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Advanced kidney mass
segmentation using VHUCS-Net
with protuberance detection
network

J. Jenifa Sharon and L. Jani Anbarasi*

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Accurate segmentation of kidney masses and structure is essential
for medical application including diagnosis and treatment. This research
proposed the dual track hybrid VHUCS-Net architecture which effectively
highlights structural size-shape variants, boundaries and complex structural
features in kidney disease.

Methods: Efficient segmentation is achieved by integrating the transformer enhanced
U-Net model with the contrast optimized Protuberance Detection Network (PDN)
model. The process begins with analysing kidney images using a standard U-Net
combined with Vision Transformer attention and a High Resolution Network (HRNet)
which capture global dependencies while preserving high resolution features
resulting in accurate segmentation of the kidney region. Also, the masked kidney
image undergoes processing through a contrast optimized PDN model with multi
scale pooling, contrast enhancement, boundary refinement and explicit feature
fusion to segment the mass region thereby enhancing mass localization improving
border identification and enabling accurate abnormality detection. The resulting
features are fused to provide a refined mass segmentation result that exactly
identifies the location and structural abnormalities.

Results: The VHUCS-Net model was evaluated using the kidney segmentation
dataset achieving an intersection over union score of 0.9441 and a dice
coefficient of 0.9712 showing outstanding segmentation precision.

Discussion: These results indicate improved diagnostic efficiency and support
clinical decision making by providing more accurate and interpretable
segmentation outputs. Moreover, VHUCS-Net is validated with additional
publicly available datasets with image mask correspondence, therefore proving
the model effectiveness and generalizability across many segmentation tasks.
The results highlight the capability of the proposed VHUCS-Net model to
enhance diagnostic accuracy and assist clinical decision making through more
detailed and interpretable segmentation outcomes.

KEYWORDS

abnormality detection, kidney masses segmentation, protuberance detection network,
semantic segmentation, transformer enhanced U-Net model, vision transformer,
hybrid deep learning, computer-aided diagnosis

1 Introduction

The kidney is an essential organ responsible for blood filtration, toxin removal,
maintenance of electrolyte balance and fluid level regulation (Daniel et al., 2021). These
processes are carried out by millions of nephrons which help in maintaining the body internal
balance. However, disorders can mainly affect kidney function if they are not immediately
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recognized and treated. Kidney masses whether malignant or benign
required accurate identification and segmentation for best treatment
planning. Diagnosis early enhances patient outcomes by enabling
proper treatment such as surgical removal, radiation therapy or
specialized treatment.

Kidney mass (Lin et al,, 2021) develops through several stages
requiring multiple diagnostic and treatment approaches. In the initial
phase tiny lumps are often small that are usually detected with imaging
modalities. As the mass develops structural changes occur requiring
continuous monitoring and treatments mainly in advanced stages.
Tumors may spread to other organs leading to health risks and decreased
chance of survival possibilities if not examined. Exact identification of
these stages is important for identifying proper treatment choices to
improve the health of patients.

The segmentation of kidney masses is essential for identifying
abnormalities, support radiologists and doctors to evaluate kidney
mass size, shape and growth for appropriate treatment planning
(Zollner et al., 2021). Various segmentation procedures have been
developed to increase accuracy however traditional approaches are
time consuming, human error can occur and frequently insufficient
for managing the difficulty of kidney masses. The variation in the
structural features among individuals shows the limitations of
traditional segmentation approaches which are frequently
inconsistent, incorrect and inflexible. These challenges highlight the
importance for deep learning approaches which provide automation,
enhanced precision and robustness in the. Deep learning (Goel et al.,
2022) techniques improve segmentation accuracy by effectively
segmenting mass boundaries, reducing observer variability and
increasing the efficiency of kidney mass detection.

Artificial intelligence (Liu et al, 2023) and deep learning have
significantly improved kidney mass segmentation by training models on
large datasets providing accurate identification and analysis. This progress
is mainly applied to the development and incorporation of multiple deep
learning methods. Convolutional neural networks (Hwang et al., 2022)
are used for extracting spatial features. Architectures such as U-Net and
its variants improve segmentation precision by preserving both local and
global contextual information. Moreover, transformer based models like
vision transformer use self-attention processes to capture long-range
relationships thus improving edge detection. By integrating these
methodologies deep learning significantly improves segmentation efficacy
allowing the early identification of kidney masses simplifying clinical
decision making and improving patient care through more accurate,
consistent and efficient analysis.

Contribution of the proposed model:

o The proposed VHUCS-Net model is a dual-track hybrid
architecture which integrates a transformer enhanced U-Net with
a contrast optimized PDN model for accurate and effective
kidney mass segmentation.

o The transformer enhanced U-Net model includes a standard
U-Net integrated with vision transformer attention and HRNet in
the encoding process. This integration successfully extracts global
contextual information while maintaining high resolution spatial
details leading to accurate segmentation of the kidney region.

o The contrast optimized PDN model used masked kidney images
to segment the mass region. This model includes multiscale
pooling, contrast enhancement, boundary refinement through
separable convolutions and batch normalization along with
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feature fusion leading to segmentation of mass boundaries and
greater structural localization.

o The proposed VHUCS-Net model implements a feature fusion
method combining the mass segmentation output from the
contrast optimized PDN with the kidney region segmented by
the standard enhanced U-Net model. This fusion enhances
boundary reliability, identifies structural differences and enables
robust multi scale feature representation.

o The proposed VHUCS-Net model is evaluated using a kidney
segmentation dataset which systematically evaluate the model
efficacy through multiple features broad validation and
comparison analysis are performed using publicly available
datasets.

This research paper is structured as follows: Section 2 presents a
focussed review of the existing kidney segmentation techniques with
a comparative table including datasets, methods, imaging modalities,
evaluation criteria while highlighting their limits and key
contributions. Section 3 defines the proposed VHUCS-Net
architecture and explains its internal components and structural
design. Section 4 includes results and discussion that details the
dataset analysed the training and validation methodologies, the
evaluation criteria and the performance analysis. It includes
validation using publicly available dataset an ablation study,
comparisons with state-of-the-art models, and illustrate both visual
and quantitative results. Section 5 concludes and highlights the future
directions.

2 Related work

Kittipongdaja and Siriborvornratanakul (2022) performed a study
using 2.5D ResU-Net and 2.5D DenseU-Net architectures attaining a
dice score of 0.95 on the KiTS19 dataset and 0.87. Hatsutani (2023)
proposed a framework with three networks such as a base network to
generate initial tumor masks, a PDN for recognizing protruded areas
and a fusion network for the final prediction of tumor masks. The
proposed technique attained a dice score of 0.615 and a sensitivity of
0.721 on the KiTS19 dataset.

Bolocan et al. (2023) evaluated a U-Net architecture for tumor
segmentation and attained a mean dice score of 0.675 representing
moderate segmentation precision. The ResNet101 classifier had an
accuracy of 88.5% in diagnosing. Swain et al. (2024) conducted a study
on automated instance segmentation of glomeruli in renal images
using YOLOV8 with Mask R-CNN. Both models underwent training
and validation using the human vasculature dataset. Performance
review shown that YOLOVS outperformed Mask R-CNN attaining a
precision of 0.97 over 0.85 a recall of 0.85 over 0.78 and a mean
average precision at IoU 50 of 0.93 over 0.85.

Oghli et al. (2024) developed Fast U-Net++ which attain
segmentation accuracy attaining dice coeflicients of 0.97 for sagittal
views and 0.95 for axial views therefore providing the prediction of
kidney size and volume. Zhao et al. (2020) implemented a Multi-Scale
Supervised U-Net (MSS U-Net) a 3D U-Net architecture designed for
accurate tumor segmentation from CT scans. The model incorporates
deep supervision with an exponential logarithmic loss function to
improve training efficiency. During assessment using the KiTS19
dataset it attained a dice coefficient of 0.805 for tumor segmentation.
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Zhao et al. (2023) proposed a cascaded architecture that integrates
3D U-Net which used to segment bilateral kidney borders and identify
regions of interest and then an ensemble of 3D U-Nets was used to
detect and segment renal masses. A ResNet model was applied to
classify the segmented masses based on their size. This method shown
high productivity attaining dice scores of 0.99 for kidney segmentation
and classification accuracies of 86.05% for lesions under 5 mm and
91.97% for lesions 5 mm or greater. Conze et al. (2024) proposed a
methodology that encompasses three categories of network
architectures: CNN-based, transformer-based and hybrid CNN/
transformer based models. The methodology used a dual-task
learning framework, where a shared extractor paired with individual
decoders enabled efficient processing. The models were evaluated
using various MRI dataset, with Swin U-NetV2 exhibiting superior
performance by obtaining a dice similarity score of 0.931.

Hsiao et al. (2022a) evaluated EfficientNet-B5 as the encoder and
a feature pyramid network as the decoder, evaluated on the
3D-IRCADDb-01 dataset. The model shows robust performance across
all parameters attaining a dice score of 91.50, a recall of 96.43, an
accuracy of 87.22% and an IoU score of 84.42. Hsiao et al. (2022b)
implemented a modified U-Net architecture that incorporates
ResNet-41 and EfficientNet as the encoder. The method employs
statistical hounsfield unit windowing and image screening techniques
to improve the preprocessing phase. Experimental attaining a dice
score of 0.9648 for kidney segmentation and 0.7294 for tumor
segmentation along with a minimal kidney volume error of 0.014.

Patel et al. (2024) proposed a framework using 3D-TR-DU-Net++
for kidney image segmentation and Adaptive and Attentive Residual
DenseNet with Gated Recurrent Unit (AA-RD-GRU) for classification
optimized through the (modified crayfish optimization algorithm.
This method a dice score of 0.9470 for kidney segmentation and
0.6099 for tumor segmentation). Hussain et al. (2021) utilized a
selection based convolutional neural network to analyze kidney
vertical dimension, further using a hybrid sagittal-axial Mask R-CNN
to generate a 3D bounding box of the organ. The method showing a
kidney boundary localization error of 2.4 mm and a mean volume
estimation error of 5%.

