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Introduction: Federated learning (FL) is a distributed machine learning paradigm
that preserves data privacy and mitigates data silos. Nevertheless, frequent
communication between clients and the server often becomes a major
bottleneck, restricting training efficiency and scalability.
Methods: To address this challenge, we propose a novel communication-
efficient algorithm, EF-Feddr, for federated composite optimization, where
the objective function includes a potentially non-smooth regularization term
and local datasets are non-IID. Our method is built upon the relaxed
Douglas–Rachford splitting method and incorporates error feedback (EF)—a
widely adopted compression framework—to ensure convergence when biased
compression (e.g., top-k sparsification) is applied.
Results: Under the partial client participation setting, our theoretical analysis
demonstrates that EF-Feddr achieves a fast convergence rate of O(1/K) and a
communication complexity of O(1/ε2). Comprehensive experiments conducted
on the FEMNIST and Shakespeare benchmarks, as well as controlled synthetic
data, consistently validate the efficacy of EF-Feddr across diverse scenarios.
Discussion: The results confirm that the integration of error feedback with the
relaxed Douglas–Rachford splitting method in EF-Feddr effectively overcomes
the convergence degradation typically caused by biased compression, thereby
offering a practical and efficient solution for communication-constrained
federated learning.

KEYWORDS

communication efficiency, composite optimization, data heterogeneity, error feedback,
federated learning, operator splitting

1 Introduction

Federated learning (FL) (Konecný et al., 2016; McMahan et al., 2017) is a distributed
framework designed to address large-scale learning problems across networks of edge
clients. In this paradigm, clients update models locally on their private data, while
the server aggregates these updates to refine a shared global model. This collaborative
process enables the development of global or personalized models without compromising
user privacy (Ezequiel et al., 2022; Saifullah et al., 2024). Despite these advantages,
communication between clients and the server remains a critical bottleneck, particularly
when the number of participating clients is large, bandwidth is constrained, and the
models involve high-dimensional parameters (Bhardwaj et al., 2023; Talwar et al., 2021).
Recent efforts to improve the communication efficiency of FL have primarily focused on
two directions: (i) reducing the number of communication rounds through partial client
participation or increased local computation, and (ii) lowering the number of transmitted
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bits per round via techniques such as quantization and residual
gradient compression. While these strategies effectively cut
communication costs, they also introduce additional variance,
which may widen the neighborhood around the optimal solution
and, in some cases, prevent convergence under biased compression.
To mitigate these issues, variance-reduction techniques such as
error feedback (EF) are commonly employed. In contrast to
traditional distributed training, it is unrealistic to assume that
data on each local device are always independent and identically
distributed (IID). Prior studies have consistently shown that
FL accuracy degrades significantly when faced with non-IID or
heterogeneous data (Islam et al., 2024). In this study, we focus on
the following federated composite optimization (FCO) problem:

min
x∈Rd

F (x) = f (x) + g (x) = 1
n

∑n

i=1
fi (x) + g (x), (1)

where n denotes the number of clients, fi is the local loss
function for the i-th client, which is L-smooth and non-convex,
and g represents the regularization term, which is proper, closed,
convex (possibly non-smooth). As a practical example, consider a
collaborative environmental monitoring project in which multiple
research institutions aim to analyze sensor data from diverse
geographical locations to detect climate change patterns. Due
to privacy concerns and proprietary restrictions, however, raw
data cannot be shared directly. In this case, enforcing sparse
regularization becomes particularly important: although the dataset
may contain relatively few observations (e.g., readings from a sparse
sensor network Bhardwaj et al., 2022), each observation typically
involves a high-dimensional set of features such as temperature,
humidity, wind speed, and pollution levels, a combination of factors
that further justifies the use of sparse regularization to identify
salient features and prevent overfitting.

Operator splitting constitutes a broad class of methods for
solving optimization problems of the form (Equation 1). These
methods decompose numerically intractable components into
simpler subproblems, thereby reducing computational complexity,
enhancing efficiency, and enabling modular algorithms that are
naturally suited for parallelization. Operator splitting has been
successfully applied to a wide range of challenging optimization
problems. Among these, the Douglas–Rachford splitting method is
particularly well-established due to its enhanced iterative stability
and accelerated convergence rate. Furthermore, its update rule
decomposes the global composite objective into local proximal
steps that can be executed in a fully parallel manner. This
structure inherently aligns with the distributed nature of federated
learning, facilitating efficient client-side computation while also
underpinning the method’s enhanced iterative stability. From this
perspective, many state-of-the-art FL algorithms can be interpreted
within the operator splitting framework (Malekmohammadi
et al., 2021). Examples include FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020), FedSplit (Pathak and Wainwright,
2020), and FedDR (Tran-Dinh et al., 2021). However, for the
FCO Equation 1, existing FL methods such as FedAvg and
its communication-efficient variants are primarily designed for
smooth, unconstrained settings min

x∈Rd
F (x) = 1

n
∑n

i=1 fi (x). In

non-smooth FL settings, subgradient methods are widely used
but suffer from slow convergence (Jhunjhunwala et al., 2022).
Although proximal operators offer a more effective alternative with
superior convergence properties (Liu et al., 2024), their seamless
integration into communication-efficient FL frameworks remains
limited. Moreover, while compression techniques effectively
reduce communication overhead, they introduce additional
variance that can enlarge the solution neighborhood and hinder
convergence. Critically, existing communication-efficient methods
have predominantly been designed for smooth FL problems,
leaving a pronounced combined gap in addressing non-smooth
federated composite optimization under compression-induced
variance and communication constraints simultaneously. To
bridge this multifaceted gap, this study presents EF-Feddr, a
communication-efficient FL algorithm that employs the Top-k
sparsification technique to compress transmitted parameters and
reduce communication bits, incorporates an error feedback (Li
and Li, 2023) mechanism to mitigate variance introduced by
compression, and further integrates the relaxed Douglas–Rachford
splitting method (He et al., 2021) along with a proximal operator
to accelerate the iterative process while effectively handling the
non-smoothness of the global regularization term. This integrated
design enables EF-Feddr to be applicable to a wider range
of scenarios and constrained settings. Leveraging the Douglas–
Rachford envelope, we establish convergence guarantees for EF-
Feddr in non-convex FL problems under mild assumptions.

Our contributions are summarized as follows:

• We propose EF-Feddr, an algorithm that combines the relaxed
Douglas–Rachford splitting method with error feedback to
reduce communication costs between clients and the server
without sacrificing accuracy in non-IID settings. In addition,
the error feedback mechanism enhances the stability of
communication-compressed training in FL.

• We establish theoretical convergence guarantees for EF-
Feddr based on the Douglas–Rachford envelope. Specifically,
our method achieves a convergence rate of O

( 1
K
)

and a

communication complexity of O
(

1
ε2

)
for non-convex loss

functions under partial client participation.

• Through experiments on synthetic datasets, the FEMNIST
dataset, and the Shakespeare dataset, we show that EF-Feddr
improves accuracy by 3.29%–12.97% over state-of-the-art FL
variants, while significantly reducing communication costs
compared to uncompressed FedDR.

2 Related work

2.1 Operator splitting methods

Classical operator splitting methods such as Douglas–Rachford
(DR), Forward-Backward (FB), and the Alternating Direction
Method of Multipliers (ADMM) have recently been adopted in
FL (Godavarthi et al., 2025; Goel et al., 2025). FedAvg (McMahan
et al., 2017) can be viewed as an instance of k-step FB splitting,
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while FedProx (Li et al., 2020) extends the backward-backward
splitting method. It is another FB variant tailored for regularized
FL problems. FedSplit (Pathak and Wainwright, 2020), based
on Peaceman-Rachford splitting, aims to identify the correct
fixed point for strictly convex FL problems. Its communication-
efficient variant, Eco-FedSplit (Khirirat et al., 2022), incorporates
error-compensated compression. For the FCO problem, FedDR
(Tran-Dinh et al., 2021) integrates a randomized block-coordinate
strategy with DR splitting to solve non-convex formulations.
FedADMM (Wang et al., 2022) leverages ADMM by applying
FedDR to the dual form of the FCO problem, while FedTOP-
ADMM (Kant et al., 2022) generalizes FedADMM as the first
three-operator method used in FL.

