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Traditional machine learning (TML) algorithms remain indispensable tools for the 
analysis of biomedical images, offering significant advantages in multimodal data 
integration, interpretability, computational efficiency, and robustness on smaller 
datasets. This review provides a comprehensive examination of TML applications 
across a broad spectrum of biomedical imaging modalities, highlighting its core 
principles, practical implementation, and unique benefits in the era of deep learning 
(DL). We outline the fundamental concepts of machine learning and describe key 
biomedical imaging tasks successfully addressed by TML. We also highlight the most 
popular platforms, which empower clinicians and researchers to utilize TML. DL 
now dominates many areas of medical image analysis due to superior performance 
and end-to-end feature learning. Using the most prominent examples, we analyze 
how TML retains unique value for applications with multimodal data processing, 
limited data, interpretability requirements, or rapid prototyping needs. Supported 
by increasingly democratized tools and validated by robust clinical studies, TML 
remains a vital methodology for extracting quantitative and qualitative insights 
from biomedical image data, ensuring its continued relevance in both research 
and clinical practice.
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Introduction

By 2025, deep learning (DL) has achieved remarkable progress in biomedical imaging, 
with vision large language models (vLLMs) now setting new standards for automated 
interpretation and analysis (Li et al., 2023; Lan et al., 2025). Yet, despite the complexity and 
high competence of these modern approaches, much earlier and simpler traditional 
machine learning (TML) methods remain not only in use but actively thrive. For example, 
according to Dimensions citation data available via Altmetric, the ImageJ WEKA trainable 
segmentation paper has accumulated more than 2,000 citations overall, with more than 800 
of them appearing in just the last 2 years, reflecting sustained growth of ImageJ WEKA 
usage in recent biomedical and microscopic imaging studies. Importantly, the field-
classification of these citing articles is dominated by “Biomedical and Clinical Sciences” 
and “Biological Sciences,” indicating that Trainable Weka Segmentation is used primarily 
in biological imaging and clinically oriented workflows rather than in generic computer 
vision contexts. A similar pattern is observed for PyRadiomics, whose foundational 
radiomics toolbox paper has surpassed about 6,000 citations in total, with the majority also 
concentrated in the most recent few years, underscoring its status as a de facto standard 
for clinical radiomics feature extraction workflows. Here again, Dimensions category data 
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show that most citing publications fall under “Biomedical and 
Clinical Sciences” and “Biological Sciences,” consistent with the 
strong focus of radiomics on oncology, imaging biomarkers, and 
translational medical research. These citation trajectories 
themselves suggest that interpretability and robustness of 
handcrafted features retain high practical value in current 
biomedical imaging research.

Why do these straightforward, interpretable methods continue to 
attract such attention and widespread adoption? What makes TML 
approaches still relevant in the era of deep learning? Existing research 
in this field is very broad, but it is mostly dedicated to comparison of 
TML and DL in general. At the same time biomedical imaging is a 
narrow field with specific requirements, and there is a lack of 
understanding how TML manages to outperform DL in this 
particular area.

This mini-review aims to fill a notable gap in guidelines 
that address conditions specific to biomedical imaging 
where TML is particularly advantageous. Here, decision-making 
factors such as limited dataset size, hardware constraints, 
and the need for biological interpretability are reviewed to 
clarify when TML may be the more suitable choice. We 
outline the ‘middle-ground’ scenarios of biomedical data 
processing in which TML is not merely an alternative but the most 
advisable approach.

Our mini-review is structured as follows. First, we outline the 
fundamental advantages of TML. Next, we illustrate these 
advantages with relevant examples of object classification with 
Radiomics and semantic segmentation with ImageJ WEKA. In 
defining the scope of this work, we focus on peer-reviewed studies 
in biomedical and clinical imaging that apply traditional machine 
learning to handcrafted features or classical pixel-wise classifiers, 
having screened recent literature in major scholarly databases and 
excluded purely methodological or synthetic-benchmark papers 
that lack biological or clinical context. Finally, we discuss the role 
of TML within the contemporary image analysis ecosystem, 
highlighting practical decision rules for choosing between TML, 
DL, and hybrid approaches.

Advantages of traditional machine learning

TML has emerged as a foundational approach for extracting 
quantitative and qualitative insights from biomedical images across 
diverse modalities, offering unique advantages that remain highly 
relevant in the era of DL. The application of TML spans multiple 
imaging modalities including microscopy, radiography, computed 
tomography (CT), magnetic resonance imaging (MRI) and 
ultrasound.

A key advantages of TML include:

Interpretability
The fundamental distinction between TML and DL lies in the 

feature extraction process. While DL models automatically learn 
features from raw data, TML requires explicit feature engineering and 
extraction as preprocessing steps. This characteristic, often perceived 
as a limitation, actually provides significant advantages in medical 
applications where interpretability and clinical validation are 
paramount (Hill, 2024).

Computational efficiency
TML models require fewer resources than DL algorithms, 

facilitating deployment on standard central processing unit (CPU) 
hardware in resource-limited settings. Rapid training and inference 
enable real-time applications in point-of-care environments (Kaur et 
al., 2019).

