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The expansion of the Internet of Things (IoT) into consumer applications
demands robust and energy-efficient communication protocols. Long-range
wide area network (LoRaWAN) is a key enabler, but its performance depends
on optimal spreading factor (SF) allocation, where traditional adaptive data
rate (ADR) mechanisms are inadequate in dynamic environments. This study
presents a novel lightweight stacked-ML approach for spreading factor (LSML-SF)
allocation in mobile IoT LoRaWAN network. We propose a stacked ensemble
model that jointly combines a linear stochastic gradient descent classifier
(log-loss), a gradient boosting model, and a deep neural network (DNN) through
a logistic regression meta-learner. The LSML-SF is trained on a vast dataset
of 225,109 samples generated from ns-3 simulations, and our model achieves
an out-of-fold cross-validation accuracy of 85%. Importantly, we demonstrate
the practical feasibility of our approach through a rigorous computational
analysis, showing the DNN component requires only 12,602 parameters and
12.3k MAC operations per inference. When integrated into ns-3 simulations,
our LSML-SF framework significantly outperforms traditional ADR mechanisms
and existing ML approaches, improving the packet success ratio and reducing
energy consumption, thereby extending the operational lifespan of consumer
IoT devices.

KEYWORDS

Internet of Things (IoT), LoRaWAN, machine learning, resource allocation, spreading
factor, stacked generalization

1 Introduction

The vision of a seamlessly connected world is rapidly materializing through the
Internet of Things (IoT), which has integrated into countless consumer domains. From
smart agriculture and logistics to personalized healthcare and smart city infrastructure, IoT
devices are revolutionizing how consumers interact with their environment (Almuhaya
et al., 2022). A critical enabler of this revolution is low-power wide-area network (LPWAN)
technology, which provides the essential connectivity for billions of devices. Among
various LPWAN solutions, Long-Range Wide Area Network (LoRaWAN) has gained
significant attention. This is due to its compelling trade-off between communication range,
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power consumption, and device cost (Farhad et al., 2020; Butt
et al., 2025). Consequently, LoRaWAN is exceptionally suitable for
consumer electronics applications.

Figure 1 shows the basic architecture of a LoRaWAN network.
End devices (EDs) transmit uplink data to a gateway (GW) using
LoRa modulation, with spreading factors (SF) typically ranging
from SF7 to SF12. The choice of SF directly affects communication
behavior: lower SF values, such as SF7, provide higher data
rates over shorter distances, whereas higher SF values, such as
SF12, increase communication range at the cost of longer airtime
and reduced throughput. LoRaWAN operates in a star topology,
where EDs access the medium using an ALOHA-based uplink
transmission scheme. After each uplink transmission, two receive
windows are opened to enable downlink communication from the
network server (NS) via the GW. The first window (RX1) opens 1
s after the uplink using the same channel and SF, while the second
window (RX2) opens after 2 s on a predefined channel with SF12.
These receive windows allow the NS to deliver acknowledgments
or control messages when required. The GW connects to the
NS through LTE or Ethernet backhaul links, which subsequently
relay processed data to the application server for advanced
processing. This structure supports robust, low-power connectivity
for extensive IoT deployments, as detailed in recent surveys on
LoRaWAN scalability (Jouhari et al., 2023), machine learning
enhancements (Farhad and Pyun, 2023b), security vulnerabilities
(Hessel et al., 2022), and adaptive data rate (ADR) optimizations
(Lehong et al., 2024).

Within the LoRaWAN architecture (as illustrated in Figure 1),
the NS implements the ADR mechanism, which dynamically
adjusts the SF and transmission power (TP) based on the signal-
to-noise ratio (SNR) history of the last 20 packets received
from each ED. This adjustment aims to optimize network
performance by selecting an appropriate SF and TP configuration
that balances range, data rate, and energy consumption, though
its efficacy is challenged by the dynamic nature of real-world
consumer environments. However, the dynamic nature of real-
world consumer environments, characterized by device mobility,
signal fading, and interference, poses a significant challenge
to traditional ADR. Its slow reaction time and inability to
model complex channel dynamics often lead to suboptimal SF
assignments, resulting in packet loss, increased network congestion,
and accelerated battery drain (Rehman et al., 2025; Ullah et al.,
2025). This directly degrades the performance and user experience
of consumer IoT products.

Machine learning (ML) offers a powerful paradigm to overcome
these limitations by learning complex patterns from data for
optimal SF allocation. Recent works have explored models like
deep neural networks (DNNs) (Farhad and Pyun, 2023a) and
gradient boosting (Minhaj et al., 2023). However, a significant
gap remains in developing a solution that is not only highly
accurate but also demonstrably feasible for deployment on the
computationally constrained microcontrollers that are ubiquitous
in consumer EDs. Many high-accuracy models are too complex
for practical implementation, while simpler models may lack the
required predictive performance. This study addresses this gap by
introducing a high-performance, yet deployable, stacked ensemble
ML framework for SF classification. Our approach does not rely
on a single model but leverages the complementary strengths
of multiple learners to achieve superior and robust accuracy.

