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KmPred: prediction of Michaelis 
constants (Km) using an 
integrative machine learning 
framework
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Background and motivation: The Michaelis constant Km is one of the key kinetic 
parameters in the quantification of enzyme-substrate affinity within the context of 
the Michaelis–Menten theory. While Km values are traditionally subjected to labor-
intensive governance via in vitro assays, the brisk expansion of protein sequence 
and chemical databases has composed an essential intended for computational 
prediction approaches.
Methodology: Herein, we expose a consolidative machine learning framework-
KmPred-for Km forecast that merges protein sequence embeddings from state-
of-the-art language models with molecular descriptors derived from substrate 
SMILES descriptions. This methodology was benchmarked on the MPEK dataset 
and the independent dataset assembled by Kroll et al.
Results and discussion: On the MPEK dataset, the greatest model achieved a 
test MSE of 0.4995, RMSE of 0.7067, MAE of 0.5022, R2 of 0.7049, and a PCC 
of 0.8398 (p < 1 × 10−6), outperforming the baseline MPEK model. On the Kroll 
dataset, KmPred achieved a test MSE of 0.6206, RMSE of 0.7878, R2 of 0.5519, 
PCC of 0.7440, and Spearman’s ρ of 0.7342, which represents reasonable results 
compared to state-of-the-art methods. These outcomes demonstrate that 
combining multi-modal protein sequence and ligand features with advanced 
machine learning architectures enables robust and generalizable Km prediction 
across diverse datasets. Specifically, we utilized LSTM and Transformer models 
solely for feature extraction to capture complex sequential and contextual 
patterns from enzyme sequences, while employing XGBoost as our primary 
regression model for final Km predictions. Beyond methodological impact, this 
work highlights the role of AI-driven kinetic modeling in accelerating enzyme 
characterization, facilitating metabolic engineering, and enhancing drug 
discovery pipelines. Our approach thus establishes a foundation for predictive 
enzymology at scale, with significant potential to benefit biotechnology, 
synthetic biology, and national strategic initiatives such as Saudi Vision 2030.

KEYWORDS

bioinformatics, drug discovery, KmPred, metabolic engineering, Michaelis–Menten 
constant (Km), molecular descriptors, protein embeddings, systems biology

Introduction

Enzymes are necessary biological catalysts, transforming, in effect, all biochemical 
pathways-from central carbon metabolism down to detailed biosynthetic pathways-through 
letting down of activation energy into physiologically applicable periods and giving exquisite 
control over cellular metabolism. One of the desperate parameters that outline enzyme activity 
is the Michaelis–Menten constant, Km, which designates the substratum intensity by which an 
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enzyme exerts semi of its maximum catalytic velocity, Vmax (Michaelis 
and Menten, 1913). Within the frame of the Michaelis–Menten 
equation, Km acts as a converse quantity of substrate affinity: enzymes 
with low Km values reach high catalytic competence at low substrate 
attentions, while high Km values indicate weaker binding (Cornish-
Bowden, 2013). The precise determination of Km is central to many 
characteristics of the life sciences. In metabolic engineering, Km values 
are needed to tune enzyme usage in artificial trails and to improve flux 
supplies in bioproduction (Nielsen and Keasling, 2016). In drug 
discovery, Km is important for the analysis of enzyme-inhibitor 
interactions, especially for aggressive inhibitors, which change the 
substrate affinity (Copeland, 2013). In clinical research, reassessed Km 
values of mutant enzymes are often associated with metabolic 
disorders, rendering Km a critical diagnostic and therapeutic marker 
(Srinivasan, 2023; Segel, 1975). Traditionally, Km has been determined 
via in vitro kinetic assays, commonly based on spectrophotometric, 
fluorometric, or chromatographic techniques. While accurate, these 
assays are resource-intensive, require purified enzymes and substrates, 
and do not scale well to the now rapidly expanding universe of newly 
sequenced proteins and chemical entities.

The exponential growth of omics databases has made it possible to 
investigate enzyme kinetics in depth on extraordinary scales. 
Numerous protein sequences have been produced by high-throughput 
sequencing advancements, and rich molecular libraries are available 
through cheminformatics sources. In order to lessen reliance on 
laboratory kinetics, there is an urgent need for computational 
techniques that can predict Km entirely from arrangement and 
molecular information. By incorporating kinetic parameters at the 
genome scale, these predictive models would advance schemes biology 
models, maintain tailored medicine by providing additional estimates 
for disease-associated variations, and speed up enzyme engineering.