Performance on limited data
In tasks with small datasets—common in biomedicine—TML 

algorithms can outperform DL models (Chang et al., 2023). 
This is because these methods are less complex and 
have fewer parameters, which reduces their propensity to overfit 
in situations where training data is limited (Ying, 2019). 
Furthermore, they can achieve robust performance with hundreds 
of samples, unlike thousands in DL methods (Silvey and 
Liu, 2024).

Multimodal data integration
TML uniquely accommodates hybrid feature spaces by 

combining image-derived features (e.g., radiomic texture from MRI/
CT), clinical metadata (lab results, patient history), molecular data 
(genomic/proteomic markers), and other data (Xu et al., 2024). For 
deep learning algorithms integration of image data with different data 
modalities requires special algorithm architectures (Stahlschmidt et 
al., 2022). Only vLLMs can match TML algorithms in this aspect, as 
they naturally allow a mixture of image and text data as an input 
(Saab et al., 2024).

Potential regulatory compliance
Rule-based algorithms, in contrast to machine learning ones, are 

easier to regulate due to higher transparency (Hill, 2024). While 
explainability of TML methods is far from complete, they are much 
closer to rule-based algorithms than deep learning methods. Models 
can be audited feature-by-feature, better satisfying strict medical 
device regulations.

TML for image analysis: basics of inner 
mechanics

TML algorithms remain highly relevant in biomedical image 
analysis, offering robust solutions across a wide spectrum of imaging 
modalities. Below, we outline two main modalities of tasks where 
TML algorithms are successfully applied in biomedical image analysis 
(Figures 1A,C):

	•	 Semantic segmentation (or pixel classification), i.e., predicting 
whether each pixel on an image belongs to some class thus 
producing a binary mask (Figures 1A,B; Ghosh et al., 2019). 
Semantic segmentation is used in cases where there is a need to 
select some objects or regions in images for consequent objects 
counting, area calculations and other relevant information 
extraction.

	•	 Object classification, i.e., predicting whether an object or region 
on an image belongs to a certain class (Lugnan et al., 2020). 
Typically it is done by segmenting an object of interest first, then 
by extracting its features by some algorithm (see below 
description of PyRadiomics). The extracted set of features is 
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FIGURE 1

Two typical tasks in biomedical image analysis solved with TML algorithms. (A,B) Semantic segmentation—pixel-wise features extracted via image 
filters are classified into binary masks. (C,D) Object classification, where segmented objects are characterized by extracted features and subsequently 
classified using TML algorithms.
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classified by a TML algorithm to yield a label for the object (see 
Figures 1C,D).

Semantic segmentation

The main feature of TML algorithms is that they take as input a 
feature vector—a set of parameters for each individual object, 
represented as a one-dimensional array. In case of semantic 
segmentation, each pixel of an image is converted into a feature vector 
and then classified (thus the alternative name pixel classification) to 
yield a binary mask (see Figure 1B). To increase the information about 
each pixel, a set of filters is usually applied to a whole image and values 
from result maps are used as features; examples of such filters are 
Gaussian, Laplassian, Gabor, Mean, Median filters etc. (see Figure 1B). 
This process is called feature extraction, since each filter highlights 
different features of objects on a picture such as edges, intensity peaks 
and others. Method of image segmentation through feature extraction 
with filters and pixel classification is especially popular in microscopy 
(cell culture studies, histopathology, material sciences etc.). It can be 
done in practice with ImageJ Trainable WEKA Segmentation plugin 
(Arganda-Carreras et al., 2017), ilastik (Berg et al., 2019), QuPath 
(Bankhead et al., 2017), or Napari (Ahlers et al., 2023) plugins.

Object classification

Another approach to image vectorization is extracting higher-
order features from objects to classify them (Figure 1D). It is done by 
segmenting objects first [with Segment Anything Models significantly 
simplifying that process (Kirillov et al., 2023; Ma et al., 2024; Archit et 
al., 2025)] and then extracting features from them such as shape, 
intensity, and texture features. CellProfiler (Carpenter et al., 2006) is 
a software that focuses on feature extraction for microscopy studies, 
while in radiology radiomics is a general term for a set of tools for 
extracting relevant features from objects on different diagnostic 
images (Kumar et al., 2012).

Relevant examples of TML using in 
practice

After outlining the main biomedical image analysis task categories 
that TML techniques address and their theoretical underpinnings, it 
should be noted that these techniques are still very applicable in 
current research. They continue to be widely used in many different 
fields due to their interpretability and robustness. In the sections that 
follow, we provide real-world examples that demonstrate the 
usefulness and long-term effects of these established methods.

Radiomics: when traditional machine 
learning works better

Radiomics has emerged as one of the most dynamic and clinically 
relevant fields for the application of TML in biomedical image 
analysis. The core principle of radiomics involves extracting 
quantitative features from medical images—such as CT, MRI, or 

ultrasound—and utilizing TML algorithms to construct predictive 
models for diagnosis, prognosis, and treatment response (Wagner et 
al., 2021; Cè et al., 2024; Majumder et al., 2024).

