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Private speech: similarities
between a large language model
and children

Zhiyu Liang*!, Leon On Tay'*' and Simon Dennis*?

!Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC,
Australia, 2Intelligent Silicon Pty Ltd., Melbourne, VIC, Australia

This study investigates the capability of a non-reasoning large language model
(GPT-40) to generate private speech and evaluates its similarity to human private
speech. We placed the model in a simulated solitary block-construction scenario
via textual prompts, eliciting and classifying its self-directed utterances using an
established semantic framework for categorizing private speech in children. The
distribution of these categories was compared to two human benchmarks: a classic
block-construction study and a more recent experiment employing a similar task
setting. Analysis using scatter plots and Pearson correlation coefficients revealed
a striking pattern: GPT-40's semantic profile showed negligible similarity to the
classic benchmark (r = 0.01) but very strong similarity to the recent benchmark (r =
0.93). This discrepancy is interpreted as stemming from differences in task nature,
namely goal-directed, scaffolded task versus self-determined, unscaffolded play,
which exert a stronger influence on speech content than experimental subject
difference between GPT-40 and children. In an exploratory serial recall study, we
tasked GPT-3.5-Turbo-instruct and observed incidental private speech, indicating that
the phenomenon extends across contexts. This provides an avenue for investigating
LLM replication of private speech and, potentially, computational consciousness.

KEYWORDS

consciousness, developmental psychology, inner speech, large language model,
private speech

1 Private speech in human research

Private speech refers to the phenomenon where individuals, particularly children, talk
aloud to themselves during activities. It is distinct from social speech, as it is not directed at
others. Private speech is considered a transitional form of communication that bridges social
speech and inner speech, the latter being the internalized, silent form of self-dialogue
(Vygotsky, 1962; Winsler and Naglieri, 2003).

1.1 Theories of private speech

Although the phenomenon of private speech was first studied by Piaget (1955), who
interpreted it as “egocentric speech” reflecting children’s cognitive inability to adopt others’
perspectives, it was Vygotsky’s (1962) theory in Thought and Language that gained prominence.
Vygotsky contested Piaget’s view, arguing that such speech is not a deficit but a vital transitional
stage toward self-regulation, ultimately evolving into inner speech.

Central to Vygotsky’s framework was the idea that private speech arises from early social
interactions, particularly during cognitively challenging tasks within the Zone of Proximal
Development, defined as the range of tasks a child can accomplish with guidance from more
knowledgeable others. Through collaborative problem-solving, children internalize language
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from social exchanges, transforming it into self-directed speech. This
process enables a shift from other-regulation to self-regulation, with
private speech acting as a tool for thought. Over time, it becomes
internalized as silent inner speech, serving as the foundation for
higher cognitive functions.

Inner speech, or covert/silent speech, or inner verbal thought,
refers to the silent, internal use of language in thinking (Alderson-Day
and Fernyhough, 2015). According to Vygotsky’s sociocultural theory,
young children’s private speech initially demonstrates explicit verbal
expression and interpersonal communicative qualities; however, it
gradually becomes abbreviated and internalized, shedding phonetic
articulation and syntactic complexity until fully transitioning into
silent inner speech (Vygotsky, 1987). Thus, Vygotsky’s theory holds
that private speech eventually “goes underground” and transforms
into the abbreviated, covert inner speech used by older children and
adults (Vygotsky, 1987). Empirical developmental studies have
provided support for this internalization process by showing gradual
phonetic reduction in children’s private speech (Berk, 2014) and its
functional link to cognitive development (Winsler et al., 2009).

Subsequent research has expanded on Vygotsky’s ideas, exploring
the developmental trajectory, functions, and methodologies for
studying private speech.

1.2 Developmental trajectories of private
speech

Vygotsky’s initial theory proposed that private speech follows a
curvilinear, inverted U-shaped trajectory across childhood: overt self-
talk becomes increasingly frequent, peaks during the preschool years,
and then declines in early elementary school as it transitions to
whispered speech, inaudible muttering, and eventually silent inner
verbal thought. Over time, research has provided partial support for
this broad developmental trend. While there is strong evidence that
private speech shifts from overt, externalized forms to more
internalized modes as children age, the hypothesis that specific ages
rigidly mark the emergence or disappearance of private speech lacks
robust empirical backing (Berk, 2014).