The analysis of biological data is changing as a result of these 
recent advances in machine learning and artificial intelligence. 
Transformer-based designs are driven by biological protein 
linguistic models like ProtBERT (Elnaggar et al., 2021), UniRep 
(Alley et al., 2019), and ESM-2 (Lin et al., 2023) to extract structural 
and functional features from raw arrangements. These models 

interpret underlying biochemical messages without the need for 
specific structural input. On the chemical side, substrate 
development and adaptability are effectively encoded by SMILES-
based representations (Weininger, 1988), molecular descriptors, 
and fingerprints like ECFP and MACCS-Keys (Rogers and Hahn, 
2010; Durant et al., 2002). This addition of information about 
proteins and small molecules has further paved the way for the use 
of multimodal learning frameworks in forecasting. Pioneering 
landmark works demonstrated that ML can predict enzyme kinetic 
parameters. Heckmann et al. (2018) conducted a ML model to 
study the prediction of turnover numbers across a wide variety of 
enzymes, while Lai and Xu (2022) modeled Km with deep learning 
and obtained reasonable accuracy with the use of sequence and 
structural features. Notwithstanding these developments, difficult 
challenges remain on how to avoid overfitting with high-
dimensional features, how to integrate dissimilar biochemical forms 
into a unified prognostic model, and particularly how to attain 
vigorous simplification across an extensive variety of enzyme 
families and chemical constructions.

In this work, we propose a comprehensive machine learning 
framework to directly predict Km values from enzyme sequences 
and substrate structures. Our approach is summarized in Figure 1, 
incorporating three key components: (1) protein embeddings 
generated using state-of-the-art language models including LSTM-
based (UniRep) and Transformer-based architectures (ESM-2, 
ESM1b, ProtBERT, ProtT5) for feature extraction, (2) molecular 
descriptors extracted via cheminformatics tools, and (3) XGBoost 
as our primary regression model for Km prediction. We conduct a 
comprehensive evaluation by systematically benchmarking our 
approach against baseline models, demonstrating that deep 
learning-derived features combined with gradient boosting 
regression achieve superior predictive performance. The importance 
of this research work is related to overcoming computational 
challenges not only in enzyme kinetics but also, in general, to 
applications in biotechnology and drug discovery for the 
development of the bioeconomy in view of Saudi Vision 2030 
(Kingdom of Saudi Arabia, 2016).

FIGURE 1

Overview of the KmPred framework.
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Methodology

Data collection and preprocessing

Kinetic data for enzyme-substrate interactions were collected from 
three open-access enzymology databases: BRENDA (Chang et al., 2021), 
SABIO-RK (Wittig et al., 2018), and KEGG (Kanehisa et al., 2021).

The Km values were transformed into their logarithmic form, 
log10 (Km), for numerical stability and comparability over the wide 
range of scales observed. The next crucial step in cleaning up 
information was to eliminate entries that lacked either the substrate’s 
canonical SMILES notation or the enzyme sequence of amino acids in 
order to preserve data reliability. Additionally, in order to prevent data 
from becoming redundant and guarantee that the final dataset will be 
reliable and of superior quality for modeling purposes, the average of 
the tests was computed and kept for enzyme-substrate pairs that 
included several Km values.

Dataset summary

In order to evaluate KmPred’s performance and generalizability 
more rigorously, two benchmark datasets were used that are quite 
different in size, curation, and partitioning strategy. For Kroll et al., 
the dataset consists of 11,675 Km values, split into 80% for training/
validation and 20% for independent testing (Kroll et al., 2021). The 
larger MPEK dataset is composed of 24,585 Km values and uses a 90% 
train/validation split and 10% independent test set (Wang et al., 2024). 
In both, all K_m values were log₁₀-transformed to reduce the effect of 
skewed distributions and ensure numerical stability during regression 
modeling. All these key details-size, partitioning, and 
preprocessing-are shown in Table 1.

Feature extraction

Several cutting-edge protein language models, such as ProtBERT 
(Elnaggar et al., 2021), UniRep (Alley et al., 2019), and ESM-2 (Lin et 
al., 2023), have been used to generate amino acid sequences. The 
structural and contextual biochemical data contained in the amino 
acid patterns was captured by these embeddings. Additionally, the 
iFeatureOmega platform (Chen et al., 2022) was used to generate 
manually produced descriptors that included secondary-structure-
related indices, physicochemical properties, and amino acid 
composition. The substrate molecules were preprocessed using RDKit 
(Landrum, 2016) and represented using their canonical SMILES 
strings (Weininger, 1988). ECFP (Rogers and Hahn, 2010), MACCS 
keys (Durant et al., 2002), fundamental indicators such as atom counts 
and bond types, and topological and physicochemical indices 

(Todeschini and Consonni, 2009) are among the classes of molecular 
signifiers that were produced.