Jariwala et al. (2024) executed and trained U-Net and
DeepLabv3 + architectures. The evaluation results showed that
DeepLabv3 + outperformed U-Net, with dice scores of 0.94 and 0.82,
ToU values of 0.182 and 0.160 and training and validation losses of
0.3928 and 0.4488, respectively. Uhm et al. (2022) developed
DiagnosisGAN a deep learning framework integrates a generator, a
discriminator, and a lesion segmentation network all trained
simultaneously with various loss functions. An evaluation
classification accuracy (p < 0.05) and attained a mean AUC (mAUC)
of 0.829 signifying superior diagnostic efficacy compared to
conventional techniques.

Causey et al. (2021) implemented an ensemble of U-Net models
attained dice scores of 0.601 on the local test set and 0.6099 on the
competition test set for tumor segmentation which resulted in a
combined dice score of 0.7784. Tiirk et al. (2020) developed a hybrid
V-Net model that improves the traditional V-Net design by
incorporating both ET-Net and Fusion V-Net. This approach attained
dice coefficients of 0.977 for kidney segmentation and 0.865 for tumor
segmentation.

da Cruz et al. (2020) applied a technique that combines U-Net for
segmentation and AlexNet for classification incorporating a false
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positive reduction phase to improve accuracy. This approach resulting
in an average dice coeflicient of 0.9633, a jaccard index of 0.9302, a
sensitivity of 0.9742, a specificity of 0.9994 and an accuracy of 99.92%.
Chen et al. (2024) proposed TransUNet modifying the U-Net
architecture through the integration of self-attention mechanisms. It
employs a transformer encoder for global context extraction and a
decoder for enhanced segmentation with the capability of including
both 2D and 3D formats. TransUNet attained average dice of 0.0106
and 0.0430.

Sharma et al. (2017) developed a CNN-based architecture attained
a mean dice similarity value of 0.86 and a high correlation value of
0.98 for total kidney volume data thereby validating its accuracy and
consistency. Mehedi et al. (2022) explored U-Net and SegNet designs
for segmentation along with transfer learning model for classification.
Among U-Net attained an accuracy of 97.58%, an IoU of 0.9857 and
a dice score of 0.5440. In classification tasks, VGG16 exceeded the
other models with an accuracy of 99.48%, a sensitivity of 0.9921, and
a specificity of 0.9961. Zhang et al. (2020) introduced a two-stage
coarse-to-fine methodology for kidney segmentation in CT images.
Initially, whole CT slices were standardized to a uniform size for initial
segmentation. During the second stage, the slices were resampled and
cropped into smaller patches for the purpose of fine-grained
segmentation. The model was trained on 168 CT scans and assessed
using 42 test images, attaining an average dice similarity coefficient of
0.9453 indicating efficient segmentation ability.

Yang et al. (2025) proposed MUNet which achieved the highest
dice similarity coefhicient value of 0.915 and the highest Hausdorff95
value of 6.437 across the BraTS2020 and BraTS2018 datasets.
Pimpalkar et al. (2025) built a fine-tuned deep learning framework
integrating transfer learning models AlexNet, VGG16, InceptionV3
and ResNet50 attaining a highest accuracy of 99.96%. Vezakis et al.
(2024) proposed a combination of 3D Attention U-Net and 2D U-Net
for automated segmentation of organs in FDG-PET images achieving
a dice score of up to 97% for brain and bladder segmentation. Shelke
et al. (2025) proposed Ensemble EfficientNet combining multiple
EfficientNet models through ensemble learning for diabetic
retinopathy detection achieving an accuracy of 95% and a recall of
97%. Table 1 shows a comparison of deep learning kidney
segmentation methods by technique, modality and performance.

2.1 Limitations of existing kidney
segmentation approaches

The key challenges in kidney mass segmentation is performed
using  VHUCS-Net architecture for enhancing cross-modality
robustness is given as below:

o Asignificant challenge lies in the generality of existing algorithms
being trained and validated on similar kidney segmentation
datasets and imaging modalities. The lack of diversity limits their
generalizability reducing efficacy in real clinical environments
where models must exhibit robustness across diverse datasets and
varying imaging conditions.

o Kidney tumor segmentation undergoes difficulties due to
irregular shapes, small lesion sizes, and unpredictable intensity
patterns. These characteristics consistently interrupt accurate
border identification resulting in minimized segmentation
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TABLE 1 Comparative summary of kidney segmentation methods across various datasets and imaging modalities.

Dataset

Methodology

Imaging

modality

Metrics

10.3389/frai.2026.1716063

Key contribution

segmentation with CNNs

Kittipongdaja and KiTS19, Thai Patient 2.5D ResU-Net and 2.5D CT Dice Score: 0.95(KiTS19), | Combines spatial
Siriborvornratanakul (2022) DenseU-Net 0.87 (Thai) efficiency with contextual
depth
Swain et al. (2024) HuBMAP YoLOVS8 and Mask R-CNN Histopathology YOLOVS Recall: 0.85, Uses mAP and IoU
mAP50: 0.93; Mask thresholds for precise
R-CNN, Recall: 0.78, localization.
mAP50: 0.85
Oghli et al. (2024) Three Iranian imaging | Fast U-Net++ Ultrasound Dice: 0.97 (sagittal), 0.95 Segments kidneys and
centers (axial) predicts five key length,
width, thickness, volume,
and parenchymal
thickness measurements.
Zhao et al. (2020) KiTS19 Multi-scale supervised 3D CT Dice: 0.805 Uses deep supervision
U-Net with exponential log loss.
Zhao et al. (2023) KiTS21 Cascading 3D U-Net and CT Renal mass Dice: 0.75- Improves accuracy
ResNet 0.83, Recall: 0.84, through statistical
analysis.
Conze et al. (2024) Genkyst CNN, Transformer, Hybrid | MRI Dice: 0.931 Shared encoder with
with dual-task learning per-kidney decoders.
Hsiao et al. (2022a) KiTS19, EfficientNet-B5 encoder CT Dice: 0.969 Lightweight model with
3D-IRCAD-01 with FPN decoder optimized
hyperparameters.
Hsiao et al. (2022b) KiTS19 Modified U-Net with CT Kidney Dice: 0.9648, Uses HU windowing and
ResNet-41 and EfficientNet Tumor Dice: 0.7294, advanced preprocessing.
Kidney volume error:
0.014
Patel et al. (2024) KiTS21 3D-TR-DU-Net++ and CT Kidney Dice: 0.9470, Transformer attention for
AA-RD-GRU with MCOA Tumor Dice: 0.6099 temporal dependencies.
Jariwala et al. (2024) KiTS23 U-Net and DeepLabv3+ 3DCT DeepLabv3 + Dice: 0.94, ASPP refines boundaries
ToU: 0.82; U-Net Dice: of complex tumors.
0.82,I0U: 0.0182
Uhm et al. (2022) The Cancer Imaging DiagnosisGAN (3D U-Net) = CT Mean AUC (mAUC): Initial feature maps
Archive (TCIA) 0.829 improve lesion
identification.
Causey et al. (2021) KiTS19 Ensemble of U-Net models CT Kidney Dice: 0.9470, Combines U-Nets to boost
Tumor Dice: 0.6099 consistency.
Tirk et al. (2020) KiTS19 Hybrid V-Net with fusion CT Kidney Dice: 0.977, Fusion encoding with
V-Net and ET-Net Tumor Dice: 0.865 edge-aware decoding.
da Cruz et al. (2020) Local dataset, KiTS19 AlexNet + U-Net CT Local dataset: Dice: 0.963, | Classifier reduces false
KiTS19: Dice: 0.930 positives.
Sharma et al. (2017) ADPKD patient Automated deep learning CT Dice: 0.86, Robust TKV
dataset segmentation quantification.
Zhang et al. (2020) KiTS19 Coarse-to-fine CT Dice: 0.945 Two-stage segmentation

with correction.

precision, lower model sensitivity and less dice coefficients

mainly in the identification of insignificant tumor patches.

o Medical imaging modalities including PET, CT, ultrasound and

MRI exhibit distinctive characteristics representing significant

challenges to the development of a general segmentation model.
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The modality specific differences require suitable preprocessing

and architectural change thereby increasing the density of model

implementation and reducing multi-modality flexibility.

« One of the main challenges is the accurate identification of tiny

masses that occur in the initial stages. These abnormalities result
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in decreased sensitivity and specificity or leading to false
positives. As a result, clinical reliability has been reduced which
may lead to delayed diagnosis or inaccurate treatment decision.

To address the key challenges in automatic kidney mass
segmentation this research paper proposes the VHUCS-Net model
that includes a transformer enhanced U-Net that combines the
strengths of the standard U-Net with ViT and HRNet features. This
integration enables the extraction of global contextual information
while preserving fine spatial features thus refining the segmentation
accuracy of irregularly shaped and small kidney mass regions. To
address the limitations related to low contrast and inaccurate
boundary detection the model includes a contrast optimized
PDN. This model uses multiscale pooling, contrast enhancement and
boundary refinement to attain accurate segmentation of mass
boundaries. A dual-track fusion method is used to fuse kidney and
mass feature maintaining structural stability thus improving
robustness across various imaging modalities.

3 Proposed methodology

This section contains a detailed overview of the proposed
architecture focusing on the sequential design with its key mechanisms
including feature extraction, feature fusion and segmentation
modules.

3.1 Architecture overview

The proposed framework employs a dual-track architecture to
improve kidney segmentation and mass localization. The sliced kidney
images with the mass and their corresponding masks are preprocessed
to minimize noise resulting in enhanced image quality which increases

10.3389/frai.2026.1716063

scalability for further analysis. Data augmentation is then applied on
both inputs to reduce overfitting and enhance feature extraction
resulting in improved model generalization as shown in Figure 1. The
processed kidney image is input to track 1 which includes a
transformer enhanced U-Net model that incorporates standard U-Net
with ViT and HRNet layers in the encoder to attain accurate spatial
reconstruction. The processed mask images are at the same time input
into track 2 which uses a contrast optimized PDN model that
integrates contrast enhancement and boundary refinement to
accurately segment the specific mass region within the kidney. The
outputs from both tracks are then fed into the fusion phase where the
segmented kidney region from track 1 and the segmented mass region
from track 2 are fused together to generate a refined and broad final
segmentation. This integrated output provides a clearly defined kidney
structure with the mass accurately segmented thereby enabling
accurate detection and evaluation of the affected area. The combined
result enhances overall diagnostic consistency as shown in Figure 2.

3.2 Preprocessing

Preprocessing is applied sequentially to both kidney image Iy to
enhance structural visibility and support feature learning. The
sequence includes contrast limited adaptive histogram equalization
(Buriboev et al., 2024) followed by global histogram equalization
producing a contrast enhanced representation suitable for further
processing shown in Equation 1.