Specifically, we present the lightweight stacked-ML approach for
SF (LSML-SF) allocation in mobile IoT LoRaWAN networks. The
proposed LSML-SF combines a linear SGD classifier (functioning as
a support vector machine), a gradient boosting (XGBoost) model,
and a DNN through a logistic regression meta-learner.

1.1 Contributions of the paper

The key contributions of the proposed LSML-SF are as follows:

1. We propose and implement a sophisticated stacked
generalization pipeline that combines three diverse base
learners: a linear SGD classifier, an XGBoost model, and a
DNN. A logistic regression meta-learner is trained to optimally
blend the predictions from these base models. This architecture
is specifically designed to capture the complex, nonlinear
relationships between device state, channel conditions, and
the optimal SF, achieving an overall classification accuracy of
approximately 88% across all six SF classes.

2. We develop a robust feature engineering strategy that expands
a set of 5 base features (e.g., device location, distance, received
power, SNR) into a rich set of 29 features. This includes rolling
statistics (mean, std, min, max) to capture temporal dynamics
and domain-informed interaction terms (e.g., distance × SNR)
and nonlinear transformations (e.g., log(1 + Distance)). This
process provides the model with a highly informative input
representation that is critical for achieving high accuracy.

3. We validate the effectiveness of our LSML-SF framework
by integrating the pre-trained model into the ns-3 network
simulator. Performance evaluation under mobile scenarios
shows that our LSML-SF approach consistently and significantly
outperforms traditional ADR mechanisms as well as other ML-
based benchmarks, achieving improvements in packet success
ratio (PSR) and reducing overall network energy consumption.

1.2 Structure of the paper

The rest of the study is organized as follows: Section 2 reviews
existing ML approaches for LoRaWAN parameter optimization
and identifies key research gaps. Section 3 introduces the
proposed LSML-SF framework, covering dataset generation,
feature engineering, model architecture, and training strategy.
Section 4 evaluates the offline predictive performance of the stacked
ensemble, including confusion matrix analysis, convergence, and
deployment feasibility. Section 5 reports online ns-3 simulation
results, highlighting improvements in packet success ratio, energy
consumption, and packet loss ratios under mobility. Section 6
outlines current study limitations and future directions, while
Section 7 concludes with key findings and implications for real-
world IoT deployment.

2 Literature review

This section surveys recent ML approaches for optimizing
communication parameters in LoRa and LoRaWAN networks,
including SF, TP, bandwidth (BW), and coding rate (CR). The
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FIGURE 1

LoRaWAN network architecture illustrating the end-to-end communication flow. End devices transmit uplink packets to a gateway using spreading
factors, while downlink messages and acknowledgments are relayed through the network server. The gateway forwards traffic to the network server
over LTE or Ethernet, and application-level data are handled by the application server.

TABLE 1 Summary of representative machine learning-based approaches for parameter optimization in LoRa and LoRaWAN networks, highlighting the
targeted optimization problems, employed learning techniques, key reported performance gains, and the main limitations identified in each study.

References and Year Optimization
problem

Methodology Key results Identified limitations

Azizi et al. (2022)—2022 SF classification Multi-armed Bandit (RL) Improved PDR and energy
efficiency

Computationally costly for EDs;
requires online learning

Chen et al. (2023)—2023 SF classification Markov Decision Process
(MDP)

24–27% Reduction in energy
consumption

Evaluated only in a simulated
environment

Bertocco et al. (2023)—2023 Soil water volume
estimation

Multi-sensor ML fusion Lowest RMSE (1.53% with hybrid
method)

Requires large, costly datasets for
training

Vangelista et al. (2023)—2023 Device mobility
classification

Support Vector Machine
(SVM)

Accurate binary mobility
classification

Integration with a subsequent ADR
strategy

Farhad et al. (2022b)—2023 SF classification Gated Recurrent Unit (GRU) 96% Accuracy; 98% PSR for 100
EDs

High computational complexity

Farhad and Pyun
(2023a)—2023

SF classification Deep Neural Network (DNN) 82% Accuracy; Improved PDR and
energy

On-device inference increases
energy consumption

Prakash (2025)—2025 SF Prediction via
feature selection

Supervised ML (k-NN, DTC,
RF, MLR)

Optimal RSSI + SNR features;
High accuracy/F1

Limited to static feature sets; no
real-time adaptation

González-Palacio et al.
(2023)—2023

Path loss/shadowing
for energy efficiency

Supervised ML (MLR, SVR,
RF, ANN)

Up to 43% energy savings; RMSE
1.566 dB

Dependent on environmental
sensor data availability

Hazarika and Choudhury
(2024)–2024

SF allocation for
mobile/static EDs

Hybrid (K-means + RL) Improved PSR, energy,
convergence time

Simulation-based; computational
overhead at GWs

primary goal of these methods is to enhance overall network
efficiency and performance. A comparative summary of these
approaches is presented in Table 1.