Feature integration

The protein embeddings and molecular descriptors for each 
enzyme and its substrate combination were combined into one vector 
of features in order to prepare the model. The models were able to 
together identify and gain insight into the fundamental variables of 
catalytic efficiency as well as the biochemical variables that influence 
substrate recognition thanks to one visual representation.

Model building

Three groups were randomly selected from the MPEK dataset: 
10% for validation, 10% for an independent testing set, and 80% for 
training. However, the Kroll et al. dataset had a different division: 80% 
for combined training and validation and 20% for the independent 
testing set. For feature extraction, we employed advanced protein 
language models including LSTM-based architectures (UniRep) 
(Hochreiter and Schmidhuber, 1997) and Transformer-based models 
(ESM-2, ESM1b, ProtBERT, and ProtT5) (Rives et al., 2021) to 
generate high-dimensional embeddings from enzyme sequences. 
These deep learning models effectively captured sequential 
dependencies and contextual information within the protein features. 
The extracted embeddings, combined with ligand descriptors, were 
then used as input features for our main predictive model: XGBoost 
(Chen, 2016). We fine-tuned the XGBoost regressor and reported the 
final hyperparameters in Table 2. All model code was implemented in 
Python, utilizing libraries such as scikit-learn (Pedregosa et al., 2011), 
PyTorch (Paszke et al., 2019), and XGBoost (Chen, 2016). Model 
hyperparameters were optimized on the validation set, and practices 
such as early stopping were employed to prevent overfitting.

Model tuning and final parameters

The XGBoost models for both datasets were carefully tuned to 
balance predictive performance with computational efficiency and 
generalization capability. Both models utilized the squared error 
objective function with the histogram-based tree building method 
(‘hist’) on GPU hardware (‘cuda’) to accelerate training, while 
maintaining reproducibility through a fixed random seed (42). A 
shared maximum tree depth of 8 was employed to capture complex 
non-linear relationships without excessive overfitting. The key 
distinction in hyperparameter strategies reflects the differing 
characteristics of the datasets: the Kroll model employed a more 

TABLE 1  Summary of datasets used in this study.

Dataset Total Km 
values

Train+ 
validation

Test Average Km Unique 
enzymes

Unique 
substrates

Mutant/
wildtype 

ratio

Kroll et al. 11,675 80% 20% −0.766 6,987 1,496 0/100%

MPEK 24,585 90% 10% −0.716 8,603 3,082 31/69%

All Km values were log₁₀-transformed for modeling.
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aggressive regularization approach with higher L1 (alpha = 0.9) and 
L2 (lambda = 10.0) penalties to handle its larger feature space and 
prevent overfitting, while using full subsampling (subsample = 1.0, 
colsample_bytree = 1.0) and a moderate learning rate (0.1) with a 
fixed 2,500 trees. In contrast, the MPEK model adopted a more 
conservative learning strategy with a lower learning rate (0.03) and 
implemented stochastic training through reduced subsampling ratios 
(0.8 for both samples and features), which introduces beneficial 
randomness to improve generalization. The MPEK configuration also 
employed early stopping with up to 5,000 boosting rounds and lighter 
regularization (alpha = 0.0, lambda = 2.0), allowing the model to fully 
leverage the dataset’s informative features while the early stopping 
mechanism automatically prevented overfitting. This dataset-specific 
tuning approach proved highly effective, as evidenced by the strong 
performance metrics and minimal standard deviations across cross-
validation folds for both datasets.

Model evaluation and experimental 
workflow

The model evaluation was conducted using a set of complementary 
metrics applied to an independent test set to ensure a comprehensive 
and practical assessment of predictive performance. Prediction 
accuracy was primarily quantified using the root mean squared error 
(RMSE). In addition, the Pearson correlation coefficient was used to 
assess the linear agreement between predicted and experimentally 
measured values, while the Spearman rank correlation coefficient was 
employed to evaluate the monotonic relationship between predictions 
and ground-truth measurements, independent of linearity 

assumptions. The coefficient of determination (R2) was further 
reported to indicate the proportion of variance in the experimental 
data explained by the models. To assess the statistical robustness and 
stability of the results, cross-validation was performed across multiple 
random splits of the dataset. The entire evaluation workflow was 
designed to be fully reproducible and organized into three distinct 
stages: feature generation, feature integration, and model training and 
evaluation.