1P —H(c(1)) (1)

The corresponding mask My does not undergo any contrast
enhancement. To preserves its original spatial integrity, the mask is
carried forward without applying CLAHE/HE and only resizing and

Input images

!

Visualization &
analysis

T

Evaluation Metric

Final segmented

Preprocessing

Kidney segmentation

image

Augmentation

Fusion Process

Mass Segmentation

FIGURE 1
Workflow of proposed system.
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Overall architecture of the proposed model.
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normalization are performed during data preparation. This is shown
in Equation 2.

M) —(M) @

To avoid data leakage the PDN branch receives the masked kidney
image obtained by multiplying the preprocessed kidney image with
the predicted mask My . This is defined in Equation 3.

PDN
I

=L OMy 3)
The PDN input mainly depends on the predicted mask produced

by the transformer enhanced U-Net ensuring that no ground-truth
mask will be shown during inference.

3.3 Augmentation

Aug(mentation is applied consistently to the preprocessed kidney

image Ikp ) and its corresponding mask image MkP to improve the
model generalization and robustness. The augmentation operation

transforms these input as define in Equations 4, 5.

i) - A(Iﬁf’)) 4
Ml A (ng’)) ()

Here, A() denotes the augmentation operator which includes a
series of spatial and intensity transformation. Horizontal and vertical
flips introduce positional variation enabling the model to learn
invariant features based on the patient positioning and scan
orientation. Rotational augmentation within a +20° range adjusts
alignment inconsistencies and enhances robustness to angular
variations. Random modifications in brightness and contrast replicate
various lighting conditions enhancing the model flexibility to
changing image intensities. Also, elastic transformations result in
complex non-linear changes while maintaining anatomical integrity
thus enhancing feature diversity and generalization ability.

3.4 Segmentation workflow

The proposed hybrid VHUCS-Net architecture features two
parallel processing tracks: a transformer enhanced U-Net model
and a contrast optimized PDN model. The transformer enhanced
U-Net combines the standard U-Net architecture with a vision
transformer layer for global context acquisition and HRNet to
maintain spatial resolution and complex details. The contrast
optimized PDN model integrates multi scale max pooling, contrast
enhancement and boundary refinement to increase localized mass
segmentation. The dataset consists of two types of inputs: kidney
images with masses and the corresponding mask images. Both input
types are given preprocessing and augmentation to enhance data
quality and augment model robustness. The processed kidney
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images are input into the transformer enhanced U-Net model while
the processed mask images are given to the contrast optimized PDN
model. This dual-track technique ensures corresponding feature
extraction and precise segmentation by using the features of both
models thus improving overall efficacy in kidney mass
segmentation.

3.4.1 Transformer enhanced U-Net model

The transformer enhanced U-Net model which segments the
kidney region by integrating standard U-Net with ViT and HRNet
enabling the parallel extraction of global sematic information and
detail structural features. The input to this model is the augmented
kidney image Ika a preprocessed and augmented image with spatial
dimensions of 224 x224 x3 normalized to [0,1] representing height
and width as shown in Equation 6. The processed input is subsequently
passed through the model layers to perform accurate kidney region
segmentation.

Ig(a) < R224%2243 6)

3.4.1.1 Encoder

The encoder analyses the input image Ig{a)using a hierarchical
framework which integrates ViT attention mechanisms with HRNet-
based convolutions to extract high-resolution features at each
encoding level. The input image XeR*2*?*%3 s first transformed into
an initial feature map Fy using an embedding layer as shown in
Equation 7 as patch embedding layer. Here, K, serves as the starting
point for the first encoder block. For subsequently encoder blocks i the
input is the output from the previous block denoted F_;.

Fy = Embed(lf)j %)

Fy = Embed(lf)) =

ConVZD(ﬁlters =C,,Kernelg,. =P,,stride= P)(I&a)) ®)

In Equation 8, P x P denotes the patch size and C represents
the embedding dimension and the stride is equivalent to the patch
size to ensure non overlapping patches. The embedding layer
divides the input image into non overlapping patches through a
conv2D layer and maps each patch to a feature vector. Positional
encoding is incorporated to preserve spatial information resulting
in the patch embedding F, for the encoder as illustrated in
Figure 3.

Max pooling is used at each level to reduce spatial dimensions
while maintaining essential details enabling the model to effectively
capture global contextual information and local structural
variations. The ViT attention mechanism captures long range
dependencies and the resulting HRNet layer maintains fine grained
spatial details. The max pooling reduce the spatial dimensions to
112 x 112 and increase in feature depth 64. This is followed by an
additional sequence of ViT attention and HRNet processing which
further increases representations. The spatial resolution is reduced
to 56x56 and by an increase in feature depth to 128 enhancing the
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Input Patch Flatten Positional
image extraction patches encoding
Conv2D Sequence Output
kernel=P, of patch embedding
stride =P vector F,
FIGURE 3
Schematic representation of the embedding layer.
model capacity to capture local texture. As the encoding progress ~ 3.4.1.2 Bridge

the resolution decreases to 28 x 28 and then to 14x14 while the
feature depth increases to 256 and 512, respectively, as shown in
Figure 4.

The ViT which captures global dependencies from the input
feature map F,_;. This process is illustrated in Figure 5 is performed
using multi head self-attention and feed forward network where the
input undergoes layer normalization is then processed by multi head
self-attention as expressed in Equation 9. The resulting output is then
refined through the feed forward network while maintain a residual
connection as explained in Equation 10.

ViT (E_;)=MHSA (LN(E_; ))+E 9)
g/iT :FFN(LN(ViT(Fi,l)))+ViT(Fi,1) (10)

Following ViT attention HRNet subsequently refines the extracted
features using multi scale convolution as illustrated in Figure 6. Let S
denote the number of scales. Multiple convolutional scale filters Wy
operate at different resolutions to enhance feature representation as
expressed in Equation 11.

S
FiHR — ZWS % FiVIT (1 1)

s=1

The first encoder stage produces a feature map of 112x112x64
with the high resolution level. As the encoding progress, the spatial
resolution is progressively reduced while the feature depth increases
by R(112><112><64) , R(56><56><128) , R(28><28><256) , R(14><14><512)
sequential levels as shown in equation 12. This hierarchical
transformation enables the network to capture of both comprehensive
context and complex details. Such progressive encoding facilitates the
integration of global context with local anatomical information
enhancing the model precision in kidney mass segmentation.

E e RFWoG (12)
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The bottleneck serves as an intermediary stage between the
encoder and decoder performing feature compression and
transformation. The major function is to reduce feature dimensionality
while retaining essential information which allows efficient processing
before the expanding of feature maps in the decoder. The bottleneck
encodes high dimensional information into a compact representation
ensuring that only the most essential and distinct characteristics are
transmitted for decoding.

BiIO'(Wb *Fy +bb) (13)

In Equation 13, B; € R14X14 x1024

bottleneck feature map wy, and by, represent the convolutional weights

represents the corresponding

and biases, respectively, and * indicates the convolution process. The
function 6 corresponds to the ReLU activation function. This method
allows the bottleneck to function as an intermediate point between
feature extraction in the encoder and the reconstruction process in the
decoder enabling optimal transfer of essential feature representations.

3.4.1.3 Decoder

In the decoder phase, the transformer enhanced U-Net model
progressively reconstruct the segmentation map through stepwise
upsampling and element wise feature addition. At each stage
(i € {4,3,2,1}) the feature map from the previous decoder layer B; 1 is
upsampled using transposed convolutions. To preserve fine-grained
spatial details with their feature map F, is then added to the upsampled
decoder feature map at the same resolution. This skip connection
provides efficient feature fusion by reducing parameter and modifying
redundancy while holding essential structural information as shown

in Equation 14. The final segmented kidney region
denoted as Kqeq € R22224x64
Sk =G[W§(upsample (Bi+1)+Fi)+bd} (14)

where B;; represents the decoder feature map from the stage W(;r
is the transpose of the decoder weight matrix, by is a learnable
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Transformer enhanced U-Net model frame work.
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FIGURE 5
Internal working process of the ViT attention block.
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FIGURE 6
Layer composition of the HRNet block.

bias term and G(-) denotes the activation function. This fusion =~ segmentation accuracy. Table 2 highlights the key differences
process enhances spatial consistency maintains a balanced  between the original U-Net and the proposed transformer
representation of global and local features and improves enhanced U-Net.
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TABLE 2 Comparison between U-Net and transformer enhanced U-Net.

Component

Overall architecture

Original U-net

Symmetric U-shaped
encoder-decoder

CNN

Proposed
transformer
enhanced U-net
U-shaped encoder-
decoder augmented with
vision transformer and

HRNet blocks

Input

Image of size

Preprocessed image of

size 224 x 224 x 3, split

+ Max pooling

HxWxC into patch embeddings
and augmented
Patch embedding — ViT
Convolution + ReLU attention — HRNet multi-
Encoder

scale convolutions —

progressive downsampling

Feature extraction

Local features through

Both global (ViT) and
local (HRNet) features,

hierarchical encoding

connections

convolution
with increasing depth
(64 — 512)
Convolution + ReLU
Convolutional layers compressing encoder
Bottleneck
at lowest resolution features while retaining
essential
Transposed convolution +
Transposed
additive skip connections
Decoder convolution + skip

fusing encoder features

efficiently

Skip connections

Concatenate encoder

Additive fusion to

preserve fine-grained

features details and reduce
redundancy
Multi-head self-attention
in ViT blocks for
Attention mechanism None
capturing long-range
dependencies
HRNet maintains high-
May lose details due
Spatial detail preservation resolution features at
to pooling

multiple scales

Output

Segmentation map of

original image size

Segmentation map of
224 x 224 x 64 with

improved spatial and

semantic accuracy

3.4.2 Contrast optimized PDN model

The contrast optimized PDN model se%ments the mass region
from the augmented kidney mask image Mka) aiming to accurately
detect and localize abnormal protrusions especially the kidney
mass as shown in Figure 7. The process begins with feature
extraction by applying a transformation functionE to Mlj1
incorporating a normalization layer, activation function and
convolutional filters. This operation is given by Equation 15 where
indicate

W represents learnable convolutional filters, *

convolutional operation, the bias term is denoted by b and f
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indicates the ReLU activation function. The resulting feature map
E, is then processed by max pooling for attaining enhanced
features.

