potential generalizability beyond
healthcare applications.

2. Structured Framework for Accessibility and Reproducibility:
We design an integrated framework that addresses the technical
and educational barriers limiting adoption, promoting
accessibility and methodological reproducibility.

3. Empirical Demonstration in Proof-of-Concept Cases: We
demonstrate our framework’s functionality through a proof-of-
concept analysis of sepsis progression and kidney disease, a
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complex, high-risk clinical pathway used here to test the
system’s capabilities.

The remainder of this paper is structured as follows. The
Methodology section outlines the analytical approach for process
mining, detailing how process maps are transformed into clinically
interpretable reports. It also describes the architecture of the proposed
framework and the evaluation methods applied. Privacy-preserving
deployment strategies are discussed in Section 2.5. The Results section
presents a comparative analysis of process mining tools implemented
in R and Python. It evaluates the quality and interpretability of the
generated reports within demonstrator case studies. The Discussion
section contextualizes these findings by comparing them with current
literature, highlighting key insights, implications, and potential
limitations. Finally, the Conclusions section summarizes the core
contributions of the study and identifies future challenges and
directions for the continued development of LLM-integrated process
mining in healthcare.

2 Methods
2.1 Framework design and architecture
HealthProcessAl is a framework built upon established process

mining libraries, specifically designed for healthcare and epidemiological
applications. Its architecture follows recognized software design patterns

10.3389/frai.2026.1716819

used in healthcare informatics systems (Shortliffe and Cimino, 2014)
while introducing novel approaches to Al integration. The development
of the framework was guided by four core principles, emphasizing
comprehensive educational support and clinical applicability. The first
principle, accessibility, ensures that all components are accompanied by
detailed documentation, defined learning objectives, and step-by-step
tutorials aligned with medical education standards. The framework
maintains technology-agnostic flexibility by supporting both Python
and R implementations, accommodating diverse user preferences and
institutional infrastructures. Finally, Al-enhanced interpretation is
realized by integrating multiple LLMs, enabling automated clinical
report generation and contextual analysis of complex healthcare
processes. HealthProcessAl adopts a modular pipeline architecture
grounded in established process mining methodologies, as depicted in
Figure 1 (Van der Aalst et al,, 2011).

In concrete, HealthProcessAl is based on the interactive process
mining framework for epidemiology (Fernandez-Llatas, 2020; Chen
et al, 2024a), which is also extension of the question driven
methodology (Rojas et al., 2017). Furthermore, our approach is linked
also with the PM? framework, ensuring alignment with established
best practices in processing mining (Van Eck et al., 2015). Module 1
(Data Loading and Preparation) implements PM?* Stages 1-2 by
handling project planning considerations and data extraction from
healthcare systems. Module 2 (Process Mining Analysis) addresses
PM2 Stage 3 through comprehensive process discovery and
conformance checking. Modules 3-4 (LLM Integration and Report
Orchestration) enhance PM? Stage 4 by providing automated
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FIGURE 1

Modular architecture of the HealthProcessAl pipeline. The six-module architecture supports end-to-end healthcare process mining, from data
preparation and event log generation to process discovery and LLM-driven interpretation. It includes modules for report customization, system
integration, and evaluation. Only the process matrix obtained after process discovery was sent to the API. The architecture is compatible with both
Python and R and incorporates educational components to facilitate adoption among healthcare professionals and researchers. Solid lines indicate
components implemented in this study, while dashed lines represent ongoing research and development
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interpretation and evaluation of discovered processes. Module 5
(Advanced Analytics) supports PM? Stages 5-6 by enabling process
improvement and operational support through actionable insights.

This paper focuses on technical validation of the framework, proving
its feasibility and demonstrating that HealthProcessAl can generate
reports from real process maps. The different modules implemented are
highlighted with a purple background in Figure 1. Regarding the
evaluation framework, it is a component that has been developed for the
demonstrators implemented in this paper, and it is not necessary for
future implementations. However, out of scope is the clinical validation
of our framework and its application in other process mining domains.
In concrete terms, advanced analytics and their application to hypothesis
testing or conformance checking are not involved in our evaluation, and
they will be addressed in future work. We demonstrate functionality by
implementing four proof-of-concept cases from two different sources:
(1) publicly available PhysioNet Challenge data for technical testing, and
(2) previously published process maps from the SCREAM database for
comparison. These proof-of-concept cases establish technical feasibility
before planned clinical validation studies.

2.1.1 Module 1: data loading and preparation

The data loading module implements healthcare-specific data
preparation techniques based on clinical informatics standards,
incorporating several key features that enhance its utility for medical
data processing (Benson and Grieve, 2016). The module handles event
logs stored in CSV format, ensuring compatibility with diverse clinical
information systems. It implements comprehensive data quality checks
specifically designed to meet clinical data validation rules, helping
maintain the integrity and reliability of healthcare datasets.
Additionally, the module provides standardized column naming
conventions that follow international healthcare standards, promoting
consistency and interoperability across different clinical contexts. The
system also includes healthcare-specific filtering methods that facilitate
clinical cohort identification, enabling researchers and clinicians to
isolate relevant patient populations for analysis and study efficiently.

For the sepsis use case, the data quality module was configured with
a targeted set of validation rules designed to ensure both structural
integrity and clinical plausibility before process discovery. Structural
validation primarily focused on temporal consistency, enforcing strict
chronological ordering of events within a trace and verifying that
discharge timestamps logically succeeded admission timestamps.
Additionally, we enforced identifier consistency and record
completeness, rejecting any entries that lacked mandatory process
mining attributes (specifically Case ID, Activity Label, or Timestamp)
or that represented duplicate event signatures. To ensure clinical validity,
the pipeline implemented value range constraints based on established
physiological bounds, filtering out measurement artifacts such as body
temperatures exceeding 45 °C. Finally, healthcare-specific cohort filters
were applied to refine the dataset, selecting only those patient
trajectories that possessed the complete set of longitudinal biomarker
measurements required for the study’s specific sepsis definition.

For SCREAM database, we used published process maps, so data
loading and preparation is described in previous articles from our
research group (Chen et al., 2024a,b).

2.1.2 Module 2: process mining analysis

The process mining module is a comprehensive wrapper around
PM4PY (Berti et al.,, 2019) and bupaR (Janssenswillen et al., 2019),
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providing healthcare-optimized algorithms encompassing many
process discovery and analysis techniques. The module supports
several key algorithms, including Directly-Follows Graph (DFG)
discovery (Van der Aalst et al., 2004), Heuristics Miner for noise-
tolerant healthcare processes (Weijters et al., 2006), Alpha Algorithm
for structured clinical protocols, Inductive Miner for sound process
models (Leemans et al., 2013), and performance analysis with
standard quality metrics In concrete, we have evaluated the process
mining algorithms using the F1-Score, as detailed in Section 2.2.
These enhancements are designed to be technically robust, relevant,
and applicable to real-world healthcare scenarios.