2.2 Communication-efficient FL

To address the communication bottleneck in FL (Sun
et al., 2024), two categories of compression methods have
been widely explored: unbiased compressors (e.g., stochastic
quantization Alistarh et al., 2017) and biased compressors (e.g.,
top-k sparsification Khirirat et al., 2018). FedPAQ (Reisizadeh
et al., 2020) reduces communication costs through periodic
averaging, partial client participation, and quantization. However,
this reduction comes at the expense of convergence accuracy,
which requires additional training iterations. The authors also
analyzed the trade-off between communication overhead and
convergence in their experiments. The z-SignFedAvg algorithm
(Tang et al., 2024), a variant of FedAvg, employs stochastic
sign-based compression. It achieves accuracy comparable to
uncompressed FedAvg while greatly reducing communication
overhead. Building on the lazily aggregated gradient rule and
error feedback, (Zhou et al., 2023) proposed two communication-
efficient algorithms for non-convex FL: EF-LAG and BiEF-LAG,
which adapt both uplink and downlink communications. Similarly,
FedSQ (Long et al., 2024) introduces a hybrid approach combining
sparsity and quantization to reduce communication costs while
enhancing convergence.

2.3 Error feedback

In the realm of distributed optimization, it has been noted
that employing biased compressors for direct updates may
decelerate convergence, deteriorate generalization performance, or
even induce divergence (Li and Li, 2023). To counteract these
issues, error feedback techniques have been introduced, which can
reduce the compression error compared to direct compression.
The study (Seide et al., 2014) first proposed this method as
a heuristic approach, which is inspired by the idea of Sigma-
Delta modulation. EF21 (Richtárik et al., 2021) removes strict
assumptions such as bounded gradients and bounded dissimilarity,
and can handle arbitrary data heterogeneity among clients, but
leads to worse computational complexity. EFSkip (Bao et al., 2025)
allows arbitrary data heterogeneity and enjoys linear speedup for
significantly improving upon previous results.

3 Compressed non-convex FL with
error feedback

In this section, we present EF-Feddr, an algorithm that
integrates error feedback into the relaxed Douglas–Rachford
splitting framework to address the non-convex FCO problem.
We begin with a brief introduction to the Douglas–Rachford
splitting method, followed by an explanation of how error
feedback is incorporated to improve communication efficiency.
We then provide the detailed formulation of EF-Feddr and
analyze its convergence properties. Main notations are listed in
Table 1.

3.1 Problem formulation

The FCO Equation 1 is mathematically equivalent to the
consensus optimization problem

min
x1,...,xn

F (x) = f (x) + g (x) = 1
n

n∑
i=1

fi (xi) + g (x)

subject to x1 = x2 = · · · = xn,
(2)

where the consensus constraint set is E =
{x = (x1, . . . , xn) |x1 = x2 = · · · = xn } . Let lE be the indicator
function of E. With the indicator function, one can treat the
constrained problem as unconstrained by moving the constraints

TABLE 1 Summary of main notations.

Notation Description

N Number of clients

n Number of sampled clients per round

d Dimension of model parameters

F(·) Global loss function

fi (·) local loss function of i-th client

g(·) Regularizer

C(·) Absolute compressor

K Total number of communication rounds between clients and
server

k Index of communication round

Sk Set of sampled clients at k-th iteration

λk Relaxation parameter

γ Step size

yk
i Local auxiliary variable at the i-th client

zk
i Approximate proximal update for optimizing the local loss of i-th

client

ek
i Compression-error accumulator at the i-th client

xk
i Local model parameters of i-th client at k-th iteration

xk Global model parameters at k-th iteration
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into the objective function. Then Equation 1 is obviously
equivalent to

min
1
n

n∑
i=1

fi (xi) + g (x) + lE (x) . (3)

The first-order optimality condition is given by 0 ∈ ∇f (x) +
∂g(x) + ∂ lE(x), where ∇f (x) = [∇f1(x1), ...,∇fn(xn)]. A point x∗

is a stationary point to Equation 1, if 0 ∈ ∇f (x∗) + ∂g (x∗) +
∂ lE (x∗). Additionally, the operator splitting method encompasses
a broad range of techniques to effectively address this Equation 3.
A key advantage of operator splitting methods is their efficient per-
iteration operations, which makes them particularly suitable for
large-scale applications due to their lower computational costs (He
et al., 2021), among which the DR splitting method is particularly
well-known. The iteration equations for the DR splitting method
are given by

⎧⎪⎪⎨
⎪⎪⎩

yk+1 = yk + xk − zk+1

zk+1 = proxγ f (yk)

xk+1 = proxγ (g+lE)(2zk+1 − yk+1).

(4)

Given that the DR splitting method often demonstrates
favorable and stable convergence behavior in practice, we base our
approach on its relaxed variant to solve Equation 1. The detailed
application is presented in Section 3.3.

For convenience, we introduce the definitions of the key
concepts that will be utilized. For a function f , the proximal
operator at point x with a step size γ > 0 is

proxγ f (x) = arg min
y

{
f (y) + 1

2γ
‖y − x‖2

}
,

the Moreau envelope of f with a step size γ > 0 is

Mγ f (x) = min
y

{
f (y) + 1

2γ
‖y − x‖2

}
,

the gradient mapping of f at point x with a step size γ > 0 is

Gγ f (x) = 1
γ

(x − proxγ f (x)).

We observe that ∇ Mγ f (x) = Gγ f (x) (Liu et al., 2019).

Moreover, the proximal operator update zk = proxγ f

(
yk
)

can be
written as

zk = yk − γ Gγ f (yk).

This representation reveals that the proximal operator update is
analogous to taking a gradient step applied to the gradient mapping
Gγ f (yk) of f . For the composite function F (x) = f (x) + g (x), the
corresponding gradient mapping is given by

Gγ (x) = 1
γ

(
x − proxγ g(x − γ∇f (x))

)
. (5)

In the context of general non-convex non-smooth problems,
the gradient mapping Gγ (x) is commonly used to assess
convergence (Liu et al., 2024). Specifically, 0 ∈ ∇f (x∗)+ ∂g (x∗)+
∂ lE (x∗) of Equation 1 is equivalent to Gγ (x∗) = 0.

3.2 Error feedback

We now define a general class of compressors that will be used
throughout this study

Definition 1. (Absolute compressor). A map C :Rd → R
d is an

absolute compressor operator if there exists ν > 0 such that,
∀x ∈ R

d, E
∥∥x − C(x)

∥∥2 ≤ ν2.

Most popular compressors such as the sign compression (Bernstein
et al., 2018), the Top-k sparsification (Khirirat et al., 2018) and
the sparsification together with quantization (Alistarh et al., 2017)
are in fact absolute compressors if the full-precision vector has a
bounded norm (Khirirat et al., 2022; Sahu et al., 2021).

Error feedback (also known as error compensation) is a popular
tool in FL to reduce compression error and improve convergence
speed compared to direct compression (Valdeira et al., 2025).
Its mechanism shares a fundamental principle with Sigma-Delta
modulation in signal processing (Seide et al., 2014). Technically,
when transmitting a sequence of vectors, the method incorporates
an auxiliary vector that accumulates the compression error at each
step. This accumulated error is then added to the current vector
before it undergoes compression and transmission (Karimireddy
et al., 2019). More specifically, based on the DR splitting method
(Equation 4), the update steps of the direct compression scheme are
as follows:

ck+1 = C(2zk+1 − yk+1), (direct compression)

xk+1 = proxγ (g+lE)(ck+1), (model update)
(6)

the update steps with error feedback compression are as follows:

ck+1 = C(2zk+1 − yk+1 + ek), (error compensation)

ek+1 = 2zk+1 − yk+1 + ek − ck+1, (compute the error)

xk+1 = proxγ (g+lE)(ck+1). (model update)

(7)

In direct compression, each vector 2zk+1 − yk+1 is individually
compressed, and the receiver directly uses its compressed version
C(2zk+1 − yk+1) in place of the original. Conversely, error feedback
compression employs a proxy vector ck+1 for 2zk+1 − yk+1 that
integrates information from prior steps 0, 1, . . . , k. This proxy is
refined via an auxiliary vector ek+1, which is iteratively updated and
stored to accumulate the compression error at each step.

