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Background: Process mining has emerged as a powerful analytical technique 
for understanding complex healthcare workflows. However, its application 
faces significant barriers, including technical complexity, a lack of standardized 
approaches, and limited access to practical training resources. To address 
unfamiliarity and improve accessibility, we proposed a new framework for 
translating technical analyses into text outputs that users can understand.
Objective: We introduce HealthProcessAI, a GenAI framework designed 
to simplify process mining applications in healthcare and epidemiology by 
providing a comprehensive wrapper around existing Python (PM4PY) and 
R (bupaR) libraries. To address unfamiliarity and improve accessibility, the 
framework integrates multiple Large Language Models (LLMs) for automated 
process map interpretation and report generation, helping translate technical 
analyses into outputs that diverse users can readily understand.
Methods: HealthProcessAI implements modular architecture with the following 
components: (1) data loading and preparation, (2) process mining analysis, (3) 
integration of LLM for interpretation, (4) advanced analytics, (5) multimodal report 
orchestration, and (6) the validation framework. We validated the framework 
using sepsis progression data as a proof-of-concept example and compared the 
outputs of five state-of-the-art LLM models through the OpenRouter platform. 
This study presents a technical validation using automated LLM evaluation, and 
clinical validation by healthcare professionals is planned as future work.
Results: To test its functionality, the framework successfully processed sepsis 
data across four proof-of-concept cases. A total of 32 reports were generated, 
demonstrating robust technical performance and its capability to generate 
reports through automated LLM analysis. In concrete terms, there are eight 
reports per case and four reports per LLM model. LLM evaluation using seven 
independent LLMs as automated evaluators revealed distinct model strengths: 
Claude Sonnet-4 and Gemini 2.5-Pro achieved the highest consistency 
scores (3.72/4.0 and 3.49/4.0) when evaluated by automated LLM assessors. 
It is important to note that outputs were not clinically validated by healthcare 
professionals.
Conclusion: HealthProcessAI provides a standardized framework that reduces 
technical and training barriers in healthcare process mining while maintaining 
scientific objectivity. By integrating multiple LLMs for automated interpretation 
and report generation, the framework addresses widespread unfamiliarity with 
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process mining outputs, demonstrating technical feasibility for making them 
more accessible to clinicians, data scientists and researchers pending clinical 
validation. This structured analytics and AI-driven interpretation combination 
represents a novel methodological advance in translating complex process 
mining results into potentially actionable insights for healthcare applications. 
However, future work should involve systematic evaluation by clinicians.

KEYWORDS

epidemiology, generative AI, healthcare analytics, large language models, process 
mining

1 Introduction

The ongoing digitalization of healthcare systems worldwide 
generates substantial volumes of unstructured data through electronic 
health records (EHRs), clinical information systems, laboratory 
results, and patient monitoring devices (Modi et al., 2024). These data 
encapsulate complex patient journeys and clinical workflows, offering 
significant potential to improve healthcare quality and outcomes. 
Despite global healthcare expenditures averaging approximately 10% 
of GDP and increasing accessibility of electronic data, clinicians 
continue to face limited access to practical tools for interpreting these 
complex datasets (Wibawa et al., 2024). Process mining is a discipline 
at the intersection of data mining and business process management 
(Van der Aalst, 2016), which has shown potential as a powerful 
method for extracting insights from event logs in healthcare (Rojas et 
al., 2016; Muñoz-Gama et al., 2022).

The application of process mining in healthcare has shown 
substantial promise in various domains, including emergency 
department workflows (Samara and Harry, 2025), surgical procedures 
(Kurniati et al., 2019), and chronic disease progression (Chen et al., 
2024a). Process mining has evolved from business process 
management to healthcare applications since the early 2000s, enabling 
the discovery, conformance checking, and enhancement of clinical 
pathways across over 270 healthcare studies analyzed in recent 
systematic reviews (Ghasemi and Amyot, 2016).

Nevertheless, several critical barriers hinder its broader 
implementation in clinical practice. First, the technical complexity of 
existing tools demands expertise that many healthcare professionals 
and data scientists do not possess (Erdogan and Tarhan, 2018). 
Second, interpreting process mining outputs often requires a deep 
understanding of algorithmic principles and clinical contexts, 
presenting a knowledge gap that limits usability. Third, a lack of 
standardization and comprehensive educational frameworks 
contributes to methodological heterogeneity, hindering reproducibility 
and cross-study comparisons.

Recent advancements in large language models (LLMs) offer 
novel opportunities to bridge these gaps (Brown et al., 2020; Lee et al., 
2023). LLMs have demonstrated remarkable capabilities in 
comprehending complex medical language and contextualizing 
heterogeneous healthcare data (Singhal et al., 2023). However, their 
integration with process mining methodologies remains largely 
unexplored, particularly in clinical decision support and educational 
applications.

Despite the maturity of process mining in analyzing patient flows, 
such as in oncology, mental health services, and emergency care, the 
interpretability of outputs remains limited (Mans et al., 2015). 

Emerging platforms like OpenRouter (OpenRouter, Inc., CA, United 
States) have democratized access to multiple LLM providers, enabling 
multimodal experimentation and cost-effective deployment, thus 
creating new possibilities for the synergistic use of LLMs and process 
mining. This convergence opens a unique opportunity: to develop 
frameworks that integrate the analytical rigor of process mining with 
the semantic and interpretive capabilities of modern AI systems. Such 
integration directly addresses current limitations in clinical 
interpretability, which remains a persistent challenge in healthcare 
analytics.

Current process mining tools such as PM4PY (Berti et al., 2019) 
and bupaR (Janssenswillen et al., 2019) generate sophisticated 
analytical outputs but require substantial programming knowledge, 
impeding adoption among healthcare practitioners. Moreover, the 
outputs often lack direct clinical relevance and are rarely translated 
into actionable insights. To address these limitations, this study 
proposes a novel approach leveraging LLMs to transform process 
mining outputs into clinically interpretable reports enriched with 
structured outputs. This AI-enhanced framework offers an 
interpretable layer on top of complex data models by maintaining the 
relationships between clinical processes and entities. Such systems 
have shown potential in integrating and analyzing fragmented 
healthcare data, facilitating more informed and timely 
decision-making.

We hypothesize that it is possible to transform process mining 
results into semantically rich, clinically interpretable reports using 
LLMs. This transformation requires the definition of a structured 
educational framework tailored for healthcare professionals and 
researchers. Through LLM-based reasoning, process mining datasets 
can be linked to broader healthcare knowledge bases, allowing clinical 
pathways to be associated with outcomes or care quality metrics via 
evidence-based mechanisms. We present the first comprehensive 
framework for LLM-enhanced healthcare process mining to evaluate 
this hypothesis. Our contributions are threefold:

	 1.	 Multi-LLM Interpretation Methodology: We introduce a multi-
model approach for the automated interpretation of process 
mining results, with potential generalizability beyond 
healthcare applications.

	 2.	 Structured Framework for Accessibility and Reproducibility: 
We design an integrated framework that addresses the technical 
and educational barriers limiting adoption, promoting 
accessibility and methodological reproducibility.

	 3.	 Empirical Demonstration in Proof-of-Concept Cases: We 
demonstrate our framework’s functionality through a proof-of-
concept analysis of sepsis progression and kidney disease, a 
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complex, high-risk clinical pathway used here to test the 
system’s capabilities.

The remainder of this paper is structured as follows. The 
Methodology section outlines the analytical approach for process 
mining, detailing how process maps are transformed into clinically 
interpretable reports. It also describes the architecture of the proposed 
framework and the evaluation methods applied. Privacy-preserving 
deployment strategies are discussed in Section 2.5. The Results section 
presents a comparative analysis of process mining tools implemented 
in R and Python. It evaluates the quality and interpretability of the 
generated reports within demonstrator case studies. The Discussion 
section contextualizes these findings by comparing them with current 
literature, highlighting key insights, implications, and potential 
limitations. Finally, the Conclusions section summarizes the core 
contributions of the study and identifies future challenges and 
directions for the continued development of LLM-integrated process 
mining in healthcare.

