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Advanced kidney mass 
segmentation using VHUCS-Net 
with protuberance detection 
network
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Introduction: Accurate segmentation of kidney masses and structure is essential 
for medical application including diagnosis and treatment. This research 
proposed the dual track hybrid VHUCS-Net architecture which effectively 
highlights structural size-shape variants, boundaries and complex structural 
features in kidney disease.
Methods: Efficient segmentation is achieved by integrating the transformer enhanced 
U-Net model with the contrast optimized Protuberance Detection Network (PDN) 
model. The process begins with analysing kidney images using a standard U-Net 
combined with Vision Transformer attention and a High Resolution Network (HRNet) 
which capture global dependencies while preserving high resolution features 
resulting in accurate segmentation of the kidney region. Also, the masked kidney 
image undergoes processing through a contrast optimized PDN model with multi 
scale pooling, contrast enhancement, boundary refinement and explicit feature 
fusion to segment the mass region thereby enhancing mass localization improving 
border identification and enabling accurate abnormality detection. The resulting 
features are fused to provide a refined mass segmentation result that exactly 
identifies the location and structural abnormalities.
Results: The VHUCS-Net model was evaluated using the kidney segmentation 
dataset achieving an intersection over union score of 0.9441 and a dice 
coefficient of 0.9712 showing outstanding segmentation precision.
Discussion: These results indicate improved diagnostic efficiency and support 
clinical decision making by providing more accurate and interpretable 
segmentation outputs. Moreover, VHUCS-Net is validated with additional 
publicly available datasets with image mask correspondence, therefore proving 
the model effectiveness and generalizability across many segmentation tasks. 
The results highlight the capability of the proposed VHUCS-Net model to 
enhance diagnostic accuracy and assist clinical decision making through more 
detailed and interpretable segmentation outcomes.
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1 Introduction

The kidney is an essential organ responsible for blood filtration, toxin removal, 
maintenance of electrolyte balance and fluid level regulation (Daniel et al., 2021). These 
processes are carried out by millions of nephrons which help in maintaining the body internal 
balance. However, disorders can mainly affect kidney function if they are not immediately 
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recognized and treated. Kidney masses whether malignant or benign 
required accurate identification and segmentation for best treatment 
planning. Diagnosis early enhances patient outcomes by enabling 
proper treatment such as surgical removal, radiation therapy or 
specialized treatment.

Kidney mass (Lin et al., 2021) develops through several stages 
requiring multiple diagnostic and treatment approaches. In the initial 
phase tiny lumps are often small that are usually detected with imaging 
modalities. As the mass develops structural changes occur requiring 
continuous monitoring and treatments mainly in advanced stages. 
Tumors may spread to other organs leading to health risks and decreased 
chance of survival possibilities if not examined. Exact identification of 
these stages is important for identifying proper treatment choices to 
improve the health of patients.

The segmentation of kidney masses is essential for identifying 
abnormalities, support radiologists and doctors to evaluate kidney 
mass size, shape and growth for appropriate treatment planning 
(Zöllner et al., 2021). Various segmentation procedures have been 
developed to increase accuracy however traditional approaches are 
time consuming, human error can occur and frequently insufficient 
for managing the difficulty of kidney masses. The variation in the 
structural features among individuals shows the limitations of 
traditional segmentation approaches which are frequently 
inconsistent, incorrect and inflexible. These challenges highlight the 
importance for deep learning approaches which provide automation, 
enhanced precision and robustness in the. Deep learning (Goel et al., 
2022) techniques improve segmentation accuracy by effectively 
segmenting mass boundaries, reducing observer variability and 
increasing the efficiency of kidney mass detection.

Artificial intelligence (Liu et al., 2023) and deep learning have 
significantly improved kidney mass segmentation by training models on 
large datasets providing accurate identification and analysis. This progress 
is mainly applied to the development and incorporation of multiple deep 
learning methods. Convolutional neural networks (Hwang et al., 2022) 
are used for extracting spatial features. Architectures such as U-Net and 
its variants improve segmentation precision by preserving both local and 
global contextual information. Moreover, transformer based models like 
vision transformer use self-attention processes to capture long-range 
relationships thus improving edge detection. By integrating these 
methodologies deep learning significantly improves segmentation efficacy 
allowing the early identification of kidney masses simplifying clinical 
decision making and improving patient care through more accurate, 
consistent and efficient analysis.

Contribution of the proposed model:

	•	 The proposed VHUCS-Net model is a dual-track hybrid 
architecture which integrates a transformer enhanced U-Net with 
a contrast optimized PDN model for accurate and effective 
kidney mass segmentation.

	•	 The transformer enhanced U-Net model includes a standard 
U-Net integrated with vision transformer attention and HRNet in 
the encoding process. This integration successfully extracts global 
contextual information while maintaining high resolution spatial 
details leading to accurate segmentation of the kidney region.

	•	 The contrast optimized PDN model used masked kidney images 
to segment the mass region. This model includes multiscale 
pooling, contrast enhancement, boundary refinement through 
separable convolutions and batch normalization along with 

feature fusion leading to segmentation of mass boundaries and 
greater structural localization.

	•	 The proposed VHUCS-Net model implements a feature fusion 
method combining the mass segmentation output from the 
contrast optimized PDN with the kidney region segmented by 
the standard enhanced U-Net model. This fusion enhances 
boundary reliability, identifies structural differences and enables 
robust multi scale feature representation.

	•	 The proposed VHUCS-Net model is evaluated using a kidney 
segmentation dataset which systematically evaluate the model 
efficacy through multiple features broad validation and 
comparison analysis are performed using publicly available 
datasets.

This research paper is structured as follows: Section 2 presents a 
focussed review of the existing kidney segmentation techniques with 
a comparative table including datasets, methods, imaging modalities, 
evaluation criteria while highlighting their limits and key 
contributions. Section 3 defines the proposed VHUCS-Net 
architecture and explains its internal components and structural 
design. Section 4 includes results and discussion that details the 
dataset analysed the training and validation methodologies, the 
evaluation criteria and the performance analysis. It includes 
validation using publicly available dataset an ablation study, 
comparisons with state-of-the-art models, and illustrate both visual 
and quantitative results. Section 5 concludes and highlights the future 
directions.

2 Related work

Kittipongdaja and Siriborvornratanakul (2022) performed a study 
using 2.5D ResU-Net and 2.5D DenseU-Net architectures attaining a 
dice score of 0.95 on the KiTS19 dataset and 0.87. Hatsutani (2023) 
proposed a framework with three networks such as a base network to 
generate initial tumor masks, a PDN for recognizing protruded areas 
and a fusion network for the final prediction of tumor masks. The 
proposed technique attained a dice score of 0.615 and a sensitivity of 
0.721 on the KiTS19 dataset.

Bolocan et al. (2023) evaluated a U-Net architecture for tumor 
segmentation and attained a mean dice score of 0.675 representing 
moderate segmentation precision. The ResNet101 classifier had an 
accuracy of 88.5% in diagnosing. Swain et al. (2024) conducted a study 
on automated instance segmentation of glomeruli in renal images 
using YOLOv8 with Mask R-CNN. Both models underwent training 
and validation using the human vasculature dataset. Performance 
review shown that YOLOv8 outperformed Mask R-CNN attaining a 
precision of 0.97 over 0.85 a recall of 0.85 over 0.78 and a mean 
average precision at IoU 50 of 0.93 over 0.85.

Oghli et al. (2024) developed Fast U-Net++ which attain 
segmentation accuracy attaining dice coefficients of 0.97 for sagittal 
views and 0.95 for axial views therefore providing the prediction of 
kidney size and volume. Zhao et al. (2020) implemented a Multi-Scale 
Supervised U-Net (MSS U-Net) a 3D U-Net architecture designed for 
accurate tumor segmentation from CT scans. The model incorporates 
deep supervision with an exponential logarithmic loss function to 
improve training efficiency. During assessment using the KiTS19 
dataset it attained a dice coefficient of 0.805 for tumor segmentation.
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Zhao et al. (2023) proposed a cascaded architecture that integrates 
3D U-Net which used to segment bilateral kidney borders and identify 
regions of interest and then an ensemble of 3D U-Nets was used to 
detect and segment renal masses. A ResNet model was applied to 
classify the segmented masses based on their size. This method shown 
high productivity attaining dice scores of 0.99 for kidney segmentation 
and classification accuracies of 86.05% for lesions under 5 mm and 
91.97% for lesions 5 mm or greater. Conze et al. (2024) proposed a 
methodology that encompasses three categories of network 
architectures: CNN-based, transformer-based and hybrid CNN/
transformer based models. The methodology used a dual-task 
learning framework, where a shared extractor paired with individual 
decoders enabled efficient processing. The models were evaluated 
using various MRI dataset, with Swin U-NetV2 exhibiting superior 
performance by obtaining a dice similarity score of 0.931.