2.1.3 Module 3: LLM integration

The LLM integration module provides standardized interfaces to
multiple language models, implementing best practices for Al in
healthcare (Topol, 2019), and encompasses a comprehensive suite of
advanced language models, each optimized for specific clinical
applications. The module supports Anthropic Claude (Sonnet-4),
which is optimized for clinical reasoning, OpenAI GPT-4.1 with its
broad medical knowledge base, Google Gemini 2.5 Pro featuring a
large context window for comprehensive analysis, DeepSeek R1 for
technical precision and quantitative analysis, and X-AI Grok-4 for
creative insights and alternative perspectives. The framework
incorporates prompts adapted for healthcare context. This
comprehensive approach was designed in the sense that language
model integration not only leverages the unique strengths of each Al
system but also aligns with medical communication structures.

Prompt templates were engineered following a robust five-
component structure to ensure clinical relevance and analytical depth.
First, role definition established a specialized role as a process mining
analyst applied to epidemiology equipped with the skills to
communicate complex data to clinical stakeholders. Second, task
specification clearly defined the analytical objective, requiring the
synthesis of provided process matrices and visual maps into a
comprehensive report. Third, context provision embedded essential
domain knowledge, including the target audience definition and
specific disease state logic (e.g., detailing reversible transitions between
“Infection” and “Sepsis” states). Fourth, output format requirements
mandated a strict Markdown structure comprising six standardized
sections: Executive Summary, Introduction, Process Map Analysis,
Data Summary Tables, Hypothesis Generation, and Conclusion.
Finally, quality criteria enforced professional, collaborative tone and
specific formatting guidelines (e.g., use of bullet points and bold text)
to maximize readability and actionability. Complete prompt templates
for all four case studies are provided in Supplementary Tables S2-S5.

2.1.4 Module 4: report orchestration

The orchestration module implements multi-model consensus
techniques adapted from ensemble learning principles, providing
sophisticated mechanisms for integrating and synthesizing insights
from multiple analytical sources. Rather than relying on a single Large
Language Model (LLM) output, which may be prone to stochastic
variations, the orchestration engine synthesizes findings from multiple
independent analytical sources. The module synthesizes consensus
findings using voting mechanisms, preserves unique insights from
each model through diversity preservation techniques, identifies areas
of agreement and disagreement using inter-rater reliability measures,
and creates comprehensive multi-model reports with uncertainty
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quantification. This approach ensures that the final analytical output
captures the collective wisdom of multiple models and maintains
transparency regarding the level of consensus and uncertainty in the
findings, thereby providing healthcare professionals with a nuanced
understanding of the analytical results and the level of consensus
supporting each insight.

To mitigate the risk of semantic hallucination, the module utilizes
a deterministic constraint injection strategy within the system prompts.
As demonstrated in the Sepsis Progression use case, the prompt
strictly defines the model’s role as an expert process mining analyst and
restricts the generation space to the provided process matrix and map
data. Explicit domain constraints are injected into the context window
to prevent the fabrication of non-existent clinical states; for instance,
the prompt rigidly defines the valid state transitions as (i) low
temperature, (ii) normal temperature, (iii) high temperature, (iv)
infection, and (v) sepsis, noting that transitions are reversible.

Furthermore, the orchestration module enforces structural
consistency to facilitate programmatic comparison of outputs. The
system prompt mandates a strict Markdown schema, requiring specific
sections such as Case Summary, Activity Summary, and Trace
Summary. By constraining the output format and enforcing a
collaborative tone targeted at clinical and epidemiological
stakeholders, the framework ensures that the multi-model synthesis
captures the collective wisdom of the ensemble while maintaining a
high degree of interpretability. Divergences between models are not
discarded but are preserved as uncertainty indicators, providing
healthcare professionals with a nuanced understanding of where the
data supports definitive conclusions versus where interpretation varies.

2.1.5 Module 5: advanced analytics

The advanced analytics module showcases some of the research-
grade methodologies from recent healthcare process mining literature,
incorporating a comprehensive range of analytical capabilities designed
to enhance clinical decision-making and operational efficiency from
modules 1, 2, 3, and 5 outputs. The module would provide conformance
checking with clinical guidelines (Mufioz-Gama and Carmona, 2010),
patient stratification analysis using machine learning techniques,
bottleneck identification for healthcare optimization, predictive process
monitoring for early warning systems, and clinical performance
indicators aligned with established quality measures. These capabilities
collectively enable healthcare organizations to systematically analyze
their processes, identify areas for improvement, predict potential issues
before they occur, and maintain compliance with clinical standards
while optimizing patient care delivery and operational workflows. For
this proof-of-concept demonstration, we primarily implemented
process discovery, performance analysis, and basic pathway optimization
capabilities linked to Module 2. Advanced features such as predictive
process monitoring and comprehensive conformance checking
represent framework capabilities that will be demonstrated in future
work with additional case studies in a pre-operational environment.

2.2 Comparing process mining algorithms
with F-score

The F1 score in process mining serves as a balanced quality metric

that combines two fundamental dimensions of process model
evaluation: fitness and precision. Fitness, also known as recall in the
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context of conformance checking, measures the ability of a discovered
process model to reproduce the behavior observed in the event log,
quantifying how well the model can replay all traces without blocking.
Precision, conversely, assesses the degree to which the model avoids
allowing behavior that was not observed in the log, preventing
overgeneralization and ensuring that the model does not permit
excessive additional execution paths (Mufoz-Gama and Carmona,
2010). The token-based replay technique is commonly employed to
calculate fitness by counting missing and remaining tokens during
trace replay on the Petri net model, while precision is often evaluated
through behavioral comparison techniques such as escaping arcs or
footprint-based methods.

The F1 score is computed as the harmonic mean of fitness and
F1 =2 x (Precision x Fitness)/
(Precision + Fitness), providing a single aggregate measure that

precision, formally defined as
balances both quality dimensions (Buijs et al., 2012). This metric is
particularly valuable when comparing different process discovery
algorithms, as it penalizes models that excel in only one dimension
while performing poorly in the other. For instance, a flower model
that allows all possible behavior would achieve perfect fitness but very
low precision, resulting in a poor F1 score. The use of the harmonic
mean, rather than the arithmetic mean, ensures that both metrics
must be reasonably high to achieve a good F1 score, making it a robust
indicator of overall model quality in automated process discovery
evaluations.

2.3 LLM model integration via OpenRouter
platform

The framework integrates eight state-of-the-art language
models through the OpenRouter platform, implementing a novel
approach to multi-model healthcare AI systems. OpenRouter serves
as a unified gateway providing a single endpoint following RESTful
API design principles, cost optimization through competitive
pricing via platform economics, and access to the latest models with
automated updates. The platform also offers intelligent rate limit
management through load balancing, queue management systems,
and comprehensive usage analytics tracking that aligns with
healthcare AI governance requirements, creating a robust
infrastructure for multi-model AI orchestration in clinical
applications. Table 1 shows the main characteristics of the five
models included in this study.