2 Methods

2.1 Framework design and architecture

HealthProcessAI is a framework built upon established process 
mining libraries, specifically designed for healthcare and epidemiological 
applications. Its architecture follows recognized software design patterns 

used in healthcare informatics systems (Shortliffe and Cimino, 2014) 
while introducing novel approaches to AI integration. The development 
of the framework was guided by four core principles, emphasizing 
comprehensive educational support and clinical applicability. The first 
principle, accessibility, ensures that all components are accompanied by 
detailed documentation, defined learning objectives, and step-by-step 
tutorials aligned with medical education standards. The framework 
maintains technology-agnostic flexibility by supporting both Python 
and R implementations, accommodating diverse user preferences and 
institutional infrastructures. Finally, AI-enhanced interpretation is 
realized by integrating multiple LLMs, enabling automated clinical 
report generation and contextual analysis of complex healthcare 
processes. HealthProcessAI adopts a modular pipeline architecture 
grounded in established process mining methodologies, as depicted in 
Figure 1 (Van der Aalst et al., 2011).

In concrete, HealthProcessAI is based on the interactive process 
mining framework for epidemiology (Fernandez-Llatas, 2020; Chen 
et al., 2024a), which is also extension of the question driven 
methodology (Rojas et al., 2017). Furthermore, our approach is linked 
also with the PM2 framework, ensuring alignment with established 
best practices in processing mining (Van Eck et al., 2015). Module 1 
(Data Loading and Preparation) implements PM2 Stages 1–2 by 
handling project planning considerations and data extraction from 
healthcare systems. Module 2 (Process Mining Analysis) addresses 
PM2 Stage 3 through comprehensive process discovery and 
conformance checking. Modules 3–4 (LLM Integration and Report 
Orchestration) enhance PM2 Stage 4 by providing automated 

FIGURE 1

Modular architecture of the HealthProcessAI pipeline. The six-module architecture supports end-to-end healthcare process mining, from data 
preparation and event log generation to process discovery and LLM-driven interpretation. It includes modules for report customization, system 
integration, and evaluation. Only the process matrix obtained after process discovery was sent to the API. The architecture is compatible with both 
Python and R and incorporates educational components to facilitate adoption among healthcare professionals and researchers. Solid lines indicate 
components implemented in this study, while dashed lines represent ongoing research and development.
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interpretation and evaluation of discovered processes. Module 5 
(Advanced Analytics) supports PM2 Stages 5–6 by enabling process 
improvement and operational support through actionable insights.

This paper focuses on technical validation of the framework, proving 
its feasibility and demonstrating that HealthProcessAI can generate 
reports from real process maps. The different modules implemented are 
highlighted with a purple background in Figure 1. Regarding the 
evaluation framework, it is a component that has been developed for the 
demonstrators implemented in this paper, and it is not necessary for 
future implementations. However, out of scope is the clinical validation 
of our framework and its application in other process mining domains. 
In concrete terms, advanced analytics and their application to hypothesis 
testing or conformance checking are not involved in our evaluation, and 
they will be addressed in future work. We demonstrate functionality by 
implementing four proof-of-concept cases from two different sources: 
(1) publicly available PhysioNet Challenge data for technical testing, and 
(2) previously published process maps from the SCREAM database for 
comparison. These proof-of-concept cases establish technical feasibility 
before planned clinical validation studies.

2.1.1 Module 1: data loading and preparation
The data loading module implements healthcare-specific data 

preparation techniques based on clinical informatics standards, 
incorporating several key features that enhance its utility for medical 
data processing (Benson and Grieve, 2016). The module handles event 
logs stored in CSV format, ensuring compatibility with diverse clinical 
information systems. It implements comprehensive data quality checks 
specifically designed to meet clinical data validation rules, helping 
maintain the integrity and reliability of healthcare datasets. 
Additionally, the module provides standardized column naming 
conventions that follow international healthcare standards, promoting 
consistency and interoperability across different clinical contexts. The 
system also includes healthcare-specific filtering methods that facilitate 
clinical cohort identification, enabling researchers and clinicians to 
isolate relevant patient populations for analysis and study efficiently.

For the sepsis use case, the data quality module was configured with 
a targeted set of validation rules designed to ensure both structural 
integrity and clinical plausibility before process discovery. Structural 
validation primarily focused on temporal consistency, enforcing strict 
chronological ordering of events within a trace and verifying that 
discharge timestamps logically succeeded admission timestamps. 
Additionally, we enforced identifier consistency and record 
completeness, rejecting any entries that lacked mandatory process 
mining attributes (specifically Case ID, Activity Label, or Timestamp) 
or that represented duplicate event signatures. To ensure clinical validity, 
the pipeline implemented value range constraints based on established 
physiological bounds, filtering out measurement artifacts such as body 
temperatures exceeding 45 °C. Finally, healthcare-specific cohort filters 
were applied to refine the dataset, selecting only those patient 
trajectories that possessed the complete set of longitudinal biomarker 
measurements required for the study’s specific sepsis definition.

For SCREAM database, we used published process maps, so data 
loading and preparation is described in previous articles from our 
research group (Chen et al., 2024a,b).

2.1.2 Module 2: process mining analysis
The process mining module is a comprehensive wrapper around 

PM4PY (Berti et al., 2019) and bupaR (Janssenswillen et al., 2019), 

providing healthcare-optimized algorithms encompassing many 
process discovery and analysis techniques. The module supports 
several key algorithms, including Directly-Follows Graph (DFG) 
discovery (Van der Aalst et al., 2004), Heuristics Miner for noise-
tolerant healthcare processes (Weijters et al., 2006), Alpha Algorithm 
for structured clinical protocols, Inductive Miner for sound process 
models (Leemans et al., 2013), and performance analysis with 
standard quality metrics In concrete, we have evaluated the process 
mining algorithms using the F1-Score, as detailed in Section 2.2. 
These enhancements are designed to be technically robust, relevant, 
and applicable to real-world healthcare scenarios.

2.1.3 Module 3: LLM integration
The LLM integration module provides standardized interfaces to 

multiple language models, implementing best practices for AI in 
healthcare (Topol, 2019), and encompasses a comprehensive suite of 
advanced language models, each optimized for specific clinical 
applications. The module supports Anthropic Claude (Sonnet-4), 
which is optimized for clinical reasoning, OpenAI GPT-4.1 with its 
broad medical knowledge base, Google Gemini 2.5 Pro featuring a 
large context window for comprehensive analysis, DeepSeek R1 for 
technical precision and quantitative analysis, and X-AI Grok-4 for 
creative insights and alternative perspectives. The framework 
incorporates prompts adapted for healthcare context. This 
comprehensive approach was designed in the sense that language 
model integration not only leverages the unique strengths of each AI 
system but also aligns with medical communication structures.

Prompt templates were engineered following a robust five-
component structure to ensure clinical relevance and analytical depth. 
First, role definition established a specialized role as a process mining 
analyst applied to epidemiology equipped with the skills to 
communicate complex data to clinical stakeholders. Second, task 
specification clearly defined the analytical objective, requiring the 
synthesis of provided process matrices and visual maps into a 
comprehensive report. Third, context provision embedded essential 
domain knowledge, including the target audience definition and 
specific disease state logic (e.g., detailing reversible transitions between 
“Infection” and “Sepsis” states). Fourth, output format requirements 
mandated a strict Markdown structure comprising six standardized 
sections: Executive Summary, Introduction, Process Map Analysis, 
Data Summary Tables, Hypothesis Generation, and Conclusion. 
Finally, quality criteria enforced professional, collaborative tone and 
specific formatting guidelines (e.g., use of bullet points and bold text) 
to maximize readability and actionability. Complete prompt templates 
for all four case studies are provided in Supplementary Tables S2–S5.

2.1.4 Module 4: report orchestration
The orchestration module implements multi-model consensus 

techniques adapted from ensemble learning principles, providing 
sophisticated mechanisms for integrating and synthesizing insights 
from multiple analytical sources. Rather than relying on a single Large 
Language Model (LLM) output, which may be prone to stochastic 
variations, the orchestration engine synthesizes findings from multiple 
independent analytical sources. The module synthesizes consensus 
findings using voting mechanisms, preserves unique insights from 
each model through diversity preservation techniques, identifies areas 
of agreement and disagreement using inter-rater reliability measures, 
and creates comprehensive multi-model reports with uncertainty 
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quantification. This approach ensures that the final analytical output 
captures the collective wisdom of multiple models and maintains 
transparency regarding the level of consensus and uncertainty in the 
findings, thereby providing healthcare professionals with a nuanced 
understanding of the analytical results and the level of consensus 
supporting each insight.