Hsiao et al. (2022a) evaluated EfficientNet-B5 as the encoder and 
a feature pyramid network as the decoder, evaluated on the 
3D-IRCADb-01 dataset. The model shows robust performance across 
all parameters attaining a dice score of 91.50, a recall of 96.43, an 
accuracy of 87.22% and an IoU score of 84.42. Hsiao et al. (2022b) 
implemented a modified U-Net architecture that incorporates 
ResNet-41 and EfficientNet as the encoder. The method employs 
statistical hounsfield unit windowing and image screening techniques 
to improve the preprocessing phase. Experimental attaining a dice 
score of 0.9648 for kidney segmentation and 0.7294 for tumor 
segmentation along with a minimal kidney volume error of 0.014.

Patel et al. (2024) proposed a framework using 3D-TR-DU-Net++ 
for kidney image segmentation and Adaptive and Attentive Residual 
DenseNet with Gated Recurrent Unit (AA-RD-GRU) for classification 
optimized through the (modified crayfish optimization algorithm. 
This method a dice score of 0.9470 for kidney segmentation and 
0.6099 for tumor segmentation). Hussain et al. (2021) utilized a 
selection based convolutional neural network to analyze kidney 
vertical dimension, further using a hybrid sagittal-axial Mask R-CNN 
to generate a 3D bounding box of the organ. The method showing a 
kidney boundary localization error of 2.4 mm and a mean volume 
estimation error of 5%.

Jariwala et al. (2024) executed and trained U-Net and 
DeepLabv3 + architectures. The evaluation results showed that 
DeepLabv3 + outperformed U-Net, with dice scores of 0.94 and 0.82, 
IoU values of 0.182 and 0.160 and training and validation losses of 
0.3928 and 0.4488, respectively. Uhm et al. (2022) developed 
DiagnosisGAN a deep learning framework integrates a generator, a 
discriminator, and a lesion segmentation network all trained 
simultaneously with various loss functions. An evaluation 
classification accuracy (p < 0.05) and attained a mean AUC (mAUC) 
of 0.829 signifying superior diagnostic efficacy compared to 
conventional techniques.

Causey et al. (2021) implemented an ensemble of U-Net models 
attained dice scores of 0.601 on the local test set and 0.6099 on the 
competition test set for tumor segmentation which resulted in a 
combined dice score of 0.7784. Türk et al. (2020) developed a hybrid 
V-Net model that improves the traditional V-Net design by 
incorporating both ET-Net and Fusion V-Net. This approach attained 
dice coefficients of 0.977 for kidney segmentation and 0.865 for tumor 
segmentation.

da Cruz et al. (2020) applied a technique that combines U-Net for 
segmentation and AlexNet for classification incorporating a false 

positive reduction phase to improve accuracy. This approach resulting 
in an average dice coefficient of 0.9633, a jaccard index of 0.9302, a 
sensitivity of 0.9742, a specificity of 0.9994 and an accuracy of 99.92%. 
Chen et al. (2024) proposed TransUNet modifying the U-Net 
architecture through the integration of self-attention mechanisms. It 
employs a transformer encoder for global context extraction and a 
decoder for enhanced segmentation with the capability of including 
both 2D and 3D formats. TransUNet attained average dice of 0.0106 
and 0.0430.

Sharma et al. (2017) developed a CNN-based architecture attained 
a mean dice similarity value of 0.86 and a high correlation value of 
0.98 for total kidney volume data thereby validating its accuracy and 
consistency. Mehedi et al. (2022) explored U-Net and SegNet designs 
for segmentation along with transfer learning model for classification. 
Among U-Net attained an accuracy of 97.58%, an IoU of 0.9857 and 
a dice score of 0.5440. In classification tasks, VGG16 exceeded the 
other models with an accuracy of 99.48%, a sensitivity of 0.9921, and 
a specificity of 0.9961. Zhang et al. (2020) introduced a two-stage 
coarse-to-fine methodology for kidney segmentation in CT images. 
Initially, whole CT slices were standardized to a uniform size for initial 
segmentation. During the second stage, the slices were resampled and 
cropped into smaller patches for the purpose of fine-grained 
segmentation. The model was trained on 168 CT scans and assessed 
using 42 test images, attaining an average dice similarity coefficient of 
0.9453 indicating efficient segmentation ability.

Yang et al. (2025) proposed MUNet which achieved the highest 
dice similarity coefficient value of 0.915 and the highest Hausdorff95 
value of 6.437 across the BraTS2020 and BraTS2018 datasets. 
Pimpalkar et al. (2025) built a fine-tuned deep learning framework 
integrating transfer learning models AlexNet, VGG16, InceptionV3 
and ResNet50 attaining a highest accuracy of 99.96%. Vezakis et al. 
(2024) proposed a combination of 3D Attention U-Net and 2D U-Net 
for automated segmentation of organs in FDG-PET images achieving 
a dice score of up to 97% for brain and bladder segmentation. Shelke 
et al. (2025) proposed Ensemble EfficientNet combining multiple 
EfficientNet models through ensemble learning for diabetic 
retinopathy detection achieving an accuracy of 95% and a recall of 
97%. Table 1 shows a comparison of deep learning kidney 
segmentation methods by technique, modality and performance.

2.1 Limitations of existing kidney 
segmentation approaches

The key challenges in kidney mass segmentation is performed 
using VHUCS-Net architecture for enhancing cross-modality 
robustness is given as below:

	•	 A significant challenge lies in the generality of existing algorithms 
being trained and validated on similar kidney segmentation 
datasets and imaging modalities. The lack of diversity limits their 
generalizability reducing efficacy in real clinical environments 
where models must exhibit robustness across diverse datasets and 
varying imaging conditions.

	•	 Kidney tumor segmentation undergoes difficulties due to 
irregular shapes, small lesion sizes, and unpredictable intensity 
patterns. These characteristics consistently interrupt accurate 
border identification resulting in minimized segmentation 
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precision, lower model sensitivity and less dice coefficients 
mainly in the identification of insignificant tumor patches.

	•	 Medical imaging modalities including PET, CT, ultrasound and 
MRI exhibit distinctive characteristics representing significant 
challenges to the development of a general segmentation model. 

The modality specific differences require suitable preprocessing 
and architectural change thereby increasing the density of model 
implementation and reducing multi-modality flexibility.

	•	 One of the main challenges is the accurate identification of tiny 
masses that occur in the initial stages. These abnormalities result 

TABLE 1  Comparative summary of kidney segmentation methods across various datasets and imaging modalities.

Ref Dataset Methodology Imaging 
modality

Metrics Key contribution

Kittipongdaja and 

Siriborvornratanakul (2022)

KiTS19, Thai Patient 2.5D ResU-Net and 2.5D 

DenseU-Net

CT Dice Score: 0.95(KiTS19), 

0.87 (Thai)

Combines spatial 

efficiency with contextual 

depth

Swain et al. (2024) HuBMAP YoLOV8 and Mask R-CNN Histopathology YOLOv8 Recall: 0.85, 

mAP50: 0.93; Mask 

R-CNN, Recall: 0.78, 

mAP50: 0.85

Uses mAP and IoU 

thresholds for precise 

localization.

Oghli et al. (2024) Three Iranian imaging 

centers

Fast U-Net++ Ultrasound Dice: 0.97 (sagittal), 0.95 

(axial)

Segments kidneys and 

predicts five key length, 

width, thickness, volume, 

and parenchymal 

thickness measurements.

Zhao et al. (2020) KiTS19 Multi-scale supervised 3D 

U-Net

CT Dice: 0.805 Uses deep supervision 

with exponential log loss.

Zhao et al. (2023) KiTS21 Cascading 3D U-Net and 

ResNet

CT Renal mass Dice: 0.75–

0.83, Recall: 0.84,

Improves accuracy 

through statistical 

analysis.

Conze et al. (2024) Genkyst CNN, Transformer, Hybrid 

with dual-task learning

MRI Dice: 0.931 Shared encoder with 

per-kidney decoders.

Hsiao et al. (2022a) KiTS19, 

3D-IRCAD-01

EfficientNet-B5 encoder 

with FPN decoder

CT Dice: 0.969 Lightweight model with 

optimized 

hyperparameters.