Despite the growing adoption of deep learning in radiomics, TML 
maintains its clinical utility. Traditional radiomics features are 
explicitly defined and extracted on the basis of predetermined 
mathematical formulas, offering intrinsic interpretability that allows 
clinicians to understand which specific characteristics contribute to 
diagnostic decisions. This transparency contrasts sharply with deep 
learning’s “black box” nature, where the learned feature extractors 
remain largely opaque to clinical interpretation (Wang et al., 2025). 
Recent studies have demonstrated that TML-based radiomics 
pipelines not only remain competitive with deep learning but 
frequently outperform them when datasets are small, interpretability 
is required, or clinical implementation is the primary objective (Chang 
et al., 2023).

Concrete quantitative evidence of TML advantages under specific 
conditions is demonstrated by a comparative study of liver tumor 
differentiation using MRI data. In this study, an SVM-based radiomics 
model achieved an AUC of 0.879 on the test set, while a DenseNet-
based deep learning model showed significantly lower performance 
with an AUC of 0.717 (Du et al., 2022). The statistically significant 
difference (p < 0.001) confirms the superiority of the traditional 
approach in this context. The authors attribute this to the fact that the 
radiomics model utilized only 8 carefully selected features from 1,049 
possible ones, while the deep learning model processed volumes of 
100 × 100 × 100 voxels (1,000,000 features), which, combined with the 
limited sample size (426 training samples), led to overfitting and 
reduced generalization capability.

In each case, specialists should select a set of features to extract 
from objects of interest. But there are hundreds of possible features 
and it’s a challenge to find the key ones. To alleviate that, automated 
frameworks were created that perform this selection of important 
features from a large set. Such automated frameworks have 
streamlined radiomics model construction and validation, reducing 
manual trial-and-error and improving reproducibility across diverse 
clinical tasks. The WORC framework, validated across 12 clinical 
applications, has demonstrated superior performance compared to 
both basic radiomics baselines and human expert approaches 
(Starmans et al., 2025). This framework addresses the critical challenge 
of method selection by automatically optimizing the entire radiomics 
workflow, from preprocessing through feature extraction to 
classification algorithm selection.

Similarly, the Simplatab framework represents an advancement in 
automated machine learning for radiomics-based clinical applications. 
Evaluated on a large pan-European cohort of 4,816 patients from 12 
clinical centers across nine countries, Simplatab integrates 
comprehensive functionality including data bias detection, feature 
selection, model training with hyperparameter optimization, and 
explainable AI analysis (Zaridis et al., 2025). The framework’s user-
friendly interface requires no coding expertise while providing 
detailed performance reports and robust bias assessment in human-
understandable formats.

In the multimodal study by Xu et al. (2024), researchers combined 
radiomic features from multiparametric MRI with automatically 
extracted pathomorphological features (using CellProfiler (McQuin 
et al., 2018)) and clinical patient data—including tumor stage, 
biomarker levels (e.g., CA-125), and treatment history. This integration 
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yielded an improvement in prognostic accuracy (94%) compared to 
unimodal approaches. In another study, comparative research in lung 
and thymic tumor imaging shows that TML-based radiomics can 
exceed or match deep learning models, particularly in heterogeneous 
or rare disease cohorts, where supplementing imaging features with 
clinical variables like smoking history and comorbidity profiles 
significantly boosted model robustness against dataset shifts (Chang 
et al., 2023). These researches highlight the major advantage of TML 
algorithms—seamless integration of image-derived data with different 
data modalities, which is a challenge for deep learning algorithms 
(Stahlschmidt et al., 2022).

Table 1 summarizes several recent, high-impact studies 
highlighting the versatility and effectiveness of TML in radiomics.

Current evidence demonstrates that TML-based radiomics 
consistently achieves competitive or superior performance compared 
to deep learning in small-to-moderate dataset scenarios, particularly 
when multimodal data integration and clinical interpretability are 
prioritized. Automated frameworks such as WORC and Simplatab 
have validated TML’s robustness across multiple clinical applications. 
However, standardized benchmarking protocols comparing TML and 
DL across diverse imaging modalities remain lacking, and optimal 
feature selection strategies for highly heterogeneous cohorts require 
further investigation.

Traditional machine learning is convenient 
and fast alternative to deep learning for 
semantic segmentation: ImageJ WEKA 
example

If segmentation on some image or set of images is required, the 
simplest approach is manual segmentation or threshold-based 
segmentation. It works perfectly for cases with small amounts of 
simple objects with high contrast. The second option is deep 
learning, which suits cases with a large number of images and 
objects with complex shapes and low contrast. But it needs dataset 
creation, where the user should spend a substantial amount of time 

to manually draw masks on a set of images. It also requires a 
graphics processing unit (GPU) for training and inference. In its 
turn, TML for segmentation perfectly fits the gap between manual 
or threshold-based segmentation and deep learning. Let us examine 
this further using ImageJ WEKA as an example—a trainable 
segmentation plugin (Arganda-Carreras et al., 2017), which is one 
of the most popular tools for segmenting images by pixel-wise 
classification with TML.