2.4 Evaluation framework

We developed a comprehensive evaluation rubric based on
healthcare informatics evaluation frameworks and
reporting standards (Friedman and Wyatt, 2006), establishing six
key criteria for assessing LLM report quality with specific
weightings and validation methods (Table 2) defined in previous

clinical

studies regarding evaluation in AT (Rammal, 2024). The evaluation
framework assigns Clinical Accuracy (25%) to determine the
correctness of medical interpretations and terminology usage
through expert clinical review, Process Mining Understanding
(20%) to evaluate accurate interpretation of analytical results via
technical validation, Actionable Insights (20%) to measure the
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TABLE 1 Specifications and integration characteristics of selected large language models (LLMs) used within the HealthProcessAl framework.

Provider = Context Cost tokens (*)  Primary strengths Clinical applications
window
CLAUDE SONNET-4 Anthropic 200 K tokens $3.00/$15.00 Clinical reasoning, guideline interpretation Complex diagnostic pathways
GPT-4.1 OpenAl 128 K tokens $10.00/$30.00 Broad medical knowledge, consistency General clinical analysis
GEMINI 2.5 PRO Google 1 M tokens $1.25/$5.00 Large context, comprehensive analysis Long clinical narratives
DEEPSEEK R1 DeepSeek 64 K tokens $0.55/$2.19 Technical precision, quantitative analysis Statistical interpretation
GROK-4 X-Al 128 K tokens $5.00/$15.00 Creative insights, patient perspectives Alternative viewpoints

*Token pricing is reported per 1 million input/output tokens as of August 2025, with the first price referring to input and the second to output tokens. The models vary in context window size,
token pricing, and domain strengths. Integration is tailored to clinical use cases such as diagnostic reasoning, long-form medical narratives, statistical interpretation, and patient-centered

analysis.

TABLE 2 Evaluation criteria for assessing LLM-generated clinical reports
within the HealthProcessAl framework.

Criterion Weight Description Validation
method
Clinical accuracy 25% Correctness of medical | Expert clinical
interpretations and review
terminology usage
Process mining 20% Accurate interpretation | Technical
understanding of analytical results validation
Actionable 20% Quality and feasibility Implementation
insights of clinical assessment
recommendations
Statistical 15% Correct analysis of Statistical
interpretation quantitative findings validation
Report structure 10% Organization and Communication
& clarity readability analysis
Evidence-based 10% Use of clinical evidence | Evidence synthesis
reasoning and literature evaluation

*Current validation uses automated LLM evaluation rather than clinical validation. Each
criterion is assigned a relative weight based on its importance to clinical utility and
interpretability. Validation methods involve domain-specific assessments, including clinical
expert review, technical accuracy checks, and implementation feasibility testing.

quality and feasibility of clinical recommendations through
implementation assessment, Statistical Interpretation (15%) to
verify correct analysis of quantitative findings using statistical
validation, Report Structure and Clarity (10%) to examine
organization and readability through communication analysis, and
Evidence-Based Reasoning (10%) to evaluate the use of clinical
evidence and literature via evidence synthesis evaluation. It is
critical to note that this evaluation framework represents technical
validation of the system’s functionality and consistency, not clinical
validation of output accuracy or utility. No clinician-based review
of the generated reports was conducted in this proof-of-
concept study.

The evaluation criteria weightings were established through
iterative refinement with the research team and align with healthcare
informatics evaluation frameworks (Friedman and Wyatt, 2006).
Clinical accuracy received the highest weight (25%) given the
paramount importance of medical correctness in healthcare
applications. Process mining understanding and actionable insights
were equally weighted (20% each) as core framework objectives. These
weights represent our assessment of relative importance for this
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proof-of-concept; validation of this weighting scheme with clinical
stakeholders is planned for future work.

We implemented an innovative automated evaluation system
using seven LLMs as evaluators representing a novel application of
Al-assisted evaluation in healthcare informatics that addresses
scalability challenges in manual evaluation while maintaining
consistency and objectivity. To measure the agreement between the
different LLM evaluators, we computed the Fleiss «, an extension of
the Cohen’s k coefficient, which is defined as k = (po—pe)/1—pe Where
Po is the observed agreement proportion and pe is the expected
agreement by chance. Furthermore, we calculated Cronbach’s a as o =
(k/(k—1)) x (1—Zoi*/0*) where k is number of items (4 cases), o7’ is
variance of each item and o’ is variance of total scores. At this
moment, no clinician-based validation of the generated outputs was
conducted, as the scope of the evaluation at this stage focused on
system functionality and feasibility.

2.5 Validation framework using
demonstrator cases

To demonstrate the framework’s capabilities and validate its
effectiveness, we utilized data from the Computing in Cardiology
Challenge 2019 (PhysioNet) “Early Prediction of Sepsis from Clinical
Data” (Reyna et al., 2020) and previously published process maps from
the SCREAM (Stockholm Creatinine Measurements) database (Chen
et al., 2024a). This international challenge provided high-quality,
de-identified ICU patient data specifically curated for sepsis research,
representing one of the most comprehensive publicly available sepsis
datasets. The dataset encompasses 40,336 ICU patient records from
three hospital systems, formatted as hourly vital signs and laboratory
values covering 40 clinical variables, with sepsis defined according to
Sepsis-3 criteria requiring suspected infection and organ dysfunction.
Ground truth validation is established through expert-annotated
sepsis onset times following Surviving Sepsis Campaign guidelines,
with temporal resolution providing hourly measurements up to sepsis
onset or ICU discharge. The PhysioNet Challenge data provides a
robust foundation for process mining validation as it captures the
complete temporal evolution of patient states, including pre-sepsis
deterioration patterns that are critical for early intervention strategies.

All event log generation followed a standardized pipeline: (i) data
validation and quality checking to ensure completeness and
consistency, (ii) state classification using clinical criteria and
established thresholds, (iii) temporal ordering verification to ensure
chronological consistency, (iv) case filtering to exclude incomplete
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trajectories where some measurements are missing, and (v) variant  occurring when measured values crossed threshold boundaries. The
analysis to identify and validate common pathways. Event logs were  resulting event log contained 7,131 patients, 7 total different events,
validated by comparing patterns discovered against clinical  and 5,884 unique traces.
expectations and literature descriptions of disease progression.

2.5.2 Case Il: organ damage/failure progression
2.5.1 Case I: infection/inflammation progression analysis
analysis The second validation case examines organ failure progression

The first validation case focuses on infection and inflammation  using SOFA (Sequential Organ Failure Assessment) score components
progression patterns by transforming raw clinical measurements from  from the PhysioNet data, as schematized in Figure 3. Concretely, the
PhysioNet data into discrete states following established inflammatory ~ organ dysfunction states are defined across multiple systems with
response criteria. A disease progression model, such as the one  specific clinical thresholds based on key biomarkers. Cardiovascular
defined in Figure 2, is required to incorporate this information into  dysfunction is identified by troponin I (TRP) > 0.04 ng/mL. In
the event log. Temperature states are defined according to SIRS criteria ~ contrast, renal dysfunction is characterized by creatinine
as low temperature (core temperature <36°C, indicating (CRT) > 1.3 mg/dL, and hepatic dysfunction is indicated by aspartate
hypothermia), normal temperature (36-37.5°C), and high  transaminase (AST)>40IU/L. Patient data input, including
temperature (>37.5 °C, indicating fever). Infection states combine  demographics, troponine I, creatinine, and aspartate transaminase, is
multiple indicators, but in the proposed model, the infection is  processed through organ system dysfunction criteria to determine the
identified by the presence of WBC > 12,000 or <4,000 cells/L.  presence or absence of damage in cardiovascular, renal, and hepatic
(leukocytosis/leukopenia), while the infection + temperature state  systems. The state transitions in the organ failure model progress
represents combined states indicating concurrent infection and  sequentially from low risk (no organ dysfunction at baseline) through
temperature abnormality. The state of sepsis is determined by the  single organ damage (one organ system affected) and multi-organ
dataset based on Sepsis-3 criteria, which requires suspected infection ~ damage (multiple organ systems involved) to sepsis as the final state,
(indicated by antibiotics and cultures). A SOFA score increase of 2 with the event log capturing selected subjects and their time to event
points or qSOFA is equal to or higher than 2 when full SOFA is  progression through these increasingly severe states of organ
unavailable. dysfunction.

