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Traditional machine learning in
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Traditional machine learning (TML) algorithms remain indispensable tools for the
analysis of biomedical images, offering significant advantages in multimodal data
integration, interpretability, computational efficiency, and robustness on smaller
datasets. This review provides a comprehensive examination of TML applications
across a broad spectrum of biomedical imaging modalities, highlighting its core
principles, practical implementation, and unique benefits in the era of deep learning
(DL). We outline the fundamental concepts of machine learning and describe key
biomedical imaging tasks successfully addressed by TML. We also highlight the most
popular platforms, which empower clinicians and researchers to utilize TML. DL
now dominates many areas of medical image analysis due to superior performance
and end-to-end feature learning. Using the most prominent examples, we analyze
how TML retains unique value for applications with multimodal data processing,
limited data, interpretability requirements, or rapid prototyping needs. Supported
by increasingly democratized tools and validated by robust clinical studies, TML
remains a vital methodology for extracting quantitative and qualitative insights
from biomedical image data, ensuring its continued relevance in both research
and clinical practice.

KEYWORDS

biomedical image analysis, object classification, radiomics, semantic segmentation,
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Introduction

By 2025, deep learning (DL) has achieved remarkable progress in biomedical imaging,
with vision large language models (VLLMs) now setting new standards for automated
interpretation and analysis (Li et al., 2023; Lan et al., 2025). Yet, despite the complexity and
high competence of these modern approaches, much earlier and simpler traditional
machine learning (TML) methods remain not only in use but actively thrive. For example,
according to Dimensions citation data available via Altmetric, the Image] WEKA trainable
segmentation paper has accumulated more than 2,000 citations overall, with more than 800
of them appearing in just the last 2 years, reflecting sustained growth of Image] WEKA
usage in recent biomedical and microscopic imaging studies. Importantly, the field-
classification of these citing articles is dominated by “Biomedical and Clinical Sciences”
and “Biological Sciences,” indicating that Trainable Weka Segmentation is used primarily
in biological imaging and clinically oriented workflows rather than in generic computer
vision contexts. A similar pattern is observed for PyRadiomics, whose foundational
radiomics toolbox paper has surpassed about 6,000 citations in total, with the majority also
concentrated in the most recent few years, underscoring its status as a de facto standard
for clinical radiomics feature extraction workflows. Here again, Dimensions category data
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show that most citing publications fall under “Biomedical and
Clinical Sciences” and “Biological Sciences,” consistent with the
strong focus of radiomics on oncology, imaging biomarkers, and
translational medical research. These citation trajectories
themselves suggest that interpretability and robustness of
handcrafted features retain high practical value in current
biomedical imaging research.

Why do these straightforward, interpretable methods continue to
attract such attention and widespread adoption? What makes TML
approaches still relevant in the era of deep learning? Existing research
in this field is very broad, but it is mostly dedicated to comparison of
TML and DL in general. At the same time biomedical imaging is a
narrow field with specific requirements, and there is a lack of
understanding how TML manages to outperform DL in this
particular area.

This mini-review aims to fill a notable gap in guidelines
that address
where TML is particularly advantageous. Here, decision-making

conditions specific to biomedical imaging
factors such as limited dataset size, hardware constraints,
and the need for biological interpretability are reviewed to
clarify when TML may be the more suitable choice. We
outline the ‘middle-ground’ scenarios of biomedical data
processing in which TML is not merely an alternative but the most
advisable approach.

Our mini-review is structured as follows. First, we outline the
fundamental advantages of TML. Next, we illustrate these
advantages with relevant examples of object classification with
Radiomics and semantic segmentation with Image] WEKA. In
defining the scope of this work, we focus on peer-reviewed studies
in biomedical and clinical imaging that apply traditional machine
learning to handcrafted features or classical pixel-wise classifiers,
having screened recent literature in major scholarly databases and
excluded purely methodological or synthetic-benchmark papers
that lack biological or clinical context. Finally, we discuss the role
of TML within the contemporary image analysis ecosystem,
highlighting practical decision rules for choosing between TML,
DL, and hybrid approaches.