Firstly, the ImageJ WEKA trainable segmentation plugin does 
not require a GPU to run. Secondly, it requires significantly less 
data to train in comparison to deep learning: sometimes a few 
labeled pixels on a single image that take seconds to draw is enough. 
It can be viewed as an extension to manual segmentation: instead 
of segmenting all regions manually on an image, the user labels only 
a small portion, while the plugin completes these labels to the whole 
image. In that extent it is similar to Segment Anything Models 
(Kirillov et al., 2023): they too complete user prompts to masks, but 
for an instance segmentation task, where separating individual 
objects is the priority. Thirdly, it is easily tunable: users can adjust a 
set of filters for feature extraction and TML algorithm for pixel 
classification making it suitable for a wide range of use cases; at the 
same time deep learning segmentation algorithms have much less 
hyperparameters to tune at the inference stage without involvement 
of training algorithms. Finally, it is integrated into ImageJ 
(Schindelin et al., 2012; Schneider et al., 2012), one of the most 
popular tools for image processing with robust functionality, which 
makes it even more convenient for pre- and postprocessing 
of images.

Thus, ImageJ WEKA trainable segmentation successfully fills the 
gap between the most convenient manual or threshold-based 
segmentation and demanding deep learning methods. It is best suited 
for cases with medium or large amounts of data, where there is no 
requirement of separating densely located individual objects with 
complex shapes. Among the most recent examples, ImageJ WEKA 
trainable segmentation was successfully used to discern vessels from 
spheroids and background by dual-channel phase-GFP images with a 
relatively small training dataset of 28 images (Wong et al., 2025). In 

TABLE 1  Recent studies demonstrating successful applications of TML algorithms in radiomics.

Study and year Imaging modality/Task TML approach and outcome

Automated ML framework for 

radiomics (WORC), 2025
12 clinical tasks (CT, MRI, etc.)

AutoML with TML (XGBoost, SVM, RF); outperformed manual pipelines and human experts; 

improved reproducibility (Starmans et al., 2025)

Simplatab framework, 2025
Bi-parametric MRI, clinically 

significant prostate cancer

Automated ML framework with XAI integration; comprehensive bias detection and model 

vulnerability assessment (Zaridis et al., 2025)

Decoding Radiomics: ML 

workflow guide, 2024
Step-by-step radiomics workflow

Comprehensive review; emphasizes feature extraction, selection, and TML classifier choice for 

robust clinical models (Cè et al., 2024)

AutoML radiomics for pulmonary 

nodules, 2024

CT chest, nodule chronicity 

prediction

Ensemble model: sensitivity 0.65, specificity 0.92, AUC 0.88; outperformed individual 

radiologists (Mehta et al., 2024)

Prediction of the efficacy of 

neoadjuvant chemotherapy in 

breast cancer, 2024

MRI + histopathology images Different models: sensitivity 0.37–0.88, specificity 0.69–0.91, AUC 0.65–0.91 (Xu et al., 2024)

Differentiation of thymic epithelial 

tumors, 2023
Lung CT

Feature selection + RF, XGBoost, CatBoost, etc.; TML outperformed DL in small datasets; >90% 

accuracy (Chang et al., 2023)

Multi-view SVM + for liver cancer, 

2021

Ultrasound (B-mode, CEUS), liver 

cancer

Multi-kernel SVM + using multi-phase features; accuracy 88.2%, sensitivity 87.0%, specificity 

89.4% (Zhang et al., 2021)
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FIGURE 2

Decision scheme for selecting between TML and DL in biomedical image analysis.

another recent paper, it was used for the relatively simple task of 
discerning cells from background on fluorescent images to quantify 
the gaps and assess cell migration (Bischoff et al., 2025). At the same 
time it’s not the only player in the field of TML for semantic 
segmentation. This functionality is also included in such tools as 
ilastik (Berg et al., 2019), QuPath (Bankhead et al., 2017) and various 
Napari (Ahlers et al., 2023) plugins.

Evidence confirms that ImageJ WEKA and similar TML-based 
segmentation tools successfully address “middle-ground” use cases, 
requiring minimal training data and computational resources while 
maintaining adequate accuracy for moderately complex 
segmentation tasks. Nevertheless, systematic comparative studies 
quantifying performance trade-offs between TML-based pixel 
classification and modern foundation models across diverse 
biological imaging contexts are scarce. Best practices for filter 

selection and hyperparameter tuning in TML segmentation 
workflows also remain largely empirical.