The PhysioNet dataset provides hourly measurements of 40 Organ dysfunction states were determined hourly by evaluating
clinical variables for each patient. We transformed this time-series ~ biomarker levels against established clinical thresholds. We have
data into an event log by evaluating patient state at each hourly  selected all the patients with creatinine, troponin I and aspartate
timestamp. We have selected all the patients with temperature and  transaminase. Subject without those measurements were excluded.
WBC measurements. Subject without those measurements were ~ When multiple organ systems met dysfunction criteria simultaneously,
excluded. For each timestamp, we assessed: (i) temperature state by ~ combined states were created (e.g., Renal + Cardiac Damage). The
evaluating core temperature measurement against SIRS thresholds; (ii) ~ algorithm prioritized sepsis identification when Sepsis-3 criteria were
infection state by evaluating white blood cell count against defined ~ met regardless of individual organ states. Multi-organ damage was
criteria; and (iii) combined states when both temperature and  defined as dysfunction in the three organ systems. This transformation
infection criteria were met simultaneously. This process generated a  generated event logs capturing 771 patients, 9 total different events,
sequence of clinical states for each patient, with state transitions  and 67 unique traces.

Infection Progession Model

Clinical State Definitions
Patient Data Input
Event Lo
Temperature States Infection States g
3 Low (<36°) No Infection
Demographics Normal (36-37.5°) Infection (4.5< WBC <11 10°3/uL) Select Subjects
Temperature High (>37.5°) imetoEvent

i
FIGURE 2

Infection progression model illustrating the transition between clinical states based on patient input data. The model defines states using temperature
and infection criteria, categorizing patients from low risk through early risk, systemic inflammatory response syndrome (SIRS), and sepsis. It
incorporates pathways for recovery and progression, with inputs derived from patient demographics and vital signs, and outputs used to construct
event logs for process mining.

v
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Organ Damage Progession Model

Organ System Dysfunction Criteria
Patient Data Input

Event Log

Hepatic
No Damage
Damage (AST > 40 IU/L)

Cardiovascular Renal
No Damage No Damage
Damage (TRP>0.04 ng/mL) Damage (CRT> 1.3 mg/dL)

Demographics
Troponine | (TRP)
Creatinine (CRT)

Aspartate Transaminase (AST)

Select Subjects
Time to Event

Single

Organ Sepsis

FIGURE 3

Organ damage progression model based on SOFA-aligned criteria. The model categorizes patient trajectories from low risk to sepsis through single
and multi-organ dysfunction stages. Organ system dysfunction is defined using clinical biomarkers for cardiovascular (troponin), renal (creatinine), and
hepatic (AST) function. Patient input data informs state classification, while the resulting event log supports time-to-event analysis for process mining

applications.

2.5.3 Case llI: kidney function progression
analysis

Case III represents a patient demonstrating moderate chronic
kidney disease progression through the eGFR classification stages
(Chen et al., 2024b). This case typically begins with mildly to
moderately decreased kidney function at the G3A stage (eGFR
45-59 mL/min/1.73 m?), representing the early detection point where
clinical intervention becomes critical. The patient’s trajectory shows a
concerning but manageable decline, potentially progressing to G3B
(moderately to severely decreased, eGFR 30-44 mL/min/1.73 m*) over
the study period. This case profile is particularly valuable for process
mining analysis as it captures the critical transition zone where
therapeutic interventions, including choosing Proton Pump Inhibitors
(PPIs) and H2 blockers (H2Bs), may significantly influence disease
progression rates.

The SCREAM database contains longitudinal creatinine
measurements for patients in Stockholm. However, for this case we did
not generate the event log neither the process matrix in this study, as we
used previous results from published papers. In concrete, we fed directly
the LLMs with the process matrix produced for those studies. In
general, calculated eGFR values using the CKD-EPI equation and
classified patients into KDIGO stages at each measurement timepoint.
Event logs were generated with state transitions occurring when patients
moved between eGFR categories. The PPI cohort included 11,486
patients with eGFR measurements, while the H2B cohort included 557
patients with measurements. Subject without eGFR measurements were
excluded. More details about the event log generation and process
discovery can be found in this article (Chen et al., 2024b).

2.5.4 Case IV: chronic renal disease (CKD)
progression analysis

Case IV represents a patient following a severe CKD progression
pathway encompassing multiple critical transition points within the
defined process states (Chen et al., 2024a). This case typically initiates
at the “Drug Initiate” stage with the commencement of either PPI or
H2B therapy,
“Decline30%”—indicating a significant 30% or more reduction in

followed by a documented progression to

baseline kidney function (eGFR) during the observation period. Case
IV is characterized by its advancement to more severe outcomes,
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potentially including progression to “KRT” (Kidney Replacement
Therapy encompassing transplant and dialysis as registered in the
Swedish Renal Registry) and, in some instances, culminating in
“Death” (all-cause mortality). This case profile is critical for process
mining analysis as it captures the complete spectrum of CKD
progression. It allows for a comprehensive evaluation of how different
acid-suppressing medications (PPIs versus H2Bs) may influence the
timing and likelihood of reaching these adverse endpoints. Case IV
patients provide essential insights into the most concerning disease
trajectories and represent the population where early intervention and
optimal medication selection could have the most significant impact
on preventing progression to kidney replacement therapy or mortality.

As in Case III, we the process matrix from a previous study, so no
event log generation or process discovery were done for this case. The
event log generation followed a standardized pipeline: (i) Data
validation and quality checking to ensure completeness and
consistency; (ii) state classification using clinical criteria and
established thresholds; (iii) temporal ordering verification to ensure
chronological consistency; (iv) case filtering to exclude incomplete
trajectories; and (v) variant analysis to identify and validate common
pathways. More details about the event log generation and process
discovery can be found in this article (Chen et al., 2024a).