In Azizi et al. (2022), the authors investigated dynamic SF
allocation in LoRaWAN using a reinforcement learning approach
referred to as MIX-MAB. Their implementation relied on the
LoRa-MAB Python simulator and focused on a single-gateway
deployment with 100 static end devices uniformly distributed
within a 4.5 km radius. The study followed the EU-868 MHz
duty-cycle restriction of 1% and assumed a traffic profile of
15 uplink packets per hour with payload sizes of 50 B. To
simplify the analysis, the evaluation was conducted under idealized
conditions without ACK collisions. Within this controlled setting,
the proposed approach achieved higher packet delivery ratios
and improved energy efficiency when compared with existing
RL-based baselines.

Building on reinforcement learning for parameter adaptation,
the work in Chen et al. (2023) introduced the score table-based
evaluation and parameter surfing (STEP) algorithm. The evaluation
was carried out using the MULANE simulator in MATLAB,
where STEP was benchmarked against standard ADR, Blind
ADR (BADR), and LoRa-MAB. The results showed a noticeable
reduction in energy consumption, ranging from 24% to 27%,
highlighting the potential of table-driven learning strategies for
SF optimization.

A different application of ML in LoRaWAN was explored in
Bertocco et al. (2023), where the authors targeted underground
monitoring scenarios. Their study used a laboratory-generated
dataset collected from a sand-filled environment with varying
soil moisture levels. Received Signal Strength Indicator (RSSI)
measurements and moisture sensor readings were employed
to train and evaluate several ML-based estimation strategies.
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Specifically, the authors compared sensor calibration using ML,
virtual sensing based solely on RSSI, and a hybrid approach
combining physical sensor data with RSSI information. Among
these, the hybrid method achieved the lowest estimation error,
with an RMSE of 1.53%, outperforming both the sensor-only and
RSSI-only approaches.

A gated recurrent unit (GRU)-based solution for efficient
resource management, specifically SF allocation, was proposed in
Farhad et al. (2022b) to improve the packet success ratio (PSR)
of LoRaWAN networks. The dataset for this study was generated
using the ns-3 simulator and included 500 static EDs. It comprised
four key features: X-coordinate, Y-coordinate, signal-to-noise Ratio
(SNR), and received power. The GRU model architecture consisted
of two layers and one fully connected layer, followed by a
softmax activation function for classification. This model achieved
a classification accuracy of 96%. The weights and biases from the
best-performing model were saved and later integrated into the ns-
3 simulator for dynamic SF allocation during network simulations.
As a result, the proposed GRU method achieved a high PSR of 98%
for a network of 100 static EDs and 73% for a larger network of
600 EDs.

Expanding on this work, the authors in Farhad and Pyun
(2023a) employed a DNN model tailored for both static and
mobile LoRaWAN networks, utilizing the same dataset as in
Farhad et al. (2022b). The dataset was partitioned into groups
based on successful ACK reception. Each group was labeled with
its single most efficient SF, and this processed data was used
to train the DNN. Their model comprised five fully connected
layers with varying numbers of neurons and a final softmax layer
for SF classification, achieving an accuracy of 82%. When this
pre-trained model was deployed within the ns-3 simulator for
live network simulations, it demonstrated superior performance
in PDR, energy consumption, and convergence period compared
to traditional methods like ADR and other ML approaches
like SVM. Consequently, the DNN-based approach outperformed
GRU, LSTM, and SVM models.

In Prakash (2025), the authors addressed SF prediction in
large mobile LoRaWAN-based IoT networks through effective
feature selection. Using a publicly available dataset with over
930,000 datapoints, they evaluated k-nearest neighbors (k-NN),
decision tree classifier (DTC), random forest (RF), and multinomial
logistic regression (MLR) across 31 feature combinations from
key parameters like RSSI, SNR, frequency, distance, and antenna
height. The RSSI and SNR combination emerged as optimal,
achieving high accuracy and F1 scores. This work highlights
reduced dataset collection costs and extended battery life for
LoRaWAN devices.

The authors in González-Palacio et al. (2023) proposed ML-
based models for combined path loss and shadowing in LoRaWAN
to enhance energy efficiency. Incorporating environmental
variables such as temperature, relative humidity, barometric
pressure, particulate matter, and SNR, they fitted models using
multiple linear regression (MLR), support vector regression
(SVR), random forests (RF), and artificial neural networks (ANN).
Achieving RMSE up to 1.566 dB and R2 up to 0.94, their approach
improved the ADR algorithm, reducing link margin and saving up
to 43% energy compared to traditional ADR.

For hybrid techniques, Hazarika and Choudhury (2024)
introduced the intelligent spreading factor allocation (iSFA)
approach for mobile and static EDs in LoRa-based networks.
Combining K-means clustering at EDs (based on features like
unique ED ID, SF, SNR, RSSI, energy ratio, and packet success) with
RL at GWd (optimizing DR, TP, and latency), iSFA reduced packet
loss, convergence time, and energy consumption while improving
throughput and PSR in simulations.