E, =®(Mf{a)j=f(W*Mf)+bj (15)

Multiscale max pooling is applied to F, to capture features at
different resolutions as shown in Figure 8 and the contrast between
neighbouring regions is enhanced and refined through
normalization, boundary refinement, and separable convolution for
effective edge detection. The contrast feature extraction produces a
feature map size 16x16x1024, capturing multiscale contrast
information. The complete operation can be expressed as shown in
Equation 16 where a represent the difference operator. The
resulting border refined feature map F, is activated using
LeakyReLU.

R, =LeakyReLU(BN(SC(A(MP(Fin)) ))) (16)

A fusion operation combines the refined border features and
upsampled contrast features to integrate high-resolution spatial details
with enhanced contrast. This can be formulated as shown in
Equation 17 where @ represents a flexible fusion function. After
concatenation, the feature fusion stage produces a 16x16x1536
integrating information from both branch. A finally a 1 x1 convolution
followed by a sigmoid activation produces the initial segmentation
mask S and a thresholding step generates the final mass segmentation
output Mg where G(-) is the sigmoid function and ‘c() denotes a
thresholding operator obtained segmentation mask. The resullting
attention mask has spatial dimension 16x16x1.

Sm = ’E|:G(COI’1V1X1 (CD(Fb, Upsample(Fb)))ﬂ (17)

The final segmentation mask integrates the kidney region from
the transformer enhanced U-Net Sy and the mass region from the
contrast optimized PDN S;,,. A fusion operator @ combine these
output to ensure precise localization of masses within the kidney. The
fused mask is refined to improve boundaries and correct
misclassification pixels. The complete operation is expressed as shown
in Equation 18.

Sfinal =@ (Sk>Sm) (18)

4 Results and discussions

This section describes the experimental configuration specifying
the dataset used for model implementation and the hyper parameters
used during training. It further provides an ablation research to
evaluate the impact on individual segmentation layers including the
transformer enhanced U-Net and the contrast optimized PDN
models. The evaluation metrics and analytical processes have been
explained to effectively evaluate the performance of the proposed
framework.

frontiersin.org


https://doi.org/10.3389/frai.2026.1716063
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Jenifa Sharon and Jani Anbarasi 10.3389/frai.2026.1716063

r - ------ - - - - -""-—-""-""-""-""-""-"¥&7/7¥"- " "—"¥“—"¥"7¥&#7¥&7/¥67/V7/—"—"""- |
Multiscale Diffc.:rence SeparableConv2D +
pooling + computation (Input - BatchNorm +
pooled features) N LeakvReLU
) Boundary refinement
Contrast feature extraction 16x16x1024 16x16x512

v

Merge (Contrast +
upsampled features)

Feature fusion 16x16x1536

FIGURE 7
Contrast optimized PDN model design.
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FIGURE 8
Representation of multiscale pooling mechanism.

4.1 Experimental setup and system images as shown in Figure 9. The dataset included 4,054 images
conﬁg uration comprising 2,027 kidney images and their 2,027 corresponding mask
images which contain tumor regions with no cases of tumor absence
Experiments were performed in a notebook-based environment  is detected. The sliced kidney images have an original resolution of
using an NVIDIA Tesla P100 GPU (16 GB VRAM), using CUDA 12.8 256 x 256 pixels with an average file size of approximately
with fp32 precision. The batch size was set at 32, and the input 20 KB. During preprocessing all images were uniformly resized to
resolution was maintained at 256 x 256 x 1 for all datasets. Under this 224 x 224 x 3 before being fed into the model. The batch size was set
configuration, the model required 0.3537 s per batch, resulting inan  to 32 for all experiments. The model contains 32.6 M parameters and
effective per-slice inference time of 0.0111 s (0.3537 s/ 32). Givena  the total computational cost is approximately 27.4 GFLOPs per
3D volume consisting of 30 consecutive 2D slices, the inference time ~ forward pass. During the evaluation of the test dataset, the per-slice
per volume is 0.3316 s. Runtime was consistently evaluated at both the  inference time ranged from 30 ms to 49 ms, resulting from several
slice and volume levels, with the 16 GB VRAM. single-slice predictions.

4.2 Dataset description 4.3 Visual impact of preprocessing and
augmentation
The dataset used in this study was obtained from a publicly
available kidney segmentation dataset (Jadhav, 2023). It consists of two The use of preprocessing and augmentation approaches was used
categories: sliced kidney images with masses and corresponding mask ~ to enhance the quality and diversity of the input data. The
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Original Image Original Mask

FIGURE 9
Original and augmented kidney images with the corresponding mask.

Augmented Image Augmented Mask

augmentation process included horizontal and vertical flip each
applied with a probability of 50%, random rotations within +20°,
brightness and contrast modifications (30% probability) and elastic
adjustments as shown in Figure 10. These augmentation methods
together improve anatomical variation, intensity diversity and spatial
alteration in the dataset. This technique improves stability and reduces
the risk of overfitting by modeling changes in patient positioning,
scanner parameters, noise and tissue contrast. The model starts to
learn stable structural inputs based on static spatial or intensity
patterns hence improving its ability to generalize to earlier identified
cases. This method eventually enhances feature selection, robustness
and overall prediction accuracy. Furthermore, contrast limited
adaptive histogram equalization (Moradi et al., 2022) was applied with
a 50% probability to augment local contrast hence enhancing model
stability and optimizing feature extraction efficacy as shown in Table 3.
To evaluate the efficacy of the preprocessing stage dimensionality
reduction methods including t-SNE and UMAP were used for
visualization. These approaches reduce the high-dimensional feature
space into a two-dimensional space enabling an efficient visual
evaluation of feature distribution and class partitioning. Figure 11
illustrates that processed kidney image provides well defined and
significantly differentiated clusters with samples from identical classes
closely packed and those from dissimilar classes widely spread. The
refined cluster formation indicates superior feature quality therefore
augmenting the model ability to differentiate normal kidney structures
from malignant tumors. Table 4 displays five sample slices each
illustrating the original images, mask image and predicted mask with
overlaid red outlines thereby validating perfect segmentation.

4.4 Hyper parameter tuning

In the segmentation phase the transformer enhanced U-Net was
used for kidney segmentation whereas the contrast optimized PDN
focused on tumor region segmentation. The fused model combines
the outputs of both segmentation networks to improve IoU and dice
coeflicient scores while reducing loss (Miiller et al., 2023). All three
models (transformer enhanced U-Net, contrast optimized PDN, and
the fused architecture) underwent training for 35 epochs with iterative
weight adjustments throughout the dataset. A batch size of 32 was
chosen to optimize computing efficiency and image resolution while
the learning rate was fixed at 0.0001 (Tran et al., 2025) to ensure stable
and consistent parameter convergence during training. Table 5
summarizes the network architecture, training hyper parameters and
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data preprocessing settings used for both ConD-PDN and VHU-Net
models. It specifies layer configurations, activation functions,
optimizer details, loss function, evaluation metrics, batch size, number
of epochs and data augmentation strategies.

4.5 Model training and validation

The training and validation processes of the proposed hybrid
VHUCS-Net model were executed with uniform hyper parameter
configurations. The framework first segments the kidney region from
sliced images with masses using the transformer enhanced U-Net then
segmenting the kidney mass from the masked images through the
contrast optimized PDN model. The training set, representing 80% of
the dataset is utilized to optimize model parameters while the
validation set including 10% evaluates model performance during
training and provides hyper parameter modification to prevent
overfitting (Pavarut et al., 2023). The remaining 10% comprises the
test set (Zhang et al., 2020) assigned for the final evaluation to measure
the model generalization. Let N denote the total samples in the dataset
while Tiyqin, Tyal» Trest denote the size of the training, validation and
the test, respectively. The proportions for validation and splits are
represent by Iy, Iiest €nsure a balanced allocation for model training
fine tuning and evaluation (Nagarajan and Ramprasath, 2024). The
dataset splits are calculated as follows in Equations 19-21.

Tirain = NX(I_rval _rtest) (19)
Toal =NxXryy (20)
Trest = N X Iegt (21)

4.6 Evaluation metrics

The segmentation performance of the transformer enhanced
U-Net and contrast-optimized PDN models is assessed using three
key metrics. These metrics were specifically chosen because they
directly measure the degree of spatial overlap and boundary
accuracy. The dice similar coefficient quantifies the overlap
between the predicted region Spreq and the predicted mask Sg
where a higher value (closer to 1) indicates better segmentation
accuracy as shown in Equation 22. The dice loss defined as the

frontiersin.org


https://doi.org/10.3389/frai.2026.1716063
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Jenifa Sharon and Jani Anbarasi

10.3389/frai.2026.1716063

FIGURE 10

Image enhancement and augmentation on sliced kidney with mass.

TABLE 3 Data augmentation and preprocessing impact.

Category Parameter Effect on dataset Impact on memory Computational
complexity

Doubles dataset with

Horizontal flip p=05 Slight increase per batch Minimal; very fast
horizontal variations
Doubles dataset with vertical

Vertical flip p=05 Slight increase per batch Minimal; very fast
variants
Adds rotated variants;
Rotation limit = +20°, p = 0.5 Minor increase Fast; small per-image cost

increases dataset by ~1.5-2x

Random Brightness/contrast

p=03

Increases diversity in

intensity variations

Negligible

Low; minor pixel-wise operations

Elastic transform

alpha = 1, sigma = 50, alpha_
affine = 50,p = 0.3

Adds geometric distortions;

improves shape robustness

Moderate

Moderate; heavier than flip/rotation

CLAHE/Hist. equalization

clip_limit = 2.0, tile_

Enhances contrast; improves

Slight increase

Moderate; more intensive pixel

numerical stability

grid = (8,8), p=0.5 boundary visibility processing
Normalizes intensity across
Rescaling 1./255 None None
all datasets
Stable convergence across all
Learning rate LR =0.001 None None
datasets
Balanced training speed and
Batch size 32 Moderate Moderate
memory usage
Ensures consistent training No additional impact per
Epochs 35 Standard training cost
duration epoch
Smooth gradient updates;
Optimizer Adam None Low
avoids dataset-specific tuning
Improves segmentation
Loss function Dice loss None Low
consistency across modalities
Uniform evaluation for all
Metrics ToU, dice coefficient None None
datasets
Ensures compatibility and
Mixed precision float32 None None

negative dice similar coefficient is minimized during model negatives as shown in Equation 24. These metrics measure the

training to maximize the agreement between predicted tumour  accuracy of comparison between the predicted mask and the actual
region and predicted masks is expressed in Equation 23. The  tumor region. Dice loss assesses overlap accuracy whereas
intersection over union also known as the jaccard index which  intersection over union considers errors from both false positives
measures the ratio of intersection to union of Spreq and Sy offering  and false negatives. Collectively, they provide an in-depth

a robust evaluation by considering both false positives and false  evaluation of segmentation efficacy.
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Table 6 presents the segmentation performance of the three
models by using averaged data from multiple seeds expressed as mean
+ standard deviation and along with their 95% confidence intervals.
This provides a more precise and statistically validated comparison.
The transformer augmented U-Net attained an IoU of 0.9107 and a
dice coefficient of 0.9532 representing precise spatial reconstruction.
This architecture includes a vision transformer module into the
traditional U-Net framework integration an encoder decoder
structure with convolutional layers, multi-head self-attention and skip
connections to collect both local and global contextual information.
Figure 12 shows the training curves and ROC analysis indicating the
model convergence and strong segmentation performance.