Cross-validation set-up

To rigorously assess model performance and ensure 
generalizability, we implemented a 5-fold cross-validation framework 
on both the Kroll and MPEK datasets shown in Table 3. For the Kroll 
dataset, consisting of 11,696 samples with 3,952 features each, we first 
reserved 2,342 samples (20%) as a held-out test set to provide an 
unbiased final evaluation. The remaining 9,354 training samples were 
then divided into five folds, where each fold served as a validation set 
(approximately 1,870–1,871 samples) while the other four folds were 
used for training (approximately 7,483–7,484 samples). This approach 
yielded five independent models, each evaluated on both its respective 
validation fold and the held-out test set. Feature selection was 
performed independently within each fold, selecting the top 6,000 
most informative features (3,000 from ligand features and 3,000 from 
sequence features) using univariate regression scoring to prevent 
information leakage from validation data into the training process. By 
training on different data subsets and averaging performance metrics 
across folds, this methodology provides robust estimates of model 
performance while minimizing overfitting and reducing the influence 

TABLE 2  Summary of XGBoost hyperparameters.

Hyperparameter Kroll’s dataset MPEK dataset Description

Objective Regression: Squared Error Regression: Squared Error Loss function for optimization (minimizes MSE for 

regression)

N_estimators/num_boost_round 2500 (fixed) 5000 (max with early stopping) Number of trees to build; MPEK stops early if validation does 

not improve

Learning_rate / eta 0.1 0.03 Step size for each tree; lower values = slower, more 

conservative learning

Max_depth 8 8 Maximum tree depth; deeper trees capture more complexity 

but may overfit

Subsample 1 0.8 Fraction of samples used per tree; <1.0 adds randomness to 

prevent overfitting

Colsample_bytree 1 0.8 Fraction of features used per tree; <1.0 reduces tree 

correlation

Reg_alpha (L1) 0.9 0.0 L1 regularization; pushes weights to zero for feature sparsity

Reg_lambda (L2) 10.0 2.0 L2 regularization; penalizes large weights to smooth the 

model

Min_child_weight 1 1 Minimum weight required to create a child node; prevents 

splitting on small samples

Tree_method ‘hist’ ‘hist’ Tree building algorithm; ‘hist’ uses histograms for fast, 

approximate splits

Device ‘cuda’ ‘cuda’ Computing device; ‘cuda’ uses GPU for faster training

Random_state/seed 42 42 Random seed for reproducible results
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of any single data split. The consistency of results across folds, 
measured by standard deviations, serves as a strong indicator of model 
stability and reliability.

Results and discussion

Baseline results were adopted from the original publications and 
were not retrained in this work. For the Kroll dataset, evaluation was 
performed using the identical test set released by Kroll et al. via their 
official GitHub repository, enabling direct comparison on the same 
samples. For the MPEK dataset, results were taken from the original 
study, which employed a data split of 10% for testing, 10% for 
validation, and the remaining data for training.

Performance on Kroll’s dataset

The predictive capacity of KmPred was initially benchmarked 
against the Kroll baseline model on the Kroll dataset. As shown in 
Table 4, KmPred attained a mean squared error (MSE) of 0.62 and a 
coefficient of determination (R2) of 0.55, evaluated to the Kroll 
baseline which yielded MSE = 0.65 and R2 = 0.53. Although the 
absolute differences may appear modest, the enhancement is 
expressive in the context of enzyme–substrate affinity prediction, 
where supplementary variance supported denotes competent acquire 
of the core biochemical signal. Figure 2 visualizes this comparative 
analysis, clearly demonstrating KmPred’s superior performance 
through its lower error and higher explained variance.