While the existing literature demonstrates significant progress
in optimizing LoRaWAN parameters through ML, three critical
research gaps remain unaddressed: (1) Interpretability—Prior
works (Farhad et al., 2022b; Farhad and Pyun, 2023a; Azizi
et al., 2022) focus predominantly on performance metrics without
providing explanations for the models’ decisions, which limits trust
and hinders operational deployment in critical applications; (2)
Mobility Handling—Most solutions (Chen et al., 2023; Vangelista
et al., 2023) either ignore dynamic environments entirely or
treat mobility classification and resource adaptation as separate,
disconnected processes; and (3) Energy-Accuracy Trade-off —
Current methods (Bertocco et al., 2023) can achieve high accuracy
but often at prohibitively high computational costs for resource-
constrained EDs. While this work directly addresses (2) mobility
handling and (3) energy–accuracy trade-off through a mobility-
aware stacked learning framework and lightweight inference
design, (1) model interpretability remains an open challenge
for ensemble and deep learning-based ADR solutions, including
the proposed LSML-SF. Accordingly, this study focuses on
improving reliability and energy efficiency under mobility, while
acknowledging interpretability as an important direction for future
research in ML-driven LoRaWAN resource allocation.

3 Proposed LSML-SF framework

This section describes the proposed LSML-SF framework for SF
classification in LoRaWAN networks. The framework is designed
to balance predictive accuracy with computational efficiency,
making it suitable for deployment in resource-constrained EDs.
As illustrated in Figure 2, the overall pipeline consists of dataset
preparation, feature engineering, ensemble model training, and
online deployment within the ns-3 simulator.

3.1 Dataset description and pre-processing

The dataset used for training and validation was generated
using a widely adopted LoRaWAN network simulator1 (Magrin
et al., 2019, 2017; Farhad et al., 2019). This choice ensures
consistency with prior LoRaWAN studies and preserves realistic
physical-layer behavior. A representative subset of the dataset is
shown in Table 2.

The simulation scenario consists of 500 static EDs uniformly
distributed within a circular area of radius 5 km, with a single
gateway (GW) positioned at the center. For each ED location, six
packet transmission attempts are simulated using spreading factors

1 https://github.com/afarhad/AI-ERA/tree/main/data
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FIGURE 2

Proposed LSML-SF workflow illustrating the offline training and online deployment stages. The pipeline includes dataset generation, feature
engineering, training of heterogeneous base learners, stacked ensemble learning using out-of-fold predictions, and integration of the trained model
within the ns-3 simulation for adaptive SF selection.

TABLE 2 Representative sample of the raw LoRaWAN dataset used for model training and validation, showing packet-level attributes including device
identifier, acknowledgment status, spatial location, link-quality indicators, and the corresponding SF.

ED Group ACK X (m) Y (m) Distance (m) Prx (dBm) SNR (dB) SF

110 1 0 4260.97 –996.186 4375.89 –132.872 –15.8407 7

375 1 1 2598.60 –3465.96 4331.95 –129.237 –12.2063 7

152 1 0 –1074.27 –4285.88 4418.48 –130.064 –13.0330 7

ranging from SF7 to SF12. Each observation corresponds to a single
transmission attempt and includes the ED identifier, packet group
index, acknowledgment (ACK) status, spatial coordinates (X, Y),
distance to the GW (d), received signal power (Prx), signal-to-noise
ratio (SNR), and the SF used for transmission.

The target variable for supervised learning is the optimal
spreading factor, denoted as SF∗. For a given ED i with n
transmission attempts, SF∗ is defined as the lowest SF that results
in a successful ACK. This definition reflects the operational
objective of maintaining reliable communication while minimizing
airtime and energy consumption. The labeling rule is formalized in
Equation 1.

SF∗
i =

{
min{SFi,j | ACKi,j = 1}, if ∃j such that ACKi,j = 1,

SF12, otherwise.
(1)

The categorical SF labels are encoded as integer class indices
y ∈ {0, 1, . . . , 5} corresponding to {SF7, . . . , SF12} using a
LabelEncoder. To address class imbalance, class weights are
introduced, with additional emphasis on higher SFs due to
their disproportionate impact on network capacity and energy
consumption. The class weight wc is computed as

wc = αc · N
Nc · C

, (2)

where N is the total number of samples, Nc is the number of samples
in class c, C is the number of classes, and αc is a class-specific scaling
factor (αSF11 = 1.6, αSF12 = 1.8).

3.2 Feature engineering

To improve predictive performance beyond raw
measurements, a total of 29 engineered features are constructed.
The base feature set Fbase = {X,Y,Distance,RX Power,SNR}
is augmented using temporal statistics and nonlinear
transformations.