Advantages of traditional machine learning

TML has emerged as a foundational approach for extracting
quantitative and qualitative insights from biomedical images across
diverse modalities, offering unique advantages that remain highly
relevant in the era of DL. The application of TML spans multiple
imaging modalities including microscopy, radiography, computed
tomography (CT), magnetic resonance imaging (MRI) and
ultrasound.

A key advantages of TML include:

Interpretability

The fundamental distinction between TML and DL lies in the
feature extraction process. While DL models automatically learn
features from raw data, TML requires explicit feature engineering and
extraction as preprocessing steps. This characteristic, often perceived
as a limitation, actually provides significant advantages in medical
applications where interpretability and clinical validation are
paramount (Hill, 2024).
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Computational efficiency

TML models require fewer resources than DL algorithms,
facilitating deployment on standard central processing unit (CPU)
hardware in resource-limited settings. Rapid training and inference
enable real-time applications in point-of-care environments (Kaur et
al., 2019).

Performance on limited data

In tasks with small datasets—common in biomedicine—TML
algorithms can outperform DL models (Chang et al., 2023).
This is
have fewer parameters, which reduces their propensity to overfit

because these methods are less complex and
in situations where training data is limited (Ying, 2019).
Furthermore, they can achieve robust performance with hundreds
of samples, unlike thousands in DL methods (Silvey and
Liu, 2024).

Multimodal data integration

TML uniquely accommodates hybrid feature spaces by
combining image-derived features (e.g., radiomic texture from MRI/
CT), clinical metadata (lab results, patient history), molecular data
(genomic/proteomic markers), and other data (Xu et al., 2024). For
deep learning algorithms integration of image data with different data
modalities requires special algorithm architectures (Stahlschmidt et
al.,, 2022). Only vLLMs can match TML algorithms in this aspect, as
they naturally allow a mixture of image and text data as an input
(Saab et al., 2024).

Potential regulatory compliance

Rule-based algorithms, in contrast to machine learning ones, are
easier to regulate due to higher transparency (Hill, 2024). While
explainability of TML methods is far from complete, they are much
closer to rule-based algorithms than deep learning methods. Models
can be audited feature-by-feature, better satisfying strict medical
device regulations.

TML for image analysis: basics of inner
mechanics

TML algorithms remain highly relevant in biomedical image
analysis, offering robust solutions across a wide spectrum of imaging
modalities. Below, we outline two main modalities of tasks where
TML algorithms are successfully applied in biomedical image analysis
(Figures 1A,C):

 Semantic segmentation (or pixel classification), i.e., predicting
whether each pixel on an image belongs to some class thus
producing a binary mask (Figures 1A,B; Ghosh et al., 2019).
Semantic segmentation is used in cases where there is a need to
select some objects or regions in images for consequent objects
counting, area calculations and other relevant information
extraction.

Object classification, i.e., predicting whether an object or region
on an image belongs to a certain class (Lugnan et al., 2020).
Typically it is done by segmenting an object of interest first, then
by extracting its features by some algorithm (see below
description of PyRadiomics). The extracted set of features is
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Semantic segmentation with TML
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FIGURE 1

Two typical tasks in biomedical image analysis solved with TML algorithms. (A,B) Semantic segmentation—pixel-wise features extracted via image
filters are classified into binary masks. (C,D) Object classification, where segmented objects are characterized by extracted features and subsequently

fication

classified using TML algorithms.
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classified by a TML algorithm to yield a label for the object (see
Figures 1C,D).