3.3 EF-Feddr algorithm

In this section, we propose the following EF-Feddr algorithm.
The details of EF-Feddr are presented in Algorithm 1. Specifically,
applying the relaxed DR splitting method (He et al., 2021) to
the Equation 3 of Equation 1 in a distributed setting yields the
following iterative steps:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yk+1
i = yk

i + λ
(

xk − zk
i

)
zk+1

i = proxγ fi

(
yk+1

i

)
xk+1

i = 2zk+1
i − yk+1

i
xk+1 = proxnγ (g+lE)(xk+1

i ).
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By integrating the error feedback mechanism detailed in
Section 3.2, we obtain the EF-Feddr iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk+1
i = yk

i + λ
(

xk − zk
i

)
zk+1

i ≈ proxγ fi

(
yk+1

i

)
xk+1

i = C
(

2zk+1
i − yk+1

i + ek
i

)
ek+1

i = 2zk+1
i − yk+1

i + ek
i − xk+1

i

xk+1 = proxnγ (g+lE)(xk+1
i ),

(8)

where λ ∈ (0, 2) (He et al., 2021) is the relaxation parameter. The
variables yk+1

i , zk+1
i , xk+1

i and ek+1
i are updated locally on each

client i. The key step involves compression and communication:
instead of compressing 2zk+1

i −yk+1
i directly, each client compresses

the error-compensated vector 2zk+1
i −yk+1

i +ek
i . The resulting value

xk+1
i is then sent to the server. Furthermore, to compute the server

aggregation xk+1, we have the following conclusion.

Proposition 1. For every k ≥ 0, xk+1 = proxnγ (g+lE)(xk+1
i ) in

Equation 8 is equal to proxγ g

(
1
n
∑

i∈Sk
xk+1

i

)
.

Proof. Let x̄ = 1
n
∑

i∈Sk
xk+1

i . Actually, the result of
proxnγ (g+lE)(xk+1

i ) must have blocks equal to some vector z
(Mishchenko et al., 2022) such as

z = arg min
y

{
g(y) + 1

2nγ

n∑
i=1

‖y − xk+1
i ‖2

}

= arg min
y

{
g(y) + 1

2nγ

n∑
i=1

(
‖y − x̄‖2 + 2〈y − x̄, x̄ − xk+1

i 〉

+ ‖x̄ − xk+1
i ‖2

)}

= arg min
y

{
g(y) + 1

2nγ

[ n∑
i=1

‖y − x̄‖2 + 2〈y − x̄, nx̄〉

− 2〈y − x̄, nx̄〉
]}

= arg min
y

{
g(y) + 1

2γ
‖y − x̄‖2

}

= proxγ g(x̄) = proxγ g

(
1
n

∑
i∈Sk

xk+1
i

)
.

Thus, we have the server aggregation

xk+1 = proxnγ (g+lE)(xk+1
i ) = proxγ g

(
1
n

∑
i∈Sk

xk+1
i

)
.

In Algorithm 1, during round k: (1) The clients receive the
global model xk from the server (line 5); (2) A subset of clients Sk
is sampled following the sampling scheme described in Section 4.
The i-th client performs a relaxation step, where λ is the relaxation
parameter, computes the proximal local update to obtain the local
model zk+1

i , calculates the compressed local model update xk+1
i ,

and updates the local compression error accumulator ek+1
i and

sends the compressed xk+1
i back to the server (line 6–10); (3)

The server receives the compressed xk+1
i from clients i ∈ Sk and

Initialization Given an initial point x0 ∈ R
d, set

z0i = x0, y0i = x0, for all i ∈ [n], the step size
γ > 0, relaxation parameter λ > 0.

1: for k = 0,1...,K − 1 do

2: Sample Sk ⊆ [N] with size n uniformly without
replacement

3: // Client side:

4: for each i ∈ Sk in parallel do

5: receive xk from the server

6: yk+1i = yki + λ
(
xk − zki

)
7: zk+1i ≈ proxγfi

(
yk+1i

)
8: xk+1i = C

(
2zk+1i − yk+1i + eki

)
9: ek+1i = 2zk+1i − yk+1i + eki − xk+1i

10: send xk+1i back to the server

11: end for
12: // Server side:

13: server update: xk+1 = proxγg

(
1
n
∑

i∈Sk x
k+1
i

)
14: broadcast xk+1 to each client

15: end for

Algorithm 1. EF-Feddr.

performs a global model update using the averaged compressed
local model updates (line 13). Particularly, the relaxation strategy,
akin to the inertial extrapolation technique (e.g., the heavy ball
method), has broadly accelerated iterative algorithms in convex and
non-convex optimization, as the cost per iteration stays basically
unchanged (He et al., 2021). For any γ > 0, zk+1

i serves as an
approximation of proxγ fi

(
yk+1

i

)
. The evaluation of proxγ fi can be

carried out using several established techniques, such as accelerated
GD-type algorithms and local SGD (Parikh et al., 2014; Tran-
Dinh et al., 2021). It is worth noting that this algorithm requires
O(d) memory and incurs O(d) computational overhead per client
per round.

4 Theoretical results

For analyzing the convergence of Algorithm 1, we consider
several basic assumptions and auxiliary results. Our analysis is
based on the analytical framework outlined in Tran-Dinh et al.
(2021). First, we introduce a proper sampling scheme following
Tran-Dinh et al. (2021). Let p1, . . . , pn > 0 such that for all
i ∈ [N], P

(
i ∈ S̄

) = pi ≤ 1. Here, S̄ is a proper samping
scheme of [N], and each Sk is an i.i.d. realization of S̄. Note that
pi = ∑

S⊆[N],i∈S P
(
S̄ = S

)
. Define Ak = σ (S0, . . . , Sk) as the

σ -algebra generated by the sequence S0, . . . , Sk. This sampling
scheme ensures that each client has a significant probability of
being updated.

Assumption 1. (L-Smoothness). All local functions fi (·) are L-
smooth, if

∀x, y,
∥∥∇fi (x) − ∇fi

(
y
)∥∥ ≤ L

∥∥x − y
∥∥ .
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Assumption 2. (Boundedness from below). F(·) given in (1) is
bounded below, that is, F∗ = infx∈Rd F (x) > −∞.

In non-convex FL optimization, Assumptions 1 and 2 are standard.
Assumption 2 guarantees that Equation 1 is well-defined and
is independent of the choice of algorithms. We first present
three useful lemmas that will be instrumental in proving our
main theorem.

Lemma 1. Let
{(

yk
i , zk

i , xk
i , ek

i , xk
)}

be generated by Algorithm 1,
for all i ∈ Sk, λ > 0, β1 > 0 and γ > 0, we have

∥∥∥xk − zk
i

∥∥∥2 ≤ 2(γ 2L2 + 1)
λ2

[
(1 + β1)‖zk+1

i − zk
i ‖2

+ 2(1 + 1
β1

)
(
‖mk+1

i ‖2 + ‖mk
i ‖2
) ]

. (9)

Proof. For the relation zk+1
i ≈ proxγ fi

(
yk+1

i

)
, where the

approximation error satisfies ‖zk+1
i − proxγ fi

(
yk+1

i

)
‖ ≤ εk

i with

a given accuracy εk
i ≥ 0, we introduce auxiliary variables w0

i and
wk+1

i for i ∈ [n] to analyze the convergence of Algorithm 1,

w0
i = proxγ fi (y0

i ),

wk+1
i =

{
proxγ fi (yk+1

i ) if i ∈ Sk

wk
i if i /∈ Sk

,

zk
i = wk

i + mk
i , where ‖mk

i ‖ ≤ εk
i .

(10)

Here, mk
i denotes the vector of errors associated with the

approximations of the proximal operator, and wk+1
i serves as an

accurate computation to proxγ fi (yk+1
i ). Note that when i /∈ Sk,

we have zk+1
i = zk

i and wk+1
i = wk

i , which implies ‖mk+1
i ‖ =

‖zk+1
i − wk+1

i ‖ = ‖mk
i ‖ = ‖zk

i − wk
i ‖. From Equation 10 (Atenas,

2025), we have

yk
i = wk

i + γ∇fi(wk
i ). (11)

Then, using the update rule for yk+1
i in Algorithm 1, we get

xk−zk
i = 1

λ

(
yk+1

i − yk
i

)
= 1

λ
(wk+1

i −wk
i )+ γ

λ
(∇fi(wk+1

i )−∇fi(wk
i )).