Hsiao et al. (2022b) KiTS19 Modified U-Net with 

ResNet-41 and EfficientNet

CT Kidney Dice: 0.9648, 

Tumor Dice: 0.7294, 

Kidney volume error: 

0.014

Uses HU windowing and 

advanced preprocessing.

Patel et al. (2024) KiTS21 3D-TR-DU-Net++ and 

AA-RD-GRU with MCOA

CT Kidney Dice: 0.9470, 

Tumor Dice: 0.6099

Transformer attention for 

temporal dependencies.

Jariwala et al. (2024) KiTS23 U-Net and DeepLabv3+ 3D CT DeepLabv3 + Dice: 0.94, 

IoU: 0.82; U-Net Dice: 

0.82, IoU: 0.0182

ASPP refines boundaries 

of complex tumors.

Uhm et al. (2022) The Cancer Imaging 

Archive (TCIA)

DiagnosisGAN (3D U-Net) CT Mean AUC (mAUC): 

0.829

Initial feature maps 

improve lesion 

identification.

Causey et al. (2021) KiTS19 Ensemble of U-Net models CT Kidney Dice: 0.9470, 

Tumor Dice: 0.6099

Combines U-Nets to boost 

consistency.

Türk et al. (2020) KiTS19 Hybrid V-Net with fusion 

V-Net and ET-Net

CT Kidney Dice: 0.977, 

Tumor Dice: 0.865

Fusion encoding with 

edge-aware decoding.

da Cruz et al. (2020) Local dataset, KiTS19 AlexNet + U-Net CT Local dataset: Dice: 0.963, 

KiTS19: Dice: 0.930

Classifier reduces false 

positives.

Sharma et al. (2017) ADPKD patient 

dataset

Automated deep learning 

segmentation

CT Dice: 0.86, Robust TKV 

quantification.

Zhang et al. (2020) KiTS19 Coarse-to-fine 

segmentation with CNNs

CT Dice: 0.945 Two-stage segmentation 

with correction.
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in decreased sensitivity and specificity or leading to false 
positives. As a result, clinical reliability has been reduced which 
may lead to delayed diagnosis or inaccurate treatment decision.

To address the key challenges in automatic kidney mass 
segmentation this research paper proposes the VHUCS-Net model 
that includes a transformer enhanced U-Net that combines the 
strengths of the standard U-Net with ViT and HRNet features. This 
integration enables the extraction of global contextual information 
while preserving fine spatial features thus refining the segmentation 
accuracy of irregularly shaped and small kidney mass regions. To 
address the limitations related to low contrast and inaccurate 
boundary detection the model includes a contrast optimized 
PDN. This model uses multiscale pooling, contrast enhancement and 
boundary refinement to attain accurate segmentation of mass 
boundaries. A dual-track fusion method is used to fuse kidney and 
mass feature maintaining structural stability thus improving 
robustness across various imaging modalities.

3 Proposed methodology

This section contains a detailed overview of the proposed 
architecture focusing on the sequential design with its key mechanisms 
including feature extraction, feature fusion and segmentation 
modules.

3.1 Architecture overview

The proposed framework employs a dual-track architecture to 
improve kidney segmentation and mass localization. The sliced kidney 
images with the mass and their corresponding masks are preprocessed 
to minimize noise resulting in enhanced image quality which increases 

scalability for further analysis. Data augmentation is then applied on 
both inputs to reduce overfitting and enhance feature extraction 
resulting in improved model generalization as shown in Figure 1. The 
processed kidney image is input to track 1 which includes a 
transformer enhanced U-Net model that incorporates standard U-Net 
with ViT and HRNet layers in the encoder to attain accurate spatial 
reconstruction. The processed mask images are at the same time input 
into track 2 which uses a contrast optimized PDN model that 
integrates contrast enhancement and boundary refinement to 
accurately segment the specific mass region within the kidney. The 
outputs from both tracks are then fed into the fusion phase where the 
segmented kidney region from track 1 and the segmented mass region 
from track 2 are fused together to generate a refined and broad final 
segmentation. This integrated output provides a clearly defined kidney 
structure with the mass accurately segmented thereby enabling 
accurate detection and evaluation of the affected area. The combined 
result enhances overall diagnostic consistency as shown in Figure 2.

3.2 Preprocessing

Preprocessing is applied sequentially to both kidney image kI  to 
enhance structural visibility and support feature learning. The 
sequence includes contrast limited adaptive histogram equalization 
(Buriboev et al., 2024) followed by global histogram equalization 
producing a contrast enhanced representation suitable for further 
processing shown in Equation 1.

	
( ) ( )( )=p

kkI H C I 	 (1)

The corresponding mask kM  does not undergo any contrast 
enhancement. To preserves its original spatial integrity, the mask is 
carried forward without applying CLAHE/HE and only resizing and 

FIGURE 1

Workflow of proposed system.
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FIGURE 2

Overall architecture of the proposed model.
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normalization are performed during data preparation. This is shown 
in Equation 2.

	
( ) ( )=p

kkM M 	 (2)

To avoid data leakage the PDN branch receives the masked kidney 
image obtained by multiplying the preprocessed kidney image with 
the predicted mask kM . This is defined in Equation 3.

	
= 

PDN
k kkI I M 	 (3)

The PDN input mainly depends on the predicted mask produced 
by the transformer enhanced U-Net ensuring that no ground-truth 
mask will be shown during inference.

3.3 Augmentation

Augmentation is applied consistently to the preprocessed kidney 
image ( )p

kI  and its corresponding mask image ( )p
kM  to improve the 

model generalization and robustness. The augmentation operation 
transforms these input as define in Equations 4, 5.

	
( ) ( ) =  

 
a p

k kI A I
	

(4)

	
( ) ( ) =  

 
a p

k kM A M
	

(5)

Here, ( )⋅A  denotes the augmentation operator which includes a 
series of spatial and intensity transformation. Horizontal and vertical 
flips introduce positional variation enabling the model to learn 
invariant features based on the patient positioning and scan 
orientation. Rotational augmentation within a °±20  range adjusts 
alignment inconsistencies and enhances robustness to angular 
variations. Random modifications in brightness and contrast replicate 
various lighting conditions enhancing the model flexibility to 
changing image intensities. Also, elastic transformations result in 
complex non-linear changes while maintaining anatomical integrity 
thus enhancing feature diversity and generalization ability.

3.4 Segmentation workflow

The proposed hybrid VHUCS-Net architecture features two 
parallel processing tracks: a transformer enhanced U-Net model 
and a contrast optimized PDN model. The transformer enhanced 
U-Net combines the standard U-Net architecture with a vision 
transformer layer for global context acquisition and HRNet to 
maintain spatial resolution and complex details. The contrast 
optimized PDN model integrates multi scale max pooling, contrast 
enhancement and boundary refinement to increase localized mass 
segmentation. The dataset consists of two types of inputs: kidney 
images with masses and the corresponding mask images. Both input 
types are given preprocessing and augmentation to enhance data 
quality and augment model robustness. The processed kidney 

images are input into the transformer enhanced U-Net model while 
the processed mask images are given to the contrast optimized PDN 
model. This dual-track technique ensures corresponding feature 
extraction and precise segmentation by using the features of both 
models thus improving overall efficacy in kidney mass 
segmentation.

3.4.1 Transformer enhanced U-Net model
The transformer enhanced U-Net model which segments the 

kidney region by integrating standard U-Net with ViT and HRNet 
enabling the parallel extraction of global sematic information and 
detail structural features. The input to this model is the augmented 
kidney image ( )a

kI  a preprocessed and augmented image with spatial 
dimensions of 224 ×224 ×3 normalized to [0,1] representing height 
and width as shown in Equation 6. The processed input is subsequently 
passed through the model layers to perform accurate kidney region 
segmentation.

	
( ) × ×∈a 224 224 3
kI R 	 (6)

3.4.1.1 Encoder
The encoder analyses the input image ( )a

kI using a hierarchical 
framework which integrates ViT attention mechanisms with HRNet-
based convolutions to extract high-resolution features at each 
encoding level. The input image × ×224 224 3RX  is first transformed into 
an initial feature map 0F  using an embedding layer as shown in 
Equation 7 as patch embedding layer. Here, 0F  serves as the starting 
point for the first encoder block. For subsequently encoder blocks i the 
input is the output from the previous block denoted −i 1F .