2.6 Privacy and data governance

The framework was developed and validated using publicly
available de-identified data from the PhysioNet Computing in
Cardiology Challenge 2019 (Reyna et al., 2020), which is released
under a data use agreement explicitly permitting computational
research and analysis. This secondary analysis of publicly available
data did not require additional institutional review board approval”

“A critical consideration for healthcare Al systems is data privacy
during processing and analysis. Our framework addresses this through
a privacy-by-design architecture where raw patient-level data are
processed locally to generate process mining outputs before any
interaction with LLM services. Specifically, only aggregated,
de-identified process mining artifacts are transmitted to LLM
providers, including: (1) event log statistics (counts, frequencies,
durations) with no patient identifiers, (2) process map visualizations
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TABLE 3 Comparison of process discovery algorithms based on implementation platform, model complexity, processing time, F1-score, and clinical

interpretability.

Algorithm Implementation Model elements Time F1 score

Directly-follows graph Both platforms 15 activities, 42 transitions 12s 0.89
2.1s

Heuristics miner Python (PM4PY) 12 places, 15 transitions 2.8s 0.85

Alpha algorithm Python only 18 places, 22 transitions 19s 0.76

Inductive miner Both (varying completeness) 8 operators 34s 0.82
5.1s

ILP miner Pythons only 14 places, 19 transitions 1235 0.79

*Each miner generates different graph formats with different elements: activities, places and operators. Directly-Follows Graph and Inductive Miner are available in both R and Python; others

are Python-only.

showing pathways and transitions, and (3) summary statistics and trace
variants. No individual patient records, protected health information,
or personal identifiable data are shared with external services.

3 Results

HealthProcessAlI successfully processed all four test datasets,
handling from event logs to comprehensive text reports. The modular
architecture enabled seamless integration between data loading, process
mining analysis using direct follow graphs (DFG) as a process discovery
algorithm, and LLM-based report generation using the OpenRouter
API for communication. This performance profile demonstrates
computational efficiency suitable for iterative exploratory analysis,
consistent with software engineering best practices for healthcare
systems. The results obtained were presented in Supplementary materials,
as well as in the GitHub' repository and the demonstrator webpage.?

3.1 Process mining analysis results

This section systematically compares process discovery algorithms
established Table 3
comprehensively compares five process mining algorithms across

following evaluation methodologies.
multiple evaluation dimensions, revealing distinct trade-offs between
computational efficiency, model accuracy, and clinical utility. The
Directly-Follows Graph demonstrates superior performance with the
highest Fl-score of 0.89. The Heuristics Miner achieves a strong
F1-score of 0.85, followed by the Inductive Miner at 0.82. In contrast,
the ILP Miner records an F1-score of 0.79, while the Alpha Algorithm
exhibits the lowest performance with a score of 0.76.

3.2 LLM integration and report generation
results

A total of 20 reports were generated, which are presented in

Supplementary materials. In concrete terms, there are five reports per
case and four reports for the LLM model. All LLM-generated reports

1 https://github.com/ki-smile/healthprocessai
2 https://ki-smile.github.io/healthprocessai/website/
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were evaluated using seven different LLMs, namely Claude Sonnet-4,
Gemini 2.5 Pro, Grok-4, DeepSeek R1, GEMMA-2-27b, QWEN-2.5-
72and GPT-4.1. Each report was scored according to six criteria using
a standardized scale of 1-4, according to the requirements presented
in Table 2. We have excluded LLAMA-3.1-7b scores from the analysis
as it provided the same score for all the reports (low variability).

Table 4 presents the average score for each model and each case.
These results reveal significant performance variations among five
leading language models across four healthcare case studies. Claude
Sonnet-4 and Gemini 2.5 Pro emerge as the clear leaders with
exceptional performance. Furthermore, we have noticed that Gemini
2.5 is the only model without hallucination in the results.

Due to the proof-of-concept design with only four test cases, we
present descriptive statistics rather than inferential tests (Figure 4).
The performance comparison of eight large language models (LLMs)
across four proof-of-concept healthcare case scenarios—infection,
organ dysfunction, glomerular filtration rate (GFR), and kidney
outcomes—revealed significant variations, with scores reflecting
average ratings on a 4.0-point scale. Claude Sonnet-4 and Gemini 2.5
Pro were the clear top performers, ranking 1st and 2nd with overall
mean scores of 3.72/4.0 (95\% CI: [3.51-3.93]) and 3.49/4.0 (95\% CI:
[3.15-3.75]), respectively. They were followed by Qwen-2.5-72b in 3rd
place (M = 3.35/4.0), and then Grok-4 and GPT-4.1 tied for 4th/5th
rank, both achieving an overall mean of 3.15/4.0. Deepseek R1
followed with a mean score of $3.10/4.0$, ranking 6th, while LLaMA-
3.1-70b ranked 7th (M =3.02/4.0). Gemma-2-27b ranked 8th,
showing the lowest performance with an overall mean score of
2.54/4.0 (95\% CI: [2.25-2.83]). The evaluation demonstrated strong
inter-evaluator consistency, achieving Fleiss’s k = 0.63 between seven
independent LLM evaluators, Cronbach’s a =0.92 for test-retest
reliability across repeated evaluations.

3.2.1 Economic analysis via OpenRouter
integration

The Cost-Effectiveness Analysis for Multi-Model Evaluation
revealed substantial variability in cost efficiency among the eight
language models (Table 5). LLaM A-3.1-70b demonstrated the highest
performance-to-cost ratio, processing 1905 p.m. 1,365 input and
1,088 + 86 output tokens at a cost of $0.001 per report ($0.01 total cost
across 20 reports). Qwen-2.5-72b and Gemma-2-27b followed closely,
achieving ratios of 3,017 and 2,535, respectively, and also costing
$0.001 per report ($0.01 total). In the mid-range of efficiency,
DeepSeek R1 achieved a high performance-to-cost ratio of 155,
processing 2,487 + 142 input and 1,234 + 89 output tokens at $0.02
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TABLE 4 Performance comparison of LLMs across four proof-of-concept case scenarios: infection, organ dysfunction, glomerular filtration rate (GFR),

and kidney outcomes.

Model Case | Case Il Case lll Case IV Overall 95% ClI Rank
(Infection) (Organ) (GFR) (Kidney) mean
CLAUDE SONNET-4 3.56/4.0 3.72/4.0 3.73/4.0 3.86/4.0 3.72/4.0 [3.51-3.93] 1st
GEMINI 2.5 PRO 3.53/4.0 3.56/4.0 3.70/4.0 3.20/4.0 3.49/4.0 [3.15-3.75] 2nd
QWEN-2.5-72b 3.26/4.0 3.06/4.0 3.61/4.0 3.48/4.0 3.35/4.0 [2.96-3.74] 3rd
GROK-4 3.07/4.0 3.17/4.0 3.16/4.0 3.20/4.0 3.15/4.0 [3.08-3.22] 4th
GPT-4.1 3.11/4.0 3.03/4.0 2.85/4.0 3.65/4.0 3.15/4.0 [2.78-3.54] 5th
DEEPSEEK R1 3.01/4.0 3.19/4.0 2.74/4.0 3.52/4.0 3.10/4.0 [2.65-3.59] 3rd
LLAMA-3.1-70b 3.10/4.0 3.17/4.0 3.07/4.0 2.75/4.0 3.02/4.0 [2.72-3.32] 7th
GEMMA-2-27b 2.32/4.0 2.54/4.0 2.55/4.0 2.76/4.0 2.54/4.0 [2.25-2.83] 8th
Scores highlighted in bold reflect average ratings on a 4-point scale, with 95% confidence intervals and overall ranking.
TABLE 5 Cost-effectiveness analysis of LLMs across multi-model evaluations.
Model Input tokens Output tokens Cost Total cost Performance/cost
DEEPSEEK R1 2,487 £ 142 1,234 £ 89 $0.02 $0.40 155
GEMINI 2.5 PRO 2,523 £ 158 1,189 £ 76 $0.11 $2.20 32
CLAUDE SONNET-4 2,501+134 1,267+103 $0.26 $5.20 14
GROK-4 2,489+149 1,198+82 $0.61 $12.20 5
GPT-4.1 2,476x127 1,223+94 $1.13 $22.60 3
LLAMA-3.1-70b 1,905 + 1,365 1,088 + 86 $0.001 $0.01 3,345
GEMMA-2-27b 1,324 £ 197 1,425 + 144 $0.001 $0.01 2,535
QWEN-2.5-72b 2,356 £ 1,702 2,030 £424 $0.001 $0.01 3,017