Overall, two developmental trajectories are supported by research.
At a broader developmental level, private speech follows a general
trajectory: overt self-talk is most frequent during early childhood,
peaking in the preschool years, and gradually becoming more
internalized and less outwardly observable by around age 7 or 8
(Behrend et al., 1989; Kohlberg et al., 1968). However, a smaller-scale,
immediate pattern also exists within individuals of any age when they
tackle cognitively demanding tasks. Here, overt private speech surges
during initial struggles with the task and diminishes as the person
gains proficiency over time or through repeated practice (Duncan and
Pratt, 1997; Duncan and Cheyne, 2001).

1.3 Functions of private speech

Private speech plays a crucial role in task regulation and problem-
solving by helping children plan and execute complex actions (Berk,
1992). When engaged in tasks like building a block tower, children
verbalize each step (e.g., “T'll put the green one here, then the red one
on top’), which reinforces memory and guides behavior
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(Alderson-Day and Fernyhough, 2015; Winsler et al., 2009). This self-
monitoring mechanism aids in error correction, as children recognize
and adjust mistakes aloud (e.g., “That looks crooked, I need to fix it”),
allowing for immediate feedback and strategic adjustments (Berk,
1992). By vocalizing instructions or repeating key details (e.g., “First,
three blocks go here...one, two, three”), it also enhances short-term
recall through verbal rehearsal (Winsler et al., 2009).

Beyond cognitive regulation, private speech serves an emotional
and motivational function (Vygotsky, 1962). Children often use self-
encouragement (e.g., “I can do this!”) to maintain focus and
confidence in challenging situations (Berk and Spuhl, 1995).
Verbalizing anxieties (e.g., “I'm nervous about this part”) can also help
manage stress and sustain engagement in problem-solving (Winsler
et al,, 2003). Studies show that children who frequently use private
speech tend to persist longer and perform better on difficult tasks
(Berk and Winsler, 1995; Fernyhough and Fradley, 2004).

1.4 Research methods of private speech

Private speech is commonly researched using observational
methods, including naturalistic observation and laboratory-based
observation. These approaches allow for systematic analysis of how
and when private speech emerges in real-world settings and controlled
conditions.

Naturalistic observation involves studying children in familiar
environments, such as homes, classrooms, or playgrounds, without
interference from researchers (Winsler et al., 2009). This method
provides ecologically valid data, capturing spontaneous private speech
during everyday activities like playing, problem-solving, or completing
schoolwork. For instance, researchers might observe children talking
to themselves while building with blocks or solving puzzles, analyzing
how speech guides their actions and adapts to task complexity (Berk,
1992). A key advantage is that it reflects authentic behavior, but a
limitation is the lack of experimental control, making it difficult to
establish causality.

In contrast, laboratory observation involves structured tasks in
controlled settings, allowing researchers to manipulate variables and
examine private speech under specific conditions (Berk, 1992). Tasks
such as puzzle-solving or serial recall memory exercises (Elliott et al.,
2021) are able to elicit private speech, enabling systematic comparison
across different age groups or cognitive abilities. This method
enhances reliability and reproducibility.

2 Large language models and private
speech

Transformer-based large language models (LLMs), as introduced
by Bahdanau et al. (2014) and further developed by Vaswani et al.
(2017), have demonstrated significant prowess in mimicking cognitive
functions traditionally attributed to specialized cognitive frameworks
(Piantadosi, 2023). For example, research by Webb et al. (2023)
highlights that models like GPT-3 exhibit a capability to spontaneously
generate solutions for a wide array of analogy challenges without prior
specific training. Despite some criticisms aimed at the transformer
architecture’s proficiency in handling complex cognitive tasks (Han et
al.,, 2022; Mahowald et al., 2023; Binz and Schulz, 2023; Chomsky et
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al.,, 2023), these concerns have largely been mitigated as the models
have grown in size and the datasets used for training have become
more comprehensive (Han et al., 2024).