For each base feature f ∈ Fbase, rolling statistics with window
size W = 5 are computed on a per-ED basis to capture short-term
temporal variation:

fmean = rolling mean(f , W) (3)

fstd = rolling std(f , W, ddof = 0) (4)

fmin = rolling min(f , W) (5)

fmax = rolling max(f , W) (6)

In addition, domain-informed interaction terms and nonlinear
transformations are included to better represent channel behavior:

Dist_x_SNR = Distance× SNR (7)

RXPower_x_SNR = RX Power× SNR (8)

log_Distance = log(1 + Distance) (9)

log_RXPower_signed = sign(Prx) · log(1 + |Prx|) (10)

Together, these features enable the model to capture nonlinear
relationships between device location, channel conditions, and the
optimal spreading factor.
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3.3 Ensemble model architecture: base
learners

The proposed LSML-SF framework adopts a stacked
generalization strategy in which multiple heterogeneous base
learners are trained in parallel and their probabilistic outputs
are combined by a meta-learner. This design is intended to
leverage complementary inductive biases while reducing the risk
of overfitting associated with relying on a single model. Each
base learner produces a class-probability vector over the six SF
classes, and these vectors are later aggregated using out-of-fold
predictions to ensure unbiased meta-learning. A summary of the
base learners, their key configurations, and their respective roles
within the stacked ensemble is provided in Table 3. As illustrated
in Figure 2, the three base learners are trained in parallel within
a 3-fold cross-validation setup, and their out-of-fold probability
outputs are combined by a logistic regression meta-learner.

3.3.1 Linear SGD classifier (log-loss)
The first base learner is a linear classifier trained using

stochastic gradient descent with log-loss optimization. This
corresponds to an SGD-trained multinomial logistic regression
model rather than a hinge-loss SVM. The training pipeline includes
mean-value imputation to handle missing entries and feature
standardization to normalize feature scales prior to optimization.
This model provides a fast and stable linear baseline that captures
global trends in the feature space and contributes well-calibrated
probability estimates to the ensemble.

3.3.2 XGBoost
The second base learner is a gradient-boosted decision tree

model implemented using XGBoost (Chen and Guestrin, 2016).
The model is configured with 600 estimators and a maximum
tree depth of 6. Histogram-based tree construction is employed
to improve training efficiency, while subsampling and column
sampling (0.8 each) are applied to enhance generalization.
Regularization through minimum child weight and �2 penalties
further mitigates overfitting under class imbalance and noisy
channel conditions. This component is primarily responsible for
capturing nonlinear interactions among spatial, temporal, and
signal-related features.

3.3.3 Deep neural network (DNN)
The third base learner is a compact feedforward deep neural

network designed with deployment constraints in mind. The
network architecture comprises an input batch-normalization layer
followed by two fully connected hidden layers with 128 and 64
neurons, respectively. Each hidden layer employs ReLU activation
and a dropout rate of 0.35 to mitigate overfitting. A final softmax
output layer produces class-probability estimates over the six
SF classes.

To emphasize accurate classification of higher SFs, which have
a disproportionate impact on airtime and energy consumption, the
DNN is trained using a focal loss formulation (Lin et al., 2018). This

TABLE 3 Overview of the base learners used in the LSML–SF-stacked
ensemble, summarizing their main configurations and the specific
contribution of each model to the overall classification framework.

Model Key configuration Role in ensemble

Linear SGD
(log-loss)

Imputation and
standardization; SGD
optimization with log-loss

Captures global linear trends
with low variance

XGBoost 600 trees; depth 6; learning
rate 0.05; subsampling and
regularization

Models nonlinear feature
interactions

DNN 128–64 ReLU layers; dropout
0.35; focal loss (γ = 2)

Learns complex patterns and
minority SF behavior

Meta-
learner

Multinomial logistic
regression on OOF
probabilities

Combines complementary
predictions

loss function down-weights well-classified samples and focuses
learning on harder, minority classes. The focal loss is defined as

Lfocal = − 1
N

N∑
i=1

αyi (1 − pi,yi )
γ log(pi,yi ), (11)

where pi,yi denotes the predicted probability assigned to the true
class yi for sample i, γ = 2 is the focusing parameter, and αyi is the
class-dependent weight defined in Equation 2. Model optimization
is performed using the Adam optimizer with early stopping to
ensure stable convergence and prevent overfitting.

3.4 Model training

A stratified 3-fold cross-validation scheme is employed to
generate out-of-fold (OOF) predictions from each base learner.
This procedure ensures that the meta-learner is trained exclusively
on predictions from unseen data, thereby preventing information
leakage. As shown in Figure 3, predictions from all base models
are concatenated to form the meta-feature matrix ZOOF ∈ R

N×18.
A multinomial logistic regression model is then trained on ZOOF
to learn the optimal combination of base learner outputs. Finally,
all base models are retrained using the full dataset to construct the
final ensemble.

3.5 Online deployment in ns-3

Figure 4 illustrates the integration of the trained LSML-SF
model within the ns-3 simulation environment. When an ED
initiates a packet transmission, relevant physical-layer features,
including spatial coordinates, distance to the GW, Prx, and SNR, are
collected. The engineered features described in Section 3.2 are then
computed and provided as input to the pre-trained ensemble. Based
on this input, the model predicts the optimal spreading factor SF∗,
which is subsequently applied to the transmission. The resulting
packets are received at the GW and forwarded to the network
server (NS) for standard LoRaWAN processing. This closed-loop
operation enables adaptive SF selection during simulation and links
offline model training with online network behavior.
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4 Offline performance evaluation

This section evaluates the offline performance of the proposed
stacked ensemble for SF classification. We report class-wise
behavior through confusion-matrix analysis, examine DNN
training dynamics across folds, and summarize the computational
and memory requirements relevant to deployment on constrained
IoT devices.