Using Young’s inequality ‖a1+a2‖2 ≤ (1+β)‖a1‖2+(1+ 1
β

)‖a2‖2,

and the L-smoothness of fi, we bound
∥∥∥xk − zk

i

∥∥∥2
for any β1 > 0

and i ∈ Sk as follows

∥∥∥xk − zk
i

∥∥∥2 =
∥∥∥∥ 1

λ
(wk+1

i − wk
i ) + γ

λ
(∇fi(wk+1

i ) −∇fi(wk
i ))
∥∥∥∥

2

≤ 2
λ2

∥∥∥wk+1
i − wk

i

∥∥∥2 + 2γ 2

λ2

∥∥∥(∇fi(wk+1
i ) −∇fi(wk

i ))
∥∥∥2

≤ 2
λ2

∥∥∥wk+1
i − wk

i

∥∥∥2 + 2γ 2L2

λ2

∥∥∥(wk+1
i − wk

i )
∥∥∥2

= 2(γ 2L2 + 1)
λ2

∥∥∥zk+1
i − mk+1

i − zk
i + mk

i

∥∥∥2

≤ 2(γ 2L2 + 1)
λ2

[
(1 + β1)‖zk+1

i − zk
i ‖2 + 2(1

+ 1
β1

)

(
‖mk+1

i ‖2 + ‖mk
i ‖2

)]
,

which proves (9).

We then establish the relationship between
∑n

i=1 ‖xk−zk
i ‖2 and

the squared norm of the gradient mapping ‖Gγ (xk)‖2.

Lemma 2. Let
{(

yk
i , zk

i , xk
i , ek

i , xk, wk
i

)}
be generated by

Algorithm 1 and Equation 10, and the gradient mapping Gγ

be defined by (5). Then, for any λ > 0, β2 > 0, and γ > 0, we have

‖Gγ (xk)‖2 ≤ 2(1 + γ L)2

nγ 2

n∑
i=1

[
(1 + β2)‖zk

i − xk‖2

+ (1 + 1
β2

)‖mk
i ‖2

]
+ 2

nγ 2

n∑
i=1

‖ek−1
i − ek

i ‖2.

(12)

Proof. From the update of xk+1
i , ek+1

i in Algorithm 1 and (11),
we have

1
n

n∑
i=1

xk
i = 1

n

n∑
i=1

(2zk
i − yk

i + ek−1
i − ek

i )

= 1
n

n∑
i=1

(2zk
i − wk

i − γ∇fi(wk
i ) + ek−1

i − ek
i ).

(13)

From the update rule of xk in Algorithm 1, the definition of
Gγ (x), the non-expansive property of proxγ g , and the fact ∇f (xk) =
1
n
∑n

i=1 ∇fi(xk), we obtain that

‖Gγ (xk)‖ = 1
γ
‖xk − proxγ g(xk − γ∇f (xk))‖

= 1
γ
‖ proxγ g(

1
n

n∑
i=1

xk
i ) − proxγ g(xk − γ∇f (xk))‖

≤ 1
γ
‖ 1

n

n∑
i=1

xk
i − xk + γ∇f (xk)‖

= 1
nγ

‖
n∑

i=1

[(2zk
i − wk

i − xk) + γ (∇fi(xk) −∇fi(wk
i ))

+ ek−1
i − ek

i ]‖.

By applying the L-smoothness of fi and the Young’s inequality
stated in Lemma 1, for any β2 > 0 we deduce that

‖Gγ (xk)‖2

≤ 1
n2γ 2

[ n∑
i=1

(
‖2zk

i − wk
i − xk‖ + γ L‖zk

i − x̄k‖ + ‖ek−1
i − ek

i ‖
)]2

≤ 1
nγ 2

n∑
i=1

(
‖2zk

i − wk
i − xk‖ + γ L‖xk − wk

i ‖ + ‖ek−1
i − ek

i ‖
)2

≤ 1
nγ 2

n∑
i=1

[
(1 + γ L)‖zk

i − xk‖ + (1 + γ L)‖mk
i ‖ + ‖ek−1

i − ek
i ‖
]2

≤ 1
nγ 2 (1 + γ L)2

n∑
i=1

[
2(1 + β2)‖zk

i − xk‖2 + 2(1 + 1
β2

)‖mk
i ‖2

+ 2
(1 + γ L)2 ‖ek−1

i − ek
i ‖2

]

≤ 2(1 + γ L)2

nγ 2

n∑
i=1

[
(1 + β2)‖zk

i − xk‖2 + (1 + 1
β2

)‖mk
i ‖2

+ 1
(1 + γ L)2 ‖ek−1

i − ek
i ‖2

]
,
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which proves (12).

Lemma 3. Let
{(

yk
i , zk

i , xk
i , ek

i , xk
)}

be generated by Algorithm 1.
Suppose that Assumptions 1 and 2 hold, and we define the
Lyapunov function

Vk(xk) = g(xk) + 1
n

n∑
i=1

[
fi(zk

i ) +
〈
∇fi(zk

i ), xk − zk
i

〉

+ 1
2γ

∥∥∥xk − zk
i

∥∥∥2
]

,

then by choosing

0 < γ <

√
(1 − λ

4 )2 − λ2β4(4β4 + 1) − λ
4

L(2λβ4 + 1)
and

0 < λ <
min{

√
4β4 + 17

16 − 1
4 , 2}

4β4 + 1
,

and for any ε1, β1, β4 > 0, we have

E

[
Vk+1(xk+1)|Ak−1

]
≤ Vk(xk) − π

2n

n∑
i=1

∥∥∥xk − zk
i

∥∥∥2 + 4ε1

γ
ν2

+ 1
n

n∑
i=1

(δ1(εk
i )2 + δ2(εk+1

i )2),

where

π = pλ[2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
2γ (1 + β1)(γ 2L2 + 1)

,

δ1 = 2(1 + γ L)2

γβ4λ2 + [2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
λγβ1

,

δ2 = δ1 + (1 + γ 2L2)
γ

.

Proof. Given the definition x̄k = 1
n
∑n

i=1 xk
i , the update rule

xk+1 = proxγ g(x̄k+1) in Algorithm 1 (hence x̄k+1−xk+1

γ
∈ ∂g(xk+1)),

and the convexity of g, we obtain the following inequality

g(xk+1) ≤ g(xk)− 1
γ
‖xk+1−xk‖2+ 1

γ
〈x̄k+1−xk, xk+1−xk〉. (14)

Combining Equations 10 and 11, we obtain

zk+1
i + γ∇fi(zk+1

i ) = wk+1
i + γ∇fi(wk+1

i ) + mk+1
i + γ (∇fi(zk+1

i )

−∇fi(wk+1
i ))

= yk+1
i + mk+1

i + γ (∇fi(zk+1
i ) − ∇fi(wk+1

i )).
(15)

Next, using the update rules for xk+1
i and ek+1

i in Algorithm 1,
we have

x̄k+1 = 1
n

n∑
i=1

xk+1
i = 1

n

n∑
i=1

(
C
(

2zk+1
i − yk+1

i + ek
i

))

= 1
n

n∑
i=1

(
2zk+1

i − yk+1
i + ek

i − ek+1
i

)
. (16)

In order to establish the descent property of the Lyapunov
function Vk+1(xk+1), its second term is expanded and rearranged
as follows

1
n

n∑
i=1

[
fi(zk+1

i ) +
〈
∇fi(zk+1

i ), xk+1 − zk+1
i

〉
+ 1

2γ

∥∥∥xk+1 − zk+1
i

∥∥∥2
]

= 1
n

n∑
i=1

[
fi(zk+1

i ) +
〈
∇fi(zk+1

i ), xk − zk+1
i + xk+1 − xk

〉]

+ 1
2γ n

n∑
i=1

∥∥∥xk − zk+1
i + xk+1 − xk

∥∥∥2

= 1
n

n∑
i=1

[
fi(zk+1

i ) + 〈∇fi(zk+1
i ), xk − zk+1

i 〉 + 1
2γ

‖xk − zk+1
i ‖2

]

