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KmPred: prediction of Michaelis
constants (Km) using an
integrative machine learning
framework

Meshari Alazmi®*

College of Computer Science and Engineering, University of Ha'il, Ha'il, Saudi Arabia

Background and motivation: The Michaelis constant Km is one of the key kinetic
parameters in the quantification of enzyme-substrate affinity within the context of
the Michaelis—Menten theory. While Km values are traditionally subjected to labor-
intensive governance via in vitro assays, the brisk expansion of protein sequence
and chemical databases has composed an essential intended for computational
prediction approaches.

Methodology: Herein, we expose a consolidative machine learning framework-
KmPred-for Km forecast that merges protein sequence embeddings from state-
of-the-art language models with molecular descriptors derived from substrate
SMILES descriptions. This methodology was benchmarked on the MPEK dataset
and the independent dataset assembled by Kroll et al.

Results and discussion: On the MPEK dataset, the greatest model achieved a
test MSE of 0.4995, RMSE of 0.7067, MAE of 0.5022, R? of 0.7049, and a PCC
of 0.8398 (p < 1 x 10-6), outperforming the baseline MPEK model. On the Kroll
dataset, KmPred achieved a test MSE of 0.6206, RMSE of 0.7878, R? of 0.5519,
PCC of 0.7440, and Spearman’s p of 0.7342, which represents reasonable results
compared to state-of-the-art methods. These outcomes demonstrate that
combining multi-modal protein sequence and ligand features with advanced
machine learning architectures enables robust and generalizable Km prediction
across diverse datasets. Specifically, we utilized LSTM and Transformer models
solely for feature extraction to capture complex sequential and contextual
patterns from enzyme sequences, while employing XGBoost as our primary
regression model for final Km predictions. Beyond methodological impact, this
work highlights the role of Al-driven kinetic modeling in accelerating enzyme
characterization, facilitating metabolic engineering, and enhancing drug
discovery pipelines. Our approach thus establishes a foundation for predictive
enzymology at scale, with significant potential to benefit biotechnology,
synthetic biology, and national strategic initiatives such as Saudi Vision 2030.

KEYWORDS

bioinformatics, drug discovery, KmPred, metabolic engineering, Michaelis—Menten
constant (Km), molecular descriptors, protein embeddings, systems biology

Introduction

Enzymes are necessary biological catalysts, transforming, in effect, all biochemical
pathways-from central carbon metabolism down to detailed biosynthetic pathways-through
letting down of activation energy into physiologically applicable periods and giving exquisite
control over cellular metabolism. One of the desperate parameters that outline enzyme activity
is the Michaelis—-Menten constant, Km, which designates the substratum intensity by which an
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enzyme exerts semi of its maximum catalytic velocity, Vmax (Michaelis
and Menten, 1913). Within the frame of the Michaelis-Menten
equation, Km acts as a converse quantity of substrate affinity: enzymes
with low Km values reach high catalytic competence at low substrate
attentions, while high Km values indicate weaker binding (Cornish-
Bowden, 2013). The precise determination of Km is central to many
characteristics of the life sciences. In metabolic engineering, Km values
are needed to tune enzyme usage in artificial trails and to improve flux
supplies in bioproduction (Nielsen and Keasling, 2016). In drug
discovery, Km is important for the analysis of enzyme-inhibitor
interactions, especially for aggressive inhibitors, which change the
substrate affinity (Copeland, 2013). In clinical research, reassessed Km
values of mutant enzymes are often associated with metabolic
disorders, rendering Km a critical diagnostic and therapeutic marker
(Srinivasan, 2023; Segel, 1975). Traditionally, Km has been determined
via in vitro Kinetic assays, commonly based on spectrophotometric,
fluorometric, or chromatographic techniques. While accurate, these
assays are resource-intensive, require purified enzymes and substrates,
and do not scale well to the now rapidly expanding universe of newly
sequenced proteins and chemical entities.

The exponential growth of omics databases has made it possible to
investigate enzyme kinetics in depth on extraordinary scales.
Numerous protein sequences have been produced by high-throughput
sequencing advancements, and rich molecular libraries are available
through cheminformatics sources. In order to lessen reliance on
laboratory kinetics, there is an urgent need for computational
techniques that can predict Km entirely from arrangement and
molecular information. By incorporating kinetic parameters at the
genome scale, these predictive models would advance schemes biology
models, maintain tailored medicine by providing additional estimates
for disease-associated variations, and speed up enzyme engineering.