	
( ) =  

 
a

0 kF Embed I
	

(7)

	

( )

( ) ( )

 = = 
 

 = = =  
 

a
0 k

a
size k

F Embed I

Conv2D filters C,,Kernel P,,stride P I
	

(8)

In Equation 8, P × P denotes the patch size and C represents 
the embedding dimension and the stride is equivalent to the patch 
size to ensure non overlapping patches. The embedding layer 
divides the input image into non overlapping patches through a 
conv2D layer and maps each patch to a feature vector. Positional 
encoding is incorporated to preserve spatial information resulting 
in the patch embedding 0F  for the encoder as illustrated in 
Figure 3.

Max pooling is used at each level to reduce spatial dimensions 
while maintaining essential details enabling the model to effectively 
capture global contextual information and local structural 
variations. The ViT attention mechanism captures long range 
dependencies and the resulting HRNet layer maintains fine grained 
spatial details. The max pooling reduce the spatial dimensions to 
112 × 112 and increase in feature depth 64. This is followed by an 
additional sequence of ViT attention and HRNet processing which 
further increases representations. The spatial resolution is reduced 
to 56×56 and by an increase in feature depth to 128 enhancing the 
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model capacity to capture local texture. As the encoding progress 
the resolution decreases to 28 × 28 and then to 14×14 while the 
feature depth increases to 256 and 512, respectively, as shown in 
Figure 4.

The ViT which captures global dependencies from the input 
feature map −i 1F . This process is illustrated in Figure 5 is performed 
using multi head self-attention and feed forward network where the 
input undergoes layer normalization is then processed by multi head 
self-attention as expressed in Equation 9. The resulting output is then 
refined through the feed forward network while maintain a residual 
connection as explained in Equation 10.

	 ( ) ( )( )− − −= +i 1 i 1 i 1ViT F MHSA LN F F 	 (9)

	 ( )( )( ) ( )− −= +ViT
i i 1 i 1F FFN LN ViT F ViT F 	 (10)

Following ViT attention HRNet subsequently refines the extracted 
features using multi scale convolution as illustrated in Figure 6. Let S
denote the number of scales. Multiple convolutional scale filters sW  
operate at different resolutions to enhance feature representation as 
expressed in Equation 11.

	 =
= ∗∑

s
HR ViT
i s i

s 1
F W F

	
(11)

The first encoder stage produces a feature map of 112x112x64 
with the high resolution level. As the encoding progress, the spatial 
resolution is progressively reduced while the feature depth increases 
by (112 112 64)R × × , (56 56 128)R × × , (28 28 256)R × × , (14 14 512)R × ×  
sequential levels as shown in equation 12. This hierarchical 
transformation enables the network to capture of both comprehensive 
context and complex details. Such progressive encoding facilitates the 
integration of global context with local anatomical information 
enhancing the model precision in kidney mass segmentation.

	
× ×∈ i i iH W C

iF R 	 (12)

3.4.1.2 Bridge
The bottleneck serves as an intermediary stage between the 

encoder and decoder performing feature compression and 
transformation. The major function is to reduce feature dimensionality 
while retaining essential information which allows efficient processing 
before the expanding of feature maps in the decoder. The bottleneck 
encodes high dimensional information into a compact representation 
ensuring that only the most essential and distinct characteristics are 
transmitted for decoding.

	 ( )= σ ∗ +i b 4 bB w F b
	 (13)

In Equation 13, × ×∈ 14 14 1024
iB R  represents the corresponding 

bottleneck feature map bw  and bb  represent the convolutional weights 
and biases, respectively, and ∗ indicates the convolution process. The 
function ó  corresponds to the ReLU activation function. This method 
allows the bottleneck to function as an intermediate point between 
feature extraction in the encoder and the reconstruction process in the 
decoder enabling optimal transfer of essential feature representations.

3.4.1.3 Decoder
In the decoder phase, the transformer enhanced U-Net model 

progressively reconstruct the segmentation map through stepwise 
upsampling and element wise feature addition. At each stage 

{ }( )i 4,3,2,1  the feature map from the previous decoder layer +i 1B  is 
upsampled using transposed convolutions. To preserve fine-grained 
spatial details with their feature map iF  is then added to the upsampled 
decoder feature map at the same resolution. This skip connection 
provides efficient feature fusion by reducing parameter and modifying 
redundancy while holding essential structural information as shown 
in Equation 14. The final segmented kidney region 
denoted as × ×∈ 224 224 64

segK R

	
( )( )+ = σ + + 

T
k i 1 i ddS W upsample B F b

	
(14)

where +i 1B represents the decoder feature map from the stage T
dW  

is the transpose of the decoder weight matrix, db  is a learnable 

FIGURE 3

Schematic representation of the embedding layer.
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bias term and ( )σ ⋅  denotes the activation function. This fusion 
process enhances spatial consistency maintains a balanced 
representation of global and local features and improves 

segmentation accuracy. Table 2 highlights the key differences 
between the original U-Net and the proposed transformer 
enhanced U-Net.

FIGURE 4

Transformer enhanced U-Net model frame work.

FIGURE 5

Internal working process of the ViT attention block.

FIGURE 6

Layer composition of the HRNet block.
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3.4.2 Contrast optimized PDN model
The contrast optimized PDN model segments the mass region 

from the augmented kidney mask image ( )a
kM  aiming to accurately 

detect and localize abnormal protrusions especially the kidney 
mass as shown in Figure 7. The process begins with feature 
extraction by applying a transformation function È  to ( )a

kM  
incorporating a normalization layer, activation function and 
convolutional filters. This operation is given by Equation 15 where 
W  represents learnable convolutional filters, ∗ indicate 
convolutional operation, the bias term is denoted by b  and f  

indicates the ReLU activation function. The resulting feature map 
inF  is then processed by max pooling for attaining enhanced 

features.

	

( ) ( )   = Θ = ∗ +   
   

a a
in k kF M f W M b

	
(15)

Multiscale max pooling is applied to inF  to capture features at 
different resolutions as shown in Figure 8 and the contrast between 
neighbouring regions is enhanced and refined through 
normalization, boundary refinement, and separable convolution for 
effective edge detection. The contrast feature extraction produces a 
feature map size 16x16x1024, capturing multiscale contrast 
information. The complete operation can be expressed as shown in 
Equation 16 where   represent the difference operator. The 
resulting border refined feature map bF  is activated using 
LeakyReLU.

	
( )( )( )( )( )= ∆b inF LeakyReLU BN SC MP F

	
(16)

A fusion operation combines the refined border features and 
upsampled contrast features to integrate high-resolution spatial details 
with enhanced contrast. This can be formulated as shown in 
Equation 17 where Φ  represents a flexible fusion function. After 
concatenation, the feature fusion stage produces a 16x16x1536 
integrating information from both branch. A finally a 1 ×1 convolution 
followed by a sigmoid activation produces the initial segmentation 
mask S and a thresholding step generates the final mass segmentation 
output segM  where ( )σ ⋅  is the sigmoid function and ( )τ ⋅  denotes a 
thresholding operator obtained segmentation mask. The resullting 
attention mask has spatial dimension 16x16x1.

	
( )( )( )( )× = τ σ Φ

 m 1 1 b bS Conv F , Upsample F
	

(17)

The final segmentation mask integrates the kidney region from 
the transformer enhanced U-Net kS  and the mass region from the 
contrast optimized PDN mS . A fusion operator Φ  combine these 
output to ensure precise localization of masses within the kidney. The 
fused mask is refined to improve boundaries and correct 
misclassification pixels. The complete operation is expressed as shown 
in Equation 18.

	 ( )= Φfinal k mS S ,S
	 (18)

4 Results and discussions

This section describes the experimental configuration specifying 
the dataset used for model implementation and the hyper parameters 
used during training. It further provides an ablation research to 
evaluate the impact on individual segmentation layers including the 
transformer enhanced U-Net and the contrast optimized PDN 
models. The evaluation metrics and analytical processes have been 
explained to effectively evaluate the performance of the proposed 
framework.

TABLE 2  Comparison between U-Net and transformer enhanced U-Net.