Semantic segmentation

The main feature of TML algorithms is that they take as input a
feature vector—a set of parameters for each individual object,
represented as a one-dimensional array. In case of semantic
segmentation, each pixel of an image is converted into a feature vector
and then classified (thus the alternative name pixel classification) to
yield a binary mask (see Figure 1B). To increase the information about
each pixel, a set of filters is usually applied to a whole image and values
from result maps are used as features; examples of such filters are
Gaussian, Laplassian, Gabor, Mean, Median filters etc. (see Figure 1B).
This process is called feature extraction, since each filter highlights
different features of objects on a picture such as edges, intensity peaks
and others. Method of image segmentation through feature extraction
with filters and pixel classification is especially popular in microscopy
(cell culture studies, histopathology, material sciences etc.). It can be
done in practice with Image] Trainable WEKA Segmentation plugin
(Arganda-Carreras et al., 2017), ilastik (Berg et al., 2019), QuPath
(Bankhead et al., 2017), or Napari (Ahlers et al., 2023) plugins.

Object classification

Another approach to image vectorization is extracting higher-
order features from objects to classify them (Figure 1D). It is done by
segmenting objects first [with Segment Anything Models significantly
simplifying that process (Kirillov et al., 2023; Ma et al., 2024; Archit et
al., 2025)] and then extracting features from them such as shape,
intensity, and texture features. CellProfiler (Carpenter et al., 2006) is
a software that focuses on feature extraction for microscopy studies,
while in radiology radiomics is a general term for a set of tools for
extracting relevant features from objects on different diagnostic
images (Kumar et al., 2012).

Relevant examples of TML using in
practice

After outlining the main biomedical image analysis task categories
that TML techniques address and their theoretical underpinnings, it
should be noted that these techniques are still very applicable in
current research. They continue to be widely used in many different
fields due to their interpretability and robustness. In the sections that
follow, we provide real-world examples that demonstrate the
usefulness and long-term effects of these established methods.

Radiomics: when traditional machine
learning works better

Radiomics has emerged as one of the most dynamic and clinically
relevant fields for the application of TML in biomedical image
analysis. The core principle of radiomics involves extracting
quantitative features from medical images—such as CT, MRI, or

Frontiers in Artificial Intelligence

10.3389/frai.2026.1695230

ultrasound—and utilizing TML algorithms to construct predictive
models for diagnosis, prognosis, and treatment response (Wagner et
al,, 2021; Ce et al., 2024; Majumder et al., 2024).

Despite the growing adoption of deep learning in radiomics, TML
maintains its clinical utility. Traditional radiomics features are
explicitly defined and extracted on the basis of predetermined
mathematical formulas, offering intrinsic interpretability that allows
clinicians to understand which specific characteristics contribute to
diagnostic decisions. This transparency contrasts sharply with deep
learning’s “black box” nature, where the learned feature extractors
remain largely opaque to clinical interpretation (Wang et al., 2025).
Recent studies have demonstrated that TML-based radiomics
pipelines not only remain competitive with deep learning but
frequently outperform them when datasets are small, interpretability
is required, or clinical implementation is the primary objective (Chang
etal., 2023).

Concrete quantitative evidence of TML advantages under specific
conditions is demonstrated by a comparative study of liver tumor
differentiation using MRI data. In this study, an SVM-based radiomics
model achieved an AUC of 0.879 on the test set, while a DenseNet-
based deep learning model showed significantly lower performance
with an AUC of 0.717 (Du et al., 2022). The statistically significant
difference (p < 0.001) confirms the superiority of the traditional
approach in this context. The authors attribute this to the fact that the
radiomics model utilized only 8 carefully selected features from 1,049
possible ones, while the deep learning model processed volumes of
100 x 100 x 100 voxels (1,000,000 features), which, combined with the
limited sample size (426 training samples), led to overfitting and
reduced generalization capability.