To mitigate the risk of semantic hallucination, the module utilizes 
a deterministic constraint injection strategy within the system prompts. 
As demonstrated in the Sepsis Progression use case, the prompt 
strictly defines the model’s role as an expert process mining analyst and 
restricts the generation space to the provided process matrix and map 
data. Explicit domain constraints are injected into the context window 
to prevent the fabrication of non-existent clinical states; for instance, 
the prompt rigidly defines the valid state transitions as (i) low 
temperature, (ii) normal temperature, (iii) high temperature, (iv) 
infection, and (v) sepsis, noting that transitions are reversible.

Furthermore, the orchestration module enforces structural 
consistency to facilitate programmatic comparison of outputs. The 
system prompt mandates a strict Markdown schema, requiring specific 
sections such as Case Summary, Activity Summary, and Trace 
Summary. By constraining the output format and enforcing a 
collaborative tone targeted at clinical and epidemiological 
stakeholders, the framework ensures that the multi-model synthesis 
captures the collective wisdom of the ensemble while maintaining a 
high degree of interpretability. Divergences between models are not 
discarded but are preserved as uncertainty indicators, providing 
healthcare professionals with a nuanced understanding of where the 
data supports definitive conclusions versus where interpretation varies.

2.1.5 Module 5: advanced analytics
The advanced analytics module showcases some of the research-

grade methodologies from recent healthcare process mining literature, 
incorporating a comprehensive range of analytical capabilities designed 
to enhance clinical decision-making and operational efficiency from 
modules 1, 2, 3, and 5 outputs. The module would provide conformance 
checking with clinical guidelines (Muñoz-Gama and Carmona, 2010), 
patient stratification analysis using machine learning techniques, 
bottleneck identification for healthcare optimization, predictive process 
monitoring for early warning systems, and clinical performance 
indicators aligned with established quality measures. These capabilities 
collectively enable healthcare organizations to systematically analyze 
their processes, identify areas for improvement, predict potential issues 
before they occur, and maintain compliance with clinical standards 
while optimizing patient care delivery and operational workflows. For 
this proof-of-concept demonstration, we primarily implemented 
process discovery, performance analysis, and basic pathway optimization 
capabilities linked to Module 2. Advanced features such as predictive 
process monitoring and comprehensive conformance checking 
represent framework capabilities that will be demonstrated in future 
work with additional case studies in a pre-operational environment.

2.2 Comparing process mining algorithms 
with F-score

The F1 score in process mining serves as a balanced quality metric 
that combines two fundamental dimensions of process model 
evaluation: fitness and precision. Fitness, also known as recall in the 

context of conformance checking, measures the ability of a discovered 
process model to reproduce the behavior observed in the event log, 
quantifying how well the model can replay all traces without blocking. 
Precision, conversely, assesses the degree to which the model avoids 
allowing behavior that was not observed in the log, preventing 
overgeneralization and ensuring that the model does not permit 
excessive additional execution paths (Muñoz-Gama and Carmona, 
2010). The token-based replay technique is commonly employed to 
calculate fitness by counting missing and remaining tokens during 
trace replay on the Petri net model, while precision is often evaluated 
through behavioral comparison techniques such as escaping arcs or 
footprint-based methods.

The F1 score is computed as the harmonic mean of fitness and 
precision, formally defined as F1 = 2 × (Precision × Fitness)/
(Precision + Fitness), providing a single aggregate measure that 
balances both quality dimensions (Buijs et al., 2012). This metric is 
particularly valuable when comparing different process discovery 
algorithms, as it penalizes models that excel in only one dimension 
while performing poorly in the other. For instance, a flower model 
that allows all possible behavior would achieve perfect fitness but very 
low precision, resulting in a poor F1 score. The use of the harmonic 
mean, rather than the arithmetic mean, ensures that both metrics 
must be reasonably high to achieve a good F1 score, making it a robust 
indicator of overall model quality in automated process discovery 
evaluations.

2.3 LLM model integration via OpenRouter 
platform

The framework integrates eight state-of-the-art language 
models through the OpenRouter platform, implementing a novel 
approach to multi-model healthcare AI systems. OpenRouter serves 
as a unified gateway providing a single endpoint following RESTful 
API design principles, cost optimization through competitive 
pricing via platform economics, and access to the latest models with 
automated updates. The platform also offers intelligent rate limit 
management through load balancing, queue management systems, 
and comprehensive usage analytics tracking that aligns with 
healthcare AI governance requirements, creating a robust 
infrastructure for multi-model AI orchestration in clinical 
applications. Table 1 shows the main characteristics of the five 
models included in this study.

2.4 Evaluation framework

We developed a comprehensive evaluation rubric based on 
healthcare informatics evaluation frameworks and clinical 
reporting standards (Friedman and Wyatt, 2006), establishing six 
key criteria for assessing LLM report quality with specific 
weightings and validation methods (Table 2) defined in previous 
studies regarding evaluation in AI (Rammal, 2024). The evaluation 
framework assigns Clinical Accuracy (25%) to determine the 
correctness of medical interpretations and terminology usage 
through expert clinical review, Process Mining Understanding 
(20%) to evaluate accurate interpretation of analytical results via 
technical validation, Actionable Insights (20%) to measure the 
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quality and feasibility of clinical recommendations through 
implementation assessment, Statistical Interpretation (15%) to 
verify correct analysis of quantitative findings using statistical 
validation, Report Structure and Clarity (10%) to examine 
organization and readability through communication analysis, and 
Evidence-Based Reasoning (10%) to evaluate the use of clinical 
evidence and literature via evidence synthesis evaluation. It is 
critical to note that this evaluation framework represents technical 
validation of the system’s functionality and consistency, not clinical 
validation of output accuracy or utility. No clinician-based review 
of the generated reports was conducted in this proof-of-
concept study.

The evaluation criteria weightings were established through 
iterative refinement with the research team and align with healthcare 
informatics evaluation frameworks (Friedman and Wyatt, 2006). 
Clinical accuracy received the highest weight (25%) given the 
paramount importance of medical correctness in healthcare 
applications. Process mining understanding and actionable insights 
were equally weighted (20% each) as core framework objectives. These 
weights represent our assessment of relative importance for this 

proof-of-concept; validation of this weighting scheme with clinical 
stakeholders is planned for future work.

We implemented an innovative automated evaluation system 
using seven LLMs as evaluators representing a novel application of 
AI-assisted evaluation in healthcare informatics that addresses 
scalability challenges in manual evaluation while maintaining 
consistency and objectivity. To measure the agreement between the 
different LLM evaluators, we computed the Fleiss κ, an extension of 
the Cohen’s κ coefficient, which is defined as κ = (p₀−pₑ)/1−pₑ where 
p₀ is the observed agreement proportion and pₑ is the expected 
agreement by chance. Furthermore, we calculated Cronbach’s α as α =
(k/(k−1)) × (1−Σσᵢ2/σₜ2) where k is number of items (4 cases), σᵢ2 is 
variance of each item and σₜ2 is variance of total scores. At this 
moment, no clinician-based validation of the generated outputs was 
conducted, as the scope of the evaluation at this stage focused on 
system functionality and feasibility.

2.5 Validation framework using 
demonstrator cases

To demonstrate the framework’s capabilities and validate its 
effectiveness, we utilized data from the Computing in Cardiology 
Challenge 2019 (PhysioNet) “Early Prediction of Sepsis from Clinical 
Data” (Reyna et al., 2020) and previously published process maps from 
the SCREAM (Stockholm Creatinine Measurements) database (Chen 
et al., 2024a). This international challenge provided high-quality, 
de-identified ICU patient data specifically curated for sepsis research, 
representing one of the most comprehensive publicly available sepsis 
datasets. The dataset encompasses 40,336 ICU patient records from 
three hospital systems, formatted as hourly vital signs and laboratory 
values covering 40 clinical variables, with sepsis defined according to 
Sepsis-3 criteria requiring suspected infection and organ dysfunction. 
Ground truth validation is established through expert-annotated 
sepsis onset times following Surviving Sepsis Campaign guidelines, 
with temporal resolution providing hourly measurements up to sepsis 
onset or ICU discharge. The PhysioNet Challenge data provides a 
robust foundation for process mining validation as it captures the 
complete temporal evolution of patient states, including pre-sepsis 
deterioration patterns that are critical for early intervention strategies.