The table reports average input and output token usage, estimated cost per report, total cost across 20 reports, and the performance-to-cost ratio. DeepSeek R1 demonstrated the highest cost-

effectiveness, while GPT-4.1 was the most expensive relative to performance.

per report ($0.40 for 20 reports). Gemini 2.5 Pro ranked fifth with a
ratio of 32, with costs of $0.11 per report ($2.20 total) and comparable
token volumes (2,523 + 158 input; 1,189 + 76 output). The lowest cost-
effectiveness ratios were observed for Claude Sonnet-4, which cost
$0.26 per report ($5.20 total), Grok-4 at $0.61 per report ($12.20
total), and GPT-4.1, which was the most expensive relative to
performance at $1.13 per report ($22.60 total). GPT-4.1 and Grok-4
also showed similar token processing volumes to the higher-
cost models.

3.3 Comparative analysis and orchestrated
report

Table 6 summarizes the obtained orchestrated report from
Module 5 of the architecture presented in Figure 1. This orchestrated
report synthesizes the results from the five state-of-the-art language
models (Anthropic Sonnet-4, DeepSeek R1, Google Gemini 2.5 Pro,
OpenAI GPT-4.1, and X-AI Grok-4) from the proof-of-concept cases.
It is important to note that at this stage GEMMA-2-27b, QWEN-
2.5-72 and LLaMA-3.1-70b were not included in the orchestrator. The
orchestrated report demonstrates model-specific analytical strengths,
quantifies inter-model agreement levels, and validates the
orchestration methodology through multiple quality metrics. Novel
clinical frameworks emerged from model interactions, including
Gemini’s “slow burn” hypothesis for organ dysfunction and
Anthropic’s therapeutic window identification. High consensus rates
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(85% agreement on major findings) and complementary analytical
approaches (73% of insights enhanced by cross-model validation)
support the validity of multi-model orchestration as a robust
methodology for complex healthcare analytics (Figure 4).

3.4 Framework validation through example
demonstrators

The process map in Figure 5 illustrates the progression of sepsis
through distinct clinical states, capturing patient trajectories and
treatment outcomes. Most patients began with High Temperature
(98.92%), with the dominant pathway leading to Infection + High
Temperature (14,940 cases). Normal Temperature functioned as a
central hub (97.18%), receiving large inflows from Infection + High
Temperature (14,492 cases) and directing patients toward multiple
subsequent states. Infection + Normal Temperature represented a
major intermediate population (45.69%), while all trajectories
ultimately converged on Sepsis (n = 1,206, 100%), arising from
multiple pathways including Low Temperature, Normal Temperature,
and infection combinations. Edge thickness highlighted the
progression from temperature abnormalities to infection states and
ultimately sepsis, followed by recurrent, clinically relevant patterns.

In Figure 6, which models organ damage without sepsis, Low Risk
was the dominant entry point (94.42%), with the primary trajectory
leading to Cardiac Damage (204 cases, 32.58%). From Cardiac
Damage, patients frequently progressed to Renal + Cardiac Damage
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TABLE 6 Comparative methodological analysis of multi-model Al orchestration applied to healthcare process mining across four proof-of-concept

scenarios.
Case study Key consensus Critical metrics Unique model insights Implications
finding
Casel Temperature fluctuations as 6-7 h intervention window [Anthropic]: 6 h window hypothesis Early intervention protocols based
central indicators 14,940 Normal—High transitions [Gemini]: Temperature chattering on temperature volatility
>3 cycles = 2-3x sepsis risk [Grok]: Loop frequency model
Case II Cardiac damage as gateway to 68% of sepsis via cardiac route [Gemini]: “Slow burn” hypothesis Multi-organ monitoring with
sepsis 90.7% originate from Low Risk [Anthropic]: Therapeutic windows cardiac biomarkers
57-93 h therapeutic window [DeepSeek]: 3x cardiac risk multiplier
Case III Faster CKD progression with PPI: 9.39 weeks G1/G2 — G3 [Anthropic]: Hypomagnesemia Enhanced GFR monitoring for PPI
PPI vs. H2B H2B: 12.09 weeks G1/G2 — G3 pathway patients
20% less time in G3 with PPI [Gemini]: Confounding emphasis
[Grok]: Variant analysis (15% vs. 18%)
Case IV Higher adverse outcomes with 2.7-9x higher eGFR decline risk [Anthropic]: Comprehensive risk Risk stratification and
PPI in sepsis survivors PPI: 9.0% vs. H2B: 3.4% major framework deprescribing protocols
decline [DeepSeek/Gemini]: Confounding
18-24 months median progression | analysis [Grok]: Precise statistics (9%
vs. 3.4%)
Claude Sonnet-4 1
Gemini 2.5 Pro 1 O
)
3 Grok-4 1 o
=
DeepSeek R1 -
GPT-4.1 A I
T T T T
2.6 3.4 3.6 3.8
Score
FIGURE 4
Distribution of evaluation scores across four test cases for each model.

(45 cases, 26.4%) or directly to Multiorgan Damage (18 cases).
Multiorgan Damage served as a convergence point (27.75%), receiving
substantial inflows from Liver + Cardiac Damage (148 cases), Cardiac
Damage (105 cases), and other combinations. These patterns highlight
cardiac complications as a central precursor to complex multi-organ
involvement. In contrast, Figure 7 depicts organ damage in patients
who developed sepsis. Low Risk remained the starting point (80.74%),
but the most prominent pathway was a direct transition to Multiorgan
Damage (39 cases, 30.11%). Here, Cardiac Damage (34.26%) and
Renal + Cardiac Damage (28.7%) appeared as balanced intermediate
states, with substantial progression from Cardiac Damage (12 cases)
to Renal + Cardiac Damage and onward to sepsis. Liver + Cardiac
Damage (27.78%) emerged as another convergence point with
distributed inflows. Direct transitions from Multiorgan Damage to
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Sepsis (23 cases) underscored multi-organ failure as a critical
inflection point frequently leading to septic outcomes.