In each case, specialists should select a set of features to extract
from objects of interest. But there are hundreds of possible features
and it’s a challenge to find the key ones. To alleviate that, automated
frameworks were created that perform this selection of important
features from a large set. Such automated frameworks have
streamlined radiomics model construction and validation, reducing
manual trial-and-error and improving reproducibility across diverse
clinical tasks. The WORC framework, validated across 12 clinical
applications, has demonstrated superior performance compared to
both basic radiomics baselines and human expert approaches
(Starmans et al., 2025). This framework addresses the critical challenge
of method selection by automatically optimizing the entire radiomics
workflow, from preprocessing through feature extraction to
classification algorithm selection.

Similarly, the Simplatab framework represents an advancement in
automated machine learning for radiomics-based clinical applications.
Evaluated on a large pan-European cohort of 4,816 patients from 12
clinical centers across nine countries, Simplatab integrates
comprehensive functionality including data bias detection, feature
selection, model training with hyperparameter optimization, and
explainable Al analysis (Zaridis et al., 2025). The frameworK’s user-
friendly interface requires no coding expertise while providing
detailed performance reports and robust bias assessment in human-
understandable formats.

In the multimodal study by Xu et al. (2024), researchers combined
radiomic features from multiparametric MRI with automatically
extracted pathomorphological features (using CellProfiler (McQuin
et al., 2018)) and clinical patient data—including tumor stage,
biomarker levels (e.g., CA-125), and treatment history. This integration
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yielded an improvement in prognostic accuracy (94%) compared to
unimodal approaches. In another study, comparative research in lung
and thymic tumor imaging shows that TML-based radiomics can
exceed or match deep learning models, particularly in heterogeneous
or rare disease cohorts, where supplementing imaging features with
clinical variables like smoking history and comorbidity profiles
significantly boosted model robustness against dataset shifts (Chang
et al., 2023). These researches highlight the major advantage of TML
algorithms—seamless integration of image-derived data with different
data modalities, which is a challenge for deep learning algorithms
(Stahlschmidt et al., 2022).

Table 1 summarizes several recent, high-impact studies
highlighting the versatility and effectiveness of TML in radiomics.

Current evidence demonstrates that TML-based radiomics
consistently achieves competitive or superior performance compared
to deep learning in small-to-moderate dataset scenarios, particularly
when multimodal data integration and clinical interpretability are
prioritized. Automated frameworks such as WORC and Simplatab
have validated TMLs robustness across multiple clinical applications.
However, standardized benchmarking protocols comparing TML and
DL across diverse imaging modalities remain lacking, and optimal
feature selection strategies for highly heterogeneous cohorts require
further investigation.

Traditional machine learning is convenient
and fast alternative to deep learning for
semantic segmentation: Imaged WEKA
example

If segmentation on some image or set of images is required, the
simplest approach is manual segmentation or threshold-based
segmentation. It works perfectly for cases with small amounts of
simple objects with high contrast. The second option is deep
learning, which suits cases with a large number of images and
objects with complex shapes and low contrast. But it needs dataset
creation, where the user should spend a substantial amount of time

10.3389/frai.2026.1695230

to manually draw masks on a set of images. It also requires a
graphics processing unit (GPU) for training and inference. In its
turn, TML for segmentation perfectly fits the gap between manual
or threshold-based segmentation and deep learning. Let us examine
this further using Image] WEKA as an example—a trainable
segmentation plugin (Arganda-Carreras et al., 2017), which is one
of the most popular tools for segmenting images by pixel-wise
classification with TML.

Firstly, the Image] WEKA trainable segmentation plugin does
not require a GPU to run. Secondly, it requires significantly less
data to train in comparison to deep learning: sometimes a few
labeled pixels on a single image that take seconds to draw is enough.
It can be viewed as an extension to manual segmentation: instead
of segmenting all regions manually on an image, the user labels only
a small portion, while the plugin completes these labels to the whole
image. In that extent it is similar to Segment Anything Models
(Kirillov et al., 2023): they too complete user prompts to masks, but
for an instance segmentation task, where separating individual
objects is the priority. Thirdly, it is easily tunable: users can adjust a
set of filters for feature extraction and TML algorithm for pixel
classification making it suitable for a wide range of use cases; at the
same time deep learning segmentation algorithms have much less
hyperparameters to tune at the inference stage without involvement
of training algorithms. Finally, it is integrated into Image]
(Schindelin et al., 2012; Schneider et al., 2012), one of the most
popular tools for image processing with robust functionality, which
makes it even more convenient for pre- and postprocessing
of images.