All event log generation followed a standardized pipeline: (i) data 
validation and quality checking to ensure completeness and 
consistency, (ii) state classification using clinical criteria and 
established thresholds, (iii) temporal ordering verification to ensure 
chronological consistency, (iv) case filtering to exclude incomplete 

TABLE 1  Specifications and integration characteristics of selected large language models (LLMs) used within the HealthProcessAI framework.

Model Provider Context 
window

Cost tokens (*) Primary strengths Clinical applications

CLAUDE SONNET-4 Anthropic 200 K tokens $3.00/$15.00 Clinical reasoning, guideline interpretation Complex diagnostic pathways

GPT-4.1 OpenAI 128 K tokens $10.00/$30.00 Broad medical knowledge, consistency General clinical analysis

GEMINI 2.5 PRO Google 1 M tokens $1.25/$5.00 Large context, comprehensive analysis Long clinical narratives

DEEPSEEK R1 DeepSeek 64 K tokens $0.55/$2.19 Technical precision, quantitative analysis Statistical interpretation

GROK-4 X-AI 128 K tokens $5.00/$15.00 Creative insights, patient perspectives Alternative viewpoints

*Token pricing is reported per 1 million input/output tokens as of August 2025, with the first price referring to input and the second to output tokens. The models vary in context window size, 
token pricing, and domain strengths. Integration is tailored to clinical use cases such as diagnostic reasoning, long-form medical narratives, statistical interpretation, and patient-centered 
analysis.

TABLE 2  Evaluation criteria for assessing LLM-generated clinical reports 
within the HealthProcessAI framework.

Criterion Weight Description Validation 
method

Clinical accuracy 25% Correctness of medical 

interpretations and 

terminology usage

Expert clinical 

review

Process mining 

understanding

20% Accurate interpretation 

of analytical results

Technical 

validation

Actionable 

insights

20% Quality and feasibility 

of clinical 

recommendations

Implementation 

assessment

Statistical 

interpretation

15% Correct analysis of 

quantitative findings

Statistical 

validation

Report structure 

& clarity

10% Organization and 

readability

Communication 

analysis

Evidence-based 

reasoning

10% Use of clinical evidence 

and literature

Evidence synthesis 

evaluation

*Current validation uses automated LLM evaluation rather than clinical validation. Each 
criterion is assigned a relative weight based on its importance to clinical utility and 
interpretability. Validation methods involve domain-specific assessments, including clinical 
expert review, technical accuracy checks, and implementation feasibility testing.

https://doi.org/10.3389/frai.2026.1716819
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Illueca-Fernandez et al.� 10.3389/frai.2026.1716819

Frontiers in Artificial Intelligence 07 frontiersin.org

trajectories where some measurements are missing, and (v) variant 
analysis to identify and validate common pathways. Event logs were 
validated by comparing patterns discovered against clinical 
expectations and literature descriptions of disease progression.

2.5.1 Case I: infection/inflammation progression 
analysis

The first validation case focuses on infection and inflammation 
progression patterns by transforming raw clinical measurements from 
PhysioNet data into discrete states following established inflammatory 
response criteria. A disease progression model, such as the one 
defined in Figure 2, is required to incorporate this information into 
the event log. Temperature states are defined according to SIRS criteria 
as low temperature (core temperature <36 °C, indicating 
hypothermia), normal temperature (36–37.5 °C), and high 
temperature (>37.5 °C, indicating fever). Infection states combine 
multiple indicators, but in the proposed model, the infection is 
identified by the presence of WBC > 12,000 or <4,000 cells/L 
(leukocytosis/leukopenia), while the infection + temperature state 
represents combined states indicating concurrent infection and 
temperature abnormality. The state of sepsis is determined by the 
dataset based on Sepsis-3 criteria, which requires suspected infection 
(indicated by antibiotics and cultures). A SOFA score increase of 2 
points or qSOFA is equal to or higher than 2 when full SOFA is 
unavailable.

The PhysioNet dataset provides hourly measurements of 40 
clinical variables for each patient. We transformed this time-series 
data into an event log by evaluating patient state at each hourly 
timestamp. We have selected all the patients with temperature and 
WBC measurements. Subject without those measurements were 
excluded. For each timestamp, we assessed: (i) temperature state by 
evaluating core temperature measurement against SIRS thresholds; (ii) 
infection state by evaluating white blood cell count against defined 
criteria; and (iii) combined states when both temperature and 
infection criteria were met simultaneously. This process generated a 
sequence of clinical states for each patient, with state transitions 

occurring when measured values crossed threshold boundaries. The 
resulting event log contained 7,131 patients, 7 total different events, 
and 5,884 unique traces.

2.5.2 Case II: organ damage/failure progression 
analysis

The second validation case examines organ failure progression 
using SOFA (Sequential Organ Failure Assessment) score components 
from the PhysioNet data, as schematized in Figure 3. Concretely, the 
organ dysfunction states are defined across multiple systems with 
specific clinical thresholds based on key biomarkers. Cardiovascular 
dysfunction is identified by troponin I (TRP) > 0.04 ng/mL. In 
contrast, renal dysfunction is characterized by creatinine 
(CRT) > 1.3 mg/dL, and hepatic dysfunction is indicated by aspartate 
transaminase (AST) > 40 IU/L. Patient data input, including 
demographics, troponine I, creatinine, and aspartate transaminase, is 
processed through organ system dysfunction criteria to determine the 
presence or absence of damage in cardiovascular, renal, and hepatic 
systems. The state transitions in the organ failure model progress 
sequentially from low risk (no organ dysfunction at baseline) through 
single organ damage (one organ system affected) and multi-organ 
damage (multiple organ systems involved) to sepsis as the final state, 
with the event log capturing selected subjects and their time to event 
progression through these increasingly severe states of organ 
dysfunction.

Organ dysfunction states were determined hourly by evaluating 
biomarker levels against established clinical thresholds. We have 
selected all the patients with creatinine, troponin I and aspartate 
transaminase. Subject without those measurements were excluded. 
When multiple organ systems met dysfunction criteria simultaneously, 
combined states were created (e.g., Renal + Cardiac Damage). The 
algorithm prioritized sepsis identification when Sepsis-3 criteria were 
met regardless of individual organ states. Multi-organ damage was 
defined as dysfunction in the three organ systems. This transformation 
generated event logs capturing 771 patients, 9 total different events, 
and 67 unique traces.

FIGURE 2

Infection progression model illustrating the transition between clinical states based on patient input data. The model defines states using temperature 
and infection criteria, categorizing patients from low risk through early risk, systemic inflammatory response syndrome (SIRS), and sepsis. It 
incorporates pathways for recovery and progression, with inputs derived from patient demographics and vital signs, and outputs used to construct 
event logs for process mining.
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2.5.3 Case III: kidney function progression 
analysis

Case III represents a patient demonstrating moderate chronic 
kidney disease progression through the eGFR classification stages 
(Chen et al., 2024b). This case typically begins with mildly to 
moderately decreased kidney function at the G3A stage (eGFR 
45–59 mL/min/1.73 m2), representing the early detection point where 
clinical intervention becomes critical. The patient’s trajectory shows a 
concerning but manageable decline, potentially progressing to G3B 
(moderately to severely decreased, eGFR 30–44 mL/min/1.73 m2) over 
the study period. This case profile is particularly valuable for process 
mining analysis as it captures the critical transition zone where 
therapeutic interventions, including choosing Proton Pump Inhibitors 
(PPIs) and H2 blockers (H2Bs), may significantly influence disease 
progression rates.