The contrast optimized PDN improves segmentation by
improving contrast facilitating exact characterization of structural
boundaries. The design includes convolutional layers with contrast
based feature improvement, batch normalization, multiscale
pooling and non-linear activations to improve segmentation
accuracy. In the test dataset, model attained an IoU of 0.9285 and
a dice coeficient of 0.9629 indicating enhanced accuracy and less
segmentation error. Figure 13 shows the training curves and ROC
analysis validating consistent learning and improved boundary
recognition.

The proposed VHUCS-Net a hybrid of the transformer enhanced
U-Net and contrast optimized PDN combines global context
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modelling with contrast driven feature refining to attain increased
segmentation performance. The hybrid model attained an IoU of
0.9441 and a dice coefficient of 0.9712 outperforming the performance
of the individual models and showing that the fusion of features
improves both segmentation precision and spatial overlap. Figure 14
illustrates the performance curves and ROC analysis which highlight
the enhancements hybrid framework.

The confusion matrix provides a detailed analysis of predictions
by class and displays patterns of misclassification as the associated
heatmap visually highlights error distribution and performance at the
class level. Table 7 presents the confusion matrices with their
corresponding heatmaps facilitating a detailed evaluation of the model
performance.

4.7 Performance analysis of model output

The segmentation phase performs in two tracks in track 1 employs
a transformer enhanced U-Net model while track 2 uses the contrast
optimized PDN model. The input to the transformer enhanced U-Net
model contains a sliced kidney image containing masses. This model
incorporates a standard U-Net model with a ViT layer and a HRNet
as decoder. The ViT component captures long range dependencies and
global context and the HRNet preserves detailed spatial information
(Gong and Kan, 2021). The contrast optimized PDN model is
specifically designed to segment the kidney mass from the masked
kidney image. It employs multi scale max pooling for capturing both
fine and coarse details also, the use of separableconv2D reduces
computational difficulty while maintaining accuracy. Figure 15
illustrates the kidney segmentation approach utilizing the suggested
dual track framework. The original kidney image is shown in (a)
followed with the corresponding mask in (b) track 1 the transformer
enhanced U-Net precisely segments the kidney region as illustrated in
(c) whereas track 2 the contrast optimized PDN segments the renal
tumor presented in (d). The outputs from both tracks are later fused
in the fusion stage resulting in the final fused kidney tumor
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TABLE 4 Sample images with mask and predicted contour overlay.

Visualization (original, mask, and predicted overlay)

10.3389/frai.2026.1716063

Original Image

Mask Image

Predicted Contour Overlay

Original Image

Mask Image

Predicted Contour Overlay

Original Image

Mask Image

Predicted Contour Overlay

Original Image

Mask Image

Predicted Contour Overlay
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TABLE 4 (Continued)
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Visualization (original, mask, and predicted overlay)

Original Image

N

Mask Image

Predicted Contour Overlay

\.

TABLE 5 Hyper parameter and configuration settings.

Value

Layer

Hyper
parameter

Input layer Input shape (256, 256, 1)

Encoder—ConD-
PDN

Filters (stage 1 — 4) 64 — 128 — 256 — 512

Encoder—VHU-Net | Filters (stage 1 — 4) 16 = 32 — 64 — 128

1,024 (ConD-PDN), 128

Conv2D (bridge) (VHU-Net)
-Net

Filters

Criss-Cross attention | Activation Sigmoid

Decoder—ConD-
PDN

Filters (stage 1 — 4) 512 — 256 — 128 — 64

Decoder—VHU-Net | Filters (stage 1 — 4) 64—32—->16—>8

Output layer Filters / Units 1
Output layer Activation Sigmoid
Optimizer Type Adam
Learning rate LR 0.001
Loss function Type Dice loss
Metrics Types ToU, dice coefficient
Batch size - 32
Epochs - 35
Data augmentation Rescale 1/255
Data augmentation Rotation range 15°
Mixed precision Policy float32

segmentation in (e). The resulting combination improves boundary
accuracy, incorporates structural variations and provides efficient
multi-scale feature integration (MRFA-Net, n.d.) leading to
dependable and precise kidney mass identification. The fusion of the
transformer enhanced U-Net and contrast optimized PDN models
achieves higher IoU and dice coeflicient performance as shown in
Figure 16. This performance improvement explains the corresponding
benefits of the two frameworks includes superior spatial detail
preservation from the transformer enhanced U-Net and better
localized feature extraction from the contrast optimized PDN. The
model utilizes multi-scale information to enhance boundary precision

Frontiers in Artificial Intelligence

and robustness to morphological variability for medical image
analysis.

4.8 VHUCS-net validation on publicly
accessible datasets

To evaluate the generalizability of the proposed VHUCS-Net
model experiments were performed on various publically available
medical image segmentation datasets which includes the Skin
Cancer MNIST: HAM10000 dataset, the Blood Cell Segmentation
Dataset and the KiTS23 kidney tumor segmentation dataset. Images
for the skin lesion segmentation analysis were obtained from the
Skin Cancer MNIST: HAM10000 dataset (Mader, 2018) and the
corresponding lesion masks were acquired from the HAM10000
Lesion Segmentations dataset (Mader, 2018). The HAMI10000
dataset (Human Against Machine with 10,000 training photos)
consists of 10,015 skin lesion images obtained from different people
and imaging techniques. The Blood Cell Segmentation Dataset
(BCCD) (Deponker et al., 2023) contains pixel-level annotations
along with consistent image-mask pairings. Out of the 1,328 image
and mask pairs, a selected subset of 1,169 pairs were used for
quantitative studies whereas the remaining pairs are provided with
the corresponding script for transparency but excluded from
training and evaluation. The KiTS23 dataset (Kumar, n.d.) which
includes annotated axial CT slices for kidney tumor segmentation
has been evaluated with data augmentation applied to the training
set resulting in 39,080 augmented image and mask pairs. Validation
and testing were performed on non-augmented data consisting of
3,965 validation pairs and 3,850 test pairs using patient-wise
partitioning to prevent data leakage. All datasets were divided into
training, validation and test partitioned outlined in Table 8.

Figure 17 show the tumour area distribution across all patient. The
proposed VHUCS-Net model was trained and validated on additional
datasets with same hyper parameter values used in the kidney disease
segmentation challenge. The evaluation of model performance was
done using the dice coefficient and IoU as illustrated in Table 9.
Table 10 shows the runtime and resource utilization of VHUCS-Net
on the KiTS23 dataset. Segmentation results were generated where
affected regions are highlighted clearly illustrate the model efficiency
in exactly determining and differentiating target areas. These
visualizations provide a direct comparison of VHUCS-Net
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TABLE 6 Performance evaluation of segmentation models.

Structure

DICE (mean +

IOU (mean +

HD95 (mean +

ASSD (mean +

10.3389/frai.2026.1716063

LOSS (mean +

SD) [95% Cl]

SD) [95% Cl]

SD) [95% Cl]

SD) [95% Cl]

SD) [95% Cl]

[1.0000-1.0000]

[1.0000-1.0000]

VHU_net Kidney 0.9532 +0.0134 0.9107 +0.0242 0.2692 + 0.4436 0.0743 + 0.0384 0.0468 +0.0133
[0.9269-0.9795] [0.8633-0.9581] [0.0000-1.1387] [0.0000-0.1496] [0.0207-0.0729]
Tumor 1.0000 + 0.0000 1.0000 + 0.0000 - - -
[1.0000-1.0000] [1.0000-1.0000]
ConD-PDN Kidney 0.9629 +0.0136 0.9285 + 0.0249 0.2692 + 0.4436 0.0624 + 0.0287 0.0371 +0.0136
[0.9362-0.9896] [0.8797-0.9773] [0.0000-1.1387] [0.0061-0.1187] [0.0104-0.0638]
Tumor 1.0000 + 0.0000 1.0000 + 0.0000 - - -
[1.0000-1.0000] [1.0000-1.0000]
Fuse_models Kidney 0.9712 + 0.0088 0.9441 +0.0164 0.0769 + 0.2665 0.0504 + 0.0186 0.0288 + 0.0088
[0.95395-0.98845] [0.91196-0.97624] [0.0000-0.5992] [0.01394-0.08686] [0.01155-0.04605]
Tumor 1.0000 + 0.0000 1.0000 + 0.0000 - - -
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Evaluation of the enhanced U-Net model: (a) Training and validation loss; (b) intersection over union; (c) Dice coefficient.
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FIGURE 13
Analysis of contrast optimized PDN model: (a) Training and validation loss, (b) intersection over union, (c) dice coefficient.

segmentation efficacy across the Kidney, HAM10000 (skin lesion),
Blood Cell datasets and KiTS23 with quantitative results presented in
Table 11.

4.9 Ablation study

An ablation study has been conducted for systematic evaluation of
the contribution of various modules within the proposed architecture by
selectively adjusting the model structure. The evaluation utilized key
performance metrics including the dice coefficient (Eapen et al., 2015),
IoU, loss, (Eapen et al., 2016) total parameter counts and model size.

