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Cardiovascular disease (CVD) remains the foremost contributor to global illness
and death, underscoring the critical need for effective tools that can predict risk
at early stages to support preventive care and timely clinical decisions. With the
growing complexity of healthcare data, machine learning has shown considerable
promise in extracting insights that enhance medical decision-making. Nonetheless,
the effectiveness and clarity of machine learning models largely rely on the
relevance and quality of input features. In this work, we explored and compared
four feature-selection strategies—Pearson correlation + Chi-squared test, Alternating
Decision Tree (ADT)-based scoring, Cross-Validated Feature Evaluation (CVFE),
and Hypergraph-Based Feature Evaluation (HFE)—to identify the most predictive
factors for CVD risk. Our analysis utilized data from the National Health and
Nutrition Examination Survey (NHANES), administered by the National Center for
Health Statistics under the Centers for Disease Control and Prevention (CDC),
encompassing demographic, clinical, laboratory, and survey data collected across
the U.S. from August 2021 through August 2023. Distinct sets of features obtained
through these selection techniques were used to develop random forest (RF),
support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) models,
which were then assessed for predictive effectiveness. To improve clarity and
understanding of model decision-making, SHapley Additive exPlanations (SHAP)
was used to interpret feature contributions in the top-performing model. Among
the evaluated methods, the HFE approach combined with SVM achieved the highest
overall accuracy (82.84%) and AUC (0.9027), outperforming both classical and
alternative strategies. The most influential predictors included age, total cholesterol,
history of high blood pressure, use of cholesterol-lowering medication, recent
prescription medication use, lifetime smoking history, family income-to-poverty
ratio, gender, educational attainment, and red cell distribution width. The web
application, accessible at https://shiny.tricities.wsu.edu/cvdr-prediction/, presents
predictive results, probability scores, and SHAP plots generated from the model
trained using the feature set selected by the hypergraph-based approach. This
study highlights the importance of strategic feature selection in refining predictive
accuracy and interpretability, offering a practical data-driven approach that could
aid clinicians in evaluating cardiovascular risk and tailoring preventive care.
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Introduction

Globally, cardiovascular diseases (CVDs) remain the primary
cause of death, responsible for around 17.9 million fatalities each year,
which equates to nearly one-third of all deaths worldwide (World
Health Organization, 2017). This broad category includes multiple
heart and circulatory system disorders such as coronary artery disease,
stroke, peripheral artery disease, rheumatic heart conditions, and
congenital cardiovascular defects (Ogunpola et al., 2024; Mousa et al.,
2014). Among these, coronary artery disease constitutes the majority,
accounting for approximately 64% of CVD occurrences (Ogunpola et
al., 2024). These statistics underscore the urgent need for effective
early detection strategies and preventive interventions to reduce the
global burden of CVD. CVD risk arises from a multifaceted interaction
between modifiable and non-modifiable factors. Lifestyle related
factors including elevated cholesterol, diabetes, obesity, tobacco use,
and physical inactivity are among the most influential modifiable
contributors (Sen, 2017; Yazdani et al, 2021). In contrast,
non-modifiable determinants include age, biological sex, and racial or
ethnic background (Guarneros-Nolasco et al., 2021; Mandava, 2024;
Pu et al,, 2012; Hossen et al., 2021). The widespread adoption of
unhealthy behaviors in today’s society has intensified these risks
(Pouriyeh et al,, 2017; Ambekar and Phalnikar, 2018). Therefore,
identifying high-risk individuals with precision and at an early stage
is essential to enable preventive actions, slow disease progression, and
decrease mortality rates.

Several traditional clinical risk assessment tools, such as the
Framingham Risk Score, SCORE charts, and the REGICOR model,
have been widely used to estimate cardiovascular risk (Gil-Guillen et
al., 2007; Khandoker et al., 2019; Assmann et al., 2002). However,
these approaches often rely on a limited set of predictors and assume
linear relationships, potentially oversimplifying the complex
mechanisms underlying CVD. In addition, their performance may
vary across populations, limiting generalizability. To overcome these
limitations, machine learning has emerged as a powerful alternative
for cardiovascular risk prediction. Machine learning methods can
model nonlinear and high-order interactions among heterogeneous
variables, offering greater flexibility and predictive accuracy than
traditional statistical techniques (Patel et al., 2015; Solanki and Barot,
2019; Kiran et al, 2022). Commonly used machine learning
algorithms include decision trees, support vector machines, k-nearest
neighbors, random forests, gradient boosting methods, XGBoost, and
deep learning architectures such as convolutional neural networks
(Ogunpola et al., 2024; Mandava, 2024; Azmi et al., 2022; Rahim et al.,
2021; Rubini et al., 2021; Elsayed and Syed, 2017; DeGroat et al., 2024).