The analysis of biological data is changing as a result of these
recent advances in machine learning and artificial intelligence.
Transformer-based designs are driven by biological protein
linguistic models like ProtBERT (Elnaggar et al., 2021), UniRep
(Alley et al., 2019), and ESM-2 (Lin et al., 2023) to extract structural
and functional features from raw arrangements. These models
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interpret underlying biochemical messages without the need for
specific structural input. On the chemical side, substrate
development and adaptability are effectively encoded by SMILES-
based representations (Weininger, 1988), molecular descriptors,
and fingerprints like ECFP and MACCS-Keys (Rogers and Hahn,
2010; Durant et al., 2002). This addition of information about
proteins and small molecules has further paved the way for the use
of multimodal learning frameworks in forecasting. Pioneering
landmark works demonstrated that ML can predict enzyme kinetic
parameters. Heckmann et al. (2018) conducted a ML model to
study the prediction of turnover numbers across a wide variety of
enzymes, while Lai and Xu (2022) modeled Km with deep learning
and obtained reasonable accuracy with the use of sequence and
structural features. Notwithstanding these developments, difficult
challenges remain on how to avoid overfitting with high-
dimensional features, how to integrate dissimilar biochemical forms
into a unified prognostic model, and particularly how to attain
vigorous simplification across an extensive variety of enzyme
families and chemical constructions.

In this work, we propose a comprehensive machine learning
framework to directly predict Km values from enzyme sequences
and substrate structures. Our approach is summarized in Figure 1,
incorporating three key components: (1) protein embeddings
generated using state-of-the-art language models including LSTM-
based (UniRep) and Transformer-based architectures (ESM-2,
ESM1b, ProtBERT, ProtT5) for feature extraction, (2) molecular
descriptors extracted via cheminformatics tools, and (3) XGBoost
as our primary regression model for Km prediction. We conduct a
comprehensive evaluation by systematically benchmarking our
approach against baseline models, demonstrating that deep
learning-derived features combined with gradient boosting
regression achieve superior predictive performance. The importance
of this research work is related to overcoming computational
challenges not only in enzyme kinetics but also, in general, to
applications in biotechnology and drug discovery for the
development of the bioeconomy in view of Saudi Vision 2030
(Kingdom of Saudi Arabia, 2016).
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FIGURE 1
Overview of the KmPred framework.
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Methodology
Data collection and preprocessing

Kinetic data for enzyme-substrate interactions were collected from
three open-access enzymology databases: BRENDA (Chang et al., 2021),
SABIO-RK (Wittig et al., 2018), and KEGG (Kanehisa et al., 2021).

The Km values were transformed into their logarithmic form,
log10 (Km), for numerical stability and comparability over the wide
range of scales observed. The next crucial step in cleaning up
information was to eliminate entries that lacked either the substrate’s
canonical SMILES notation or the enzyme sequence of amino acids in
order to preserve data reliability. Additionally, in order to prevent data
from becoming redundant and guarantee that the final dataset will be
reliable and of superior quality for modeling purposes, the average of
the tests was computed and kept for enzyme-substrate pairs that
included several Km values.

Dataset summary

In order to evaluate KmPred’s performance and generalizability
more rigorously, two benchmark datasets were used that are quite
different in size, curation, and partitioning strategy. For Kroll et al.,
the dataset consists of 11,675 Km values, split into 80% for training/
validation and 20% for independent testing (Kroll et al., 2021). The
larger MPEK dataset is composed of 24,585 Km values and uses a 90%
train/validation split and 10% independent test set (Wang et al., 2024).
In both, all K_m values were log;,-transformed to reduce the effect of
skewed distributions and ensure numerical stability during regression
modeling. All these

key details-size, partitioning, and

preprocessing-are shown in Table 1.