4.9.1 Performance analysis transformer enhanced
U-net with ViT layer

This implementation assesses the effects of incorporating a ViT
attention layer which enhances global context modeling and improves
feature extraction. The model attains a dice coefficient of 0.9436 and
an IoU of 0.8937 enabled by HRNet robust spatial preservation. With

Frontiers in Artificial Intelligence

7.78 million parameters and a size of 29.69 MB it exhibits modest
complexity while achieving high segmentation performance as shown
in Figures 18a-c capacity.

4.9.2 Performance analysis transformer enhanced
U-net with HRNet layer

This configuration uses HRNet to maintain high-resolution
features and integrate multi-scale information enhancing structural
detail and boundary localization. It attains a dice coefficient of 0.9472
and an IoU of 0.9001 including exactly 196,916 parameters and a size
of 0.75 MB indicating of robust accuracy and efficiency. Figures 19a-c
shows the curves for loss, intersection over union and dice
coefficient.

4.9.3 Performance analysis of contrast optimized
PDN model

This implementation evaluates the contrast-optimized PDN
model, which improves border detection via superior contrast
management and enhanced edge processing. It attains a dice
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FIGURE 14
Analysis of proposed VHUCS-Net model: (a) Training and validation loss; (b) intersection over union; (c) dice coefficient.

TABLE 7 Confusion matrices and heatmaps.
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FIGURE 15
Visualization of the kidney segmentation process: (a) Original kidney image, (b) mask image, (c) segmented kidney region, (d) segmented tumor mask,
(e) fused kidney tumor image
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loU and dice coefficient performance comparison

TABLE 8 Dataset partitioning for proposed VHUCS-Net model validation coefficient of 0.9605 and an IoU of 0.9245 indicating robust

using additional open-source datasets. segmentation consistency. With 3.37 million parameters and a size of
Dataset Validation Test Total 12.86 MB it is both lightweight and efficient as shown by the loss, IToU
o and dice curves illustrated in Figures 20a—c.
Skin lesion 8,012 1,001 1,002 10,015 ) i i
The ablation study validates that each design component
Blood cell 933 17 17 1169 distinctly, ViT attention layer is essential for acquiring global
KiTS23 39,080 3,965 3,850 46,895 contextual information allowing the model to analyse long-range
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FIGURE 17
Tumour area distribution.
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TABLE 9 Performance comparison of VHUCS-Net on different datasets.

Dataset Loss loU (mean + Dice (mean+ HD95 (mean ASSD (mean + Per-
SD, 95% Cl) SD, 95% Cl) +SD, 95% Cl)  SD, 95% Cl) Volume
[mm] [mm] Latency
(GPU)
~1.1-12GB
Kidney 0.0288 0.9441 + 0.0062 0.9712 + 0.0034 0.077 +0.267 0.050 +0.019 033s
VRAM
~1.0-1.1 GB
Skin lesion 0.0881 0.8405 + 0.0081 0.9119 + 0.0068 3.94+0.72 142 +£0.18 033s
VRAM
~0.9-1.0 GB
Blood Cell 0.0360 0.9306 + 0.0070 0.9640 + 0.0045 2.11+0.55 077 +0.11 033s
VRAM
KiTS23 0.0432 0.8845 +0.0717 0.9370 + 0.0442 1.0504 + 2.4964 0.1980 + 0.3115 057 ~1.28 GB VRAM

TABLE 10 Runtime and resource usage on KiTS23.

Median slices/
volume (IQR)

Dataset Patients

Time per

slice (s)

Time per Hardware

volume (s)

Peak memory

KiTS23 100 390.8 (390.8-390.8)

0.001463

0.572 GPU (Tesla P100, fp32) 1.28 GB VRAM

dependencies more effectively. The HRNet decoder is essential for
maintaining high-resolution spatial features thus providing an
accurate representation. The contrast optimized PDN module
specifically with its multiscale pooling technique significantly
improves mass localization and sharpens borders. The fusion of these
components generates excellent performance, showing the significance
of each individual module for efficient kidney mass segmentation.
Table 12 summarizes the ablation study where all architectural
variants including ViT-only, HRNet-only and the combined
ViT + HRNet modules are evaluated. Parameter count and model size
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are also compared to offer a comprehensive understanding of
computational complexity and performance.

4.10 Comparison of proposed model with
state of architecture

Various kidney segmentation methods have been studied across
different
improvement. Kittipongdaja and Siriborvornratanakul (2022) utilised

datasets demonstrating  significant  performance
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TABLE 11 Comparison of VHUCS-Net segmentation results with contour overlay across different datasets.

Dataset

Skin lesion Blood cell

Image segmentation

visualization
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FIGURE 18
Performance analysis of transformer enhanced U-Net with ViT layer: (a) Loss, (b) loU, (c) dice coefficient.
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Performance analysis of transformer enhanced U-Net with HRNet layer: (a) Training and validation loss; (b) intersection of union; (c) Dice coefficient.

T T T T T

3

(©)

2.5D ResU-Net and 2.5D DenseU-Net on the KiTS19 and Thai Patient
Datasets achieving dice scores of 0.95 and 0.87. Hatsutani (2023)
established a PDN on KiTS19 achieving a dice score of 0.615 and a
sensitivity of 0.721, effectively recognizing protruding tumour areas.
Bolocan et al. (2023) employed U-Net and ResNetl01 on private
DICOM images attaining dice scores of 0.675 for tumours and 0.84
for kidneys. Swain et al. (2024) used YOLOv8 and Mask R-CNN on
the HuBMAP dataset indicating a precision of 0.97, recall of 0.85 and
mAP50 of 0.93. Oghli et al. (2024) implemented Fast U-Net++ on the
Open Kidney Dataset achieving sagittal and axial dice scores of 0.97
and 0.95, respectively. Zhao et al. (2020) developed a multi-scale
supervised 3D U-Net on KiTS19 achieving segmentation performance
with dice scores of 0.969 for kidneys and 0.805 for tumours. Zhao et
al. (2023) proposed a cascade 3D U-Net and ResNet on KiTS21

Frontiers in Artificial Intelligence

attaining accurate kidney mass segmentation with dice scores of 0.99
for kidneys and 0.75-0.83 for kidney masses. Conze et al. (2024)
evaluated various models including v19p U-Net, Trans U-Net, MedT,
Segmenter, and Swin U-NetV2 on the Genkyst dataset, with
SwinUNetV2 outperforming the other models in complex
segmentation tasks achieving a dice score of 0.934. Hsiao et al. (2022a)
combined EfficientNet-B5 and FPN on KiTS19 and 3D-IRCAD-01,
increasing segmentation efficacy with a dice score of 0.969. Hsiao et
al. (2022b) utilised ResNet-41 and EfficientNet on KiTS19 enhancing
segmentation precision by preprocessing, resulting in dice scores of
0.9648 for kidneys and 0.7294 for tumours. Jariwala et al. (2024)
integrated U-Net and DeepLabv3 +on KiTS23 optimizing
segmentation precision with a dice score of 0.94. Causey et al. (2021)
deployed an ensemble of U-Net models with post-processing on
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TABLE 12 Ablation study of the model components.

Loss (mean + SD) loU (mean + SD) Dice (mean + SD) Total Params Model size
[95% Cl] [95% Cl] [95% Cl]

U-Net with ViT 0.0528 £ 0.0026 [0.0477- 0.9001 £ 0.0093 [0.8819~ 0.9472 £ 0.0068 [0.9340— 196,916 0.75 MB
0.0579] 0.9183] 0.9603]

U-Net with HRNet 0.0564 + 0.0031 [0.0502— 0.8937 + 0.0112 [0.8719- 0.9436 + 0.0074 [0.9292— 196,916 0.75 MB
0.0626] 0.9155] 0.9580]

U-Net with ViT + HRNet  0.0468 + 0.0022 [0.0422— 0.9107 £ 0.0086 [0.8931- 0.9532 £ 0.0059 [0.9417- 7,781,761 29.69 MB
0.0514] 0.9283] 0.9647]

Contrast-optimized PDN  0.0395 + 0.0018 [0.0359— 0.9245 £ 0.0074 [0.9100~ 0.9605 + 0.0048 [0.9512— 3,370,000 19.70 MB
0.0431] 0.9390] 0.9697]

Proposed VHUCS-Net 0.0288 + 0.0011 [0.0266- 0.9441 £ 0.0062 [0.9318- 0.9712 + 0.0034 [0.9646- 32,624,261 124.45 MB
0.0310] 0.9564] 0.9778]

KiTS19 improving segmentation precision it achieved 0.9470 dice

score for kidneys and 0.6099 for tumours. Proposed model, which

combines transformer enhanced U-Net model and contrast-optimized

Frontiers in Artificial Intelligence
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PDN model on the kidney segmentation dataset attained enhanced

segmentation accuracy with improved kidney mass localization and

boundary precision demonstrated by a loss of 0.0288, an IoU of 0.944
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and a dice coefficient of 0.9712 as presented in Table 13. The
segmentation performance of VHUCS-Net with standard baseline
models (U-Net, UNet++, MobileNetV2) re-run on the kidney
segmentation dataset using the same metrics is shown in Table 14.

5 Conclusion and future work

Kidney masses exhibit significant variation in size, shape and
texture across individuals making it essential for segmentation models
to achieve both high accuracy and adaptability. The proposed
VHUCS-Net model statements this challenge using a dual-track
architecture such as transformer enhanced U-Net model in track 1
and the contrast optimized PDN model in track 2. The transformer
enhanced U-Net model features an encoder that combines ViT
attention with HRNet with the standard U-Net architecture. The ViT
attention mechanism enhances global feature representation by
capturing long-range dependencies, hence improving the difference
between kidney structures and surrounding tissues. HRNet maintains
detailed spatial information important for efficient segmentation
while the U-Net decoder preserve spatial information through skip

TABLE 13 Performance comparison with other state of art methods.