Numerous machine learning-based studies have demonstrated
improved performance in predicting CVD risk using both clinical and
population-level datasets (Azmi et al., 2022; Rahim et al., 2021; Rubini et
al., 2021; Elsayed and Syed, 2017; DeGroat et al., 2024; Peng et al., 2023;
Shishehbori and Awan, 2024; Mansoori et al., 2024; van Os et al., 2023;
Neumann et al., 2022; Wallisch et al., 2021). Meta-analyses indicate that
ensemble and neural-network models often outperform conventional
statistical approaches (Cai et al, 2024; Krittanawong et al., 2020).
However, social and behavioral determinants remain underrepresented
in many models (Zhao et al., 2021). Several explainable-AI frameworks
combining machine learning with SHAP have revealed key predictors—
blood pressure, lipids, glycated hemoglobin, inflammatory markers, and
smoking status—that drive model decisions (Peng et al., 2023; Lundberg
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etal.,, 2020). Large-scale population datasets such as NHANES have been
widely used to model cardiovascular risk across diverse socioeconomic
and lifestyle profiles (Peng et al., 2023; Shishehbori and Awan, 2024;
Mansoori et al., 2024; van Os et al., 2023; Cai et al., 2024; Krittanawong
etal., 2020; Zhao et al., 2021; Terry et al., 2024). Despite these advances,
two major gaps persist. First, most CVD prediction studies employ a
single feature-selection strategy—typically univariate ranking or tree-
based importance—without comparing distinct paradigms, even though
feature selection strongly influences both model performance and
interpretability. Recent research underscores the importance of
evaluating stability-based methods (e.g., resampling or stability selection)
(Meinshausen and Bithlmann, 2010) and structure-aware paradigms
such as hypergraph-based feature selection, which can capture multi-way
relationships among features (Yang and Wu, 2023; Misiorek and
Janowski, 2023; Qu et al., 2024; Jin et al., 2023). Second, although many
machine learning models achieve high predictive accuracy, few have
been deployed as open, web-accessible, and reproducible tools that unite
interpretability with clinical usability.

While personalized predictive modeling has advanced
considerably, significant challenges remain in fully understanding the
complex relationships among contributing factors and in tailoring the
most effective treatment strategies for individual patients. A wide
range of socio-demographic, behavioral, and clinical factors contribute
to variability in CVD outcomes, including age, gender, race or Hispanic
origin, education, socioeconomic status, smoking history, physical
activity, sleep duration, diabetes status, body mass index, blood
pressure, lipid and glycemic profiles, inflammatory and hematological
markers, and medication use related to blood pressure and cholesterol
control. The complexity and interplay of these variables highlight the
need for data-driven models capable of capturing such nuances. We
hypothesize that machine learning methods can uncover and rank the
most influential factors in predicting CVD risk, offering an objective
and individualized framework for risk evaluation. Such a model has
the potential to assist healthcare professionals in selecting the most
suitable, patient-specific treatment plans to improve outcomes.

Unlike prior studies that primarily emphasized performance, this
work integrates a robust feature-selection paradigm with SHAP-
driven interpretability into an interactive, web-based framework,
addressing the gap between algorithmic explainability and clinical
usability. Using data from the NHANES, we developed a machine
learning pipeline for CVD risk prediction that integrates the optimal
feature evaluation method with interpretable model assessment. By
quantifying feature contributions, this framework helps prioritize the
most influential clinical, lifestyle, and demographic factors for
enhancing cardiovascular risk assessment and guiding individualized
treatment planning. This approach supports evidence-based decision-
making by health professionals and improves treatment outcomes for
patients at risk of CVD. The publicly available web application
provides predictive outputs, probability scores, and SHAP-based
visualizations. It also supports batch analysis and continuous
integration of new data to further enhance model performance and
adaptability.

Methods

Figure 1 outlines the full workflow of our proposed methodology.
The process begins with collecting data from individuals classified as
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either at risk for CVD or not at risk. From this data, a pool of candidate
features is generated. We then apply multiple feature evaluation
techniques—including Pearson correlation + Chi-squared test
(Pearson, 1896; Pearson, 1900), Alternating Decision Tree (ADT)
(Akhter and Miller, 2024; Freund and Mason, 1999), Cross-Validated
Feature Evaluation (CVFE) (Yang and Wu, 2023), and Hypergraph-
Based Feature Evaluation (HFE) (Misiorek and Janowski, 2023)—to
eliminate features with low relevance or minimal impact. The refined
feature subsets are subsequently utilized to train random forest (RF),
support vector machine (SVM), and Extreme Gradient Boosting
(XGBoost) models, which are evaluated for their predictive
performance.