Building on the literature on the cognitive capabilities of LLMs,
which have been shown to simulate human-like functions such as
personality traits (Jiang et al., 2024), theory of mind reasoning
(Kosinski, 2024) and self-directed problem-solving (Bubeck et al.,
2023), we asked a further question: to what extent can LLMs produce
private speech? And if LLMs can produce private speech, how similar
is it to human private speech? Our study, therefore, investigates
whether an LLM spontaneously produces private-speech-like
utterances when placed in an analogue of the classic laboratory
paradigm and how closely the form and frequency of any such output
match the patterns documented in human participants.

2.1 Reasoning traces and private speech

A reasoning model (reasoning LLM) refers to an LLM explicitly
trained to solve complex tasks by mimicking structured, logical
problem-solving processes. Unlike non-reasoning models that
generate answers directly, reasoning models produce intermediate
“reasoning traces” They are step-by-step logical sequences similar to
a human’s internal monologue when tackling challenges. These traces
act as a scaffold for systematic thinking, enabling the model to
decompose problems, test hypotheses, and refine conclusions before
finalizing a response. This mechanism parallels human inner speech
to some extent. Human inner speech and the reasoning traces of LLMs
both manifest, at least superficially, as language-mediated cognitive
processes. Inner speech is commonly employed by humans for mental
operations such as silently narrating steps, posing questions, and
simulating dialogues. Similarly, reasoning models demonstrate
problem-solving capacity through linguistic mediation, where
reasoning traces (e.g., chain-of-thought outputs) express the
sequential processes of models generating outputs via language-based
representations.

Efforts have been made to investigate LLM and inner speech.
Most works, similar to the line of research promoting the reasoning
capabilities (e.g., chain-of-thought prompting) in LLMs, have been
trying to configure inner speech capability in language models or
artificial agents in order to perform specific tasks to detect
improvement in performance. For example, Pipitone and Chella
(2021) designed an inner speech cognitive architecture which allows
robots to verbally label the perceived entities and talk to themselves.
Benefiting from the conceptual reasoning of inner speech, such a
robot passed the mirror test. Similarly, Huang et al. (2022) developed
an inner monologue system by providing embodied environment
feedback to an LLM, which they applied to assist a robotic agent in
performing tasks. Their results showed that the inner monologue-
assisted robot achieved a higher success rate compared to both
traditional methods and an LLM without the embodied feedback.
Additionally, their findings demonstrate that inner monologue enables
emergent capabilities absent explicit prompting, including self-
initiated goal revision during plan infeasibility and continuous
adaptation to human instructions.

However, not much work was done on investigating the
spontaneous capability in LLM inner speech. Philosophical
investigations (e.g., Mann and Gregory, 2024) provide mixed evidence
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regarding the existence of inner speech in LLMs based on a Turing-
like approach. In their study, the authors tested text-davinci-003
through dialogue tasks (direct queries, final-word extraction, and
rhyme detection). While the model explicitly claimed to possess inner
speech and succeeded in partial tasks, its inconsistent performance on
non-word rhyme tasks revealed contradictory rationales. Mann and
Gregory argue that LLMs operate as statistical next-word predictors,
rendering observed behaviors insufficient to attribute inner speech.
Drawing on developmental psychology, our work investigates an
LLM’s spontaneous capabilities in generating private speech. We
aimed to adapt experimental designs from this field and compare the
LLM’s performance with human benchmarks.

2.2 Reasoning model versus non-reasoning
model

To investigate spontaneous private speech-like behavior in
language models, we deliberately chose to employ non-reasoning. The
training corpus of the reasoning models is augmented with
reinforcement-learning methods that explicitly optimize step-by-step
reasoning. Hence, using non-reasoning models without this additional
augmentation provides a baseline for assessing whether self-directed
utterances emerge organically from the model’s learned textual
patterns, rather than from explicit prompting and training. By
contrast, a reasoning-enabled architecture is trained to maintain and
update hidden traces, thereby effectively modeling inner thoughts,
such as planning statements and self-evaluations (Wei et al., 2022;
Bubeck et al., 2023). Using a non-reasoning model thus avoids
artificially boosting self-regulatory content and ensures that any
private-speech phenomena we observe truly arise from a model’s
default generation process.