Performance on Kroll’s dataset on identical 
or homologous sequences

As shown in Table 5, our model demonstrates robust predictive 
performance across different levels of sequence similarity between 
training and test sets, with MSE values that appropriately reflect the 
difficulty of each prediction task. When evaluated on the complete test 
set of 2,342 samples without removing any sequences, the model 
achieves an MSE of 0.62, establishing a strong baseline performance. 
When we remove identical sequences (100% similarity) from the test 

set, reducing it slightly to 2,292 samples, the MSE increases modestly 
to 0.76, indicating that the model relies minimally on memorizing 
exact training sequences and generalizes well to novel but similar 
enzymes. This trend continues when removing sequences with 90 and 
50% homology (MSE of 0.75 and 0.76, respectively, both with ~2,292 
test samples). Notably, the test set size remains nearly identical across 
these two similarity thresholds (2,292 and 2,293 samples), indicating 
that very few sequences fall in the 50–90% similarity range. The 
minimal change in MSE between these conditions (0.75 vs. 0.76) 
despite the stricter similarity cutoff demonstrates that the model 
maintains remarkably consistent performance even when tested on 
enzymes with moderate sequence divergence from the training data, 
and that its predictions do not rely heavily on high similarity matches. 
The most challenging scenario occurs when removing all sequences 
with more than 10% homology, which drastically reduces the test set 
to only 41 highly divergent samples and increases MSE to 1.38. This 
substantial increase is expected because the dramatically smaller test 
set (98% reduction in size) represents extremely dissimilar enzymes 
that share minimal sequence features with the training data. 
Importantly, even in this most stringent evaluation, the model still 
achieves meaningful predictions (Pearson correlation of 0.58), 
demonstrating its ability to capture fundamental enzyme-substrate 
relationships beyond simple sequence similarity. Overall, these results 
validate that our model generalizes effectively across a wide range of 
sequence similarities, with performance degradation proportional to 
both the biological difficulty of the task and the reduced statistical 
power from smaller test sets.

Performance on the MPEK dataset

KmPred demonstrated superior predictive power on the MPEK 
dataset, achieving a Pearson correlation coefficient (PCC) of 0.839. 
This value considerably outperforms the standard methods: MPEK 
with 0.777, Kroll_model with 0.576, and UniKP with 0.507. These 
comparative outcomes, also visually indicated in Figure 3, finally start 
KmPred as the most dependable predictor among the judged attempts 
on this extensive standard. Table 6 obviously demonstrates that 
KmPred is far greater, with a PCC of 0.839, as related to the other 
benchmark approaches on the MPEK dataset.

Predicted vs. actual log₁₀(Km) scatter plots

To check the quality of KmPred forecasts, we observed scatter 
plots of forecast versus experimentally measured log₁₀(Km) values. As 
Figure 4 for the Kroll dataset illustrates, the predictions clustered 
strongly around the identity line, y = x, in concordance with the 
obtained PCC of 0.744. For the MPEK dataset, the alignment is even 
tighter (Figure 5), reflecting a significantly higher PCC of 0.839 and 
hence showing KmPred’s improved predictive fidelity even when 

TABLE 3  The average performance of 5-folds cross validation of KmPred 
tool.

Dataset MSE 
(±SD)

R²(±SD) Pearson 
(± SD)

Spearman 
(± SD)

Kroll’s 

validation 

set

0.71 ± 

0.026

0.49 ± 0.02 0.70 ± 0.013 0.69 ± 0.016

Kroll’s 

testing set

0.67 ± 

0.013

0.51 ± 0.009 0.72 ± 0.006 0.71 ± 0.006

MPEK 

validation 

set

0.52 ± 

0.009

0.69 ± 0.004 0.83 ± 0.002 0.82 ± 0.005

MPEK 

testing set

0.51 ± 

0.01

0.70± 0.006 0.84 ± 0.003 0.84 ± 0.002

TABLE 4  Performance of KmPred and Kroll’s model on the Kroll dataset 
(test set).

Method MSE R2

Kroll model 0.65 0.53

KmPred (ours) 0.62 0.55
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challenged with broader data diversity. The figure’s dashed red line 
represents the identity line y = x, where the points of perfectly 
predicted values should fall.

This plot thus illustrates that the data points all lie very near to the 
identity line y = x, hence visually confirming the attainment of high 
predictive accuracy on the MPEK dataset.

FIGURE 2

Performance comparison: Kroll_model and KmPred on the Kroll dataset (MSE and R2 values).

TABLE 5  Performance of KmPred on the test set based on sequence similarity.

Identical or 
homologous 
percentage

MSE R2 Pearson correlation Spearman 
correlation

Test set size

No removal of any test samples 0.62 0.55 0.74 0.73 2342

There are no identical sequences 

(100%) shared between training 

and testing datasets.

0.76 0.47 0.69 0.68 2292

There are no homologous 

sequences more than 90% shared 

between training and testing.

0.75 0.47 0.69 0.68 2292

There are no homologous 

sequences more than 50% shared 

between training and testing.