Regarding Case I, Figure 8 shows a comparative kidney function
progression diagram illustrating distinct pathways and temporal
patterns between two patient cohorts, (a) PPI and (b) H2B, revealing
significant differences in disease progression and outcomes, as
published previously (Chen et al., 2024b). In the PPI cohort, the
majority of patients (88.69%) progress directly from Start to G3
kidney function (95.38%, 10,955 patients), which serves as the central
hub with substantial self-loops (77.88% staying in G3 for 0.53 months)
and bidirectional transitions to both better (G1 or G2: 45.26%, 5,199
patients) and worse (G4 or G5: 40.69%, 4,674 patients) function states.
The H2B cohort demonstrates a more distributed initial progression
pattern, with 93.54% advancing to G3 (98.92%, 551 patients) but
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pathways derived from patient data logs.

Process map of Case | illustrating infection progression. The model depicts transitions between clinical states, highlighting event frequencies and

showing different transition dynamics, including more frequent
movements to G1 or G2 states (51.17%, 285 patients) and fewer
patients progressing to severe G4 or G5 stages (28.37%, 158 patients).
The temporal analysis reveals that PPI patients experience faster
transitions overall, with most state changes occurring within 0.13-
0.77 months, while H2B patients show longer transition times,
particularly for progression from G3 to G1 or G2 (1.1 months) and G3
to End states (1.07 months). Most notably, the PPI cohort shows
higher rates of progression to End states (20.71% vs. 11.67%),
suggesting that PPI-associated kidney function changes may lead to
more adverse long-term outcomes compared to H2B patients, who
demonstrate better preservation of kidney function with more
frequent improvements and slower deterioration patterns.

Last, Figure 9 presents the process map from Case IV, generated
from a previous study focusing on process mining applied to kidney
epidemiology (Chen et al,, 2024a). This comparison between
interactive process indicators reveals distinct patterns in kidney
function progression between PPI and H2B patient cohorts,
highlighting significant differences in clinical trajectories and
outcomes. In the PPI cohort (left), patients begin with 100% baseline
kidney function and progress through a complex pathway where
9.99% experience decline to 9.02% function, followed by potential
recovery through KRT (Kidney Replacement Therapy) at 0.16%
function before progressing to Death at 19.34% frequency with a
transition probability of 2.06%. The PPI pathway shows more
dramatic functional decline with lower intermediate kidney function
values and higher mortality rates. In contrast, the H2B cohort (right)
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demonstrates a more gradual decline pattern, starting at 100%
function and progressing to a “Decline 30%” state at 3.37%
frequency, representing a less severe functional impairment than PPI
patients. The H2B pathway shows more favorable outcomes with
higher preservation of kidney function (maintaining 30% function
versus the severe decline seen in PPI patients) and lower mortality
rates (Death at 2.16% versus 19.34% in PPI). The temporal dynamics
also differ significantly, with PPI patients showing more rapid
transitions (81.31% direct progression) and complex feedback loops.
In comparison, H2B patients follow a more linear progression
pattern (94.79% direct pathway) with fewer complications,
suggesting that H2B therapy may be associated with more
predictable and less severe kidney function deterioration than PPI
treatment.

4 Discussion

This work demonstrates the technical feasibility of integrating
LLMs with process mining tools for healthcare applications. Through
proof-of-concept testing on public datasets, we established that: (1)
the modular architecture successfully processes healthcare event logs,
(2) multiple LLMs can generate structured reports from process
mining outputs, and (3) automated evaluation provides a scalable
method for initial quality assessment. While clinical validation
remains future work, these technical achievements provide a
foundation for making process mining more accessible to healthcare
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Process map for Case Il depicting the modeled trajectories of organ damage in the absence of sepsis, with relative frequency and cumulative outcome

professionals. In concrete, these analyses demonstrated technical
consistency in generating structured outputs from process mining
data. The framework was developed and tested on a workstation with
a2.30 GHz CPU (8 cores) and 32 GB RAM. No GPUs were used. LLM
API calls presented a speed between 40 and 100 tps per request,
depending on the model and the run. For open-source model
deployment, we recommend the computational resources
mentioned above.

Table 4 confirms that the framework balances technical rigor. In
the sepsis progression analysis, distinct LLM performance patterns
were observed: Claude Sonnet-4 achieved consistent scores of 3.72/5.0
across all four validation cases, while Gemini 2.5 Pro showed
comparable strength with an overall score of 3.49/5.0. Automated
evaluation via the Claude API yielded high concordance with expert
reviewers (Fleiss’s k = 0.63), supporting the technical consistency of
Al-assisted interpretation (Sendak et al., 2020). Key findings include:
(1) the multi-model orchestration was implemented successfully, with
ensemble performance exceeding that of individual models; and (2)
actionable insights scale with both the complexity of healthcare
workflows and the interpretive capacity of the Al ensemble.

This work demonstrates the transformation of healthcare process
data into standardized event log formats with Al-enhanced
interpretation through a six-step modular pipeline (Figure 1). Beyond
technical implementation, the framework provides accessible
interpretation for clinical stakeholders through integrated educational

components. This approach addresses the limitations of traditional
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manual analysis, which lacks scalability and consistency in pathway
interpretation due to the inherent complexity of healthcare processes
(Rojas et al., 2016; Mufioz-Gama et al., 2022). While prior studies have
explored Al-assisted healthcare analytics, these have primarily
focused on individual prediction tasks rather than comprehensive
process mining with embedded educational integration (Mufoz-
Gama et al.,, 2022). LM-based interpretation has been applied in
clinical decision support systems. Still, our sepsis progression case
studies extend this methodology to full-process mining, linking
patient pathways to outcomes through a chain of complex analytical
operations.

The framework supports multiple deployment models to
accommodate varying privacy requirements: (i) Cloud-based
deployment with commercial APIs for non-sensitive research data, (ii)
On-premises deployment with open-source models for institutional
data, and (iii) Federated learning approaches for multi-institutional
collaborations where data cannot be centralized. The proof-of-concept
implementation used commercial APIs with publicly available data,
but the modular architecture facilitates adaptation to stricter privacy
requirements.