The SCREAM database contains longitudinal creatinine 
measurements for patients in Stockholm. However, for this case we did 
not generate the event log neither the process matrix in this study, as we 
used previous results from published papers. In concrete, we fed directly 
the LLMs with the process matrix produced for those studies. In 
general, calculated eGFR values using the CKD-EPI equation and 
classified patients into KDIGO stages at each measurement timepoint. 
Event logs were generated with state transitions occurring when patients 
moved between eGFR categories. The PPI cohort included 11,486 
patients with eGFR measurements, while the H2B cohort included 557 
patients with measurements. Subject without eGFR measurements were 
excluded. More details about the event log generation and process 
discovery can be found in this article (Chen et al., 2024b).

2.5.4 Case IV: chronic renal disease (CKD) 
progression analysis

Case IV represents a patient following a severe CKD progression 
pathway encompassing multiple critical transition points within the 
defined process states (Chen et al., 2024a). This case typically initiates 
at the “Drug Initiate” stage with the commencement of either PPI or 
H2B therapy, followed by a documented progression to 
“Decline30%”—indicating a significant 30% or more reduction in 
baseline kidney function (eGFR) during the observation period. Case 
IV is characterized by its advancement to more severe outcomes, 

potentially including progression to “KRT” (Kidney Replacement 
Therapy encompassing transplant and dialysis as registered in the 
Swedish Renal Registry) and, in some instances, culminating in 
“Death” (all-cause mortality). This case profile is critical for process 
mining analysis as it captures the complete spectrum of CKD 
progression. It allows for a comprehensive evaluation of how different 
acid-suppressing medications (PPIs versus H2Bs) may influence the 
timing and likelihood of reaching these adverse endpoints. Case IV 
patients provide essential insights into the most concerning disease 
trajectories and represent the population where early intervention and 
optimal medication selection could have the most significant impact 
on preventing progression to kidney replacement therapy or mortality.

As in Case III, we the process matrix from a previous study, so no 
event log generation or process discovery were done for this case. The 
event log generation followed a standardized pipeline: (i) Data 
validation and quality checking to ensure completeness and 
consistency; (ii) state classification using clinical criteria and 
established thresholds; (iii) temporal ordering verification to ensure 
chronological consistency; (iv) case filtering to exclude incomplete 
trajectories; and (v) variant analysis to identify and validate common 
pathways. More details about the event log generation and process 
discovery can be found in this article (Chen et al., 2024a).

2.6 Privacy and data governance

The framework was developed and validated using publicly 
available de-identified data from the PhysioNet Computing in 
Cardiology Challenge 2019 (Reyna et al., 2020), which is released 
under a data use agreement explicitly permitting computational 
research and analysis. This secondary analysis of publicly available 
data did not require additional institutional review board approval.”

“A critical consideration for healthcare AI systems is data privacy 
during processing and analysis. Our framework addresses this through 
a privacy-by-design architecture where raw patient-level data are 
processed locally to generate process mining outputs before any 
interaction with LLM services. Specifically, only aggregated, 
de-identified process mining artifacts are transmitted to LLM 
providers, including: (1) event log statistics (counts, frequencies, 
durations) with no patient identifiers, (2) process map visualizations 

FIGURE 3

Organ damage progression model based on SOFA-aligned criteria. The model categorizes patient trajectories from low risk to sepsis through single 
and multi-organ dysfunction stages. Organ system dysfunction is defined using clinical biomarkers for cardiovascular (troponin), renal (creatinine), and 
hepatic (AST) function. Patient input data informs state classification, while the resulting event log supports time-to-event analysis for process mining 
applications.
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showing pathways and transitions, and (3) summary statistics and trace 
variants. No individual patient records, protected health information, 
or personal identifiable data are shared with external services.

3 Results

HealthProcessAI successfully processed all four test datasets, 
handling from event logs to comprehensive text reports. The modular 
architecture enabled seamless integration between data loading, process 
mining analysis using direct follow graphs (DFG) as a process discovery 
algorithm, and LLM-based report generation using the OpenRouter 
API for communication. This performance profile demonstrates 
computational efficiency suitable for iterative exploratory analysis, 
consistent with software engineering best practices for healthcare 
systems. The results obtained were presented in Supplementary materials, 
as well as in the GitHub1 repository and the demonstrator webpage.2

3.1 Process mining analysis results

This section systematically compares process discovery algorithms 
following established evaluation methodologies. Table 3 
comprehensively compares five process mining algorithms across 
multiple evaluation dimensions, revealing distinct trade-offs between 
computational efficiency, model accuracy, and clinical utility. The 
Directly-Follows Graph demonstrates superior performance with the 
highest F1-score of 0.89. The Heuristics Miner achieves a strong 
F1-score of 0.85, followed by the Inductive Miner at 0.82. In contrast, 
the ILP Miner records an F1-score of 0.79, while the Alpha Algorithm 
exhibits the lowest performance with a score of 0.76.

3.2 LLM integration and report generation 
results

A total of 20 reports were generated, which are presented in 
Supplementary materials. In concrete terms, there are five reports per 
case and four reports for the LLM model. All LLM-generated reports 

1  https://github.com/ki-smile/healthprocessai

2  https://ki-smile.github.io/healthprocessai/website/

were evaluated using seven different LLMs, namely Claude Sonnet-4, 
Gemini 2.5 Pro, Grok-4, DeepSeek R1, GEMMA-2-27b, QWEN-2.5-
72and GPT-4.1. Each report was scored according to six criteria using 
a standardized scale of 1–4, according to the requirements presented 
in Table 2. We have excluded LLAMA-3.1-7b scores from the analysis 
as it provided the same score for all the reports (low variability).

Table 4 presents the average score for each model and each case. 
These results reveal significant performance variations among five 
leading language models across four healthcare case studies. Claude 
Sonnet-4 and Gemini 2.5 Pro emerge as the clear leaders with 
exceptional performance. Furthermore, we have noticed that Gemini 
2.5 is the only model without hallucination in the results.

Due to the proof-of-concept design with only four test cases, we 
present descriptive statistics rather than inferential tests (Figure 4). 
The performance comparison of eight large language models (LLMs) 
across four proof-of-concept healthcare case scenarios—infection, 
organ dysfunction, glomerular filtration rate (GFR), and kidney 
outcomes—revealed significant variations, with scores reflecting 
average ratings on a 4.0-point scale. Claude Sonnet-4 and Gemini 2.5 
Pro were the clear top performers, ranking 1st and 2nd with overall 
mean scores of 3.72/4.0 (95\% CI: [3.51–3.93]) and 3.49/4.0 (95\% CI: 
[3.15–3.75]), respectively. They were followed by Qwen-2.5-72b in 3rd 
place (M = 3.35/4.0), and then Grok-4 and GPT-4.1 tied for 4th/5th 
rank, both achieving an overall mean of 3.15/4.0. Deepseek R1 
followed with a mean score of $3.10/4.0$, ranking 6th, while LLaMA-
3.1-70b ranked 7th (M = 3.02/4.0). Gemma-2-27b ranked 8th, 
showing the lowest performance with an overall mean score of 
2.54/4.0 (95\% CI: [2.25–2.83]). The evaluation demonstrated strong 
inter-evaluator consistency, achieving Fleiss’s κ = 0.63 between seven 
independent LLM evaluators, Cronbach’s α = 0.92 for test–retest 
reliability across repeated evaluations.

3.2.1 Economic analysis via OpenRouter 
integration

The Cost-Effectiveness Analysis for Multi-Model Evaluation 
revealed substantial variability in cost efficiency among the eight 
language models (Table 5). LLaMA-3.1-70b demonstrated the highest 
performance-to-cost ratio, processing 1905 p.m. 1,365 input and 
1,088 ± 86 output tokens at a cost of $0.001 per report ($0.01 total cost 
across 20 reports). Qwen-2.5-72b and Gemma-2-27b followed closely, 
achieving ratios of 3,017 and 2,535, respectively, and also costing 
$0.001 per report ($0.01 total). In the mid-range of efficiency, 
DeepSeek R1 achieved a high performance-to-cost ratio of 155, 
processing 2,487 ± 142 input and 1,234 ± 89 output tokens at $0.02 

TABLE 3  Comparison of process discovery algorithms based on implementation platform, model complexity, processing time, F1-score, and clinical 
interpretability.