2.3 Testing non-reasoning large language
model with private speech task

Our goal is to determine whether an LLM, placed in a private
speech task context, exhibits analogous self-directed speech patterns.
Winsler et al. (2003) developed a 10-category classification system that
provides a granular, semantic classification, distinguishing categories
such as self-guiding directives, task-relevant descriptions, and
motivational statements. This framework is ideal for analyzing
LLM-generated private speech as it allows for comparisons with
established human data and aligns with private speech tasks.

Prior research by Winsler et al. (2003) found that human children
produce private speech, which they classified into 10 categories,
namely, Exclamations, Descriptions of Task/Environment, Nonwords,
Descriptions of self, Evaluative/Motivational statements, Plans/
Hypothetical Reasoning, Commands to Self, Questions/Answers,
Transitional Statements, and Other utterances. Exclamations capture
brief affective bursts (e.g., “oh,” “oops”). Descriptions of Task/
Environment note properties of the materials or context (e.g., “this
piece is blue”). Nonwords are vocalizations without lexical content
(e.g., sound effects, humming). Descriptions of Self are statements
about on€’s state or behavior (e.g., “I am stuck”). Evaluative/
Motivational Statements include self-praise, critique, or effort
statements (e.g., “this is hard, but I can do it”). Plans/Hypothetical
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Reasoning cover future-oriented or conditional planning (e.g., “first I
sort, then I build”). Commands to Self are imperatives that guide one’s
actions (e.g., “put this here”). Questions/ Answers are queries posed to
oneself, optionally followed by an answer (e.g., “where does this go...
here”). Transitional Statements signal shifts between steps or phases
(e.g., “okay, next”). Other utterances encompass content not captured
in the different categories.

To identify a contemporary and culturally distinct replication of
Winsler’s task, we systematically screened the citing literature and
identified a recent study by Ucar and Sofu (2021). Their work applied
Winsler’s categorization system and construction task in a Turkish
context under a free-play setting without scaffolding, effectively
replicating the paradigm under more naturalistic conditions. By
comparing against both the original paradigm and its contemporary,
similar study, we can examine whether the distribution of semantic
categories in LLMs resembles data observed in humans across cultural
contexts and in a more up-to-date developmental cohort.

Testing an LLM within this established human experimental
framework allows us to explore whether artificial models, like
children, employ language in ways that parallel private speech, thus
offering new insights into both LLM-generated language and the
cognitive underpinnings of self-directed speech.

3 Method

To examine whether a non-reasoning LLM can generate private
speech, we adapted a classic developmental psychology paradigm for
use with an LLM. The core of our approach was to take an established
experimental task and implement it through carefully designed textual
prompts.

The following sections detail the data sources, experimental
stimuli, procedural setup, and analytical methods.

3.1 Data and experimental stimuli

Our study utilized two primary sources of data: (1) two human
benchmark datasets from established developmental psychology
research, and (2) a novel dataset of LLM-generated utterances
collected through our experimental procedure.

3.1.1 Human benchmark data

We used the private speech data from Winsler et al. (2003) as our
first human baseline for comparative analysis. To derive the
proportional distribution for the 10 semantic categories, we extracted
the mean number of utterances per category for the block-
construction task at Time 1 (T1) from their Table 1. We then summed
the mean utterances across all 10 categories to obtain a total and
calculated the proportion of each category by dividing its
corresponding mean number by this total. This derived proportional
distribution is based on data from N = 32 children (sixteen 3-year-olds
and sixteen 4-year-olds).