Feature extraction

Several cutting-edge protein language models, such as ProtBERT
(Elnaggar et al., 2021), UniRep (Alley et al., 2019), and ESM-2 (Lin et
al,, 2023), have been used to generate amino acid sequences. The
structural and contextual biochemical data contained in the amino
acid patterns was captured by these embeddings. Additionally, the
iFeatureOmega platform (Chen et al., 2022) was used to generate
manually produced descriptors that included secondary-structure-
related indices, physicochemical properties, and amino acid
composition. The substrate molecules were preprocessed using RDKit
(Landrum, 2016) and represented using their canonical SMILES
strings (Weininger, 1988). ECFP (Rogers and Hahn, 2010), MACCS
keys (Durant et al., 2002), fundamental indicators such as atom counts
and bond types, and topological and physicochemical indices

TABLE 1 Summary of datasets used in this study.
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(Todeschini and Consonni, 2009) are among the classes of molecular
signifiers that were produced.

Feature integration

The protein embeddings and molecular descriptors for each
enzyme and its substrate combination were combined into one vector
of features in order to prepare the model. The models were able to
together identify and gain insight into the fundamental variables of
catalytic efficiency as well as the biochemical variables that influence
substrate recognition thanks to one visual representation.

Model building

Three groups were randomly selected from the MPEK dataset:
10% for validation, 10% for an independent testing set, and 80% for
training. However, the Kroll et al. dataset had a different division: 80%
for combined training and validation and 20% for the independent
testing set. For feature extraction, we employed advanced protein
language models including LSTM-based architectures (UniRep)
(Hochreiter and Schmidhuber, 1997) and Transformer-based models
(ESM-2, ESM1Db, ProtBERT, and ProtT5) (Rives et al., 2021) to
generate high-dimensional embeddings from enzyme sequences.
These deep learning models effectively captured sequential
dependencies and contextual information within the protein features.
The extracted embeddings, combined with ligand descriptors, were
then used as input features for our main predictive model: XGBoost
(Chen, 2016). We fine-tuned the XGBoost regressor and reported the
final hyperparameters in Table 2. All model code was implemented in
Python, utilizing libraries such as scikit-learn (Pedregosa et al., 2011),
PyTorch (Paszke et al., 2019), and XGBoost (Chen, 2016). Model
hyperparameters were optimized on the validation set, and practices
such as early stopping were employed to prevent overfitting.

Model tuning and final parameters

The XGBoost models for both datasets were carefully tuned to
balance predictive performance with computational efficiency and
generalization capability. Both models utilized the squared error
objective function with the histogram-based tree building method
(‘hist) on GPU hardware (‘cuda’) to accelerate training, while
maintaining reproducibility through a fixed random seed (42). A
shared maximum tree depth of 8 was employed to capture complex
non-linear relationships without excessive overfitting. The key
distinction in hyperparameter strategies reflects the differing
characteristics of the datasets: the Kroll model employed a more

Dataset Total Km Train+ Test Average Km Unique Unique Mutant/
values validation enzymes substrates wildtype
ratio
Kroll et al. 11,675 80% 20% —0.766 6,987 1,496 0/100% ‘
MPEK 24,585 90% 10% -0.716 8,603 3,082 31/69% ‘

All Km values were log;o-transformed for modeling.
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TABLE 2 Summary of XGBoost hyperparameters.

10.3389/frai.2026.1711471

Hyperparameter Kroll's dataset MPEK dataset Description

Objective Regression: Squared Error Regression: Squared Error Loss function for optimization (minimizes MSE for
regression)

N_estimators/num_boost_round 2500 (fixed) 5000 (max with early stopping) Number of trees to build; MPEK stops early if validation does
not improve

Learning_rate / eta 0.1 0.03 Step size for each tree; lower values = slower, more
conservative learning

Max_depth 8 8 Maximum tree depth; deeper trees capture more complexity
but may overfit

Subsample 1 0.8 Fraction of samples used per tree; <1.0 adds randomness to
prevent overfitting

Colsample_bytree 1 0.8 Fraction of features used per tree; <1.0 reduces tree
correlation

Reg_alpha (L1) 0.9 0.0 L1 regularization; pushes weights to zero for feature sparsity

Reg_lambda (L2) 10.0 2.0 L2 regularization; penalizes large weights to smooth the
model

Min_child_weight 1 1 Minimum weight required to create a child node; prevents
splitting on small samples

Tree_method ‘hist’ ‘hist’ Tree building algorithm; ‘hist’ uses histograms for fast,
approximate splits