0.76 0.47 0.68 0.68 2293

There are no homologous 

sequences more than 10% shared 

between training and testing.

1.38 0.26 0.58 0.59 41

FIGURE 3

Bar chart: comparison of Pearson correlation coefficient (PCC) 
across methods on the MPEK dataset.

TABLE 6  Pearson correlation coefficient (PCC) comparison of KmPred 
against other methods on the MPEK dataset.

Method PCC

MPEK 0.777

Kroll_model 0.576

UniKP 0.507

KmPred (ours) 0.839
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Discussion

A key limitation of the present study, shared with prior large-scale 
Km​ prediction efforts, is the absence of detailed assay condition 
metadata associated with the reported Km values. Experimental Km​ 
measurements are known to depend on factors such as pH, 
temperature, ionic strength, and the presence of cofactors; however, 
such information is not available in the benchmark dataset introduced 
by Kroll et al. and therefore cannot be incorporated into the learning 
process. As a result, both the original model and the proposed 
approach necessarily learn condition-agnostic representations of 
enzyme–substrate affinity. Nevertheless, evidence from subsequent 
datasets, such as MPEK, indicates that enriching models with 
additional biochemical and contextual information can substantially 
improve predictive performance, as reflected by the higher Pearson 
correlation coefficient reported for MPEK (PCC = 0.8398; R2 = 0.7049) 
compared to the original Kroll dataset (PCC = 0.7440; R2 = 0.5519). 

Consistent with observations by Kroll et al., future improvements are 
expected from the integration of enzyme active-site features (e.g., 
hydrophobicity, depth, and structural properties) as well as organism-
specific physiological parameters, such as typical intracellular pH and 
temperature, once such annotations become more widely and 
systematically available.

Despite these promising results, several limitations warrant 
discussion. Performance dropped when transitioning from the MPEK 
dataset to Kroll’s dataset, reflecting the ongoing challenge of domain 
generalization in biochemical prediction. This suggests that future 
work should focus on transfer learning strategies and multi-dataset 
training to enhance robustness. Additionally, while our framework 
captures global features of enzyme–substrate interactions, it does not 
explicitly model 3D structural information such as solvent accessibility 
or binding site geometry, which are known to influence Km. 
Incorporating structural features derived from AlphaFold models or 
molecular docking simulations could further improve accuracy.

FIGURE 4

Predicted vs. actual log₁₀(Km) on the Kroll dataset.
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Another important consideration is interpretability. While 
advanced models such as LSTMs and diffusion regressors offer strong 
predictive power, they function as “black boxes.” Developing 
explainable AI methods to identify which sequence motifs or molecular 
substructures most influence Km predictions will be essential for 
translating these models into actionable biochemical insights.

Conclusion

In this work, the developed machine learning framework KmPred 
achieved a breakthrough in AI-driven enzymology through the 
precise prediction of Michaelis’ constant Km, using a novel 
combination of deep protein embeddings and molecular descriptors. 
This model yielded results that were both robust and generalizable, 
outperforming existing models with the best performance on the 
MPEK dataset PCC = 0.8398; R2 = 0.7049, which significantly 

outperformed the baseline MPEK model, and competitive on the Kroll 
dataset PCC = 0.7440; R2 = 0.5519$. This confirmed that it is feasible 
to predict Km values using computation rather than resource-
intensive experimental assays. The predictive models obtained herein 
are valuable tools for metabolic engineering, systems biology, and 
drug discovery. Future work will focus on incorporating structural 
features and exploring transfer learning to improve the generalization 
of the best models, while developing interpretable AI models in order 
to extend biological understanding of the enzyme-substrate affinity, 
thereby accelerating biotechnological innovation in providing 
strategic creativities, for example, Saudi Vision 2030.

Data availability statement

This study utilized the publicly available Kroll’s and MPEK 
benchmark datasets for drug–target binding affinity modeling.

FIGURE 5

Predicted vs. actual log₁₀(Km) values on the MPEK dataset.
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The complete code base, encompassing data preprocessing, 
feature generation, model training, and all necessary scripts to 
reproduce the results presented in this study, the code is made 
publicly available publicly available at: https://github.com/
misharisaud/KmPred to ensure transparency and facilitate 
future research. The processed data required to reproduce the 
analyses and figures are publicly available at: https://figshare.
com/articles/dataset/KmPred_Dataset/30171538. The original 
benchmark datasets are publicly distributed by their maintainers 
and can be accessed as cited in the manuscript. No restrictions 
apply to the availability of the code and processed data.
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