Thus, Image] WEKA trainable segmentation successfully fills the
gap between the most convenient manual or threshold-based
segmentation and demanding deep learning methods. It is best suited
for cases with medium or large amounts of data, where there is no
requirement of separating densely located individual objects with
complex shapes. Among the most recent examples, Image] WEKA
trainable segmentation was successfully used to discern vessels from
spheroids and background by dual-channel phase-GFP images with a
relatively small training dataset of 28 images (Wong et al., 2025). In

TABLE 1 Recent studies demonstrating successful applications of TML algorithms in radiomics.

Study and year Imaging modality/Task

Automated ML framework for

12 clinical tasks (CT, MRI, etc.)
radiomics (WORC), 2025

AutoML with TML (XGBoost, SVM, RF); outperformed manual pipelines and human experts;
improved reproducibility (Starmans et al., 2025)

TML approach and outcome

Bi-parametric MRI, clinically
Simplatab framework, 2025
significant prostate cancer

Automated ML framework with XAI integration; comprehensive bias detection and model

vulnerability assessment (Zaridis et al., 2025)

Decoding Radiomics: ML

Step-by-step radiomics workflow
workflow guide, 2024

Comprehensive review; emphasizes feature extraction, selection, and TML classifier choice for

robust clinical models (Cé et al., 2024)

AutoML radiomics for pulmonary

nodules, 2024

CT chest, nodule chronicity

prediction

Ensemble model: sensitivity 0.65, specificity 0.92, AUC 0.88; outperformed individual
radiologists (Mehta et al., 2024)

Prediction of the efficacy of
neoadjuvant chemotherapy in

breast cancer, 2024

MRI + histopathology images

Different models: sensitivity 0.37-0.88, specificity 0.69-0.91, AUC 0.65-0.91 (Xu et al., 2024)

Differentiation of thymic epithelial
tumors, 2023

Lung CT

Feature selection + RE, XGBoost, CatBoost, etc.; TML outperformed DL in small datasets; >90%
accuracy (Chang et al., 2023)

Multi-view SVM + for liver cancer,

2021

Ultrasound (B-mode, CEUS), liver

cancer

Multi-kernel SVM + using multi-phase features; accuracy 88.2%, sensitivity 87.0%, specificity
89.4% (Zhang et al., 2021)
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another recent paper, it was used for the relatively simple task of
discerning cells from background on fluorescent images to quantify
the gaps and assess cell migration (Bischoff et al., 2025). At the same
time it's not the only player in the field of TML for semantic
segmentation. This functionality is also included in such tools as
ilastik (Berg et al., 2019), QuPath (Bankhead et al., 2017) and various
Napari (Ahlers et al., 2023) plugins.

Evidence confirms that Image] WEKA and similar TML-based
segmentation tools successfully address “middle-ground” use cases,
requiring minimal training data and computational resources while
maintaining adequate accuracy for moderately complex
segmentation tasks. Nevertheless, systematic comparative studies
quantifying performance trade-offs between TML-based pixel
classification and modern foundation models across diverse

biological imaging contexts are scarce. Best practices for filter

10.3389/frai.2026.1695230

selection and hyperparameter tuning in TML segmentation
workflows also remain largely empirical.