We also used the private speech data from Ucar and Sofu (2021)
as the second human baseline for comparative analysis. While they
used children aged 3-5 years old, we only used their data of children
aged 3-4 years, as this age range represents the peak of overt private
speech before it begins to internalize. Classic and subsequent studies
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show that younger preschoolers produce substantially more audible
self-directed speech than older children (Piaget, 1955; Klein, 1964;
Kohlberg et al., 1968), making this developmental window ideal for
observing private speech in its most externalized form. To derive the
proportional distribution of the 10 semantic categories, we extracted
the mean values for each category across the two age groups from
their Table 3. For each category, we summed its mean numbers across
the two age groups. The total was calculated by summing the mean
numbers of all 10 categories, after merging “Questions/Answers of the
Imaginary Characters” and “Questions/Answers to the Self” into a
single “Questions/Answers” category, across the three-year-olds and
four-year-olds. The proportion of each semantic category was then
calculated by dividing its aggregated mean by this total. This derived
proportional distribution is based on data from N = 18 children (eight
3-year-olds and ten 4-year-olds).

3.1.2 LLM-generated data

3.1.2.1 Input prompts (stimuli)

The core input to the LLM consisted of a structured system
prompt designed to simulate a solitary play scenario. The prompt
stated “You are a three/four-year-old child in a room that contains
playing blocks on the floor. You are the only person in the room; there
is no one else here to talk to” The three/four placeholder was varied
across trials to match the age distribution in the human study.

3.1.2.2 Output corpus

The model GPT-40’s text-based responses were collected via the
OpenAI API (Hurst et al., 2024). We segmented the output to isolate
utterances from descriptions of action (e.g., *Walks over to the blocks
and starts picking them up one by one*), resulting in a final corpus of
509 LLM-generated utterances for analysis (e.g., “Ooo, blocky!”). The
number of utterances per trial ranged from 22 to 94 (Median = 65.5).
This dataset of annotated LLM utterances is publicly available at:
https://osf.io/t3us2/.

3.2 Experimental task and procedure

The selection of the Block-construction task (Winsler et al., 2003)
was guided by an evaluation of the feasibility and suitability of tasks
traditionally used to study human private speech within the unique
constraints of LLMs as experimental subjects. While multimodal LLMs
(e.g., GPT-40) possess nascent vision comprehension capabilities, pilot
testing revealed significant practical limitations. Specifically, attempts
to adapt vision-comprehension tasks like the sequencing task
(Frauenglass and Diaz, 1985) encountered substantial challenges: (1)
Current multimodal APIs presented technical hurdles for seamless
image integration and processing within our experimental pipeline,
and (2) more critically, preliminary testing (via the UI) revealed that
GPT-40s understanding and execution of visual reasoning tasks were
insufficiently reliable to meet our research needs. The construction task
could be adapted and, therefore, mediated solely through textual
instruction, offering a highly feasible and controlled paradigm. It allows
us to present a scenario that inherently elicits self-directed verbalisation
within a non-social context (i.e., the LLM is prompted as if alone,
focusing solely on the task), aligns well with the textual nature of LLM
output, and, crucially, provides a direct benchmark against established
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human data for comparative analysis. We therefore chose the block-
construction task, which allows us to compare the performance of
LLMs with humans by setting the scenario with prompts.

As detailed in Section 3.1.2, the GPT-40 model was placed in the
simulated solitary play scenario using the designed prompt. To emulate
a cumulative monologue, each independent trial involved 20 sequential
model responses, with the model’s prior output appended to its
message history to provide context for subsequent replies. The model’s
token output was constrained to 60 tokens per response to ensure
brevity.

We conducted a total of eight independent trials (context was
reset between trials), with four trials per age condition (three-year-old
and four-year-old). No user inputs were provided after the
initial prompt.

3.3 Speech coding and classification

We classified all LLM utterances into the 10 semantic categories
defined by Winsler et al. (2003): Descriptions of the Environment/
Task, Plans/Hypothetical Reasoning, Evaluative /Motivational
Statements,  Questions/Answers, Nonwords, = Exclamations,
Descriptions of the Self, Commands to the Self, Transitional
Statements, and Other utterances.

Two researchers independently classified all 509 speech utterances.
The interrater reliability, measured by Cohen’s kappa, was 0.91 across
the eight trials, which is considered almost perfect agreement (Landis
and Koch, 1977). For the final analysis, we used the average of the two
researchers’ category distributions as the resulting distribution for

the LLM.