Algorithm Implementation Model elements Time F1 score

Directly-follows graph Both platforms 15 activities, 42 transitions 1.2 s

2.1 s

0.89

Heuristics miner Python (PM4PY) 12 places, 15 transitions 2.8 s 0.85

Alpha algorithm Python only 18 places, 22 transitions 1.9 s 0.76

Inductive miner Both (varying completeness) 8 operators 3.4 s

5.1 s

0.82

ILP miner Pythons only 14 places, 19 transitions 12.3 s 0.79

*Each miner generates different graph formats with different elements: activities, places and operators. Directly-Follows Graph and Inductive Miner are available in both R and Python; others 
are Python-only.
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TABLE 5  Cost-effectiveness analysis of LLMs across multi-model evaluations.

Model Input tokens Output tokens Cost Total cost Performance/cost

DEEPSEEK R1 2,487 ± 142 1,234 ± 89 $0.02 $0.40 155

GEMINI 2.5 PRO 2,523 ± 158 1,189 ± 76 $0.11 $2.20 32

CLAUDE SONNET-4 2,501±134 1,267±103 $0.26 $5.20 14

GROK-4 2,489±149 1,198±82 $0.61 $12.20 5

GPT-4.1 2,476±127 1,223±94 $1.13 $22.60 3

LLAMA-3.1-70b 1,905 ± 1,365 1,088 ± 86 $0.001 $0.01 3,345

GEMMA-2-27b 1,324 ± 197 1,425 ± 144 $0.001 $0.01 2,535

QWEN-2.5-72b 2,356 ± 1,702 2,030 ± 424 $0.001 $0.01 3,017

The table reports average input and output token usage, estimated cost per report, total cost across 20 reports, and the performance-to-cost ratio. DeepSeek R1 demonstrated the highest cost-
effectiveness, while GPT-4.1 was the most expensive relative to performance.

per report ($0.40 for 20 reports). Gemini 2.5 Pro ranked fifth with a 
ratio of 32, with costs of $0.11 per report ($2.20 total) and comparable 
token volumes (2,523 ± 158 input; 1,189 ± 76 output). The lowest cost-
effectiveness ratios were observed for Claude Sonnet-4, which cost 
$0.26 per report ($5.20 total), Grok-4 at $0.61 per report ($12.20 
total), and GPT-4.1, which was the most expensive relative to 
performance at $1.13 per report ($22.60 total). GPT-4.1 and Grok-4 
also showed similar token processing volumes to the higher-
cost models.

3.3 Comparative analysis and orchestrated 
report

Table 6 summarizes the obtained orchestrated report from 
Module 5 of the architecture presented in Figure 1. This orchestrated 
report synthesizes the results from the five state-of-the-art language 
models (Anthropic Sonnet-4, DeepSeek R1, Google Gemini 2.5 Pro, 
OpenAI GPT-4.1, and X-AI Grok-4) from the proof-of-concept cases. 
It is important to note that at this stage GEMMA-2-27b, QWEN-
2.5-72 and LLaMA-3.1-70b were not included in the orchestrator. The 
orchestrated report demonstrates model-specific analytical strengths, 
quantifies inter-model agreement levels, and validates the 
orchestration methodology through multiple quality metrics. Novel 
clinical frameworks emerged from model interactions, including 
Gemini’s “slow burn” hypothesis for organ dysfunction and 
Anthropic’s therapeutic window identification. High consensus rates 

(85% agreement on major findings) and complementary analytical 
approaches (73% of insights enhanced by cross-model validation) 
support the validity of multi-model orchestration as a robust 
methodology for complex healthcare analytics (Figure 4).

3.4 Framework validation through example 
demonstrators

The process map in Figure 5 illustrates the progression of sepsis 
through distinct clinical states, capturing patient trajectories and 
treatment outcomes. Most patients began with High Temperature 
(98.92%), with the dominant pathway leading to Infection + High 
Temperature (14,940 cases). Normal Temperature functioned as a 
central hub (97.18%), receiving large inflows from Infection + High 
Temperature (14,492 cases) and directing patients toward multiple 
subsequent states. Infection + Normal Temperature represented a 
major intermediate population (45.69%), while all trajectories 
ultimately converged on Sepsis (n = 1,206, 100%), arising from 
multiple pathways including Low Temperature, Normal Temperature, 
and infection combinations. Edge thickness highlighted the 
progression from temperature abnormalities to infection states and 
ultimately sepsis, followed by recurrent, clinically relevant patterns.

In Figure 6, which models organ damage without sepsis, Low Risk 
was the dominant entry point (94.42%), with the primary trajectory 
leading to Cardiac Damage (204 cases, 32.58%). From Cardiac 
Damage, patients frequently progressed to Renal + Cardiac Damage 

TABLE 4  Performance comparison of LLMs across four proof-of-concept case scenarios: infection, organ dysfunction, glomerular filtration rate (GFR), 
and kidney outcomes.

Model Case I 
(Infection)

Case II 
(Organ)

Case III 
(GFR)

Case IV 
(Kidney)

Overall 
mean

95% CI Rank

CLAUDE SONNET-4 3.56/4.0 3.72/4.0 3.73/4.0 3.86/4.0 3.72/4.0 [3.51–3.93] 1st

GEMINI 2.5 PRO 3.53/4.0 3.56/4.0 3.70/4.0 3.20/4.0 3.49/4.0 [3.15–3.75] 2nd

QWEN-2.5-72b 3.26/4.0 3.06/4.0 3.61/4.0 3.48/4.0 3.35/4.0 [2.96–3.74] 3rd

GROK-4 3.07/4.0 3.17/4.0 3.16/4.0 3.20/4.0 3.15/4.0 [3.08–3.22] 4th

GPT-4.1 3.11/4.0 3.03/4.0 2.85/4.0 3.65/4.0 3.15/4.0 [2.78–3.54] 5th

DEEPSEEK R1 3.01/4.0 3.19/4.0 2.74/4.0 3.52/4.0 3.10/4.0 [2.65–3.59] 3rd

LLAMA-3.1-70b 3.10/4.0 3.17/4.0 3.07/4.0 2.75/4.0 3.02/4.0 [2.72–3.32] 7th

GEMMA-2-27b 2.32/4.0 2.54/4.0 2.55/4.0 2.76/4.0 2.54/4.0 [2.25–2.83] 8th

Scores highlighted in bold reflect average ratings on a 4-point scale, with 95% confidence intervals and overall ranking.
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(45 cases, 26.4%) or directly to Multiorgan Damage (18 cases). 
Multiorgan Damage served as a convergence point (27.75%), receiving 
substantial inflows from Liver + Cardiac Damage (148 cases), Cardiac 
Damage (105 cases), and other combinations. These patterns highlight 
cardiac complications as a central precursor to complex multi-organ 
involvement. In contrast, Figure 7 depicts organ damage in patients 
who developed sepsis. Low Risk remained the starting point (80.74%), 
but the most prominent pathway was a direct transition to Multiorgan 
Damage (39 cases, 30.11%). Here, Cardiac Damage (34.26%) and 
Renal + Cardiac Damage (28.7%) appeared as balanced intermediate 
states, with substantial progression from Cardiac Damage (12 cases) 
to Renal + Cardiac Damage and onward to sepsis. Liver + Cardiac 
Damage (27.78%) emerged as another convergence point with 
distributed inflows. Direct transitions from Multiorgan Damage to 

Sepsis (23 cases) underscored multi-organ failure as a critical 
inflection point frequently leading to septic outcomes.

Regarding Case III, Figure 8 shows a comparative kidney function 
progression diagram illustrating distinct pathways and temporal 
patterns between two patient cohorts, (a) PPI and (b) H2B, revealing 
significant differences in disease progression and outcomes, as 
published previously (Chen et al., 2024b). In the PPI cohort, the 
majority of patients (88.69%) progress directly from Start to G3 
kidney function (95.38%, 10,955 patients), which serves as the central 
hub with substantial self-loops (77.88% staying in G3 for 0.53 months) 
and bidirectional transitions to both better (G1 or G2: 45.26%, 5,199 
patients) and worse (G4 or G5: 40.69%, 4,674 patients) function states. 
The H2B cohort demonstrates a more distributed initial progression 
pattern, with 93.54% advancing to G3 (98.92%, 551 patients) but 

TABLE 6  Comparative methodological analysis of multi-model AI orchestration applied to healthcare process mining across four proof-of-concept 
scenarios.