Component Original U-net Proposed 
transformer 
enhanced U-net

Overall architecture

Symmetric U-shaped 

encoder-decoder 

CNN

U-shaped encoder-

decoder augmented with 

vision transformer and 

HRNet blocks

Input
Image of size 

H × W × C

Preprocessed image of 

size 224 × 224 × 3, split 

into patch embeddings 

and augmented

Encoder
Convolution + ReLU 

+ Max pooling

Patch embedding → ViT 

attention → HRNet multi-

scale convolutions → 

progressive downsampling

Feature extraction
Local features through 

convolution

Both global (ViT) and 

local (HRNet) features, 

hierarchical encoding 

with increasing depth 

(64 → 512)

Bottleneck
Convolutional layers 

at lowest resolution

Convolution + ReLU 

compressing encoder 

features while retaining 

essential

Decoder

Transposed 

convolution + skip 

connections

Transposed convolution + 

additive skip connections 

fusing encoder features 

efficiently

Skip connections
Concatenate encoder 

features

Additive fusion to 

preserve fine-grained 

details and reduce 

redundancy

Attention mechanism None

Multi-head self-attention 

in ViT blocks for 

capturing long-range 

dependencies

Spatial detail preservation
May lose details due 

to pooling

HRNet maintains high-

resolution features at 

multiple scales

Output
Segmentation map of 

original image size

Segmentation map of 

224 × 224 × 64 with 

improved spatial and 

semantic accuracy
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4.1 Experimental setup and system 
configuration

Experiments were performed in a notebook-based environment 
using an NVIDIA Tesla P100 GPU (16 GB VRAM), using CUDA 12.8 
with fp32 precision. The batch size was set at 32, and the input 
resolution was maintained at 256 × 256 × 1 for all datasets. Under this 
configuration, the model required 0.3537 s per batch, resulting in an 
effective per-slice inference time of 0.0111 s (0.3537 s / 32). Given a 
3D volume consisting of 30 consecutive 2D slices, the inference time 
per volume is 0.3316 s. Runtime was consistently evaluated at both the 
slice and volume levels, with the 16 GB VRAM.

4.2 Dataset description

The dataset used in this study was obtained from a publicly 
available kidney segmentation dataset (Jadhav, 2023). It consists of two 
categories: sliced kidney images with masses and corresponding mask 

images as shown in Figure 9. The dataset included 4,054 images 
comprising 2,027 kidney images and their 2,027 corresponding mask 
images which contain tumor regions with no cases of tumor absence 
is detected. The sliced kidney images have an original resolution of 
256 × 256 pixels with an average file size of approximately 
20 KB. During preprocessing all images were uniformly resized to 
224 × 224 × 3 before being fed into the model. The batch size was set 
to 32 for all experiments. The model contains 32.6 M parameters and 
the total computational cost is approximately 27.4 GFLOPs per 
forward pass. During the evaluation of the test dataset, the per-slice 
inference time ranged from 30 ms to 49 ms, resulting from several 
single-slice predictions.

4.3 Visual impact of preprocessing and 
augmentation

The use of preprocessing and augmentation approaches was used 
to enhance the quality and diversity of the input data. The 

FIGURE 7

Contrast optimized PDN model design.

FIGURE 8

Representation of multiscale pooling mechanism.
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augmentation process included horizontal and vertical flip each 
applied with a probability of 50%, random rotations within ±20°, 
brightness and contrast modifications (30% probability) and elastic 
adjustments as shown in Figure 10. These augmentation methods 
together improve anatomical variation, intensity diversity and spatial 
alteration in the dataset. This technique improves stability and reduces 
the risk of overfitting by modeling changes in patient positioning, 
scanner parameters, noise and tissue contrast. The model starts to 
learn stable structural inputs based on static spatial or intensity 
patterns hence improving its ability to generalize to earlier identified 
cases. This method eventually enhances feature selection, robustness 
and overall prediction accuracy. Furthermore, contrast limited 
adaptive histogram equalization (Moradi et al., 2022) was applied with 
a 50% probability to augment local contrast hence enhancing model 
stability and optimizing feature extraction efficacy as shown in Table 3.

To evaluate the efficacy of the preprocessing stage dimensionality 
reduction methods including t-SNE and UMAP were used for 
visualization. These approaches reduce the high-dimensional feature 
space into a two-dimensional space enabling an efficient visual 
evaluation of feature distribution and class partitioning. Figure 11 
illustrates that processed kidney image provides well defined and 
significantly differentiated clusters with samples from identical classes 
closely packed and those from dissimilar classes widely spread. The 
refined cluster formation indicates superior feature quality therefore 
augmenting the model ability to differentiate normal kidney structures 
from malignant tumors. Table 4 displays five sample slices each 
illustrating the original images, mask image and predicted mask with 
overlaid red outlines thereby validating perfect segmentation.

4.4 Hyper parameter tuning

In the segmentation phase the transformer enhanced U-Net was 
used for kidney segmentation whereas the contrast optimized PDN 
focused on tumor region segmentation. The fused model combines 
the outputs of both segmentation networks to improve IoU and dice 
coefficient scores while reducing loss (Müller et al., 2023). All three 
models (transformer enhanced U-Net, contrast optimized PDN, and 
the fused architecture) underwent training for 35 epochs with iterative 
weight adjustments throughout the dataset. A batch size of 32 was 
chosen to optimize computing efficiency and image resolution while 
the learning rate was fixed at 0.0001 (Tran et al., 2025) to ensure stable 
and consistent parameter convergence during training. Table 5 
summarizes the network architecture, training hyper parameters and 

data preprocessing settings used for both ConD-PDN and VHU-Net 
models. It specifies layer configurations, activation functions, 
optimizer details, loss function, evaluation metrics, batch size, number 
of epochs and data augmentation strategies.

4.5 Model training and validation

The training and validation processes of the proposed hybrid 
VHUCS-Net model were executed with uniform hyper parameter 
configurations. The framework first segments the kidney region from 
sliced images with masses using the transformer enhanced U-Net then 
segmenting the kidney mass from the masked images through the 
contrast optimized PDN model. The training set, representing 80% of 
the dataset is utilized to optimize model parameters while the 
validation set including 10% evaluates model performance during 
training and provides hyper parameter modification to prevent 
overfitting (Pavarut et al., 2023). The remaining 10% comprises the 
test set (Zhang et al., 2020) assigned for the final evaluation to measure 
the model generalization. Let N denote the total samples in the dataset 
while train val testT ,T ,T  denote the size of the training, validation and 
the test, respectively. The proportions for validation and splits are 
represent by val testr ,r  ensure a balanced allocation for model training 
fine tuning and evaluation (Nagarajan and Ramprasath, 2024). The 
dataset splits are calculated as follows in Equations 19–21.

	 ( )= × − −train val testT N 1 r r 	 (19)

	 = ×val valT N r 	 (20)

	 = ×test testT N r 	 (21)

4.6 Evaluation metrics

The segmentation performance of the transformer enhanced 
U-Net and contrast-optimized PDN models is assessed using three 
key metrics. These metrics were specifically chosen because they 
directly measure the degree of spatial overlap and boundary 
accuracy. The dice similar coefficient quantifies the overlap 
between the predicted region predS  and the predicted mask gtS  
where a higher value (closer to 1) indicates better segmentation 
accuracy as shown in Equation 22. The dice loss defined as the 

FIGURE 9

Original and augmented kidney images with the corresponding mask.
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negative dice similar coefficient is minimized during model 
training to maximize the agreement between predicted tumour 
region and predicted masks is expressed in Equation 23. The 
intersection over union also known as the jaccard index which 
measures the ratio of intersection to union of predS  and gtS  offering 
a robust evaluation by considering both false positives and false 

negatives as shown in Equation 24. These metrics measure the 
accuracy of comparison between the predicted mask and the actual 
tumor region. Dice loss assesses overlap accuracy whereas 
intersection over union considers errors from both false positives 
and false negatives. Collectively, they provide an in-depth 
evaluation of segmentation efficacy.

FIGURE 10

Image enhancement and augmentation on sliced kidney with mass.

TABLE 3  Data augmentation and preprocessing impact.