Device ‘cuda’ ‘cuda’ Computing device; ‘cuda’ uses GPU for faster training

Random_state/seed 42 42 Random seed for reproducible results

aggressive regularization approach with higher L1 (alpha = 0.9) and
L2 (lambda = 10.0) penalties to handle its larger feature space and
prevent overfitting, while using full subsampling (subsample = 1.0,
colsample_bytree = 1.0) and a moderate learning rate (0.1) with a
fixed 2,500 trees. In contrast, the MPEK model adopted a more
conservative learning strategy with a lower learning rate (0.03) and
implemented stochastic training through reduced subsampling ratios
(0.8 for both samples and features), which introduces beneficial
randomness to improve generalization. The MPEK configuration also
employed early stopping with up to 5,000 boosting rounds and lighter
regularization (alpha = 0.0, lambda = 2.0), allowing the model to fully
leverage the dataset’s informative features while the early stopping
mechanism automatically prevented overfitting. This dataset-specific
tuning approach proved highly effective, as evidenced by the strong
performance metrics and minimal standard deviations across cross-
validation folds for both datasets.

Model evaluation and experimental
workflow

The model evaluation was conducted using a set of complementary
metrics applied to an independent test set to ensure a comprehensive
and practical assessment of predictive performance. Prediction
accuracy was primarily quantified using the root mean squared error
(RMSE). In addition, the Pearson correlation coefficient was used to
assess the linear agreement between predicted and experimentally
measured values, while the Spearman rank correlation coefficient was
employed to evaluate the monotonic relationship between predictions

and ground-truth measurements, independent of linearity

Frontiers in Artificial Intelligence

assumptions. The coefficient of determination (R2) was further
reported to indicate the proportion of variance in the experimental
data explained by the models. To assess the statistical robustness and
stability of the results, cross-validation was performed across multiple
random splits of the dataset. The entire evaluation workflow was
designed to be fully reproducible and organized into three distinct
stages: feature generation, feature integration, and model training and
evaluation.

Cross-validation set-up

To rigorously assess model performance and ensure
generalizability, we implemented a 5-fold cross-validation framework
on both the Kroll and MPEK datasets shown in Table 3. For the Kroll
dataset, consisting of 11,696 samples with 3,952 features each, we first
reserved 2,342 samples (20%) as a held-out test set to provide an
unbiased final evaluation. The remaining 9,354 training samples were
then divided into five folds, where each fold served as a validation set
(approximately 1,870-1,871 samples) while the other four folds were
used for training (approximately 7,483-7,484 samples). This approach
yielded five independent models, each evaluated on both its respective
validation fold and the held-out test set. Feature selection was
performed independently within each fold, selecting the top 6,000
most informative features (3,000 from ligand features and 3,000 from
sequence features) using univariate regression scoring to prevent
information leakage from validation data into the training process. By
training on different data subsets and averaging performance metrics
across folds, this methodology provides robust estimates of model

performance while minimizing overfitting and reducing the influence
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TABLE 3 The average performance of 5-folds cross validation of KmPred
tool.

Dataset = MSE  R%(+SD) Pearson Spearman
(+SD) (+ SD) (+ SD)

Kroll’s 0.71 + 0.49 +0.02 0.70 £0.013 0.69 £ 0.016

validation 0.026

set

Kroll’s 0.67 + 0.51 £ 0.009 0.72 +0.006 0.71 + 0.006

testing set 0.013

MPEK 0.52 + 0.69 + 0.004 0.83 +0.002 0.82 +0.005

validation 0.009

set

MPEK 0.51 + 0.70+ 0.006 0.84 £ 0.003 0.84 £ 0.002

testing set 0.01

of any single data split. The consistency of results across folds,
measured by standard deviations, serves as a strong indicator of model
stability and reliability.

Results and discussion

Baseline results were adopted from the original publications and
were not retrained in this work. For the Kroll dataset, evaluation was
performed using the identical test set released by Kroll et al. via their
official GitHub repository, enabling direct comparison on the same
samples. For the MPEK dataset, results were taken from the original
study, which employed a data split of 10% for testing, 10% for
validation, and the remaining data for training.