4.1 Confusion matrix analysis

The class-wise performance of the final model, obtained using
stratified 3-fold cross-validation, is summarized by the normalized
confusion matrix in Figure 5. Overall, the model achieves strong
discrimination across SF classes, with particularly high accuracy for
SF7–SF10 (above 96% on the diagonal entries).

To complement Figure 5, Table 4 reports the raw out-of-fold
counts across all N = 225,109 samples. For SF7–SF10, the
model correctly classifies more than 36,000 samples per class, and
confusion between these lower SFs remains limited (typically below
1% of the class total). This behavior is operationally desirable
because lower SFs support higher data rates and reduce airtime
when link conditions permit.

A clearer separation is observed up to SF10, whereas SF11 and
SF12 exhibit mutual confusion. Specifically, 13,374 of the 37,500
true SF11 samples are predicted as SF12 (35.7%), and 9,568 of

Training set Validation set

Fold 2 Fold 3

Fold 1 Fold 3

Fold 1 Fold 2

Fold 1

Fold 2

Fold 3

Iteration

Fold 1

Fold 2

Fold 3

FIGURE 3

Stratified 3-Fold Cross-Validation procedure illustrating three
independent training iterations, where in each iteration one fold is
held out for validation and the remaining 2 folds are used for
training.

the 37,500 true SF12 samples are predicted as SF11 (25.5%). This
pattern is consistent with the fact that SF11 and SF12 occupy the
most robust operating region and are typically triggered under
similarly challenging link conditions. In practical terms, confusing
SF11 and SF12 is less harmful than selecting an excessively high
SF for a link that could reliably operate at SF7–SF9. Moreover,
the tendency to predict the more robust SF12 for borderline cases
prioritizes reliability, at the cost of modestly increased airtime.

4.2 Training dynamics and convergence

Figure 6 reports the training/validation accuracy and loss of
the DNN base learner across the three folds and the final refit
model. The curves provide a direct view of convergence behavior
and generalization consistency.

Across folds (Figures 6a–c), both training and validation losses
decrease smoothly, and the accuracy curves remain stable without
noticeable oscillations. The close tracking of validation curves
relative to training curves suggests limited overfitting and indicates
that the DNN component generalizes well under the chosen
hyperparameters and optimization settings. Convergence typically
occurs within 20–35 epochs, consistent with the configured early
stopping criterion. The refit model in Figure 6d follows the same
trend, supporting the stability of training when the full dataset
is used.

4.3 Computational and memory footprint

To assess deployment feasibility on constrained EDs, we report
computational complexity and memory/storage requirements. The
DNN base learner is the most compute-intensive component of the
ensemble and is therefore profiled in Table 5. It contains 12,602
trainable parameters and requires 12,288 MACs per inference
pass. This footprint is compatible with embedded platforms that
can sustain millions of MACs per second under typical duty-
cycle constraints.

Table 6 summarizes memory and storage requirements across
training and deployment. During offline training, the feature
matrix for 225,109 samples and 29 engineered features occupies
approximately 52.2 MB in RAM. For deployment, the serialized

Pre-trained model
GW NS

ED transmits packets 

with predicted SFInput sequence

End device-side inference model deployment

FIGURE 4

Online operation of the LSML-SF framework within the ns-3 simulator, showing the interaction between feature extraction, ensemble-based SF
prediction, and adaptive packet transmission during runtime.
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FIGURE 5

Normalized out-of-fold confusion matrix for the proposed stacked ensemble, showing per-class prediction accuracy and misclassification patterns
across SF7–SF12.

TABLE 4 Raw out-of-fold confusion matrix for the stacked ensemble model across N = 225,109 samples, reporting absolute classification counts for
each SF.

T\P SF7 SF8 SF9 SF10 SF11 SF12 Row total

SF7 36,710 99 58 241 214 287 37,609

SF8 79 36,110 721 89 196 305 37,500

SF9 68 556 36,265 110 204 297 37,500

SF10 177 63 96 36,663 199 302 37,500

SF11 0 0 0 0 24,126 13,374 37,500

SF12 0 0 0 0 9,568 27,932 37,500

Col. Total 37,034 36,828 37,140 37,103 34,507 42,497 225,109

Rows correspond to the true classes (T) and columns to the predicted classes (P).

ensemble totals about 20.6 MB, dominated by the XGBoost
component (20.4 MB), while the DNN requires 190 KB and the
linear models remain below 5 KB each. At deployment time,
only the trained inference components of the ensemble are active,
and the large feature matrices used during offline training are
not resident in memory. Consequently, runtime memory usage is
dominated by the loaded model parameters and minimal buffering
required for feature computation. While this study reports
serialized model sizes rather than full framework-level runtime
measurements, inference is executed for each packet transmission
as part of SF selection. However, given that an incorrect high-
SF assignment can increase airtime and energy consumption by
an order of magnitude, the measured inference complexity of

approximately 12.3k MACs per decision is negligible relative to
the energy savings achieved through reduced retransmissions and
shorter airtime.