Category Parameter Effect on dataset Impact on memory Computational 
complexity

Horizontal flip p = 0.5
Doubles dataset with 

horizontal variations
Slight increase per batch Minimal; very fast

Vertical flip p = 0.5
Doubles dataset with vertical 

variants
Slight increase per batch Minimal; very fast

Rotation limit = ±20°, p = 0.5
Adds rotated variants; 

increases dataset by ~1.5–2×
Minor increase Fast; small per-image cost

Random Brightness/contrast p = 0.3
Increases diversity in 

intensity variations
Negligible Low; minor pixel-wise operations

Elastic transform
alpha = 1, sigma = 50, alpha_

affine = 50, p = 0.3

Adds geometric distortions; 

improves shape robustness
Moderate Moderate; heavier than flip/rotation

CLAHE/Hist. equalization
clip_limit = 2.0, tile_

grid = (8,8), p = 0.5

Enhances contrast; improves 

boundary visibility
Slight increase

Moderate; more intensive pixel 

processing

Rescaling 1./255
Normalizes intensity across 

all datasets
None None

Learning rate LR = 0.001
Stable convergence across all 

datasets
None None

Batch size 32
Balanced training speed and 

memory usage
Moderate Moderate

Epochs 35
Ensures consistent training 

duration

No additional impact per 

epoch
Standard training cost

Optimizer Adam
Smooth gradient updates; 

avoids dataset-specific tuning
None Low

Loss function Dice loss
Improves segmentation 

consistency across modalities
None Low

Metrics IoU, dice coefficient
Uniform evaluation for all 

datasets
None None

Mixed precision float32
Ensures compatibility and 

numerical stability
None None
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Table 6 presents the segmentation performance of the three 
models by using averaged data from multiple seeds expressed as mean 
± standard deviation and along with their 95% confidence intervals. 
This provides a more precise and statistically validated comparison. 
The transformer augmented U-Net attained an IoU of 0.9107 and a 
dice coefficient of 0.9532 representing precise spatial reconstruction. 
This architecture includes a vision transformer module into the 
traditional U-Net framework integration an encoder decoder 
structure with convolutional layers, multi-head self-attention and skip 
connections to collect both local and global contextual information. 
Figure 12 shows the training curves and ROC analysis indicating the 
model convergence and strong segmentation performance.

The contrast optimized PDN improves segmentation by 
improving contrast facilitating exact characterization of structural 
boundaries. The design includes convolutional layers with contrast 
based feature improvement, batch normalization, multiscale 
pooling and non-linear activations to improve segmentation 
accuracy. In the test dataset, model attained an IoU of 0.9285 and 
a dice coefficient of 0.9629 indicating enhanced accuracy and less 
segmentation error. Figure 13 shows the training curves and ROC 
analysis validating consistent learning and improved boundary 
recognition.

The proposed VHUCS-Net a hybrid of the transformer enhanced 
U-Net and contrast optimized PDN combines global context 

modelling with contrast driven feature refining to attain increased 
segmentation performance. The hybrid model attained an IoU of 
0.9441 and a dice coefficient of 0.9712 outperforming the performance 
of the individual models and showing that the fusion of features 
improves both segmentation precision and spatial overlap. Figure 14 
illustrates the performance curves and ROC analysis which highlight 
the enhancements hybrid framework.

The confusion matrix provides a detailed analysis of predictions 
by class and displays patterns of misclassification as the associated 
heatmap visually highlights error distribution and performance at the 
class level. Table 7 presents the confusion matrices with their 
corresponding heatmaps facilitating a detailed evaluation of the model 
performance.

4.7 Performance analysis of model output

The segmentation phase performs in two tracks in track 1 employs 
a transformer enhanced U-Net model while track 2 uses the contrast 
optimized PDN model. The input to the transformer enhanced U-Net 
model contains a sliced kidney image containing masses. This model 
incorporates a standard U-Net model with a ViT layer and a HRNet 
as decoder. The ViT component captures long range dependencies and 
global context and the HRNet preserves detailed spatial information 
(Gong and Kan, 2021). The contrast optimized PDN model is 
specifically designed to segment the kidney mass from the masked 
kidney image. It employs multi scale max pooling for capturing both 
fine and coarse details also, the use of separableconv2D reduces 
computational difficulty while maintaining accuracy. Figure 15 
illustrates the kidney segmentation approach utilizing the suggested 
dual track framework. The original kidney image is shown in (a) 
followed with the corresponding mask in (b) track 1 the transformer 
enhanced U-Net precisely segments the kidney region as illustrated in 
(c) whereas track 2 the contrast optimized PDN segments the renal 
tumor presented in (d). The outputs from both tracks are later fused 
in the fusion stage resulting in the final fused kidney tumor 

FIGURE 11

T-SNE and UMAP visualizations of kidney image.
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TABLE 4  Sample images with mask and predicted contour overlay.

Visualization (original, mask, and predicted overlay)

(Continued)
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segmentation in (e). The resulting combination improves boundary 
accuracy, incorporates structural variations and provides efficient 
multi-scale feature integration (MRFA-Net, n.d.) leading to 
dependable and precise kidney mass identification. The fusion of the 
transformer enhanced U-Net and contrast optimized PDN models 
achieves higher IoU and dice coefficient performance as shown in 
Figure 16. This performance improvement explains the corresponding 
benefits of the two frameworks includes superior spatial detail 
preservation from the transformer enhanced U-Net and better 
localized feature extraction from the contrast optimized PDN. The 
model utilizes multi-scale information to enhance boundary precision 

and robustness to morphological variability for medical image 
analysis.

4.8 VHUCS-net validation on publicly 
accessible datasets

To evaluate the generalizability of the proposed VHUCS-Net 
model experiments were performed on various publically available 
medical image segmentation datasets which includes the Skin 
Cancer MNIST: HAM10000 dataset, the Blood Cell Segmentation 
Dataset and the KiTS23 kidney tumor segmentation dataset. Images 
for the skin lesion segmentation analysis were obtained from the 
Skin Cancer MNIST: HAM10000 dataset (Mader, 2018) and the 
corresponding lesion masks were acquired from the HAM10000 
Lesion Segmentations dataset (Mader, 2018). The HAM10000 
dataset (Human Against Machine with 10,000 training photos) 
consists of 10,015 skin lesion images obtained from different people 
and imaging techniques. The Blood Cell Segmentation Dataset 
(BCCD) (Deponker et al., 2023) contains pixel-level annotations 
along with consistent image-mask pairings. Out of the 1,328 image 
and mask pairs, a selected subset of 1,169 pairs were used for 
quantitative studies whereas the remaining pairs are provided with 
the corresponding script for transparency but excluded from 
training and evaluation. The KiTS23 dataset (Kumar, n.d.) which 
includes annotated axial CT slices for kidney tumor segmentation 
has been evaluated with data augmentation applied to the training 
set resulting in 39,080 augmented image and mask pairs. Validation 
and testing were performed on non-augmented data consisting of 
3,965 validation pairs and 3,850 test pairs using patient-wise 
partitioning to prevent data leakage. All datasets were divided into 
training, validation and test partitioned outlined in Table 8.

Figure 17 show the tumour area distribution across all patient. The 
proposed VHUCS-Net model was trained and validated on additional 
datasets with same hyper parameter values used in the kidney disease 
segmentation challenge. The evaluation of model performance was 
done using the dice coefficient and IoU as illustrated in Table 9. 
Table 10 shows the runtime and resource utilization of VHUCS-Net 
on the KiTS23 dataset. Segmentation results were generated where 
affected regions are highlighted clearly illustrate the model efficiency 
in exactly determining and differentiating target areas. These 
visualizations provide a direct comparison of VHUCS-Net 

TABLE 4  (Continued)

Visualization (original, mask, and predicted overlay)

TABLE 5  Hyper parameter and configuration settings.

Layer Hyper 
parameter

Value

Input layer Input shape (256, 256, 1)

Encoder—ConD-

PDN
Filters (stage 1 → 4) 64 → 128 → 256 → 512

Encoder—VHU-Net Filters (stage 1 → 4) 16 → 32 → 64 → 128

Conv2D (bridge) Filters
1,024 (ConD-PDN), 128 

(VHU-Net)

Criss-Cross attention Activation Sigmoid

Decoder—ConD-

PDN
Filters (stage 1 → 4) 512 → 256 → 128 → 64

Decoder—VHU-Net Filters (stage 1 → 4) 64 → 32 → 16 → 8

Output layer Filters / Units 1

Output layer Activation Sigmoid

Optimizer Type Adam

Learning rate LR 0.001

Loss function Type Dice loss

Metrics Types IoU, dice coefficient

Batch size - 32

Epochs - 35

Data augmentation Rescale 1/255

Data augmentation Rotation range 15°

Mixed precision Policy float32
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TABLE 6  Performance evaluation of segmentation models.