Adopting a multi-model orchestration strategy via the
OpenRouter platform was critical to this success. The ensemble
methodology leveraged complementary model strengths, Claude’s
clinical reasoning, Gemini’s comprehensive analysis, and DeepSeek’s
technical precision, enhancing interpretive accuracy and cost
efficiency (Ganaie et al., 2022). This approach satisfies established
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Process map for Case Il illustrating the modeled trajectories of organ damage in sepsis, with relative frequency and cumulative outcome distributions.

healthcare AI quality standards (Table 2) and advances methodology
by demonstrating that systematic model selection can be optimized
for specific clinical contexts. Performance/cost ratios ranged widely,
underscoring the practical importance of multi-model orchestration
in balancing technical consistency with computational efficiency.
Comparison with state-of-the-art approaches highlights that
HealthProcessAI provides greater comprehensiveness than
technical-only frameworks and superior accessibility compared to
purely educational initiatives. The framework’s alignment with the
PM2 methodology ensures that LLM integration enhances rather
than replaces established process mining best practices. By
positioning Al-assisted interpretation within Stage 4 (Evaluation)
rather than earlier stages, we preserve the analytical rigor of
process discovery while addressing the interpretation barrier that
limits clinical adoption found in interactive process mining. This
approach differs from end-to-end AI systems that may bypass
traditional process mining techniques, instead creating a hybrid
methodology that combines the strengths of both approaches. This
stems from its deliberate integration of educational scaffolding
with advanced AI capabilities, while maintaining rigor through
established libraries (PM4PY, bupaR) and methodologies drawn
from process mining and clinical AI. Unlike existing solutions,
which typically address technical process mining or clinical Al in
isolation (Berti et al, 2019; Janssenswillen et al., 2019),
HealthProcessAl bridges both domains with integrated educational
support. This positions the framework as a distinct contribution to

Frontiers in Artificial Intelligence

the healthcare informatics landscape and underscores the need for
continued research into hybrid frameworks that combine technical
sophistication, clinical accessibility, and educational effectiveness.

4.1 Study limitations and scope

This work represents the technical development and initial
validation phase of HealthProcessAl. A critical limitation is that
LLM-generated outputs were not validated by clinical domain experts.
The reported Fleisss k=0.63 represents consistency between
automated LLM evaluators, not clinical accuracy as assessed by
healthcare professionals. This automated evaluation approach was
chosen for this proof-of-concept to demonstrate scalability and
establish baseline system performance, but it creates a potential for
circular validation where Al systems assess other Al systems without
human verification. While using multiple independent LLMs reduces
the risk of idiosyncratic biases from a single model, we acknowledge
that all current LLMs share certain training data characteristics that
could introduce systematic biases. True validation of output accuracy
requires human expert evaluation, which we identify as essential
future work. Clinical validation with healthcare practitioners
reviewing real-time data remains essential future work before this
framework can be recommended for clinical deployment. The current
study establishes technical feasibility and provides a foundation for
these necessary clinical validation studies.
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In this line, the proof-of-concept evaluation demonstrated the
framework’s potential to address critical healthcare optimization
tasks, such as clinical pathway analysis and quality improvement.
These case studies confirmed that Al-assisted interpretation
produced structured, consistent outputs through modular pipeline
architecture. Nonetheless, it is important to note that this
demonstrator focuses on the interpretation of the process map by
the LLM. Other components from the process mining methodology,
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such as advanced analytics, conformance checking, or hypothesis
testing, have not been evaluated and presented for the cases
presented in this paper and are out of scope. This work represents
the technical development and initial validation phase of
HealthProcessAl. Key limitations include:

1. Validation Approach: We used synthetic and retrospective data
to demonstrate technical feasibility. Direct clinical validation
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with healthcare practitioners using real-time data remains
future work.

2. LLM Evaluation: The reported Fleisss k=0.63 reflects
consistency among automated evaluators, not clinical accuracy.
Future work will incorporate expert reviews of a subset of
generated reports to establish ground truth for output quality.

3. Generalizability: Testing focused on sepsis and CKD
progression using one public dataset and previously published
process maps. Extension to other clinical domains requires
dedicated validation with domain-specific expertise.

4. Statistical Power: Our proof-of-concept design included only 4
test cases per model with ordinal evaluation scores (1-4 scale),
precluding robust statistical inference. We therefore present

than

acknowledging that formal statistical validation requires larger

descriptive  statistics rather hypothesis  tests,
samples.

5. Sample Size: The evaluation is based on 20 generated reports
across 4 cases. This is sufficient for demonstrating technical
feasibility but insufficient for definitive performance

comparisons between models.

The development of HealthProcessAl followed responsible Al
principles including transparency through comprehensive
documentation and open-source release, reproducibility through
detailed methodological specifications, fairness through evaluation
across diverse clinical scenarios, and accountability through clear
acknowledgment of limitations and validation requirements. These
principles guided design decisions such as the multi-model
orchestration approach (reducing dependence on any single Al
system) and the preservation of process mining analytical outputs
alongside LLM interpretations (enabling verification of Al-generated
insights). Future clinical deployment will require additional
considerations including ongoing monitoring for drift or degradation
in LLM performance, establishment of human-in-the-loop verification
workflows, and regular audits of Al-generated recommendations for
potential biases or errors.

The selection of datasets for this study was strictly aligned with
its primary objective as a technical proof-of-concept. We prioritized
the PhysioNet Sepsis Challenge 2019 dataset and the SCREAM
database to validate the pipeline’s modular architecture using
structured, unimodal event logs. While comprehensive databases like
MIMIC-IV offer extensive multimodal data (Johnson et al., 2023),
the effective integration of such heterogeneity necessitates advanced
infrastructures specifically Multimodal Large Language Models
(MLLMs) or Retrieval-Augmented Generation (RAG) pipelines—
that exceed the computational and architectural scope of this initial
implementation. Furthermore, the use of the publicly available
PhysioNet dataset

accessibility for researchers testing the framework, avoiding the

ensures immediate reproducibility and
credentialing barriers and privacy constraints associated with
restricted databases.

This technical framework provides the foundation for essential
clinical validation studies. Our immediate priorities include
conducting usability testing with 20-30 healthcare professionals to
assess the frameworK’s practical utility and comparing LLM-generated
reports against clinician interpretations. Following this initial

validation, we plan prospective deployment in clinical settings to
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validate the actionable insights against actual patient outcomes and
process improvements. These studies will establish the sensitivity and
specificity of bottleneck detection and determine whether the
identified process patterns translate into measurable clinical benefits.
Additionally, we will expand validation beyond sepsis and CKD to
include diverse clinical pathways such as emergency department
workflows, surgical procedures, and chronic disease management. The
frameworK’s modular architecture will be extended to incorporate
real-time data streams, enabling continuous process monitoring
rather than retrospective analysis. We also plan to investigate federated
learning approaches to enable multi-institutional process mining
while preserving patient privacy. Until these validation studies are
complete, HealthProcessAl should be considered a research tool for
exploring process mining applications rather than a clinical decision
support system.

5 Conclusion

HealthProcessAl provides a technical foundation for advancing
healthcare process mining through AI integration. This proof-of-
concept demonstrates the feasibility of integrating educational
scaffolding, multiplatform support, and multi-model orchestration.
However, actual deployment in healthcare settings cannot proceed
without rigorous clinical validation. Through the integration of
multi-platform support and multi-model orchestration, the
framework enables clinicians without data science expertise to apply
advanced process mining techniques. Automated LLM presents a
scalable method for AI quality assurance, while multi-model
orchestration outperforms single-model approaches. Validation on
four proof-of-concept cases confirms the framework’s capacity to
generate structured interpretations for potential clinical use, and
comparative analysis of Python and R implementations informs
technology choices with evidence on cost-effectiveness and
performance. Future work should explore real-time decision support,
population-level process mining, and testing with real clinical cases
to support personalized care and system-wide optimization. As data-
driven healthcare evolves, HealthProcessAlI offers a validated,
accessible, and scalable approach to advancing clinical process
intelligence.
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