+ 1
nγ

n∑
i=1

〈xk − 2zk+1
i + (zk+1

i + γ∇fi(zk+1
i )), xk+1 − xk〉

+ 1
2γ

‖xk+1 − xk‖2

(15)= 1
n

n∑
i=1

[
fi(zk+1

i ) + 〈∇fi(zk+1
i ), xk − zk+1

i 〉 + 1
2γ

‖xk − zk+1
i ‖2

]

(17)

+ 1
nγ

n∑
i=1

〈xk − 2zk+1
i + yk+1

i , xk+1 − xk〉 + 1
2γ

‖xk+1 − xk‖2

+ 1
nγ

n∑
i=1

〈mk+1
i + γ (∇fi(zk+1

i ) −∇fi(wk+1
i )), xk+1 − xk〉

(16)= 1
n

n∑
i=1

[
fi(zk+1

i ) + 〈∇fi(zk+1
i ), xk − zk+1

i 〉 + 1
2γ

‖xk − zk+1
i ‖2

]

+ 1
γ
〈xk − x̄k+1 + 1

n

n∑
i=1

(ek
i − ek+1

i ), xk+1 − xk〉 + 1
2γ

‖xk+1

− xk‖2 + 1
nγ

n∑
i=1

〈mk+1
i + γ (∇fi(zk+1

i ) −∇fi(wk+1
i )), xk+1 − xk〉.

Here, Equation 15 is used to separate the term yk+1
i from the

approximation error mk+1
i , while Equation 16 expresses 2zk+1

i −
yk+1

i in terms of the average vector x̄k+1 and the accumulated
compression errors ek+1

i and ek
i . Then, by combining Equations 14,

17 and using the definition of Vk+1(xk+1), we obtain that

Vk+1(xk+1) ≤ g(xk) + 1
n

n∑
i=1

[
fi(zk+1

i ) + 〈∇fi(zk+1
i ), xk − zk+1

i 〉

+ 1
2γ

‖xk − zk+1
i ‖2

]

+ 1
nγ

n∑
i=1

〈ek
i − ek+1

i , xk+1 − xk〉 − 1
2γ

‖xk+1 − xk‖2

(18)

+ 1
nγ

n∑
i=1

〈mk+1
i + γ (∇fi(zk+1

i ) − ∇fi(wk+1
i )), xk+1

− xk〉.

To bound the third term on the right-hand side of Equation 18,
we employ the inequality 2 〈a1, a2〉 ≤ ε1 ‖a1‖2 + 1

ε1
‖a2‖2 (for any
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ε1 > 0) as follows

1
nγ

n∑
i=1

〈ek
i − ek+1

i , xk+1 − xk〉

≤ 1
nγ

n∑
i=1

[
ε1

∥∥∥ek
i − ek+1

i

∥∥∥2 + 1
ε1

∥∥∥xk+1 − xk
∥∥∥2
]

≤ 1
nγ

n∑
i=1

[
2ε1

∥∥∥ek
i

∥∥∥2 + 2ε1

∥∥∥ek+1
i

∥∥∥2
]

(19)

+ 1
γ ε1

∥∥∥xk+1 − xk
∥∥∥2

≤ 2ε1

nγ

n∑
i=1

[∥∥∥ek
i

∥∥∥2 +
∥∥∥ek+1

i

∥∥∥2
]

+ 1
γ ε1

∥∥∥xk+1 − xk
∥∥∥2

.

For i /∈ Sk, we have wk+1
i = wk

i . Applying Young’s inequality
stated in Lemma 1 with any β3 > 0, we can evaluate the five term
on the right-hand side of Equation 18 as follows

1
nγ

n∑
i=1

〈mk+1
i + γ (∇fi(zk+1

i ) − ∇fi(wk+1
i )), xk+1 − xk〉

≤ 1
2nγ

n∑
i=1

[
1
β3

‖mk+1
i + γ (∇fi(zk+1

i ) − ∇fi(wk+1
i ))‖2 + β3‖xk+1

− xk‖2

]

≤ 1
nγβ3

n∑
i=1

[
‖mk+1

i ‖2 + γ 2
n∑

i=1

‖∇fi(xk+1
i ) − ∇fi(zk+1

i )‖2

]

(20)

+ β3

2γ
‖xk+1 − xk‖2

≤ (1 + γ 2L2)
nγβ3

⎡
⎣∑

i/∈Sk

‖mk
i ‖2 +

∑
i∈Sk

‖mk+1
i ‖2

⎤
⎦+ β3

2γ
‖xk+1 − xk‖2.

To streamline the notation, denote

�k+1 = − 1
γ

(
1
2
− 1

ε1
− β3

2
)
∥∥∥xk+1 − xk

∥∥∥2

+ 2ε1

nγ

n∑
i=1

[∥∥∥ek
i

∥∥∥2 +
∥∥∥ek+1

i

∥∥∥2
]

(21)

+ (1 + γ 2L2)
nγβ3

⎡
⎣∑

i/∈Sk

‖mk
i ‖2 +

∑
i∈Sk

‖mk+1
i ‖2

⎤
⎦ ,

and substituting Equations 19 and 20 into Equations 18, we obtain
an expanded expression for Vk+1. Differentiating between the
active client set Sk and the inactive set, and employing the L-
smoothness of fi (i.e., fi(zk+1

i ) ≤ fi(zk
i ) + 〈∇fi(zk

i ), zk+1
i − zk

i 〉 +
L
2 ‖zk+1

i − zk
i ‖2), we have

Vk+1(xk+1) ≤ g(xk) + 1
n

n∑
i=1

[
fi(zk+1

i ) + 〈∇fi(zk+1
i ), xk − zk+1

i 〉

+ 1
2γ

‖xk − zk+1
i ‖2

]
+ �k+1

(by the fact that only i ∈ Sk perform update)

= g(xk) + 1
n

∑
i∈Sk

fi(zk+1
i ) + 1

n

∑
i∈Sk

〈∇fi(zk+1
i ), zk

i − zk+1
i 〉

+ 1
n

∑
i∈Sk

〈∇fi(zk+1
i ), xk − zk

i 〉 +
1

2nγ

∑
i∈Sk

‖xk − zk+1
i ‖2

+ 1
n

∑
i/∈Sk

fi(zk
i ) + 1

n

∑
i/∈Sk

〈∇fi(zk
i ), xk − zk

i 〉

+ 1
2nγ

∑
i/∈Sk

‖xk − zk
i ‖2 + �k+1

(by the L − smoothness of fi)

≤ g(xk) + 1
n

∑
i∈Sk

fi(zk
i ) + L

2n

∑
i∈Sk

‖zk+1
i − zk

i ‖2 (22)

+ 1
n

∑
i∈Sk

〈∇fi(zk+1
i ), xk − zk

i 〉 +
1

2nγ

∑
i∈Sk

‖xk − zk+1
i ‖2

+ 1
n

∑
i/∈Sk

fi(zk
i ) + 1

n

∑
i/∈Sk

〈∇fi(zk
i ), xk − zk

i 〉

+ 1
2nγ

∑
i/∈Sk

‖xk − zk
i ‖2 + �k+1

= g(xk) + 1
n

n∑
i=1

fi(zk
i ) + 1

n

n∑
i=1

〈∇fi(zk
i ), xk − zk

i 〉

+ L
2n

∑
i∈Sk

‖zk+1
i − zk

i ‖2

+ 1
2nγ

∑
i∈Sk

‖xk − zk+1
i ‖2 + 1

n

∑
i∈Sk

〈∇fi(zk+1
i ) −∇fi(zk

i ), xk − zk
i 〉

+ 1
2nγ

∑
i/∈Sk

‖xk − zk
i ‖2 + �k+1.

Next, applying the square-norm expansion

‖xk − zk+1
i ‖2 = ‖xk − zk

i ‖2 + 2〈xk − zk
i , zk

i − zk+1
i 〉 + ‖zk

i

− zk+1
i ‖2.