5 Experimental results

We next evaluate the online network impact of LSML-SF
using ns-3 simulations that integrate the trained model. The
analysis focuses on packet success ratio (PSR) in confirmed
mode and average energy consumption per transmission, which
together reflect reliability and energy efficiency under mobility and
increasing network density.
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(a) (b)

(c) (d)

FIGURE 6

Training behavior of the DNN across the three cross-validation folds and the final refitted model. Subfigures (a–c) illustrate the evolution of accuracy
and loss over training epochs for each fold, while (d) shows the corresponding curves obtained after retraining on the complete dataset.

TABLE 5 Computational profile of the DNN base learner, reporting
trainable parameters and multiply–accumulate operations (MACs) per
forward pass.

Layer Type Parameters MACs

Input – – –

Batch Normalization BatchNorm 116 0

Dense (128 units) Dense 3,840 3,712

Dropout (0.35) Dropout 0 0

Dense (64 units) Dense 8,256 8,192

Dense (6 units) Dense 390 384

Total – 12,602 12,288

5.1 Simulation environment

We consider EDs operating in confirmed mode under a single-
GW deployment with a 5 km coverage radius. To represent

TABLE 6 Memory and storage footprint of LSML-SF.

Component Size

Feature matrix (225k samples × 29 features) 52.2 MB (RAM, training)

XGBoost model (.json) 20.4 MB

DNN model (.keras) 190 KB

SVM model (.joblib) 4.1 KB

Stacker (LogReg) 1.8 KB

Feature names & Label encoder ∼1 KB

Total storage for deployment ∼20.6 MB

Training memory refers to the offline feature matrix; deployment storage reports serialized
model sizes.

industrial asset-tracking mobility, a two-dimensional random-
walk model is used (Farhad et al., 2022a; GSMA-3GPP, 2016).
Each ED generates six uplink packets per hour over a 24-h
simulation cycle, and results are averaged over ten independent
runs (Bessa et al., 2022; Ribeiro et al., 2020). The complete set
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TABLE 7 ns-3 simulation parameters used for evaluating LSML-SF under
mobility in confirmed mode.

Parameter Description and value

Maximum UL transmissions 8 (including 7 retransmissions)

ED movement speed [m/s] 1.0–2.0 (Farhad et al., 2020)

Change in direction After 200 m

Frequency region EU-868 MHz

UL channels [868.1, 868.3, 868.5] MHz

Initial SF and TP SF = 12 and TP = 14 dBm

of simulation parameters is provided in Table 7. The selected
simulation parameters, including network size, coverage radius,
mobility speed, packet generation rate, and confirmed transmission
mode, were chosen to reflect commonly reported configurations
in LoRaWAN performance studies and industrial IoT deployment
scenarios (Nisar et al., 2025a; Farhad et al., 2025). These
settings are consistent with prior simulation-based evaluations and
aim to represent moderate- to high-density mobile LoRaWAN
deployments under realistic operating conditions (Ali Lodhi et al.,
2024; Nisar et al., 2025b; Lodhi et al., 2025).

5.2 Performance metrics

Two metrics are used to assess network behavior: (1) packet
success ratio (PSR) in confirmed mode, reflecting end-to-end
reliability; and (2) average energy consumption per transmission,
reflecting energy efficiency per packet under the applied SF
selection policy.

PSR is evaluated as the number of EDs increases from
N = 200 to N = 600. As shown in Figure 7, LSML-SF
maintains higher PSR than ADR, BADR, GADR, SVM, and AI-
ERA (Farhad and Pyun, 2023a). At N = 200, LSML-SF achieves
PSR close to 0.9, and decreases to around 0.65 at N = 600
as collisions and contention increase. In contrast, ADR drops
more sharply and falls below 0.3 at high density, reflecting
its reactive adjustment strategy and reliance on historical link
estimates (Farhad et al., 2020). The stacked ensemble combines
complementary decision patterns from SGD-based classification,
gradient boosting, and the DNN, resulting in SF assignments that
better match link and mobility conditions. Across the tested range,
LSML-SF provides a consistent PSR advantage over AI-ERA and
SVM, particularly at moderate to high network loads (Farhad and
Pyun, 2023b).