Data and features

The data for this study were sourced from the NHANES, a publicly
available national health survey (Terry et al., 2024). The analysis used
demographics, examination, laboratory, and questionnaire data
collected between August 2021 and August 2023 as part of the
NHANES 2021-2023 cycle, which provides updated, post-pandemic
information on the health and nutritional status of the U.S. civilian,
noninstitutionalized population. NHANES is a cross-sectional survey,

10.3389/frai.2026.1690664

and therefore no longitudinal follow-up data are available. Each year,
approximately 5,000 participants from 15 survey locations across the
United States were selected through a multistage, probability-based
sampling design to ensure national representativeness. Data were
obtained through household interviews and standardized health
examinations conducted in Mobile Examination Centers (MECs),
which traveled to selected counties for roughly 9 weeks per site.
Participants aged 20 years or older with complete data on CVD
outcomes and predictor variables were included in this study. Those
who were institutionalized, on active military duty, or had missing
responses for key demographic, laboratory, or clinical variables were
excluded. For any feature with more than 30% missing data, that
variable was removed from the analysis to ensure data quality and
consistency. We considered only records that were complete for all
retained features. The outcome variable, CVD status, was defined
based on self-reported, physician-diagnosed stroke, heart attack,
coronary heart disease, or heart failure. This definition of CVD status
follows the CDC guidelines for NHANES analytic studies, where
cardiovascular outcomes are based on self-reported, physician-
diagnosed conditions. Although this approach does not involve
adjudicated clinical records or imaging confirmation, it has been
widely used and validated in prior epidemiological and machine-
learning investigations employing NHANES and similar large-scale

Data collection

Feature extraction

(Positive) Data collection Doctor told you have diabetes (DIQ010)
(Negative) Ratio of family income to poverty (INDFMPIR)
Total Cholesterol (LBXTC)
Direct HDL-Cholesterol (LBDHDD)
Glycohemoglobin (LBXGH)

Gender (RIAGENDR)

Age in years at screening (RIDAGEYR)
Race/Hispanic origin w/ NH Asian (RIDRETH3)
Education level - Adults 20+ (DMDEDUC2)
Systolic - oscillometric reading (BPXOSY1)
Diastolic - oscillometric reading (BPXODI1)
Body Mass Index (BMXBMI)

Waist Circumference (BMXWAIST)

Frequency of vigorous LTPA (PAD810Q)
Frequency of moderate LTPA (PAD790Q)
Minutes moderate LTPA (PAD800)

Minutes sedentary activity (PAD680)

Moderate LTPA unit (day/week/month/year) (PAD790U)
Sleep hours - weekdays or workdays (SLD012)
Sleep hours - weekend (SLD013)

HS C-Reactive Protein (LBXHSCRP)

Smoked at least 100 cigarettes in life (SMQ020)
Taking meds to lower blood cholesterol? (BPQ101D)
Ever told you had high blood pressure (BPQ020)
Doctor told you - high cholesterol level (BPQ080)
Taken prescription medicine, past month (RXQ033)
Sodium (mmol/L) (LBXSNASI)

White blood cell count (1000 cells/ul) (LBXWBCSI)
Hemoglobin (g/dL) (LBXHGB)

Platelet count (1000 cells/uL) (LBXPLTSI)

Red cell distribution width (%) (LBXRDW)

Cross-validated
feature
evaluation

Pearson
correlation +
Chi-squared test

T

Alternating
decision tree

Hypergraph-
based feature
evaluation

(RF, SVM, and XGBoost)

Machine learning model implementation

FIGURE 1
Overview of the procedure for detecting cardiovascular risk.
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survey datasets (Martin-Morales et al., 2023; Dinh et al., 2019),
demonstrating their utility for population-level cardiovascular-risk
modeling.

The final dataset comprised 335 individuals with CVD and 3,187
individuals without CVD. To mitigate class imbalance, a random
undersampling approach was applied to the non-CVD group,
resulting in a balanced dataset of 335 CVD and 335 non-CVD
participants. This balancing was conducted exclusively for predictive
modeling to ensure fair classifier evaluation and stable performance
metrics. The balanced dataset does not reflect population-level CVD
prevalence and was not used for causal inference. Therefore, all
performance metrics and feature contributions represent predictive
associations within the analytic dataset rather than causal effects.

The dataset was randomly divided into 80% training and 20%
testing subsets using stratified sampling to maintain proportional
representation of CVD and non-CVD participants. This approach was
consistently applied across all feature selection strategies to ensure a
fair comparison of model performance under identical data partitions.
All preprocessing and feature-selection steps were conducted
exclusively on the training subset to prevent data leakage, and model
evaluation was performed on the independent test subset. A total of
31 features were initially considered as candidate predictors and are
listed in Supplementary Table S1. Table 1 summarizes the demographic
and clinical features, their categorical groupings, distributions, and
corresponding p-values, with p < 0.05 denoting statistical significance.