For non-updated clients i /∈ Sk, the local variable remains
unchanged, i.e., zk+1

i = zk
i . Substituting these relations into the

original expression gives

1
2nγ

∑
i∈Sk

‖xk − zk+1
i ‖2 + 1

2nγ

∑
i/∈Sk

‖xk − zk
i ‖2

= 1
2nγ

n∑
i=1

‖xk − zk
i ‖2 + 1

2nγ

∑
i∈Sk

[
2〈xk − zk

i , zk
i − zk+1

i 〉

+ ‖zk
i − zk+1

i ‖2

]
,
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Inserting the reorganized expression into the expansion of
Vk+1(xk+1) and collecting common terms gives

Vk+1(xk+1) = Vk(xk) + 1
n

∑
i∈Sk

〈∇fi(zk+1
i ) −∇fi(zk

i ), xk − zk
i 〉

+ 1
nγ

∑
i∈Sk

〈zk+1
i − zk

i , zk
i − xk〉

+ 1 + Lγ

2nγ

∑
i∈Sk

‖zk+1
i − zk

i ‖2 + �k+1.

(23)

Then, from the update rule of yk+1
i in Algorithm 1 together with

Equations 10 and 11, we derive an expression for zk
i − xk:

zk
i − xk = 1

λ
(yk

i − yk+1
i )

= 1
λ

(wk
i − wk+1

i ) + γ

λ
(∇fi(wk

i ) −∇fi(wk+1
i ))

= 1
λ

(zk
i − zk+1

i ) + γ

λ
(∇fi(zk

i ) −∇fi(zk+1
i ))

+ 1
λ

[(mk+1
i + γ (∇fi(zk+1

i ) −∇fi(wk+1
i )))

− (mk
i + γ (∇fi(zk

i ) −∇fi(wk
i )))]

= 1
λ

(zk
i − zk+1

i ) + γ

λ
(∇fi(zk

i ) −∇fi(zk+1
i )) + nk

i ,

(24)

where nk
i is a composite error term involving the approximation

errors mk
i , mk+1

i and gradient differences. The subsequent analysis
will control the impact of nk

i via its norm bound. It is defined as

nk
i = 1

λ
[(mk+1

i + γ (∇fi(zk+1
i )

− ∇fi(wk+1
i ))) − (mk

i + γ (∇fi(zk
i ) −∇fi(wk

i )))],

Its squared norm satisfies

‖nk
i ‖2 = 1

λ2 ‖mk+1
i − mk

i + γ (∇fi(zk+1
i ) −∇fi(wk+1

i ))

+ γ (∇fi(wk
i ) −∇fi(zk

i ))‖2

≤ 2(1 + γ L)2

λ2

[
‖mk

i ‖2 + ‖mk+1
i ‖2

]

By applying the L-smoothness of fi, the Young’s inequality, and
Equation 24, we obtain for any β4 > 0 that

Vk+1(xk+1) ≤ Vk(xk) + [λ(1 + Lγ ) − 2]
2λγ n

∑
i∈Sk

‖zk+1
i − zk

i ‖2

+ γ

λn

∑
i∈Sk

‖∇fi(zk+1
i ) −∇fi(zk

i )‖2

+ 1
γ n

∑
i∈Sk

〈nk
i , (zk+1

i − zk
i ) + γ (∇fi(zk

i ) −∇fi(zk+1
i ))〉 + �k+1

(by the L − smoothness of fi)

≤ Vk(xk) + γ L2

λn

∑
i∈Sk

‖zk+1
i − zk

i ‖2 (25)

+ [λ(1 + Lγ ) − 2]
2λγ n

∑
i∈Sk

‖zk+1
i − zk

i ‖2 + �k+1

+ 1
γ n

∑
i∈Sk

[
1
β4

‖nk
i ‖2 + 2β4‖zk

i − zk+1
i ‖2 + 2β4γ

2‖∇fi(zk
i )

−∇fi(zk+1
i )‖2

]

≤ Vk(xk) − [2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
2λγ n∑

i∈Sk

‖zk+1
i − zk

i ‖2 + 1
γβ4n

∑
i∈Sk

‖nk
i ‖2 + �k+1

≤ Vk(xk) − [2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
2λγ n∑

i∈Sk

‖zk+1
i − zk

i ‖2

+ 2(1 + γ L)2

γβ4λ2n

∑
i∈Sk

[
‖mk

i ‖2 + ‖mk+1
i ‖2

]
+ �k+1.

Next, leveraging the L-smoothness of fi and assuming γ ≤ 1
L ,

we demonstrate the boundedness of Vk(xk)

Vk(xk) = g(xk) + 1
n

n∑
i=1

[
fi(zk

i ) +
〈
∇fi(zk

i ), xk − zk
i

〉

+ 1
2γ

∥∥∥xk − zk
i

∥∥∥2
]

≥ g(xk) + 1
n

n∑
i=1

[
fi(xk) − L

2

∥∥∥xk − zk
i

∥∥∥2 + 1
2γ

∥∥∥xk − zk
i

∥∥∥2
]

≥ F(xk) + (
1

2γ
− L

2
)

1
n

n∑
i=1

∥∥∥xk − zk
i

∥∥∥2

≥ F∗.

From Lemma 1, we have

λ2

2(1+β1)(γ 2L2+1)
∑

i∈Sk

∥∥∥xk − zk
i

∥∥∥2 ≤∑i∈Sk

[
‖zk+1

i − zk
i ‖2

+ 2
β1

(
‖mk+1

i ‖2 + ‖mk
i ‖2
)]

. (26)

According to the sampling scheme, we consider the expectation
of
∑

i∈Sk
‖zk+1

i − zk
i ‖2 with respect to Sk conditioned on Ak−1.

Combined with (26), this yields

E

[∑
i∈Sk

∥∥∥zk+1
i − zk

i

∥∥∥2 |Ak−1

]

=
∑

S
P(Sk = S)

∑
i∈S

∥∥∥zk+1
i − zk

i

∥∥∥2 =
n∑

i=1

pi

∥∥∥zk+1
i − zk

i

∥∥∥2

≥ pλ2

2(1 + β1)(γ 2L2 + 1)

n∑
i=1

∥∥∥xk − zk
i

∥∥∥2

− 2p
β1

n∑
i=1

(
‖mk+1

i ‖2 + ‖mk
i ‖2
)

,

(27)

where p = min pi ∈ (0, 1] , i ∈ [n]. By taking the
conditional expectation of Equation 25 with respect
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to Sk conditioned on Ak−1, and combining it with
Equations 10, 21, 27 under the setting β3 = 1, we derive
the following

E

[
Vk+1(xk+1)|Ak−1

]
(21)≤ Vk(xk) + 2(1 + γ L)2

γβ4λ2n

n∑
i=1

pi

[
‖mk

i ‖2 + ‖mk+1
i ‖2

]

− [2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
2λγ n

E

[∑
i∈Sk

∥∥∥zk+1
i − zk

i

∥∥∥2 |Ak−1

]

+ 2ε1

nγ
E

[ n∑
i=1

∥∥∥ek
i

∥∥∥2 +
n∑

i=1

∥∥∥ek+1
i

∥∥∥2
]
+ (1 + γ 2L2)

nγ

n∑
i=1

[
(1 − pi)‖mk

i ‖2 + pi‖mk+1
i ‖2

]

(by the definition of absolute compressor)

(27)≤ Vk(xk) + 2(1 + γ L)2

γβ4λ2n

n∑
i=1

pi

[
‖mk

i ‖2 + ‖mk+1
i ‖2

]

− pλ[2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
4γ n(1 + β1)(γ 2L2 + 1)

n∑
i=1

∥∥∥xk − zk
i

∥∥∥2

+ p[2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
λγβ1n

n∑
i=1

(
‖mk+1

i ‖2 + ‖mk
i ‖2
)

+ 4ε1

γ
ν2 + (1 + γ 2L2)

nγ

n∑
i=1

[
(1 − pi)‖mk

i ‖2 + pi‖mk+1
i ‖2

]

(10)≤ Vk(xk) − π

2n

n∑
i=1

∥∥∥xk − zk
i

∥∥∥2 + 4ε1

γ
ν2 + 1

n

n∑
i=1

(δ1(εk
i )2

+ δ2(εk+1
i )2).

To guarantee the descent property, let

π = pλ[2 − λ(1 + Lγ ) − 2L2γ 2 − 4λβ4(1 + L2γ 2)]
2γ (1 + β1)(γ 2L2 + 1)

> 0.