Figure 8 shows the average energy consumption per
transmission as the network scales from 200 to 600 devices.
LSML-SF maintains the lowest average energy consumption across
the full range, consistent with SF selections that reduce airtime
and limit retransmissions under mobility. At lower densities,
the energy curves of LSML-SF, BADR, and AI-ERA remain
relatively close, indicating comparable efficiency when contention
is mild. As density increases, the separation becomes more visible
and LSML-SF retains a lower energy profile as retransmission
probability rises. As formal statistical significance testing was not
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FIGURE 7

Packet Success Ratio (PSR) vs. the number of end devices under
confirmed mode for LSML-SF and baseline ADR strategies.
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FIGURE 8

Average energy consumption per transmission (J) vs. the number of
end devices for LSML-SF and baseline methods.

conducted, these differences are reported as consistent empirical
trends across simulation runs rather than statistically bounded
separations. In contrast, ADR and SVM incur substantially higher
energy consumption at moderate to high densities due to frequent
packet losses and repeated retransmissions (Finnegan et al., 2020;
Farhad et al., 2025).

5.3 Packet loss ratios (PLRs)

To better interpret packet delivery failures, packet loss ratios
(PLRs) are decomposed into four categories:

• PLR-I (Interference losses): packet collisions due to intra- or
inter-SF interference that reduce SINR below the decoding
threshold at the GW.
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FIGURE 9

Per-hour PSR and packet loss ratios (PLRs) over 24 h under mobility for: (a) N = 200 and (b) N = 600 end devices.

• PLR-R (Reception-path losses): losses caused by limited
demodulation paths at the GW when concurrent receptions
exceed hardware constraints.

• PLR-S (Sensitivity losses): losses occurring when received
power falls below the SF-specific sensitivity threshold.

• PLR-T (Transmission-priority losses): losses caused
when downlink ACK scheduling pre-empts simultaneous
uplink reception.

Figure 9 reports per-hour PSR and the associated PLR
components over 24 h for N = 200 (Figure 9a) and N =
600 (Figure 9b). For N = 200, PSR remains close to 90%
across the day and PLR components remain small. For N =
600, the higher traffic load increases all PLR components, with
PLR-I and PLR-S contributing most strongly, and PSR stabilizes
around 65%. This highlights the combined impact of contention,
sensitivity constraints, and GW resource limits as the network
scales under mobility.

6 Limitations of the proposed study

Although the proposed LSML-SF framework demonstrates
significant improvements in classification accuracy and network
reliability performance, this study is subject to several limitations
that provide a clear direction for future research.

First, the network topology used for evaluation was limited
to a single-GW scenario. This setup, while common for initial
validation, does not capture the complexities of large-scale, multi-
GW networks. In such environments, critical factors including
handovers, GW selection algorithms, and inter-GW interference
could influence the performance of the SF allocation strategy.

Second, the proposed LSML-SF framework was implemented
for on-device inference. A more energy-efficient alternative for
power-constrained EDs would be to execute the ML model on
the NS. Future work should integrate the pre-trained model into

the NS and leverage the existing LoRaWAN MAC command
control framework to downlink optimal SF assignments to the
EDs, thereby shifting the computational burden away from the
battery-operated devices.

Third, the primary validated contributions of this study
lie in improved mobility robustness and energy efficiency,
while interpretability is identified as an important direction for
future research in ML-driven LoRaWAN resource allocation.
The evaluation presented in this study is based exclusively on
ns-3 simulations, which, while widely adopted in LoRaWAN
research, cannot fully capture real-world factors such as hardware
variability, uncontrolled interference sources, and deployment-
specific environmental conditions. Validation of the proposed
framework using real-world testbeds and heterogeneous hardware
platforms is, therefore, identified as an important direction for
future work.

7 Conclusions

This study presented LSML-SF, a lightweight stacked-ensemble
for mobility-aware SF allocation in LoRaWAN. The approach
combines a linear classifier, gradient boosting, and a compact DNN
through stratified out-of-fold stacking, trained on a simulator-
derived dataset enhanced with 29 engineered features. Offline, the
model achieved approximately 85% out-of-fold accuracy; online,
when integrated into ns-3, it consistently improved packet success
ratio (PSR) and reduced energy per transmission across 200–600
mobile end devices compared to ADR, BADR, and representative
ML baselines. Hourly analysis further decomposed reliability
outcomes via packet loss ratios (PLR-I, PLR-R, PLR-S, and PLR-
T), clarifying how the method mitigates interference, sensitivity
limitations, demodulator contention, and ACK-priority effects
under mobility.

A compute and memory audit indicated the feasibility of
the learned components for constrained deployments: The DNN
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base learner requires roughly 12.6k parameters and about 12.3k
MACs per inference, while the end-to-end pipeline can be realized
in ns-3 by constructing online input sequences from the same
feature family used offline. These attributes position LSML-SF as
a practical path toward reliability- and energy-aware SF control in
dynamic environments.

Future work will (i) extend evaluation to multi-GW topologies
with handover and duty-cycle constraints, (ii) broaden the
baselines to include recent ADR variants and reinforcement
learning methods with statistical significance tests, (iii) provide
ablations on feature groups and model components, and (iv)
quantify end-to-end latency and memory for the full ensemble
under strict MCU budgets or migrate inference to the network
server while preserving responsiveness. Together, these steps will
further mature LSML-SF from a simulator-validated approach to a
field-ready solution for mobile IoT networks.
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