3.4 Data analysis

Rather than aiming to test for statistically identical proportions
across categories, our analysis sought to evaluate the similarity in
overall semantic profiles of private speech between the LLM and
human children. Accordingly, we utilized scatter plots and Pearson
correlation coefficients to analyze three comparison pairs: the LLM
versus Winsler et al. (2003), the LLM versus Ucar and Sofu (2021), and
Winsler et al. (2003) versus Ucar and Sofu (2021).

4 Result

We screened all 509 LLM utterances against Winsler et al’s (2003)
criteria, with every utterance classified into one of their 10 private-
speech categories. To assess whether LLMs are capable of generating
private speech, we analyzed the utterances produced by the model. To
decide the degree of similarity of the semantic profile of private speech
generated by the model to those of human benchmarks, we compared
the distribution of utterance categories among the three data sources.

4.1 Capacity for generating private speech
GPT-40 was found to generate speech that meets the criteria for

private speech, as the utterances were not directed at another subject

except for itself and often consisted of self-directed descriptions of
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movement and thought processes. The model demonstrated the ability
to produce speech aligned with internal reasoning, self-regulation,
and task-related descriptions, indicating that LLMs can effectively
simulate private speech.

4.2 LLM-human comparisons and
benchmarks comparison

Figure 1 presents a comparison among three data sources,
GPT-40, Winsler et al. (2003), and Ucar and Sofu (2021) via scatter
plots with fitted correlation lines to illustrate their linear relationships.

Plot A reveals negligible similarity between the semantic profiles
of GPT-40 and Winsler et al. (2003), with a correlation coefficient of
r=0.01. This indicates a very weak correlation, consistent with a
negligible effect size according to conventional guidelines
(Cohen, 1988).

Plot B demonstrates a near-perfect similarity between the
semantic profiles of GPT-40 and Ugar and Sofu (2021), with a
correlation coefficient of r = 0.93. This represents an exceptionally
strong correlation (Cohen, 1988).

To meaningfully interpret the correlation between the LLM and
human benchmarks, it is essential to consider the baseline level of
similarity observed among existing human studies. Plot C shows a
slight similarity between the semantic profiles of Winsler et al. (2003)
and Ugar and Sofu (2021), with a correlation coefficient of r = 0.13.
This suggests a weak correlation (Cohen, 1988).

As shown in Figure 2, when comparing category proportions
across the three data sources, GPT-40 demonstrated a pattern that was
highly aligned with Ugar and Sofu (2021) but diverged from Winsler
et al. (2003). Specifically, GPT-40 and Ugar and Sofu (2021) both
showed substantially elevated proportions of Descriptions of the
Environment/Task relative to Winsler et al. (2003). GPT-40 unlike
Ucar and Sofu (2021), overproduced Evaluative/Motivational
to Winsler et al. (2003). GPT-4o0
underrepresented categories that were more prominent in Winsler et

statements compared
al. (2003), including Descriptions of the Self, Transitional Statements,
and Other utterances. Compared to Ugar and Sofu (2021), GPT-40
overproduced Evaluative/Motivational Statements, and
underproduced Questions/Answers and the Other category. Ugar and
Sofu (2021), compared to Winsler et al. (2003), similarly overproduced
Descriptions of the Environment/Task and Questions/Answers, but
underproduced Transitional Statements, Exclamations, Nonwords,

Descriptions of the Self, and Other utterances.