Model Structure DICE (mean ± 
SD) [95% CI]

IOU (mean ± 
SD) [95% CI]

HD95 (mean ± 
SD) [95% CI]

ASSD (mean ± 
SD) [95% CI]

LOSS (mean ± 
SD) [95% CI]

VHU_net Kidney 0.9532 ± 0.0134 

[0.9269–0.9795]

0.9107 ± 0.0242 

[0.8633–0.9581]

0.2692 ± 0.4436 

[0.0000–1.1387]

0.0743 ± 0.0384 

[0.0000–0.1496]

0.0468 ± 0.0133 

[0.0207–0.0729]

Tumor 1.0000 ± 0.0000 

[1.0000–1.0000]

1.0000 ± 0.0000 

[1.0000–1.0000]

– – –

ConD-PDN Kidney 0.9629 ± 0.0136 

[0.9362–0.9896]

0.9285 ± 0.0249 

[0.8797–0.9773]

0.2692 ± 0.4436 

[0.0000–1.1387]

0.0624 ± 0.0287 

[0.0061–0.1187]

0.0371 ± 0.0136 

[0.0104–0.0638]

Tumor 1.0000 ± 0.0000 

[1.0000–1.0000]

1.0000 ± 0.0000 

[1.0000–1.0000]

– – –

Fuse_models Kidney 0.9712 ± 0.0088 

[0.95395–0.98845]

0.9441 ± 0.0164 

[0.91196–0.97624]

0.0769 ± 0.2665 

[0.0000–0.5992]

0.0504 ± 0.0186 

[0.01394–0.08686]

0.0288 ± 0.0088 

[0.01155–0.04605]

Tumor 1.0000 ± 0.0000 

[1.0000–1.0000]

1.0000 ± 0.0000 

[1.0000–1.0000]

– – –

FIGURE 12

Evaluation of the enhanced U-Net model: (a) Training and validation loss; (b) intersection over union; (c) Dice coefficient.
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segmentation efficacy across the Kidney, HAM10000 (skin lesion), 
Blood Cell datasets and KiTS23 with quantitative results presented in 
Table 11.

4.9 Ablation study

An ablation study has been conducted for systematic evaluation of 
the contribution of various modules within the proposed architecture by 
selectively adjusting the model structure. The evaluation utilized key 
performance metrics including the dice coefficient (Eapen et al., 2015), 
IoU, loss, (Eapen et al., 2016) total parameter counts and model size.

4.9.1 Performance analysis transformer enhanced 
U-net with ViT layer

This implementation assesses the effects of incorporating a ViT 
attention layer which enhances global context modeling and improves 
feature extraction. The model attains a dice coefficient of 0.9436 and 
an IoU of 0.8937 enabled by HRNet robust spatial preservation. With 

7.78 million parameters and a size of 29.69 MB it exhibits modest 
complexity while achieving high segmentation performance as shown 
in Figures 18a–c capacity.

4.9.2 Performance analysis transformer enhanced 
U-net with HRNet layer

This configuration uses HRNet to maintain high-resolution 
features and integrate multi-scale information enhancing structural 
detail and boundary localization. It attains a dice coefficient of 0.9472 
and an IoU of 0.9001 including exactly 196,916 parameters and a size 
of 0.75 MB indicating of robust accuracy and efficiency. Figures 19a–c 
shows the curves for loss, intersection over union and dice 
coefficient.

4.9.3 Performance analysis of contrast optimized 
PDN model

This implementation evaluates the contrast-optimized PDN 
model, which improves border detection via superior contrast 
management and enhanced edge processing. It attains a dice 

FIGURE 13

Analysis of contrast optimized PDN model: (a) Training and validation loss, (b) intersection over union, (c) dice coefficient.
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FIGURE 14

Analysis of proposed VHUCS-Net model: (a) Training and validation loss; (b) intersection over union; (c) dice coefficient.

TABLE 7  Confusion matrices and heatmaps.

Confusion matrix HeatMap
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coefficient of 0.9605 and an IoU of 0.9245 indicating robust 
segmentation consistency. With 3.37 million parameters and a size of 
12.86 MB it is both lightweight and efficient as shown by the loss, IoU 
and dice curves illustrated in Figures 20a–c.

The ablation study validates that each design component 
distinctly, ViT attention layer is essential for acquiring global 
contextual information allowing the model to analyse long-range 

FIGURE 15

Visualization of the kidney segmentation process: (a) Original kidney image, (b) mask image, (c) segmented kidney region, (d) segmented tumor mask, 
(e) fused kidney tumor image.

FIGURE 16

IoU and dice coefficient performance comparison.

TABLE 8  Dataset partitioning for proposed VHUCS-Net model validation 
using additional open-source datasets.

Dataset Training Validation Test Total

Skin lesion 8,012 1,001 1,002 10,015

Blood cell 935 117 117 1,169

KiTS23 39,080 3,965 3,850 46,895
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dependencies more effectively. The HRNet decoder is essential for 
maintaining high-resolution spatial features thus providing an 
accurate representation. The contrast optimized PDN module 
specifically with its multiscale pooling technique significantly 
improves mass localization and sharpens borders. The fusion of these 
components generates excellent performance, showing the significance 
of each individual module for efficient kidney mass segmentation. 
Table 12 summarizes the ablation study where all architectural 
variants including ViT-only, HRNet-only and the combined 
ViT + HRNet modules are evaluated. Parameter count and model size 

are also compared to offer a comprehensive understanding of 
computational complexity and performance.

4.10 Comparison of proposed model with 
state of architecture

Various kidney segmentation methods have been studied across 
different datasets demonstrating significant performance 
improvement. Kittipongdaja and Siriborvornratanakul (2022) utilised 

FIGURE 17

Tumour area distribution.

TABLE 9  Performance comparison of VHUCS-Net on different datasets.

Dataset Loss IoU (mean ± 
SD, 95% CI)

Dice (mean ± 
SD, 95% CI)

HD95 (mean 
± SD, 95% CI) 

[mm]

ASSD (mean ± 
SD, 95% CI) 

[mm]

Per-
Volume 
Latency 
(GPU)

Peak 
Memory 
Usage 
(GPU)

Kidney 0.0288 0.9441 ± 0.0062 0.9712 ± 0.0034 0.077 ± 0.267 0.050 ± 0.019 0.33 s
~1.1–1.2 GB 

VRAM

Skin lesion 0.0881 0.8405 ± 0.0081 0.9119 ± 0.0068 3.94 ± 0.72 1.42 ± 0.18 0.33 s
~1.0–1.1 GB 

VRAM

Blood Cell 0.0360 0.9306 ± 0.0070 0.9640 ± 0.0045 2.11 ± 0.55 0.77 ± 0.11 0.33 s
~0.9–1.0 GB 

VRAM

KiTS23 0.0432 0.8845 ± 0.0717 0.9370 ± 0.0442 1.0504 ± 2.4964 0.1980 ± 0.3115 0.57 s ~1.28 GB VRAM

TABLE 10  Runtime and resource usage on KiTS23.

Dataset Patients Median slices/
volume (IQR)

Time per 
slice (s)

Time per 
volume (s)

Hardware Peak memory

KiTS23 100 390.8 (390.8–390.8) 0.001463 0.572 GPU (Tesla P100, fp32) 1.28 GB VRAM
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TABLE 11  Comparison of VHUCS-Net segmentation results with contour overlay across different datasets.

Dataset

Kidney Skin lesion Blood cell

Image segmentation 

visualization

FIGURE 18

Performance analysis of transformer enhanced U-Net with ViT layer: (a) Loss, (b) IoU, (c) dice coefficient.
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2.5D ResU-Net and 2.5D DenseU-Net on the KiTS19 and Thai Patient 
Datasets achieving dice scores of 0.95 and 0.87. Hatsutani (2023) 
established a PDN on KiTS19 achieving a dice score of 0.615 and a 
sensitivity of 0.721, effectively recognizing protruding tumour areas. 
Bolocan et al. (2023) employed U-Net and ResNet101 on private 
DICOM images attaining dice scores of 0.675 for tumours and 0.84 
for kidneys. Swain et al. (2024) used YOLOv8 and Mask R-CNN on 
the HuBMAP dataset indicating a precision of 0.97, recall of 0.85 and 
mAP50 of 0.93. Oghli et al. (2024) implemented Fast U-Net++ on the 
Open Kidney Dataset achieving sagittal and axial dice scores of 0.97 
and 0.95, respectively. Zhao et al. (2020) developed a multi-scale 
supervised 3D U-Net on KiTS19 achieving segmentation performance 
with dice scores of 0.969 for kidneys and 0.805 for tumours. Zhao et 
al. (2023) proposed a cascade 3D U-Net and ResNet on KiTS21 

attaining accurate kidney mass segmentation with dice scores of 0.99 
for kidneys and 0.75–0.83 for kidney masses. Conze et al. (2024) 
evaluated various models including v19p U-Net, Trans U-Net, MedT, 
Segmenter, and Swin U-NetV2 on the Genkyst dataset, with 
SwinUNetV2 outperforming the other models in complex 
segmentation tasks achieving a dice score of 0.934. Hsiao et al. (2022a) 
combined EfficientNet-B5 and FPN on KiTS19 and 3D-IRCAD-01, 
increasing segmentation efficacy with a dice score of 0.969. Hsiao et 
al. (2022b) utilised ResNet-41 and EfficientNet on KiTS19 enhancing 
segmentation precision by preprocessing, resulting in dice scores of 
0.9648 for kidneys and 0.7294 for tumours. Jariwala et al. (2024) 
integrated U-Net and DeepLabv3 + on KiTS23 optimizing 
segmentation precision with a dice score of 0.94. Causey et al. (2021) 
deployed an ensemble of U-Net models with post-processing on 