Performance on Kroll's dataset

The predictive capacity of KmPred was initially benchmarked
against the Kroll baseline model on the Kroll dataset. As shown in
Table 4, KmPred attained a mean squared error (MSE) of 0.62 and a
coefficient of determination (R?) of 0.55, evaluated to the Kroll
baseline which yielded MSE = 0.65 and R*=0.53. Although the
absolute differences may appear modest, the enhancement is
expressive in the context of enzyme-substrate affinity prediction,
where supplementary variance supported denotes competent acquire
of the core biochemical signal. Figure 2 visualizes this comparative
analysis, clearly demonstrating KmPreds superior performance
through its lower error and higher explained variance.

Performance on Kroll's dataset on identical
or homologous sequences

As shown in Table 5, our model demonstrates robust predictive
performance across different levels of sequence similarity between
training and test sets, with MSE values that appropriately reflect the
difficulty of each prediction task. When evaluated on the complete test
set of 2,342 samples without removing any sequences, the model
achieves an MSE of 0.62, establishing a strong baseline performance.
When we remove identical sequences (100% similarity) from the test

Frontiers in Artificial Intelligence
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TABLE 4 Performance of KmPred and Kroll's model on the Kroll dataset
(test set).

Method MSE R?
Kroll model 0.65 0.53 ‘
KmPred (ours) 0.62 0.55 ‘

set, reducing it slightly to 2,292 samples, the MSE increases modestly
to 0.76, indicating that the model relies minimally on memorizing
exact training sequences and generalizes well to novel but similar
enzymes. This trend continues when removing sequences with 90 and
50% homology (MSE of 0.75 and 0.76, respectively, both with ~2,292
test samples). Notably, the test set size remains nearly identical across
these two similarity thresholds (2,292 and 2,293 samples), indicating
that very few sequences fall in the 50-90% similarity range. The
minimal change in MSE between these conditions (0.75 vs. 0.76)
despite the stricter similarity cutoff demonstrates that the model
maintains remarkably consistent performance even when tested on
enzymes with moderate sequence divergence from the training data,
and that its predictions do not rely heavily on high similarity matches.
The most challenging scenario occurs when removing all sequences
with more than 10% homology, which drastically reduces the test set
to only 41 highly divergent samples and increases MSE to 1.38. This
substantial increase is expected because the dramatically smaller test
set (98% reduction in size) represents extremely dissimilar enzymes
that share minimal sequence features with the training data.
Importantly, even in this most stringent evaluation, the model still
achieves meaningful predictions (Pearson correlation of 0.58),
demonstrating its ability to capture fundamental enzyme-substrate
relationships beyond simple sequence similarity. Overall, these results
validate that our model generalizes effectively across a wide range of
sequence similarities, with performance degradation proportional to
both the biological difficulty of the task and the reduced statistical
power from smaller test sets.

Performance on the MPEK dataset

KmPred demonstrated superior predictive power on the MPEK
dataset, achieving a Pearson correlation coefficient (PCC) of 0.839.
This value considerably outperforms the standard methods: MPEK
with 0.777, Kroll_model with 0.576, and UniKP with 0.507. These
comparative outcomes, also visually indicated in Figure 3, finally start
KmPred as the most dependable predictor among the judged attempts
on this extensive standard. Table 6 obviously demonstrates that
KmPred is far greater, with a PCC of 0.839, as related to the other
benchmark approaches on the MPEK dataset.

Predicted vs. actual log;o(Km) scatter plots

To check the quality of KmPred forecasts, we observed scatter
plots of forecast versus experimentally measured log,o(Km) values. As
Figure 4 for the Kroll dataset illustrates, the predictions clustered
strongly around the identity line, y =x, in concordance with the
obtained PCC of 0.744. For the MPEK dataset, the alignment is even
tighter (Figure 5), reflecting a significantly higher PCC of 0.839 and
hence showing KmPred’s improved predictive fidelity even when

frontiersin.org
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FIGURE 2
Performance comparison: Kroll_model and KmPred on the Kroll dataset (MSE and R? values).

TABLE 5 Performance of KmPred on the test set based on sequence similarity.

Identical or Pearson correlation Spearman Test set size
homologous correlation

percentage

No removal of any test samples 0.62 0.55 0.74 0.73 2342

There are no identical sequences 0.76 0.47 0.69 0.68 2292

(100%) shared between training

and testing datasets.

There are no homologous 0.75 0.47 0.69 0.68 2292
sequences more than 90% shared

between training and testing.