Case study Key consensus 
finding

Critical metrics Unique model insights Implications

Case I Temperature fluctuations as 

central indicators

6-7 h intervention window

14,940 Normal→High transitions

>3 cycles = 2-3x sepsis risk

[Anthropic]: 6 h window hypothesis

[Gemini]: Temperature chattering

[Grok]: Loop frequency model

Early intervention protocols based 

on temperature volatility

Case II Cardiac damage as gateway to 

sepsis

68% of sepsis via cardiac route

90.7% originate from Low Risk

57-93 h therapeutic window

[Gemini]: “Slow burn” hypothesis

[Anthropic]: Therapeutic windows

[DeepSeek]: 3x cardiac risk multiplier

Multi-organ monitoring with 

cardiac biomarkers

Case III Faster CKD progression with 

PPI vs. H2B

PPI: 9.39 weeks G1/G2 → G3

H2B: 12.09 weeks G1/G2 → G3

20% less time in G3 with PPI

[Anthropic]: Hypomagnesemia 

pathway

[Gemini]: Confounding emphasis

[Grok]: Variant analysis (15% vs. 18%)

Enhanced GFR monitoring for PPI 

patients

Case IV Higher adverse outcomes with 

PPI in sepsis survivors

2.7-9x higher eGFR decline risk

PPI: 9.0% vs. H2B: 3.4% major 

decline

18–24 months median progression

[Anthropic]: Comprehensive risk 

framework

[DeepSeek/Gemini]: Confounding 

analysis [Grok]: Precise statistics (9% 

vs. 3.4%)

Risk stratification and 

deprescribing protocols

FIGURE 4

Distribution of evaluation scores across four test cases for each model.
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showing different transition dynamics, including more frequent 
movements to G1 or G2 states (51.17%, 285 patients) and fewer 
patients progressing to severe G4 or G5 stages (28.37%, 158 patients). 
The temporal analysis reveals that PPI patients experience faster 
transitions overall, with most state changes occurring within 0.13–
0.77 months, while H2B patients show longer transition times, 
particularly for progression from G3 to G1 or G2 (1.1 months) and G3 
to End states (1.07 months). Most notably, the PPI cohort shows 
higher rates of progression to End states (20.71% vs. 11.67%), 
suggesting that PPI-associated kidney function changes may lead to 
more adverse long-term outcomes compared to H2B patients, who 
demonstrate better preservation of kidney function with more 
frequent improvements and slower deterioration patterns.

Last, Figure 9 presents the process map from Case IV, generated 
from a previous study focusing on process mining applied to kidney 
epidemiology (Chen et al., 2024a). This comparison between 
interactive process indicators reveals distinct patterns in kidney 
function progression between PPI and H2B patient cohorts, 
highlighting significant differences in clinical trajectories and 
outcomes. In the PPI cohort (left), patients begin with 100% baseline 
kidney function and progress through a complex pathway where 
9.99% experience decline to 9.02% function, followed by potential 
recovery through KRT (Kidney Replacement Therapy) at 0.16% 
function before progressing to Death at 19.34% frequency with a 
transition probability of 2.06%. The PPI pathway shows more 
dramatic functional decline with lower intermediate kidney function 
values and higher mortality rates. In contrast, the H2B cohort (right) 

demonstrates a more gradual decline pattern, starting at 100% 
function and progressing to a “Decline 30%” state at 3.37% 
frequency, representing a less severe functional impairment than PPI 
patients. The H2B pathway shows more favorable outcomes with 
higher preservation of kidney function (maintaining 30% function 
versus the severe decline seen in PPI patients) and lower mortality 
rates (Death at 2.16% versus 19.34% in PPI). The temporal dynamics 
also differ significantly, with PPI patients showing more rapid 
transitions (81.31% direct progression) and complex feedback loops. 
In comparison, H2B patients follow a more linear progression 
pattern (94.79% direct pathway) with fewer complications, 
suggesting that H2B therapy may be associated with more 
predictable and less severe kidney function deterioration than PPI 
treatment.

4 Discussion

This work demonstrates the technical feasibility of integrating 
LLMs with process mining tools for healthcare applications. Through 
proof-of-concept testing on public datasets, we established that: (1) 
the modular architecture successfully processes healthcare event logs, 
(2) multiple LLMs can generate structured reports from process 
mining outputs, and (3) automated evaluation provides a scalable 
method for initial quality assessment. While clinical validation 
remains future work, these technical achievements provide a 
foundation for making process mining more accessible to healthcare 

FIGURE 5

Process map of Case I illustrating infection progression. The model depicts transitions between clinical states, highlighting event frequencies and 
pathways derived from patient data logs.
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professionals. In concrete, these analyses demonstrated technical 
consistency in generating structured outputs from process mining 
data. The framework was developed and tested on a workstation with 
a 2.30 GHz CPU (8 cores) and 32 GB RAM. No GPUs were used. LLM 
API calls presented a speed between 40 and 100 tps per request, 
depending on the model and the run. For open-source model 
deployment, we recommend the computational resources 
mentioned above.

Table 4 confirms that the framework balances technical rigor. In 
the sepsis progression analysis, distinct LLM performance patterns 
were observed: Claude Sonnet-4 achieved consistent scores of 3.72/5.0 
across all four validation cases, while Gemini 2.5 Pro showed 
comparable strength with an overall score of 3.49/5.0. Automated 
evaluation via the Claude API yielded high concordance with expert 
reviewers (Fleiss’s κ = 0.63), supporting the technical consistency of 
AI-assisted interpretation (Sendak et al., 2020). Key findings include: 
(1) the multi-model orchestration was implemented successfully, with 
ensemble performance exceeding that of individual models; and (2) 
actionable insights scale with both the complexity of healthcare 
workflows and the interpretive capacity of the AI ensemble.

This work demonstrates the transformation of healthcare process 
data into standardized event log formats with AI-enhanced 
interpretation through a six-step modular pipeline (Figure 1). Beyond 
technical implementation, the framework provides accessible 
interpretation for clinical stakeholders through integrated educational 
components. This approach addresses the limitations of traditional 

manual analysis, which lacks scalability and consistency in pathway 
interpretation due to the inherent complexity of healthcare processes 
(Rojas et al., 2016; Muñoz-Gama et al., 2022). While prior studies have 
explored AI-assisted healthcare analytics, these have primarily 
focused on individual prediction tasks rather than comprehensive 
process mining with embedded educational integration (Muñoz-
Gama et al., 2022). LM-based interpretation has been applied in 
clinical decision support systems. Still, our sepsis progression case 
studies extend this methodology to full-process mining, linking 
patient pathways to outcomes through a chain of complex analytical 
operations.

The framework supports multiple deployment models to 
accommodate varying privacy requirements: (i) Cloud-based 
deployment with commercial APIs for non-sensitive research data, (ii) 
On-premises deployment with open-source models for institutional 
data, and (iii) Federated learning approaches for multi-institutional 
collaborations where data cannot be centralized. The proof-of-concept 
implementation used commercial APIs with publicly available data, 
but the modular architecture facilitates adaptation to stricter privacy 
requirements.

Adopting a multi-model orchestration strategy via the 
OpenRouter platform was critical to this success. The ensemble 
methodology leveraged complementary model strengths, Claude’s 
clinical reasoning, Gemini’s comprehensive analysis, and DeepSeek’s 
technical precision, enhancing interpretive accuracy and cost 
efficiency (Ganaie et al., 2022). This approach satisfies established 

FIGURE 6

Process map for Case II depicting the modeled trajectories of organ damage in the absence of sepsis, with relative frequency and cumulative outcome 
distributions.
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healthcare AI quality standards (Table 2) and advances methodology 
by demonstrating that systematic model selection can be optimized 
for specific clinical contexts. Performance/cost ratios ranged widely, 
underscoring the practical importance of multi-model orchestration 
in balancing technical consistency with computational efficiency.