Discussion and conclusions

Deep learning is rapidly transforming biomedical image analysis, 
enabling unprecedented advances in image segmentation, classification, 
and feature discovery (Shen et al., 2017; Haque and Neubert, 2020; Ben 
Yedder et al., 2021). Its capacity to automatically learn complex, 
hierarchical representations from raw data has opened entirely new 
horizons for precision diagnostics, personalized medicine and 
biomedical research. However, these remarkable capabilities come at a 
price: deep learning models are inherently complex, computationally 
demanding, and often require large, well-annotated datasets for robust 

https://doi.org/10.3389/frai.2026.1695230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Chechekhina et al.� 10.3389/frai.2026.1695230

Frontiers in Artificial Intelligence 07 frontiersin.org

training. Their “black box” nature also presents significant challenges for 
clinical interpretability and reliability, particularly in high-stakes medical 
settings (Luo et al., 2019; Salahuddin et al., 2022; ŞAHiN et al., 2025).

At the same time, there are numerous clinical and research 
scenarios where such complexity is unnecessary or even 
counterproductive. Many diagnostic and prognostic tasks involve well-
understood imaging biomarkers or operate in data-limited 
environments—contexts in which the interpretability, efficiency, and 
lower data requirements of TML approaches offer clear advantages. In 
these cases, the sophistication of deep learning may be redundant, 
introducing additional barriers without substantial gains in 
performance or clinical value. The same applies to biomedical research: 
deep learning is the “go-to” method for complex tasks, but there are a 
lot of scenarios where a simpler TML approach is more efficient.

To guide researchers in navigating these trade-offs, we summarize 
the decision-making process in Figure 2. As illustrated, TML remains the 
optimal strategy in contexts defined by limited computational resources, 
small dataset sizes, or strict requirements for biological interpretability.

TML thus occupies a unique and increasingly important niche in 
biomedical image analysis. It excels in the “middle ground”—tasks 
that are too complex for manual or rule-based methods, yet do not 
justify involvement of deep neural networks. Importantly, TML-based 
tools are not a legacy approach—it is an actively developing field that 
continues to deliver innovation. For example, the integration of 
radiomic features with pathomorphological and clinical data, the 
advent of automated machine learning platforms, and ongoing 
advances in feature standardization (Zwanenburg et al., 2020; Whybra 
et al., 2024) all underscore the vitality of this field.

Thus, TML offers significant advantages over deep learning 
methods in the field of biomedical image processing. It offers better 
interpretability, possibility of multimodal data integration, and often 
performs better on limited data with less computational demands, 
which are crucial features for both medicine and biological research. 
TML bridges the gap between manual analysis and the complexities of 
deep learning, and ensures that image analysis in biomedicine remains 
accessible, interpretable, and impactful across diverse scenarios.

Future directions

The ongoing evolution of TML in biomedical imaging opens 
several promising directions for future development. Hybrid 
TML-DL architectures represent a particularly compelling way, 
where deep learning serves as an automated feature extractor while 
TML classifiers maintain interpretability and multimodal integration 
capabilities. Continued maturation of standardization initiatives, 
exemplified by the Image Biomarker Standardization Initiative (IBSI), 
will ensure that TML-based radiomics features remain reproducible 
across institutions, scanners, and imaging protocols, with extension 
to modalities beyond radiology such as microscopy and ultrasound 
(Zwanenburg et al., 2020; Whybra et al., 2024). Rapidly advancing 
AutoML frameworks for TML may soon incorporate federated 
learning capabilities for collaborative model development across 
clinical sites and integrate explainable AI modules to facilitate 
regulatory approval and clinician trust (de Vries et al., 2023; Ali et al., 
2024; Raza et al., 2025; Singh et al., 2025). The underexplored strength 
of TML in multimodal data fusion warrants systematic investigation. 
This investigation should determine optimal strategies for integrating 

imaging-derived features with genomics, proteomics, electronic 
health records, and patient-reported outcomes. The goal is to yield 
more holistic and personalized diagnostic models. Finally, as vLLMs 
continue to advance, their potential synergy with TML should be 
explored. A promising integration strategy could involve vLLMs 
generating rich semantic descriptions of medical images, which TML 
classifiers could then combine with traditional radiomics features and 
clinical metadata to create interpretable yet powerful diagnostic 
pipelines.

Author contributions

EC: Conceptualization, Visualization, Writing – original draft, 
Writing – review & editing. NV: Conceptualization, Visualization, 
Writing  – original draft, Writing  – review & editing. MS: 
Conceptualization, Writing  – review & editing. PT-K: Project 
administration, Writing – review & editing. KK: Conceptualization, 
Project administration, Writing – review & editing.

Funding

The author(s) declared that financial support was received for 
this work and/or its publication. This work was supported by 
Russian Science Foundation grant #25-75-30005 “Regulation of 
cell renewal processes in the body, the fundamental basis for long-
term maintenance of the functional activity of organs and tissues, 
health and active longevity of a person” (https://rscf.ru/
project/25-75-30005/).

Conflict of interest

The author(s) declared that this work was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that Generative AI was not used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the reviewers. 
Any product that may be evaluated in this article, or claim that may 
be made by its manufacturer, is not guaranteed or endorsed by the 
publisher.

https://doi.org/10.3389/frai.2026.1695230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://rscf.ru/project/25-75-30005/
https://rscf.ru/project/25-75-30005/


Chechekhina et al.� 10.3389/frai.2026.1695230

Frontiers in Artificial Intelligence 08 frontiersin.org

References
Ahlers, J., Althviz Moré, D., Amsalem, O., Anderson, A., Bokota, G., Boone, P., et al. 