5 Discussion

Opverall, we aimed to investigate the capacity of a non-reasoning
LLM to generate private speech and the extent to which private speech
is similar to that of humans in terms of the category distribution.
Congruent with prior investigations of LLM capabilities (Serapio-
Garcia et al., 2023; Kosinski, 2024; Betley et al., 2025), we found that
GPT-40 is capable of generating speech that is not addressed to
anyone, which adheres to the definition of private speech. Our
experiments demonstrate that GPT-4o, trained on human corpora,
exhibits characteristics of human-like private speech patterns. We
found that the proportions of categories for private speech generated
by GPT-40 showed negligible similarity from the proportions of
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FIGURE 1

(C) Winsler et al.(2003) Versus Ucar and Sofu (2021)

Scatter plots of LLM-human comparisons. (A) Comparison of category proportions between GPT-40 and Winsler et al. (2003), across 10 categories.
(B) Comparison of category proportions between GPT-40 and Ugar and Sofu (2021), across 10 categories. (C) Comparison of category proportions
between Winsler et al. (2003) and Ugar and Sofu (2021), across 10 categories. Each dot represents one of the 10 categories.

(B) GPT-40 Versus Ugar and Sofu (2021)
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Winsler et al. (2003) but strong similarity to the proportions of Ucar
and Sofu (2021). For context, the proportions of Ugar and Sofu (2021)
and Winsler et al. (2003) are weakly related, indicating that our
findings are likely due to task nature differences rather than general
equivalence to human private speech.

When examining the scatterplots of category proportions, certain
categories showed notable descriptive deviations, namely Descriptions
of the Environment/Task, Evaluative/Motivational Statements,
Questions/ Answers, Transitional Statements and Other.

Notably, a striking disparity exists in category prevalence between
GPT-40 and Winsler et al. (2003): Descriptions of the Environment/
Task (e.g. “so many toys!”) dominate GPT-40 outputs, constituting
48.8% of all generated content. The significant prevalence of
environmental and task-related descriptions in GPT-40-generated
private speech may stem from their substantial presence in training
corpora. When writing for absent readers, humans must explicitly
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describe the observable setting, ongoing tasks, their progress, and
resulting environmental alterations, necessitating extensive descriptive
passages. GPT-4o0 internalized this characteristic textual feature
during training, consequently replicating the emphasis on
environment and task descriptions in its private speech output.

GPT-4o0 did not produce any utterances in the Other category. The
Other category refers to utterances that do not belong in the nine
other categories (Winsler et al, 2003). GPT-40 underproduced
compared to children in both benchmarks (0% vs. 20.6% from Winsler
et al. (2003) and 4.2% from Ucar and Sofu (2021). The absence of
output sorted into the other category provides greater evidence for the
effect of its instruct training on the output. For human children, an
example of output in that category could be a non-task-relevant
utterance. However, due to GPT’s instruct training, the model is tuned
to generate output related to the prompt, hence it is unlikely to
generate off-topic utterances.
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FIGURE 2
Distribution of category proportions across the three data sources. Percentages may not sum to 100% due to rounding.

The prevalence of Evaluative/Motivational Statements in GPT-40-
generated private speech may stem from its training corpus. The
training corpus of GPT-40 comprises 60% Common Crawl (webcrawl
data), 16% books, 3% Wikipedia and 21% other web text (Brown et
al., 2020), hence GPT-40 could be more frequently exposed to explicit
expressions of evaluation and encouragement due to their use by
authors to structure narratives, or maintain reader engagement.
Conversely, the brief private speech utterances muttered during tasks
by children would be under-represented in the corpus (the source
being transcripts of experiments). GPT-40’s instruction tuning
together with reinforcement learning from human feedback (RLHF)
further encourages supportive, confidence-building phrasing (Ouyang
et al,, 2022). Instruction tuning refers to training the LLMs on
exemplars demonstrating how the LLMs should respond (i.e., helpful,
polite, and explicitly supportive). RLHF refers to post-training
refinement of LLM behavior based on human preferences, ensuring
that it is helpful, harmless, and honest (Ouyang et al., 2022). These
factors plausibly amplify this category.

GPT-40 underproduced Transitional Statements compared to
Winsler et al. (2003). However, it produced a similar proportion
compared to Ucar and Sofu (2021). The mechanism behind this
phenomenon could plausibly be attributable to differences in task
nature across our study Winsler et al. (2003) and Ugar and Sofu
(2021), specifically the contrast between open-ended and goal-
directed scenarios.