FIGURE 19

Performance analysis of transformer enhanced U-Net with HRNet layer: (a) Training and validation loss; (b) intersection of union; (c) Dice coefficient.
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KiTS19 improving segmentation precision it achieved 0.9470 dice 
score for kidneys and 0.6099 for tumours. Proposed model, which 
combines transformer enhanced U-Net model and contrast-optimized 

PDN model on the kidney segmentation dataset attained enhanced 
segmentation accuracy with improved kidney mass localization and 
boundary precision demonstrated by a loss of 0.0288, an IoU of 0.944 

FIGURE 20

Performance analysis of contrast optimized PDN model: (a) Loss, (b) IoU, (c) dice coefficient.

TABLE 12  Ablation study of the model components.

Model Loss (mean ± SD) 
[95% CI]

IoU (mean ± SD) 
[95% CI]

Dice (mean ± SD) 
[95% CI]

Total Params Model size

U-Net with ViT 0.0528 ± 0.0026 [0.0477–

0.0579]

0.9001 ± 0.0093 [0.8819–

0.9183]

0.9472 ± 0.0068 [0.9340–

0.9603]

196,916 0.75 MB

U-Net with HRNet 0.0564 ± 0.0031 [0.0502–

0.0626]

0.8937 ± 0.0112 [0.8719–

0.9155]

0.9436 ± 0.0074 [0.9292–

0.9580]

196,916 0.75 MB

U-Net with ViT + HRNet 0.0468 ± 0.0022 [0.0422–

0.0514]

0.9107 ± 0.0086 [0.8931–

0.9283]

0.9532 ± 0.0059 [0.9417–

0.9647]

7,781,761 29.69 MB

Contrast-optimized PDN 0.0395 ± 0.0018 [0.0359–

0.0431]

0.9245 ± 0.0074 [0.9100–

0.9390]

0.9605 ± 0.0048 [0.9512–

0.9697]

3,370,000 19.70 MB

Proposed VHUCS-Net 0.0288 ± 0.0011 [0.0266–

0.0310]

0.9441 ± 0.0062 [0.9318–

0.9564]

0.9712 ± 0.0034 [0.9646–

0.9778]

32,624,261 124.45 MB
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and a dice coefficient of 0.9712 as presented in Table 13. The 
segmentation performance of VHUCS-Net with standard baseline 
models (U-Net, UNet++, MobileNetV2) re-run on the kidney 
segmentation dataset using the same metrics is shown in Table 14.

5 Conclusion and future work

Kidney masses exhibit significant variation in size, shape and 
texture across individuals making it essential for segmentation models 
to achieve both high accuracy and adaptability. The proposed 
VHUCS-Net model statements this challenge using a dual-track 
architecture such as transformer enhanced U-Net model in track 1 
and the contrast optimized PDN model in track 2. The transformer 
enhanced U-Net model features an encoder that combines ViT 
attention with HRNet with the standard U-Net architecture. The ViT 
attention mechanism enhances global feature representation by 
capturing long-range dependencies, hence improving the difference 
between kidney structures and surrounding tissues. HRNet maintains 
detailed spatial information important for efficient segmentation 
while the U-Net decoder preserve spatial information through skip 

connections, enhancing boundaries and enhancing localization of the 
kidney region. Thus, the transformer-enhanced U-Net effectively 
segments the kidney region from the neighbouring tissues attaining 
an IoU of 0.9107 and a dice value of 0.9532 indicating robust feature 
extraction and accurate segmentation. The contrast optimized PDN 
model simultaneously highlighting mass regions inside the kidney. It 
employs multi-scale pooling to extract features with various sizes and 
utilize SeparableConv2D layers to enhance boundaries effectively. The 
implementation of further batch normalization and feature fusion 
enhances model accuracy and adaptability providing the contrast-
optimized PDN more effective for kidney mass segmentation. This is 
shown in its performance attaining an IoU of 0.9285 and a dice 
coefficient of 0.9629 showing accuracy and consistency. The fusion of 
these two models in the final VHUCS-Net architecture incorporates 
their respective strengths with global context integration accurate 
spatial detail preservation and exact mass localization. In the Kidney 
Segmentation Dataset VHUCS-Net attained an IoU of 0.9441 and a 
dice coefficient of 0.9712. The results indicate that the fusion of both 
models provides a highly accurate and reliable method for renal mass 
segmentation. Future study will explore integrating 3D attention 
modules and self-supervised pretraining to further strengthen 

TABLE 13  Performance comparison with other state of art methods.

Ref Dataset Methodology Evaluation metrics Key characteristic

Kittipongdaja and 

Siriborvornratanakul (2022)
KiTS19 and Thai patient

2.5D ResU-Net, 2.5D DenseU-

Net

Dice: 0.95 (KiTS19), 0.87 

(Thai)

Achieved high segmentation 

accuracy across dataset

Hatsutani (2023) KiTS19 Protuberance Detection Network
Dice: 0.615, sensitivity: 

0.721

Accurate in identifying protruding 

tumor regions

Bolocan et al. (2023)
Private (raw DICOM 

images)
U-Net, ResNet101

Dice: 0.675 (Tumour), 0.84 

(kidney)

U-Net provide precise 

segmentation outcomes.

Swain et al. (2024) HuBMAP YOLOv8, Mask R-CNN
Precision: 0.97, recall: 0.85, 

mAP50: 0.93

YOLOv8 provides higher 

segmentation accuracy and 

efficiency.

Oghli et al. (2024) Open kidney data set Fast U-Net++
Dice: 0.97 (sagittal), 0.95 

(axial)

Exactly predicts kidney shape and 

volume

Zhao et al. (2020) KiTS19 Multi-scale supervised 3D U-Net
Dice: 0.969 (kidney), 0.805 

(tumour)

Efficient segmentation with multi-

scale supervision

Zhao et al. (2023) KiTS21 Cascading 3D U-Net, ResNet
Dice: 0.99 (kidney), 0.75–

0.83 (kidney mass)

Attains accurate segmentation of 

kidney boundaries

Conze et al. (2024) Genkyst
v19p U-Net, Trans U-Net, MedT, 

Segmenter, Swin U-NetV2

Dice: 0.934 (both organ), 

0.934 (independent & dual 

task)

Swin U-NetV2 provides better 

results in complex segmentation 

cases.

Hsiao et al. (2022a) KiTS19, 3D-IRCAD-01 EfficientNet-B5, FPN Dice: 0.969 (KiTS19)
FPN optimises segmentation 

efficiency and enhancement.

Hsiao et al. (2022b) KiTS19 ResNet-41 and EfficientNet
Dice: 0.9648 (kidney), 

0.7294 (tumour)

Pre-processing methods enhance 

segmentation accuracy.

Jariwala et al. (2024) KiTS23 U-Net and DeepLabv3+, Dice: 0.94
DeepLabv3 + enhances 

segmentation accuracy

Causey et al. (2021) KiTS19
Ensemble of U-Net models with 

post pre-processing

Dice: 0.9470 (kidney), 

0.6099 (tumour)

Post-processing enhances 

segmentation accuracy

Proposed VHUCS-Net
Kidney Segmentation 

Dataset

Transformer-enhanced U-Net 

model and contrast-optimized 

Protuberance Detection Network 

(PDN) model

Loss of 0.0288, IoU: 0.9441, 

dice coefficient: 0.9712

Achieves high segmentation 

accuracy with enhanced boundary 

precision and optimized kidney 

mass localization.
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VHUCS-Net multi-organ segmentation capabilities. Aim to develop 
the model to larger and more diverse datasets to optimize its 
usefulness across various clinical contexts. Clinical deployment 
studies will also be carried out to assess its efficacy and simplify the 
integration of real-world workflow.
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