Then, we have

0 < λ <
min{

√
4β4 + 17

16 − 1
4 , 2}

4β4 + 1
and

0 < γ <

√
(1 − λ

4 )2 − λ2β4(4β4 + 1) − λ
4

L(2λβ4 + 1)
.

Theorem 1. Let
{(

yk
i , zk

i , xk
i , ek

i , xk
)}

be generated by Algorithm 1.
Suppose that Assumptions 1 and 2 hold, for 0 < γ <

√
(1− λ

4 )2−λ2β4(4β4+1)− λ
4

L(2λβ4+1) and 0 < λ <
min{

√
4β4+ 17

16 − 1
4 ,2}

4β4+1 , we
have

1
K

K−1∑
k=0

E

[
‖Gγ (xk)‖2

]
≤ M1

K
(F(x0) − F∗)

+ 1
nK

K−1∑
k=0

n∑
i=1

[
M2(εk

i )2 + M3(εk+1
i )2

]

+ M4

K
ν2,

(28)

where

M1 = 4(1 + β2)(1 + γ L)2

πγ 2 , M2 = (2δ1β2 + π)
β2

M1

M3 = δ2M1, M4 = 4ε1K
γ

M1 + 4K
nγ 2 ,

with ε1, β2 > 0, and π , δ1, δ2 defined in Lemma 3.

Proof. First, it follows from Lemma 3 that

n∑
i=1

∥∥∥xk − zk
i

∥∥∥2 ≤ 2n
π

[
Vk(xk) − E

[
Vk+1(xk+1)|Ak−1

]

+ 4ε1

γ
ν2 + 1

n

n∑
i=1

(δ1(εk
i )2 + δ2(εk+1

i )2)

]
.

Combining the derived estimates and Lemma 2, we obtain

‖Gγ (xk)‖2 ≤ 2(1 + γ L)2

nγ 2

n∑
i=1

[
(1 + β2)‖zk

i − xk‖2

+ (1 + 1
β2

)‖mk
i ‖2

]
+ 2

nγ 2

n∑
i=1

‖ek−1
i − ek

i ‖2

≤ 4(1 + β2)(1 + γ L)2

πγ 2

[
Vk(xk)

− E

[
Vk+1(xk+1)|Ak−1

] ]

+ 4(1 + β2)(1 + γ L)2

nπγ 2

n∑
i=1

(δ1(εk
i )2 + δ2(εk+1

i )2)

+ 2(1 + β2)(1 + γ L)2

nγ 2β2
(εk

i )2 + 2
nγ 2

n∑
i=1

‖ek−1
i − ek

i ‖2

+ 16(1 + β2)(1 + γ L)2ε1

πγ 3 ν2.

(29)

Taking the total expectation of ‖Gγ (xk)‖2 with respect to Ak,
and by using the update of ek

i and the definition of the absolute
compressor, we obtain the following result

E

[
‖Gγ (xk)‖2

]
≤ M1(E

[
Vk(xk)

]
− E

[
Vk+1(xk+1)

]
)

+ M2

n

n∑
i=1

(εk
i )2 + M3

n

n∑
i=1

(εk+1
i )2 + M4

K
ν2,

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2026.1699896
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Xue and Wang 10.3389/frai.2026.1699896

where

M1 = 4(1 + β2)(1 + γ L)2

πγ 2 , M2 =
2(1 + β2)(1 + γ L)2(4δ1β2

+2π)
γ 2β2π

M3 = 4(1 + β2)(1 + γ L)2δ2

πγ 2 , M4 = 16(1 + β2)(1 + γ L)2ε1K
πγ 3

+ 4K
nγ 2 ,

is four constants. Summing the inequality over k from
0 to K − 1, and then scaling the resultant sum by 1

K ,
we derive

1
K

K−1∑
k=0

E

[
‖Gγ (xk)‖2

]
≤ M1

K
(E
[
V0(x0)

]− E
[
VK (xK )

]
)

+ 1
K

K−1∑
k=0

[
M2

n

n∑
i=1

(εk
i )2 + M3

n

n∑
i=1

(εk+1
i )2

+ M4

K
ν2

]
.

(30)

With the initial condition z0
i = x0, we obtain V0(x0) =

g(x0) + 1
n
∑n

i=1 fi(z0
i ) = F(x0). Together with the lower

bound E

[
Vk+1(xk+1)

]
≥ F∗, this implies that Equation 30

simplifies to

1
K

K−1∑
k=0

E

[
‖Gγ (xk)‖2

]
≤ M1

K
(F(x0) − F∗)

+ 1
nK

K−1∑
k=0

n∑
i=1

[
M2(εk

i )2 + M3(εk+1
i )2

]

+ M4

K
ν2,

(31)

which proves Equation 28.

Corollary 1. Suppose that Assumptions 1 and 2 hold,
EF-Feddr (Algorithm 1) will find a ε-stationary point
x such that E

∥∥∥Gγ (xk)
∥∥∥ ≤ ε in the following number

of iterations

K ≥ M1
[
F(x0) − F∗]+ (M2 + M3)M + M4ν

2

ε2 ,

where M > 0 is a constant, and M1, M2, M3, M4 are defined in

Theorem 1. Consequently, the communication complexity is K =
O( 1

ε2 ).

Proof. As described in Tran-Dinh et al. (2021), the choice of
accuracies εk

i is constrained such that for a given constant M > 0,
1
n
∑K−1

k=0
∑n

i=1(εk
i )2 ≤ M. Therefore,

1
K

K−1∑
k=0

E

[
‖Gγ (xk)‖2

]
≤

M1(F(x0) − F∗) + (M2 + M3)M
+M4ν

2

K
. (32)

Consequently, to guarantee E
∥∥∥Gγ (xk)

∥∥∥ ≤ ε, we have

K ≥ M1
[
F(x0) − F∗]+ (M2 + M3)M + M4ν

2

ε2 .

Therefore, we can take K =
⌊

M1[F(x0)−F∗]+(M2+M3)M+M4ν
2

ε2

⌋
=

O
(

1
ε2

)
as its lower bound.

5 Experiments

In the experiments, we evaluate EF-Feddr against Eco-FedSplit
(Khirirat et al., 2022), Eco-FedProx (Khirirat et al., 2022), and
FedDR (Tran-Dinh et al., 2021). In all compression-based baselines,
the compression operator C denotes Top-k sparsification. For a
fair comparison, we implement Eco-FedSplit, Eco-FedProx, and
EF-Feddr on top of the FedDR framework. All experiments are
conducted in TensorFlow (Abadi et al., 2016) on a cluster equipped
with NVIDIA Tesla P100 (16 GB) GPUs. We next describe the
datasets and models used in our study.

5.1 Non-IID datasets

We evaluate on both synthetic and real-world datasets:
synthetic-

(
l, s
)
, FEMNIST, and Shakespeare. Following prior

studies (Caldas et al., 2018; Tran-Dinh et al., 2021), we generate
synthetic-

(
l, s
)

with
(
l, s
) = {(0, 0) , (1, 1)}, where l controls the

number of differing local models and s controls the degree of
local data heterogeneity; larger l and s imply stronger non-IID
heterogeneity. FEMNIST extends MNIST to 62 classes with over
800k samples; we use an 80%/20% train/test split and partition
by writer, which naturally induces client-level heterogeneity.
Shakespeare is a character-level language modeling corpus; we
partition by user/play, so each client holds a distinct subset of
texts (plays/scenes), yielding non-uniform label distributions across
clients. In this context, the degree of non-IID-ness within each
client’s dataset is quantified by the number of classes present.
Specifically, the Shakespeare dataset’s non-IID-ness is delineated
by the allocation of various plays’ texts among clients. Each client
is allocated a distinct subset of the corpus, which may include a
varying number of plays and scenes. This results in a non-uniform
distribution of text, where certain clients predominantly receive
data from specific plays, whereas others obtain a more diverse range
of content. Analogously, the FEMNIST dataset establishes non-
IID-ness through the distribution of handwriting samples across
different writers. Each client’s dataset comprises samples from a
subset of writers, thereby leading to variability in handwriting styles
and features among clients. The datasets and model configurations
used in our experiments are summarized in Table 2, which outlines
their key statistical characteristics.