Comparison with state-of-the-art approaches highlights that 
HealthProcessAI provides greater comprehensiveness than 
technical-only frameworks and superior accessibility compared to 
purely educational initiatives. The framework’s alignment with the 
PM2 methodology ensures that LLM integration enhances rather 
than replaces established process mining best practices. By 
positioning AI-assisted interpretation within Stage 4 (Evaluation) 
rather than earlier stages, we preserve the analytical rigor of 
process discovery while addressing the interpretation barrier that 
limits clinical adoption found in interactive process mining. This 
approach differs from end-to-end AI systems that may bypass 
traditional process mining techniques, instead creating a hybrid 
methodology that combines the strengths of both approaches. This 
stems from its deliberate integration of educational scaffolding 
with advanced AI capabilities, while maintaining rigor through 
established libraries (PM4PY, bupaR) and methodologies drawn 
from process mining and clinical AI. Unlike existing solutions, 
which typically address technical process mining or clinical AI in 
isolation (Berti et al., 2019; Janssenswillen et al., 2019), 
HealthProcessAI bridges both domains with integrated educational 
support. This positions the framework as a distinct contribution to 

the healthcare informatics landscape and underscores the need for 
continued research into hybrid frameworks that combine technical 
sophistication, clinical accessibility, and educational effectiveness.

4.1 Study limitations and scope

This work represents the technical development and initial 
validation phase of HealthProcessAI. A critical limitation is that 
LLM-generated outputs were not validated by clinical domain experts. 
The reported Fleiss’s κ = 0.63 represents consistency between 
automated LLM evaluators, not clinical accuracy as assessed by 
healthcare professionals. This automated evaluation approach was 
chosen for this proof-of-concept to demonstrate scalability and 
establish baseline system performance, but it creates a potential for 
circular validation where AI systems assess other AI systems without 
human verification. While using multiple independent LLMs reduces 
the risk of idiosyncratic biases from a single model, we acknowledge 
that all current LLMs share certain training data characteristics that 
could introduce systematic biases. True validation of output accuracy 
requires human expert evaluation, which we identify as essential 
future work. Clinical validation with healthcare practitioners 
reviewing real-time data remains essential future work before this 
framework can be recommended for clinical deployment. The current 
study establishes technical feasibility and provides a foundation for 
these necessary clinical validation studies.

FIGURE 7

Process map for Case II illustrating the modeled trajectories of organ damage in sepsis, with relative frequency and cumulative outcome distributions.
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In this line, the proof-of-concept evaluation demonstrated the 
framework’s potential to address critical healthcare optimization 
tasks, such as clinical pathway analysis and quality improvement. 
These case studies confirmed that AI-assisted interpretation 
produced structured, consistent outputs through modular pipeline 
architecture. Nonetheless, it is important to note that this 
demonstrator focuses on the interpretation of the process map by 
the LLM. Other components from the process mining methodology, 

such as advanced analytics, conformance checking, or hypothesis 
testing, have not been evaluated and presented for the cases 
presented in this paper and are out of scope. This work represents 
the technical development and initial validation phase of 
HealthProcessAI. Key limitations include:

	 1.	 Validation Approach: We used synthetic and retrospective data 
to demonstrate technical feasibility. Direct clinical validation 

FIGURE 8

Process maps for Case III illustrating the differences between the PPI and H2B groups. Adapted from Chen et al., 2024b. Process maps for Case III 
illustrating the differences between the PPI and H2B groups. Adapted from Chen et al., 2024b. In the top (a) the process map corresponding to PPI 
users is shown and in the bottom (b) the process map for H2B blockers is shown.

FIGURE 9

Process maps for Case IV illustrating the differences between the PPI group and the H2B group regarding the progression of kidney disease. Adapted 
from Chen et al., 2024a.
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with healthcare practitioners using real-time data remains 
future work.

	 2.	 LLM Evaluation: The reported Fleiss’s κ = 0.63 reflects 
consistency among automated evaluators, not clinical accuracy. 
Future work will incorporate expert reviews of a subset of 
generated reports to establish ground truth for output quality.

	 3.	 Generalizability: Testing focused on sepsis and CKD 
progression using one public dataset and previously published 
process maps. Extension to other clinical domains requires 
dedicated validation with domain-specific expertise.

	 4.	 Statistical Power: Our proof-of-concept design included only 4 
test cases per model with ordinal evaluation scores (1–4 scale), 
precluding robust statistical inference. We therefore present 
descriptive statistics rather than hypothesis tests, 
acknowledging that formal statistical validation requires larger 
samples.

	 5.	 Sample Size: The evaluation is based on 20 generated reports 
across 4 cases. This is sufficient for demonstrating technical 
feasibility but insufficient for definitive performance 
comparisons between models.

The development of HealthProcessAI followed responsible AI 
principles including transparency through comprehensive 
documentation and open-source release, reproducibility through 
detailed methodological specifications, fairness through evaluation 
across diverse clinical scenarios, and accountability through clear 
acknowledgment of limitations and validation requirements. These 
principles guided design decisions such as the multi-model 
orchestration approach (reducing dependence on any single AI 
system) and the preservation of process mining analytical outputs 
alongside LLM interpretations (enabling verification of AI-generated 
insights). Future clinical deployment will require additional 
considerations including ongoing monitoring for drift or degradation 
in LLM performance, establishment of human-in-the-loop verification 
workflows, and regular audits of AI-generated recommendations for 
potential biases or errors.

The selection of datasets for this study was strictly aligned with 
its primary objective as a technical proof-of-concept. We prioritized 
the PhysioNet Sepsis Challenge 2019 dataset and the SCREAM 
database to validate the pipeline’s modular architecture using 
structured, unimodal event logs. While comprehensive databases like 
MIMIC-IV offer extensive multimodal data (Johnson et al., 2023), 
the effective integration of such heterogeneity necessitates advanced 
infrastructures specifically Multimodal Large Language Models 
(MLLMs) or Retrieval-Augmented Generation (RAG) pipelines—
that exceed the computational and architectural scope of this initial 
implementation. Furthermore, the use of the publicly available 
PhysioNet dataset ensures immediate reproducibility and 
accessibility for researchers testing the framework, avoiding the 
credentialing barriers and privacy constraints associated with 
restricted databases.

This technical framework provides the foundation for essential 
clinical validation studies. Our immediate priorities include 
conducting usability testing with 20–30 healthcare professionals to 
assess the framework’s practical utility and comparing LLM-generated 
reports against clinician interpretations. Following this initial 
validation, we plan prospective deployment in clinical settings to 

validate the actionable insights against actual patient outcomes and 
process improvements. These studies will establish the sensitivity and 
specificity of bottleneck detection and determine whether the 
identified process patterns translate into measurable clinical benefits. 
Additionally, we will expand validation beyond sepsis and CKD to 
include diverse clinical pathways such as emergency department 
workflows, surgical procedures, and chronic disease management. The 
framework’s modular architecture will be extended to incorporate 
real-time data streams, enabling continuous process monitoring 
rather than retrospective analysis. We also plan to investigate federated 
learning approaches to enable multi-institutional process mining 
while preserving patient privacy. Until these validation studies are 
complete, HealthProcessAI should be considered a research tool for 
exploring process mining applications rather than a clinical decision 
support system.

5 Conclusion

HealthProcessAI provides a technical foundation for advancing 
healthcare process mining through AI integration. This proof-of-
concept demonstrates the feasibility of integrating educational 
scaffolding, multiplatform support, and multi-model orchestration. 
However, actual deployment in healthcare settings cannot proceed 
without rigorous clinical validation. Through the integration of 
multi-platform support and multi-model orchestration, the 
framework enables clinicians without data science expertise to apply 
advanced process mining techniques. Automated LLM presents a 
scalable method for AI quality assurance, while multi-model 
orchestration outperforms single-model approaches. Validation on 
four proof-of-concept cases confirms the framework’s capacity to 
generate structured interpretations for potential clinical use, and 
comparative analysis of Python and R implementations informs 
technology choices with evidence on cost-effectiveness and 
performance. Future work should explore real-time decision support, 
population-level process mining, and testing with real clinical cases 
to support personalized care and system-wide optimization. As data-
driven healthcare evolves, HealthProcessAI offers a validated, 
accessible, and scalable approach to advancing clinical process 
intelligence.
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