(2023). Napari: a multi-dimensional image viewer for Python. (v0.4.18). Zenodo. doi: 
10.5281/ZENODO.3555620

Ali, M. J., Essaid, M., Moalic, L., and Idoumghar, L. (2024). A review of AutoML 
optimization techniques for medical image applications. Comput. Med. Imaging Graph. 
118:102441. doi: 10.1016/j.compmedimag.2024.102441

Archit, A., Freckmann, L., Nair, S., Khalid, N., Hilt, P., Rajashekar, V., et al. (2025). 
Segment anything for microscopy. Nat. Methods 22, 579–591. doi: 10.1038/
s41592-024-02580-4

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., 
Cardona, A., et al. (2017). Trainable Weka segmentation: a machine learning tool for 
microscopy pixel classification. Bioinformatics 33, 2424–2426. doi: 10.1093/
bioinformatics/btx180

Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., 
Dunne, P. D., et al. (2017). QuPath: open source software for digital pathology image 
analysis. Sci. Rep. 7:16878. doi: 10.1038/s41598-017-17204-5

Ben Yedder, H., Cardoen, B., and Hamarneh, G. (2021). Deep learning for biomedical 
image reconstruction: a survey. Artif. Intell. Rev. 54, 215–251. doi: 10.1007/
s10462-020-09861-2

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al. (2019). 
Ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 
1226–1232. doi: 10.1038/s41592-019-0582-9

Bischoff, M. C., Norton, J. E., Clark, S. E., and Peifer, M. (2025). Plexin/Semaphorin 
antagonism orchestrates collective cell migration and organ sculpting by regulating 
epithelial-mesenchymal balance. Sci. Adv. 11:eadu3741. doi: 10.1126/sciadv.adu3741

Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., 
et al. (2006). CellProfiler: image analysis software for identifying and quantifying cell 
phenotypes. Genome Biol. 7:R100. doi: 10.1186/gb-2006-7-10-r100

Cè, M., Chiriac, M. D., Cozzi, A., Macrì, L., Rabaiotti, F. L., Irmici, G., et al. (2024). 
Decoding radiomics: a step-by-step guide to machine learning workflow in hand-crafted 
and deep learning radiomics studies. Diagnostics 14:2473. doi: 10.3390/
diagnostics14222473

Chang, C.-C., Tang, E.-K., Wei, Y.-F., Lin, C.-Y., Wu, F.-Z., Wu, M.-T., et al. (2023). 
Clinical radiomics-based machine learning versus three-dimension convolutional 
neural network analysis for differentiation of thymic epithelial tumors from other 
prevascular mediastinal tumors on chest computed tomography scan. Front. Oncol. 
13:1105100. doi: 10.3389/fonc.2023.1105100

de Vries, B. M., Zwezerijnen, G. J. C., Burchell, G. L., van Velden, F. H. P., der 
Houven, M.-v., van Oordt, C. W., et al. (2023). Explainable artificial intelligence (XAI) 
in radiology and nuclear medicine: a literature review. Front. Med. (Lausanne) 
10:1180773. doi: 10.3389/fmed.2023.1180773

Du, L., Yuan, J., Gan, M., Li, Z., Wang, P., Hou, Z., et al. (2022). A comparative study 
between deep learning and radiomics models in grading liver tumors using hepatobiliary 
phase contrast-enhanced MR images. BMC Med. Imaging 22:218. doi: 10.1186/
s12880-022-00946-8

Ghosh, S., Das, N., Das, I., and Maulik, U. (2019). Understanding deep learning 
techniques for image segmentation. ACM Comput. Surv. 52, 73:1–73:35. doi: 
10.1145/3329784

Hill, D. L. G. (2024). AI in imaging: the regulatory landscape. Br. J. Radiol. 97, 
483–491. doi: 10.1093/bjr/tqae002

Kaur, P., Kumar, R., and Kumar, M. (2019). A healthcare monitoring system using 
random forest and internet of things (IoT). Multimed. Tools Appl. 78, 19905–19916. doi: 
10.1007/s11042-019-7327-8

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., et al. (2023). 
“Segment anything” in Proceedings of the IEEE/CVF international conference on 
computer vision (ICCV), 3992–4003.

Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., et al. (2012). 
Radiomics: the process and the challenges. Magn. Reson. Imaging 30, 1234–1248. doi: 
10.1016/j.mri.2012.06.010

Lan, W., Tang, Z., Liu, M., Chen, Q., Peng, W., Chen, Y. P., et al. (2025). The large 
language models on biomedical data analysis: a survey. IEEE J. Biomed. Health Inform. 
29, 4486–4497. doi: 10.1109/JBHI.2025.3530794

Li, M., Jiang, Y., Zhang, Y., and Zhu, H. (2023). Medical image analysis using deep 
learning algorithms. Front. Public Health 11:1273253. doi: 10.3389/fpubh.2023. 
1273253

Lugnan, A., Gooskens, E., Vatin, J., Dambre, J., and Bienstman, P. (2020). Machine 
learning issues and opportunities in ultrafast particle classification for label-free 
microflow cytometry. Sci. Rep. 10:20724. doi: 10.1038/s41598-020-77765-w

Luo, Y., Tseng, H.-H., Cui, S., Wei, L., Ten Haken, R. K., and El Naqa, I. (2019). 
Balancing accuracy and interpretability of machine learning approaches for 
radiation treatment outcomes modeling. BJR Open 1:20190021. doi: 10.1259/
bjro.20190021

Ma, J., He, Y., Li, F., Han, L., You, C., and Wang, B. (2024). Segment anything in 
medical images. Nat. Commun. 15:654. doi: 10.1038/s41467-024-44824-z

Majumder, S., Katz, S., Kontos, D., and Roshkovan, L. (2024). State of the art: 
radiomics and radiomics-related artificial intelligence on the road to clinical translation. 
BJR Open 6:tzad004. doi: 10.1093/bjro/tzad004

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., 
Karhohs, K. W., et al. (2018). CellProfiler 3.0: next-generation image processing for 
biology. PLoS Biol. 16:e2005970. doi: 10.1371/journal.pbio.2005970

Mehta, T. I., Heiberger, C., Lancaster, A., Umair, M., Oncel, D., Bai, H., et al. (2024). Automated 
machine learning with radiomics for predicting chronicity of pulmonary nodules in patients 
with nontuberculous mycobacterial lung infection. AR 53, 4–10. doi: 10.37549/AR2960

Raza, A., Guzzo, A., Ianni, M., Lappano, R., Zanolini, A., Maggiolini, M., et al. (2025). 
Federated learning in radiomics: a comprehensive meta-survey on medical image 
analysis. Comput. Methods Prog. Biomed. 267:108768. doi: 10.1016/j.cmpb.2025.108768

Haque, I. R. I., and Neubert, J. (2020). Deep learning approaches to biomedical image 
segmentation. Inf. Med. Unlocked 18:100297. doi: 10.1016/j.imu.2020.100297

Saab, K., Tu, T., Weng, W.-H., Tanno, R., Stutz, D., Wulczyn, E., et al. (2024). 
Capabilities of Gemini models in medicine. arXiv preprint arXiv:2404.18416. doi: 
10.48550/ARXIV.2404.18416

ŞAHiN, E., Arslan, N. N., and Özdemir, D. (2025). Unlocking the black box: an in-
depth review on interpretability, explainability, and reliability in deep learning. Neural 
Comput. & Applic. 37, 859–965. doi: 10.1007/s00521-024-10437-2

Salahuddin, Z., Woodruff, H. C., Chatterjee, A., and Lambin, P. (2022). Transparency 
of deep neural networks for medical image analysis: a review of interpretability methods. 
Comput. Biol. Med. 140:105111. doi: 10.1016/j.compbiomed.2021.105111

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. 
(2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 
676–682. doi: 10.1038/nmeth.2019

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH image to ImageJ: 25 
years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089

Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in medical image analysis. 
Annu. Rev. Biomed. Eng. 19, 221–248. doi: 10.1146/annurev-bioeng-071516-044442

Silvey, S., and Liu, J. (2024). Sample size requirements for popular classification 
algorithms in tabular clinical data: empirical study. J. Med. Internet Res. 26:e60231. doi: 
10.2196/60231

Singh, Y., Hathaway, Q. A., Keishing, V., Salehi, S., Wei, Y., Horvat, N., et al. (2025). 
Beyond post hoc explanations: a comprehensive framework for accountable AI in 
medical imaging through transparency, interpretability, and explainability. 
Bioengineering 12:879. doi: 10.3390/bioengineering12080879

Stahlschmidt, S. R., Ulfenborg, B., and Synnergren, J. (2022). Multimodal deep 
learning for biomedical data fusion: a review. Brief. Bioinform. 23:bbab569. doi: 10.1093/
bib/bbab569

Starmans, M. P. A., van der Voort, S. R., Phil, T., Timbergen, M. J. M., Vos, M., Padmos, G. A., 
et al. (2025). An automated machine learning framework to optimize radiomics model 
construction validated on twelve clinical applications. doi: 10.48550/arXiv.2108.08618

Wagner, M. W., Namdar, K., Biswas, A., Monah, S., Khalvati, F., and Ertl-Wagner, B. B. 
(2021). Radiomics, machine learning, and artificial intelligence—what the neuroradiologist 
needs to know. Neuroradiology 63, 1957–1967. doi: 10.1007/s00234-021-02813-9

Wang, Y., Hu, Z., and Wang, H. (2025). The clinical implications and interpretability 
of computational medical imaging (radiomics) in brain tumors. Insights Imaging 16:77. 
doi: 10.1186/s13244-025-01950-6