Ref Dataset Methodology
Kittipongdaja and 2.5D ResU-Net, 2.5D DenseU-
KiTS19 and Thai patient

Siriborvornratanakul (2022) Net

10.3389/frai.2026.1716063

connections, enhancing boundaries and enhancing localization of the
kidney region. Thus, the transformer-enhanced U-Net effectively
segments the kidney region from the neighbouring tissues attaining
an IoU of 0.9107 and a dice value of 0.9532 indicating robust feature
extraction and accurate segmentation. The contrast optimized PDN
model simultaneously highlighting mass regions inside the kidney. It
employs multi-scale pooling to extract features with various sizes and
utilize SeparableConv2D layers to enhance boundaries effectively. The
implementation of further batch normalization and feature fusion
enhances model accuracy and adaptability providing the contrast-
optimized PDN more effective for kidney mass segmentation. This is
shown in its performance attaining an IoU of 0.9285 and a dice
coefficient of 0.9629 showing accuracy and consistency. The fusion of
these two models in the final VHUCS-Net architecture incorporates
their respective strengths with global context integration accurate
spatial detail preservation and exact mass localization. In the Kidney
Segmentation Dataset VHUCS-Net attained an IoU of 0.9441 and a
dice coeflicient of 0.9712. The results indicate that the fusion of both
models provides a highly accurate and reliable method for renal mass
segmentation. Future study will explore integrating 3D attention
modules and self-supervised pretraining to further strengthen

Evaluation metrics = Key characteristic

Dice: 0.95 (KiTS19), 0.87
(Thai)

Achieved high segmentation

accuracy across dataset

Dice: 0.615, sensitivity: Accurate in identifying protruding

Hatsutani (2023) KiTS19 Protuberance Detection Network
0.721 tumor regions
Private (raw DICOM Dice: 0.675 (Tumour), 0.84 U-Net provide precise
Bolocan et al. (2023) U-Net, ResNet101
images) (kidney) segmentation outcomes.
YOLOVS provides higher
Precision: 0.97, recall: 0.85,
Swain et al. (2024) HuBMAP YOLOVS8, Mask R-CNN segmentation accuracy and
mAP50: 0.93
efficiency.
Dice: 0.97 (sagittal), 0.95 Exactly predicts kidney shape and
Oghli et al. (2024) Open kidney data set Fast U-Net++
(axial) volume
Dice: 0.969 (kidney), 0.805 Efficient segmentation with multi-
Zhao et al. (2020) KiTS19 Multi-scale supervised 3D U-Net
(tumour) scale supervision
Dice: 0.99 (kidney), 0.75— Attains accurate segmentation of
Zhao et al. (2023) KiTS21 Cascading 3D U-Net, ResNet
0.83 (kidney mass) kidney boundaries
Dice: 0.934 (both organ), Swin U-NetV2 provides better
v19p U-Net, Trans U-Net, MedT,
Conze et al. (2024) Genkyst 0.934 (independent & dual results in complex segmentation

Segmenter, Swin U-NetV2

task) cases.

Hsiao et al. (2022a) KiTS19, 3D-IRCAD-01

EfficientNet-B5, FPN

FPN optimises segmentation
Dice: 0.969 (KiTS19)
efficiency and enhancement.

Dice: 0.9648 (kidney), Pre-processing methods enhance

(PDN) model

Hsiao et al. (2022b) KiTS19 ResNet-41 and EfficientNet
0.7294 (tumour) segmentation accuracy.
DeepLabv3 + enhances
Jariwala et al. (2024) KiTS23 U-Net and DeepLabv3+, Dice: 0.94
segmentation accuracy
Ensemble of U-Net models with Dice: 0.9470 (kidney), Post-processing enhances
Causey et al. (2021) KiTS19
post pre-processing 0.6099 (tumour) segmentation accuracy
Transformer-enhanced U-Net Achieves high segmentation
Kidney Segmentation model and contrast-optimized Loss of 0.0288, IoU: 0.9441,  accuracy with enhanced boundary
Proposed VHUCS-Net
Dataset Protuberance Detection Network | dice coefficient: 0.9712 precision and optimized kidney

mass localization.
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TABLE 14 Segmentation performance of VHUCS-Net and baseline
models with kidney segmentation dataset.

loU (mean +
SD) [95% Cl]

0.7468 + 0.0050

Dice (mean +

SD) [95% Cl]

0.8320 £ 0.0041

U-Net
[0.8240-0.8400] [0.7370-0.7566]
0.8594 + 0.0036 0.7846 + 0.0044
UNet++
[0.8523-0.8665] [0.7759-0.7933]
0.8057 + 0.0050 0.6995 + 0.0060
MobileNetV2

[0.7959-0.8155] [0.6878-0.7112]

DeepLabV3 + (MobileNetV2
backbone)

0.8673 + 0.0038
[0.8600-0.8746]

0.7902 + 0.0042
[0.7819-0.7985]

0.9712 £ 0.0034
[0.9646-0.9778]

0.9441 + 0.0062

VHUCS-Net (proposed) [0.9318-0.9564]

VHUCS-Net multi-organ segmentation capabilities. Aim to develop
the model to larger and more diverse datasets to optimize its
usefulness across various clinical contexts. Clinical deployment
studies will also be carried out to assess its efficacy and simplify the
integration of real-world workflow.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

JJ: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization, Writing -
original draft, Writing - review & editing. L]: Conceptualization, Data
curation, Formal analysis, Funding acquisition, Investigation,

References

Bolocan, V. O., Secareanu, M., Sava, E., Medar, C., Manolescu, L. S. C., Citilin
Ragcu, A. §., et al. (2023). Convolutional neural network model for segmentation and
classification of clear cell renal cell carcinoma based on multiphase CT images. J.
Imaging. 9:280.

Buriboev, A. S., Khashimov, A., Abduvaitov, A., and Jeon, H. S. (2024). CNN-based kidney
segmentation using a modified CLAHE algorithm. Sensors 24:7703. doi: 10.3390/524237703

Causey, J., Stubblefield, J., Qualls, J., Fowler, J., Cai, L., Walker, K., et al. (2021). An
ensemble of U-net models for kidney tumor segmentation with CT images. IEEE/ACM
Trans. Comput. Biol. Bioinform. 19, 1387-1392.

Chen, J.,, Fan, H., Shao, D., and Dai, S. (2024). MRFA-Net: Kidney Segmentation Method
Based on Multi-Scale Feature Fusion and Residual Full Attention. Appl. Sci. 14:2302.

Conze, P-H., Andrade-Miranda, G., Le Meur, Y., Cornec-Le Gall, E., and Rousseau, F.
(2024). Dual-task kidney MR segmentation with transformers in autosomal-dominant
polycystic kidney disease. Comput. Med. Imaging Graph. 113:102349. doi: 10.1016/j.
compmedimag.2024.102349

da Cruz, L. B., Aratjo, J. D. L,, Ferreira, J. L., Diniz, J. O. B,, Silva, A. C., Almeida, J. D. S.,
et al. (2020). Kidney segmentation from computed tomography images using deep
neural network. Comput. Biol. Med. 123:103906. doi: 10.1016/j.compbiomed.2020.103906

Daniel, A. J., Buchanan, C. E., Allcock, T., Scerri, D., Cox, E. E, Prestwich, B. L., et al.
(2021). Automated kidney segmentation in healthy and chronic kidney disease subjects
using a convolutional neural network. Magn. Reson. Med. 86, 1125-1136. doi: 10.1002/
mrm.28768

Frontiers in Artificial Intelligence

10.3389/frai.2026.1716063

Methodology,
Supervision, Validation, Visualization, Writing - original draft,

Project administration, Resources, Software,

Writing - review & editing.

Funding

The author(s) declared that financial support was not received for
this work and/or its publication.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that Generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Deponker, SD, Rahman, Shazidur, Hosen, Mekayel, Mst Shapna, Akter, Tamanna, RR,
Rahman, Aimon, et al. 2023. Blood cell segmentation dataset. Kaggle. Available online
at: https://www.kaggle.com/datasets/jeetblahiri/bccd-dataset-with-mask

Eapen, M., Korah, R., and Geetha, G. (2015). 3-D liver segmentation from CTA
images with patient adaptive Bayesian model. Intern. J. Biomed. Engin. Technol.
19, 53-69.

Eapen, M., Korah, R., and Geetha, G. (2016). Computerized liver segmentation from
CT images using probabilistic level set approach. Arab. J. Sci. Eng. 41, 921-934.

Goel, A, Shih, G, Riyahi, S., Jeph, S., Dev, H., Hu, R,, et al. (2022). Deployed deep
learning kidney segmentation for polycystic kidney disease MRI. Radiol. Artif. Intell.
4:€210205. doi: 10.1148/ryai.210205

Gong, Z., and Kan, L. (2021). Segmentation and classification of kidney tumors based
on convolutional neural network. J. Radiat. Res. Appl. Sci. 14, 412-422.

Hatsutani, T. (2023). “Segmentation of kidney tumors on non-contrast CT
images using protuberance detection network” in International conference on medical
image computing and computer-assisted intervention (Cham: Springer Nature
Switzerland).

Hsiao, C.-H., Lin, P.-C., Chung, L.-A,, Lin, E. Y.-S,, Yang, E-],, Yang, S.-Y,, et al.
(2022a). A deep learning-based precision and automatic kidney segmentation system
using efficient feature pyramid networks in computed tomography images. Comput.
Methods Prog. Biomed. 221:106854. doi: 10.1016/j.cmpb.2022.106854

frontiersin.org


https://doi.org/10.3389/frai.2026.1716063
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.3390/s24237703
https://doi.org/10.1016/j.compmedimag.2024.102349
https://doi.org/10.1016/j.compmedimag.2024.102349
https://doi.org/10.1016/j.compbiomed.2020.103906
https://doi.org/10.1002/mrm.28768
https://doi.org/10.1002/mrm.28768
https://www.kaggle.com/datasets/jeetblahiri/bccd-dataset-with-mask
https://doi.org/10.1148/ryai.210205
https://doi.org/10.1016/j.cmpb.2022.106854

Jenifa Sharon and Jani Anbarasi

Hsiao, C.-H., Sun, T.-L., Lin, P.-C., Peng, T.-Y., Chen, Y.-H., Cheng, C.-Y,, et al.
(2022b). A deep learning-based precision volume calculation approach for kidney and
tumor segmentation on computed tomography images. Comput. Methods Prog. Biomed.
221:106861. doi: 10.1016/j.cmpb.2022.106861

Hussain, M. A., Hamarneh, G., and Garbi, R. (2021). Cascaded regression neural nets
for kidney localization and segmentation-free volume estimation. IEEE Trans. Med.
Imaging 40, 1555-1567. doi: 10.1109/TMI.2021.3060465

Hwang, G., Yoon, H,, Ji, Y., and Lee, S. J. (2022). RBCA-Net: reverse boundary channel
attention network for kidney tumor segmentation in CT images. In 2022 13th
International Conference on Information and Communication Technology Convergence
(ICTC). IEEE. 2114-2117.