Discussion and conclusions

Deep learning is rapidly transforming biomedical image analysis,
enabling unprecedented advances in image segmentation, classification,
and feature discovery (Shen et al., 2017; Haque and Neubert, 2020; Ben
Yedder et al., 2021). Its capacity to automatically learn complex,
hierarchical representations from raw data has opened entirely new
horizons for precision diagnostics, personalized medicine and
biomedical research. However, these remarkable capabilities come at a
price: deep learning models are inherently complex, computationally
demanding, and often require large, well-annotated datasets for robust
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Decision scheme for selecting between TML and DL in biomedical image analysis.
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training. Their “black box” nature also presents significant challenges for
clinical interpretability and reliability, particularly in high-stakes medical
settings (Luo et al,, 2019; Salahuddin et al., 2022; SAHIN et al., 2025).

At the same time, there are numerous clinical and research
scenarios where such complexity is unnecessary or even
counterproductive. Many diagnostic and prognostic tasks involve well-
understood imaging biomarkers or operate in data-limited
environments—contexts in which the interpretability, efficiency, and
lower data requirements of TML approaches offer clear advantages. In
these cases, the sophistication of deep learning may be redundant,
introducing additional barriers without substantial gains in
performance or clinical value. The same applies to biomedical research:
deep learning is the “go-to” method for complex tasks, but there are a
lot of scenarios where a simpler TML approach is more efficient.

To guide researchers in navigating these trade-offs, we summarize
the decision-making process in Figure 2. As illustrated, TML remains the
optimal strategy in contexts defined by limited computational resources,
small dataset sizes, or strict requirements for biological interpretability.

TML thus occupies a unique and increasingly important niche in
biomedical image analysis. It excels in the “middle ground”—tasks
that are too complex for manual or rule-based methods, yet do not
justify involvement of deep neural networks. Importantly, TML-based
tools are not a legacy approach—it is an actively developing field that
continues to deliver innovation. For example, the integration of
radiomic features with pathomorphological and clinical data, the
advent of automated machine learning platforms, and ongoing
advances in feature standardization (Zwanenburg et al., 2020; Whybra
etal,, 2024) all underscore the vitality of this field.

Thus, TML offers significant advantages over deep learning
methods in the field of biomedical image processing. It offers better
interpretability, possibility of multimodal data integration, and often
performs better on limited data with less computational demands,
which are crucial features for both medicine and biological research.
TML bridges the gap between manual analysis and the complexities of
deep learning, and ensures that image analysis in biomedicine remains
accessible, interpretable, and impactful across diverse scenarios.

Future directions

The ongoing evolution of TML in biomedical imaging opens
several promising directions for future development. Hybrid
TML-DL architectures represent a particularly compelling way,
where deep learning serves as an automated feature extractor while
TML classifiers maintain interpretability and multimodal integration
capabilities. Continued maturation of standardization initiatives,
exemplified by the Image Biomarker Standardization Initiative (IBSI),
will ensure that TML-based radiomics features remain reproducible
across institutions, scanners, and imaging protocols, with extension
to modalities beyond radiology such as microscopy and ultrasound
(Zwanenburg et al., 2020; Whybra et al., 2024). Rapidly advancing
AutoML frameworks for TML may soon incorporate federated
learning capabilities for collaborative model development across
clinical sites and integrate explainable AI modules to facilitate
regulatory approval and clinician trust (de Vries et al., 2023; Ali et al.,
2024; Raza et al., 2025; Singh et al., 2025). The underexplored strength
of TML in multimodal data fusion warrants systematic investigation.
This investigation should determine optimal strategies for integrating
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imaging-derived features with genomics, proteomics, electronic
health records, and patient-reported outcomes. The goal is to yield
more holistic and personalized diagnostic models. Finally, as vVLLMs
continue to advance, their potential synergy with TML should be
explored. A promising integration strategy could involve vLLMs
generating rich semantic descriptions of medical images, which TML
classifiers could then combine with traditional radiomics features and
clinical metadata to create interpretable yet powerful diagnostic
pipelines.
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