5.2 Models and hyper-parameters
selection

We use a fully connected network with a 60-32-10 architecture
and train it for 200 communication rounds with a learning rate
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of 0.01 on all synthetic datasets. At each round, 10 out of 30
clients are sampled. To evaluate the algorithm’s performance with
an increased number of clients, we further extended the Synthetic-
(1,1) setup from the original 30 clients to 90 clients while preserving
the statistical characteristics defined by the (l, s) parameters. The
data generation process maintained the same non-IID partition
pattern and per-client data distribution profile as the original
setup. The client sampling ratio was kept constant at 1/3 (that is,
selecting 30 out of 90 clients per round). Eco-FedSplit applies error-
compensated compression to FedSplit, and Eco-FedProx does so to
FedProx. To study an image classification problem on FEMNIST,
we employ artificial neural networks (ANN) consisting of two fully
connected layers. The first layer has 128 neurons followed by a
ReLU activation function, and the second layer has 62 neurons
followed by a softmax activation function for classification. In
this experiment, we sample 50 clients out of 200 to perform
updates at each communication round for all the above-mentioned
algorithms. The model used for FEMNIST is trained for 200
communication rounds in total with an optimal learning rate of
0.003. Consistent with prior research (Li et al., 2020), our approach

TABLE 2 Dataset and model characteristics for federated training.

Dataset Client
participation

Samples Model Parameters

Synthetic-
(0, 0)

1/3 75,349 ANN 2,282

Synthetic-
(1, 1)

1/3 75,349 ANN 2,282

FEMNIST 1/4 18,345 CNN 214,370

Shakespeare 10/143 517,106 LSTM 817,872

to character-level prediction in the Shakespeare dataset utilizes
a recurrent neural network (RNN) architecture. Specifically, we
deploy a two-layer stacked LSTM classifier, each layer comprising
256 hidden units. Each input sequence is structured to include 80
characters, which are initially embedded into an eight-dimensional
space prior to LSTM processing. The model subsequently generates
a 62-class softmax distribution over the character vocabulary for
each training instance. The training regimen involves a total of
50 communication rounds. An optimal learning rate of 0.08 is
determined for the four operator-splitting-based federated learning
algorithms employed in this study. Parameters for each algorithm
such as α ∈ (0, 2) and η ∈ [1, 1, 000] for FedDR, μ ∈ [0.001, 1]
for Eco-FedProx, and λ ∈ (0, 2) and γ ∈ [1, 1, 000] for EF-Feddr
are tuned from a large range of values. For each dataset, we pick the
most suitable parameters for each algorithm.

5.3 Comparison of methods

Figures 1–3 report training loss/accuracy and test accuracy
vs. communication rounds and communication cost on the
synthetic datasets; Figure 4 shows the same on FEMNIST. A
key observation is that expanding the total number of clients
does not substantially degrade the performance of EF-Feddr.
Experimental results under the scaled setting (Figure 3) confirm
this: the algorithm maintains nearly identical convergence speed
and final accuracy compared to the original 30-client scenario
(Figure 2). Across heterogeneous settings, EF-Feddr consistently
outperforms the baselines. On FEMNIST, EF-Feddr reaches 80.5%
test accuracy at round 50, whereas Eco-FedSplit attains 74.5%
only at round 200. Within 200 rounds, EF-Feddr improves
accuracy by 12.97% and 7.93% over Eco-FedSplit and Eco-
FedProx, respectively. On synthetic-(0, 0), EF-Feddr exceeds the

IGURE 1F

Convergence performance of different methods on the synthetic-(0, 0) dataset with Top-k and participation rate p = 0.3.
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FIGURE 2

Convergence performance of different methods on the synthetic-(1, 1) dataset with Top-k, participation rate p = 0.3, and N = 30 total clients.

FIGURE 3

Convergence performance of different methods on the synthetic-(1, 1) dataset with Top-k, participation rate p = 0.3, and N = 90 total clients.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2026.1699896
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Xue and Wang 10.3389/frai.2026.1699896

FIGURE 4

Convergence performance of different methods on the FEMNIST dataset with Top-k and participation rate p = 0.3.

FIGURE 5

Convergence performance of different methods on the Shakespeare dataset with Top-k and participation rate p = 0.3.
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TABLE 3 Efficiency comparison on synthetic-(1, 1) and femnist datasets.

Method Synthetic-(1, 1) (60% accuracy) FEMNIST (70% accuracy)

Rounds Time (min) Comm (MB) Rounds Time (min) Comm (GB)

Eco-FedProx 29 6.58 0.21 61 19.72 0.24

Eco-FedSplit 12 2.85 0.09 98 48.72 0.172

FedDR 5 1.18 0.44 33 15.95 0.67

EF-Feddr 4 0.96 0.03 17 8.29 0.059

FIGURE 6

EF-Feddr on FEMNIST with relaxation parameter λ analysis.

two baselines by 3.88% and 8.40%; on synthetic-(1, 1), by 7.20% and
3.29%. On Shakespeare, Figure 5 shows EF-Feddr also surpasses
two Douglas–Rachford splitting-based FL algorithms: Eco-FedSplit
and FedDR. As shown in Table 3, EF-Feddr requires 18.64%–
85.41% less runtime and 48.03%–93.18% less communication
than baseline methods to achieve the same target test accuracy
of 60% on synthetic and 70% on FEMNIST. Specifically, on
FEMNIST, it meets this target in only 17 communication rounds
(8.29 min), significantly outperforming competitors like Eco-
FedSplit. These substantial reductions in overhead are consistently
observed across the synthetic datasets. Additionally, EF-Feddr
achieves a substantial reduction in communication costs without
compromising performance relative to the uncompressed FedDR.

5.4 Effect of the relaxation parameter

Figure 6 examines the effect of the relaxation parameter λ over
200 iterations. Empirically, the best convergence is observed at
λ = 0.3. Consistent with prior findings on FL adaptations of
Douglas–Rachford splitting, choosing 0 < λ < 1 often leads to
faster convergence than the classical (unrelaxed) variant.

6 Discussion

This study presents EF-Feddr, a communication-efficient
federated learning algorithm that combines error-compensated
compression with Douglas–Rachford splitting. The method’s
robustness is demonstrated across controlled synthetic and real-
world benchmarks, yet we recognize that extreme heterogeneity,
such as single-class clients, remains a challenging frontier.

Furthermore, while our experiments simulate realistic constraints
(partial participation, compression), fully asynchronous updates
and dynamic network conditions warrant further study in
real deployments.

Recent advances in behavior-based threat hunting (Bhardwaj
et al., 2022), IoT firmware security assessment (Bhardwaj et al.,
2023), and energy-efficient proactive fault tolerance in cloud
environments (Talwar et al., 2021) provide complementary
perspectives for building reliable and secure federated systems.
While this study focuses on optimization efficiency under non-
IID and communication constraints, these studies collectively point
toward an integrated “Optimization + System + Security” paradigm
for future research. Specifically, they motivate investigations into
client behavior profiling for attack detection, trusted execution
at the edge, and proactive fault-tolerant scheduling, all of which
are essential for deploying robust and efficient federated learning
in real-world, dynamic environments. Furthermore, to strengthen
the generalizability of our findings, future studies will also
include evaluations on a wider variety of datasets, encompassing
diverse domains, scales, and heterogeneity patterns, thereby
providing a more comprehensive assessment of the algorithm’s
practical applicability.

7 Conclusion

In this study, we introduced EF-Feddr, a communication-
efficient algorithm for non-convex federated learning that
leverages the Douglas–Rachford splitting method, error feedback
compression, and a relaxation strategy. EF-Feddr improves
communication efficiency while preserving solution accuracy.
Both theoretical analysis and empirical experiments demonstrated
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that EF-Feddr substantially reduces the number of bits transmitted
from clients to the server compared with uncompressed FedDR.
In terms of solution accuracy, EF-Feddr performs comparably
to the uncompressed FedDR. Building on the Douglas–Rachford
envelope, we established convergence guarantees and analyzed the
communication complexity of EF-Feddr under mild assumptions.
Extensive experiments further confirmed that our method
significantly outperforms existing state-of-the-art approaches in
non-IID settings.
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