The observed variation in similarity when comparing GPT-40
output to the two distinct human benchmarks may be better explained
by differences in task nature between the benchmarks themselves,
rather than by the subject (GPT-40 vs. children). Specifically, it
appears to stem from whether the setting is structured and scaffolded,
or open and self-determined. Both Ugar and Sofu’s (2021) work and
our work employed a play-based context with minimal scaffolding and
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no prescribed goal, using simple scenarios (e.g., freely arranged items)
to elicit spontaneous private speech. This shared self-determining
nature aligns with literature suggesting that private speech during
open-ended activities reflects child-selected topics and self-defined
tasks (Krafft and Berk, 1998), which likely contributes to the higher
similarity in semantic profiles between these two. In contrast,
Winsler’s paradigm involved a clear, scaffolded goal (e.g., reproducing
a specific model), which constrains self-determination and orients
speech toward instruction-following and recall, resulting in a differing
semantic profile. Therefore, the task nature seems to exert a stronger
influence on private speech content than the subject difference
between language models and children.

5.1 Evidence for incidental private speech
by LLMs

Here, we distinguish incidental private speech, defined as
utterances that emerge during tasks not designed to elicit self-talk and
without any instruction to think aloud, from spontaneous private
speech, defined as utterances produced when the model is placed in
an open-ended context that affords self-talk but does not require
specific content.

A critical limitation arises from our methodological framework:
all model outputs were elicited through prompts, though the prompts
were designed to avoid requiring direct responses. Such an issue might
be called the prompt paradox, whereby providing prompts that direct
answers, such as through chain-of-thought prompting, results in the
output being compliant to the prompt rather than true self-regulation
(Wei et al., 2022). The construction-task data, for example, rely on a
child-play prompt that implicitly licenses narrative continuations;
hence, critics can plausibly argue that the utterances merely echo
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child-story templates present in the training corpus (Bubeck et al.,
2023). However, can LLMs autonomously generate private speech
without explicit prompting, mirroring the spontaneous private speech
observed in human cognitive development?

To address this, we propose adapting the analysis methodology
from developmental psychology research on private speech. In
human studies, childrens private speech generated during task
performance (e.g., block-construction activities) is systematically
analyzed, independent of the task performance. By analogy, we seek
to investigate whether LLMs can generate incidental private speech
during task performance, that is, self-directed verbalisations distinct
from their prompted outputs, without any attempt to prompt
private speech.

To investigate this issue, we ran an exploratory serial-recall
study focused on manipulating memory load. We tested GPT-3.5-
Turbo-instruct. This model was used as other more advanced
models exhibited the ceiling effect. The model received a single
prompt, “Now recall the list in order,” for lists of 100, 200, and 300
items. No mention was made of strategies or emotional responses.
Under these high-load conditions, the model incidentally produced

» <«

remarks such as “its a more challenge,” “as best you can,” and even
recall strategies such as “of the alphabet Such unprompted
comments emerged only when list length exceeded the model’s
comfortable span; with seven-item lists (the classic human limit;
Miller, 1956), performance hit ceiling, and no commentary
appeared. This mirrors long-standing findings that children’s private
speech peaks when the cognitive demands of the task are high
(Berk, 1992; Winsler et al., 2009). These preliminary results suggest
that cognitive strain can elicit incidental private speech in an LLM
like GPT-3.5-Turbo-instruct.

6 Conclusion

This study set out to determine whether a non-reasoning large
language model (GPT-40) can generate private speech and, if so, how its
self-directed utterances align with those produced by humans. Our
results show that the model reliably produced speech that was not
socially addressed, satisfying the formal criteria for private speech;
however, the proportions generated were not uniformly human-like.
Rather than resembling the distribution reported by Winsler et al. (2003),
our results differed largely. Conversely, GPT-40 was highly similar with
Ugar and Sofu (2021), who used a similarly open-ended task. We stress
that task nature differences play a role in comparison of our results versus
human datasets. Furthermore, we show that with modifications in tasks
(i.e., our exploratory serial recall task), incidental private speech may
emerge under cognitive load, opening avenues for further inquiry into
whether and how LLMs simulate the functional roles of private speech
in humans, and potentially clarify computational consciousness.
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