There are no homologous 0.76 0.47 0.68 0.68 2293
sequences more than 50% shared

between training and testing.

There are no homologous 1.38 0.26 0.58 0.59 41

sequences more than 10% shared

between training and testing.

TABLE 6 Pearson correlation coefficient (PCC) comparison of KmPred

. . . against other methods on the MPEK dataset.
C%npanson of Pearson Correlation Coefficients Across Methods

Method PCC

0.839

g os MPEK 0.777
:g Kroll_model 0.576
€

g 0.6 .

o UniKP 0.507
<

S

% 0 KmPred (ours) 0.839
3

c

2

©

&

challenged with broader data diversity. The figure’s dashed red line

00 Kroll_model KmPred (ours) represents the identity line y =x, where the points of perfectly
FIGURE 3 predicted values should fall.
Bar chart: comparison of Pearson correlation coefficient (PCC) This plot thus illustrates that the data points all lie very near to the

across methods on the MPEK dataset. identity line y = x, hence visually confirming the attainment of high

predictive accuracy on the MPEK dataset.
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FIGURE 4
Predicted vs. actual logyo(K.,) on the Kroll dataset.

Discussion

A key limitation of the present study, shared with prior large-scale
Km prediction efforts, is the absence of detailed assay condition
metadata associated with the reported Km values. Experimental Km
measurements are known to depend on factors such as pH,
temperature, ionic strength, and the presence of cofactors; however,
such information is not available in the benchmark dataset introduced
by Kroll et al. and therefore cannot be incorporated into the learning
process. As a result, both the original model and the proposed
approach necessarily learn condition-agnostic representations of
enzyme-substrate affinity. Nevertheless, evidence from subsequent
datasets, such as MPEK, indicates that enriching models with
additional biochemical and contextual information can substantially
improve predictive performance, as reflected by the higher Pearson
correlation coefficient reported for MPEK (PCC = 0.8398; R* = 0.7049)
compared to the original Kroll dataset (PCC = 0.7440; R* = 0.5519).

Frontiers in Artificial Intelligence 07

Consistent with observations by Kroll et al., future improvements are
expected from the integration of enzyme active-site features (e.g.,
hydrophobicity, depth, and structural properties) as well as organism-
specific physiological parameters, such as typical intracellular pH and
temperature, once such annotations become more widely and
systematically available.

Despite these promising results, several limitations warrant
discussion. Performance dropped when transitioning from the MPEK
dataset to Kroll's dataset, reflecting the ongoing challenge of domain
generalization in biochemical prediction. This suggests that future
work should focus on transfer learning strategies and multi-dataset
training to enhance robustness. Additionally, while our framework
captures global features of enzyme-substrate interactions, it does not
explicitly model 3D structural information such as solvent accessibility
or binding site geometry, which are known to influence Km.
Incorporating structural features derived from AlphaFold models or
molecular docking simulations could further improve accuracy.
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Kroll's dataset -- Predicted vs Actual log10(Km)
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Another important consideration is interpretability. While
advanced models such as LSTMs and diffusion regressors offer strong
predictive power, they function as “black boxes” Developing
explainable AT methods to identify which sequence motifs or molecular
substructures most influence Km predictions will be essential for
translating these models into actionable biochemical insights.

Conclusion

In this work, the developed machine learning framework KmPred
achieved a breakthrough in Al-driven enzymology through the
precise prediction of Michaelis constant Km, using a novel
combination of deep protein embeddings and molecular descriptors.
This model yielded results that were both robust and generalizable,
outperforming existing models with the best performance on the
MPEK dataset PCC =0.8398; R*=0.7049, which significantly
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outperformed the baseline MPEK model, and competitive on the Kroll
dataset PCC = 0.7440; R? = 0.5519$. This confirmed that it is feasible
to predict Km values using computation rather than resource-
intensive experimental assays. The predictive models obtained herein
are valuable tools for metabolic engineering, systems biology, and
drug discovery. Future work will focus on incorporating structural
features and exploring transfer learning to improve the generalization
of the best models, while developing interpretable AI models in order
to extend biological understanding of the enzyme-substrate affinity,
thereby accelerating biotechnological innovation in providing
strategic creativities, for example, Saudi Vision 2030.
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