Whybra, P., Zwanenburg, A., Andrearczyk, V., Schaer, R., Apte, A. P., Ayotte, A., et al. 
(2024). The image biomarker standardization initiative: standardized convolutional 
filters for reproducible radiomics and enhanced clinical insights. Radiology 310:e231319. 
doi: 10.1148/radiol.231319

Wong, C. W. T., Lee, J. Z. X., Jaeschke, A., Ng, S. S. Y., Lit, K. K., Wan, H.-Y., et al. (2025). 
Lung cancer intravasation-on-a-chip: visualization and machine learning-assisted automatic 
quantification. Bioactive Mater. 51, 858–875. doi: 10.1016/j.bioactmat.2025.06.028

Xu, N., Guo, X., Ouyang, Z., Ran, F., Li, Q., Duan, X., et al. (2024). Multiparametric MRI-
based radiomics combined with pathomics features for prediction of the efficacy of neoadjuvant 
chemotherapy in breast cancer. Heliyon 10:e24371. doi: 10.1016/j.heliyon.2024.e24371

Ying, X. (2019). An overview of overfitting and its solutions. J. Phys. Conf. Ser. 
1168:022022. doi: 10.1088/1742-6596/1168/2/022022

Zaridis, D. I., Pezoulas, V. C., Mylona, E., Kalantzopoulos, C. N., Tachos, N. S., 
Tsiknakis, N., et al. (2025). Simplatab: an automated machine learning framework for 
radiomics-based bi-parametric MRI detection of clinically significant prostate cancer. 
Bioengineering 12:242. doi: 10.3390/bioengineering12030242

Zhang, H., Guo, L., Wang, D., Wang, J., Bao, L., Ying, S., et al. (2021). Multi-source 
transfer learning via multi-kernel support vector machine plus for B-mode ultrasound-
based computer-aided diagnosis of liver cancers. IEEE J. Biomed. Health Inform. 25, 
3874–3885. doi: 10.1109/JBHI.2021.3073812

Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J. W. L., Andrearczyk, V., 
Apte, A., et al. (2020). The image biomarker standardization initiative: standardized 
quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 
328–338. doi: 10.1148/radiol.2020191145

https://doi.org/10.3389/frai.2026.1695230
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.5281/ZENODO.3555620
https://doi.org/10.1016/j.compmedimag.2024.102441
https://doi.org/10.1038/s41592-024-02580-4
https://doi.org/10.1038/s41592-024-02580-4
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1007/s10462-020-09861-2
https://doi.org/10.1007/s10462-020-09861-2
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1126/sciadv.adu3741
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.3390/diagnostics14222473
https://doi.org/10.3390/diagnostics14222473
https://doi.org/10.3389/fonc.2023.1105100
https://doi.org/10.3389/fmed.2023.1180773
https://doi.org/10.1186/s12880-022-00946-8
https://doi.org/10.1186/s12880-022-00946-8
https://doi.org/10.1145/3329784
https://doi.org/10.1093/bjr/tqae002
https://doi.org/10.1007/s11042-019-7327-8
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1109/JBHI.2025.3530794
https://doi.org/10.3389/fpubh.2023.1273253
https://doi.org/10.3389/fpubh.2023.1273253
https://doi.org/10.1038/s41598-020-77765-w
https://doi.org/10.1259/bjro.20190021
https://doi.org/10.1259/bjro.20190021
https://doi.org/10.1038/s41467-024-44824-z
https://doi.org/10.1093/bjro/tzad004
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.37549/AR2960
https://doi.org/10.1016/j.cmpb.2025.108768
https://doi.org/10.1016/j.imu.2020.100297
https://doi.org/10.48550/ARXIV.2404.18416
https://doi.org/10.1007/s00521-024-10437-2
https://doi.org/10.1016/j.compbiomed.2021.105111
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.2196/60231
https://doi.org/10.3390/bioengineering12080879
https://doi.org/10.1093/bib/bbab569
https://doi.org/10.1093/bib/bbab569
https://doi.org/10.48550/arXiv.2108.08618
https://doi.org/10.1007/s00234-021-02813-9
https://doi.org/10.1186/s13244-025-01950-6
https://doi.org/10.1148/radiol.231319
https://doi.org/10.1016/j.bioactmat.2025.06.028
https://doi.org/10.1016/j.heliyon.2024.e24371
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.3390/bioengineering12030242
https://doi.org/10.1109/JBHI.2021.3073812
https://doi.org/10.1148/radiol.2020191145

	Traditional machine learning in biomedical image analysis: before you go too deep
	Introduction
	Advantages of traditional machine learning
	Interpretability
	Computational efficiency
	Performance on limited data
	Multimodal data integration
	Potential regulatory compliance

	TML for image analysis: basics of inner mechanics
	Semantic segmentation
	Object classification

	Relevant examples of TML using in practice
	Radiomics: when traditional machine learning works better
	Traditional machine learning is convenient and fast alternative to deep learning for semantic segmentation: ImageJ WEKA example

	Discussion and conclusions
	Future directions

	References