Jadhav, P. (2023). Kidney segmentation dataset. Kaggle. Available online at: https://
www.kaggle.com/datasets/pratikjadhav05/kidney-segmentation-dataset

Jariwala, T. A., Mehta, P. C., Mehta, M. A., and Joshi, V. C. (2024). “Kidney and kidney
tumour segmentation from 3D CT scan using DeepLabv3+” in 2024 IEEE region 10
symposium (TENSYMP) (IEEE).

Kittipongdaja, P, and Siriborvornratanakul, T. (2022). Automatic kidney segmentation
using 2.5 D ResUNet and 2.5 D DenseUNet for malignant potential analysis in complex
kidney cyst based on CT images. Eurasip J. Image Video Process. 2022:5.

Kumar, P. Sample dataset. Kaggle. Available online at: https://www.kaggle.com/
datasets/pawankumar1246/sample

Lin, Z., Cui, Y, Liu, ], Sun, Z., Ma, S., Zhang, X, et al. (2021). Automated segmentation
of kidney and kidney mass and automated detection of kidney mass in CT urography
using 3D U-net-based deep convolutional neural network. Eur. Radiol. 31, 5021-5031.
doi: 10.1007/s00330-020-07608-9

Liu, J., Yildirim, O., Akin, O., and Tian, Y. (2023). AI-driven robust kidney and kidney
mass segmentation and classification on 3D CT images. Bioengineering 10:116.

Mader, K. S. (2018). Skin Cancer MNIST: HAM10000. Kaggle. Available online at:
https://www.kaggle.com/datasets/tschandl/ham10000-lesion-segmentations

Mehedi, M. H. K., Haque, E,, Radin, S. Y., Rahman, M. A. U,, Reza, M. T,, and
Alam, M. G. R. (2022). “Kidney tumor segmentation and classification using deep neural
network on ct images” in 2022 international conference on digital image computing:
Techniques and applications (DICTA) (IEEE). 1-7.

Moradi, M., Du, X,, Huan, T, and Chen, Y. (2022). Feasibility of the soft attention-
based models for automatic segmentation of OCT kidney images. Biomed. Opt. Express
13, 2728-2738. doi: 10.1364/BOE.449942

MRFA-Net: Kidney Segmentation Method Based on Multi-Scale Feature Fusion and
Residual Full Attention

Miiller, L., Tibyampansha, D., Mildenberger, P., Panholzer, T., Jungmann, F, and
Halfmann, M. C. (2023). Convolutional neural network-based kidney volume estimation
from low-dose unenhanced computed tomography scans. BMC Med. Imaging 23:187.
doi: 10.1186/512880-023-01142-y

Nagarajan, S., and Ramprasath, M. (2024). Ensemble transfer learning-based convolutional
neural network for kidney segmentation. Int. J. Eng. Trends Technol. 72, 446-457.

Oghli, M. G., Bagheri, S. M., Shabanzadeh, A., Mehrjardi, M. Z., Akhavan, A., Shiri, I.,
et al. (2024). Fully automated kidney image biomarker prediction in ultrasound scans
using fast-Unet++. Sci. Rep. 14:4782. doi: 10.1038/s41598-024-55106-5

Patel, V. V,, Yadav, A. R,, Jain, P, and Cenkeramaddi, L. R. (2024). A systematic kidney
tumor segmentation and classification framework using adaptive and attentive-based

Frontiers in Artificial Intelligence

27

10.3389/frai.2026.1716063

deep learning networks with improved crayfish optimization algorithm. IEEE Access 12,
85635-85660.

Pavarut, S., Preedanan, W., Kumazawa, I., Suzuki, K., Kobayashi, M., Tanaka, H., et al.
(2023). Improving kidney tumor classification with multi-modal medical images
recovered partially by conditional CycleGAN. IEEE Access 11, 146250-146261. doi:
10.1109/ACCESS.2023.3345648

Pimpalkar, A., Saini, D. K. J. B,, Shelke, N., Balodi, A., Rapate, G., and Tolani, M.
(2025). Fine-tuned deep learning models for early detection and classification of kidney
conditions in CT imaging. Sci. Rep. 15:10741. doi: 10.1038/541598-025-94905-2

Sharma, K., Rupprecht, C., Caroli, A., Aparicio, M. C., Remuzzi, A., Baust, M., et al.
(2017). Automatic segmentation of kidneys using deep learning for total kidney volume
quantification in autosomal dominant polycystic kidney disease. Sci. Rep. 7:2049. doi:
10.1038/s41598-017-01779-0

Shelke, N., Somkunwar, R., Pimpalkar, A., Maurya, S., and Chhabria, S.
(2025). Ensemble EfficientNet: a novel technique for identification, classification and
prediction  of diabetic  retinopathy.  Automatika 66, 543-558.  doi:
10.1080/00051144.2025.2514884

Swain, D., Kumar, M., and Patel, K. (2024). “YOLOv8 vs. mask R-CNN: a comparative
analysis of for glomeruli instance segmentation in kidney tissues” in 8th international
conference on computing, communication, control and automation (ICCUBEA)
IEEE 2024.

Tran, N.-D,, Tran, T.-T., Nguyen, Q.-H., Vu, M.-H., and Pham, V.-T. (2025). Litenext:
a novel lightweight convmixer-based model with self-embedding representation parallel
for medical image segmentation. Biomed. Signal Process. Control 107:107773. doi:
10.1016/j.bspc.2025.107773

Tirk, E, Lity, M., and Barisci, N. (2020). Kidney and kidney tumor segmentation using
a hybrid V-net-based model. Mathematics 8:1772.

Uhm, K.-H,, Jung, S. W,, Choi, M. H., Hong, S. H., and Ko, S. J. (2022). A unified
multi-phase CT synthesis and classification framework for kidney cancer diagnosis with
incomplete data. IEEE J. Biomed. Health Inform. 26, 6093-6104. doi: 10.1109/
JBHI.2022.3219123

Vezakis, A., Vezakis, I., Vagenas, T. P., Kakkos, I., and Matsopoulos, G. K. (2024). A
multidimensional framework incorporating 2D U-net and 3D attention U-net for the
segmentation of organs from 3D fluorodeoxyglucose-positron emission tomography
images. Electronics 13:3526. doi: 10.3390/electronics13173526

Yang, L., Dong, Q, Lin, D,, Tian, C., and Lii, X. (2025). Munet: a novel framework for
accurate brain tumor segmentation combining UNet and mamba networks. Front.
Comput. Neurosci. 19:1513059. doi: 10.3389/fncom.2025.1513059

Zhang, Y., Qiu, J,, Jie, D., Wu, ], Ye, T. T., and Tang, X. (2020). “Coarse-to-fine kidney
segmentation incorporating abnormality detection and correction” in The fourth
international symposium on image computing and digital medicine. 91-94.

Zhao, W., Jiang, D., Pefia Queralta, J., and Westerlund, T. (2020). MSS U-net: 3D
segmentation of kidneys and tumors from CT images with a multi-scale supervised
U-net. Inf. Med. Unlocked 19:100357. doi: 10.1016/j.imu.2020.100357

Zhao, T., Sun, Z., Guo, Y., Sun, Y., Zhang, Y., and Wang, X. (2023). Automatic renal
mass segmentation and classification on CT images based on 3D U-net and
ResNet algorithms. Front. Oncol. 13:1169922. doi: 10.3389/fonc.2023.1169922

Zéllner, E G., Kocinski, M., Hansen, L., Golla, A. K., Trbali¢, A. S., Lundervold, M.,
etal. (2021). Kidney segmentation in kidney magnetic resonance imaging-current status
and prospects. IEEE Access 9, 71577-71605.

frontiersin.org


https://doi.org/10.3389/frai.2026.1716063
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.cmpb.2022.106861
https://doi.org/10.1109/TMI.2021.3060465
https://www.kaggle.com/datasets/pratikjadhav05/kidney-segmentation-dataset
https://www.kaggle.com/datasets/pratikjadhav05/kidney-segmentation-dataset
https://www.kaggle.com/datasets/pawankumar1246/sample
https://www.kaggle.com/datasets/pawankumar1246/sample
https://doi.org/10.1007/s00330-020-07608-9
https://www.kaggle.com/datasets/tschandl/ham10000-lesion-segmentations
https://doi.org/10.1364/BOE.449942
https://doi.org/10.1186/s12880-023-01142-y
https://doi.org/10.1038/s41598-024-55106-5
https://doi.org/10.1109/ACCESS.2023.3345648
https://doi.org/10.1038/s41598-025-94905-2
https://doi.org/10.1038/s41598-017-01779-0
https://doi.org/10.1080/00051144.2025.2514884
https://doi.org/10.1016/j.bspc.2025.107773
https://doi.org/10.1109/JBHI.2022.3219123
https://doi.org/10.1109/JBHI.2022.3219123
https://doi.org/10.3390/electronics13173526
https://doi.org/10.3389/fncom.2025.1513059
https://doi.org/10.1016/j.imu.2020.100357
https://doi.org/10.3389/fonc.2023.1169922

	Advanced kidney mass segmentation using VHUCS-Net with protuberance detection network
	1 Introduction
	2 Related work
	2.1 Limitations of existing kidney segmentation approaches

	3 Proposed methodology
	3.1 Architecture overview
	3.2 Preprocessing
	3.3 Augmentation
	3.4 Segmentation workflow
	3.4.1 Transformer enhanced U-Net model
	3.4.1.1 Encoder
	3.4.1.2 Bridge
	3.4.1.3 Decoder
	3.4.2 Contrast optimized PDN model

	4 Results and discussions
	4.1 Experimental setup and system configuration
	4.2 Dataset description
	4.3 Visual impact of preprocessing and augmentation
	4.4 Hyper parameter tuning
	4.5 Model training and validation
	4.6 Evaluation metrics
	4.7 Performance analysis of model output
	4.8 VHUCS-net validation on publicly accessible datasets
	4.9 Ablation study
	4.9.1 Performance analysis transformer enhanced U-net with ViT layer
	4.9.2 Performance analysis transformer enhanced U-net with HRNet layer
	4.9.3 Performance analysis of contrast optimized PDN model
	4.10 Comparison of proposed model with state of architecture

	5 Conclusion and future work

	References