Assessment of predictive features

To build an effective predictive model, it is vital to discard
non-contributory features during the preprocessing stage. In our
study, we independently applied four feature reduction techniques—
Pearson correlation + Chi-squared test (Pearson, 1896; Pearson,
1900), ADT (Akhter and Miller, 2024; Freund and Mason, 1999),
CVFE (Yang and Wu, 2023), and HFE (Misiorek and Janowski,
2023)—to refine the original feature set by eliminating attributes with
limited predictive value.

In the Pearson correlation + Chi-squared test approach, redundant
features were removed through a two-step filtering process. First,
Pearson’s correlation coefficient was calculated among continuous
variables to identify highly correlated pairs; when the absolute
correlation coefficient was > 0.90, one of the correlated features was
removed. Second, the Chi-squared test was applied to categorical
variables to assess pairwise associations, and for feature pairs with
p <0.001, one variable was retained while the other was excluded.
This traditional filter approach served as a reference to benchmark the
performance and stability of the more advanced feature-evaluation
strategies. A total of 26 out of 31 features were ultimately retained
through this selection procedure, as detailed in Supplementary Table S2.

The ADT approach merges the straightforward, interpretable
form of a conventional decision tree with the performance
enhancements derived from boosting algorithms. This technique
structures its model using decision tree stumps, which are
foundational units commonly associated with boosting. One of the
notable advantages of ADT is its flexible branching structure; unlike
traditional trees with mutually exclusive paths, ADT allows
overlapping routes, enabling multiple decision paths to contribute
simultaneously to a prediction. The structure begins with a prediction
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node that assigns a numerical score, followed by layers of decision
nodes that contain conditions used to evaluate input features. These
layers alternate in a pattern—prediction nodes followed by decision
nodes and vice versa. Decision nodes apply specific logical criteria,
while prediction nodes assign fixed numeric contributions to the
outcome. Importantly, prediction nodes appear at both the starting
point (root) and terminal ends (leaves) of the tree, underscoring the
distinctive, layered composition and operational logic that sets ADT
apart from conventional decision tree models.

The ADT constructs a series of classification rules, each composed
of three main elements: a prerequisite condition, a logical condition,
and a pair of numerical scores. The logical condition takes the form of
a predicate expressed as “feature <operator> threshold,” while the
prerequisite is a compound logical statement formed by combining
multiple such conditions using conjunctions. These rules are evaluated
hierarchically using nested “if” statements, and their respective scores
are used to compute the final prediction for a data sample. The
procedure initiates with a root rule defined by unconditional logic—
both the prerequisite and condition are set to “true’—and
corresponding scores are computed using the weights assigned to
training instances. Initially, each training sample is assigned an equal
weight of —, where t denotes the total number of training examples.
During thé training process, the ADT algorithm repeatedly generates
new rules by identifying the most effective pair of prerequisite and
condition that minimizes a specific objective function, denoted as z.
This function evaluates the discriminatory power of a rule based on
its ability to separate positive and negative classes effectively. For every
new rule created, updated scores are computed through a boosting-
based mechanism. Training sample weights are also revised in
accordance with the rule’s classification accuracy on each example,
emphasizing incorrectly predicted instances to refine future splits.
This iterative process continues until a predetermined stopping
criterion is satisfied—such as reaching the maximum number of
iterations or when further performance gains become negligible. The
resulting rule set defines an alternating decision tree, where each
prediction node holds a scalar value, and the tree’s topology is dictated
by the prerequisite logic embedded within the constructed rules. Only
a portion of the total feature set is used in the final ADT, reflecting the
most relevant variables identified through this process. For
implementation, we evaluated 50 randomly selected values for B,
representing the number of boosting cycles. The final ADT model—
shown in Supplementary Figure S1—demonstrates the decision
structure derived from 31 candidate features. Ultimately, 15 features
were retained through the ADT-based selection process, as presented
in Supplementary Table S3.

In addition, we incorporated both the CVFE approach and a
hypergraph-based technique to refine the initial collection of features.
The CVEFE process is illustrated in Figure 2. Initially, the dataset was
randomly divided into ¢ distinct subsets. For each subset, we applied
the XGBoost algorithm to determine the most influential features,
optimizing model hyperparameters through a grid search procedure.
Feature selection was conducted independently for every subset,
followed by the construction of an intersected feature set comprising
features common to all subsets. This intersection-based strategy was
intentionally adopted to enhance feature stability and reproducibility
rather than as an arbitrary choice. By retaining only those features that
consistently appeared across multiple resampled subsets, the CVFE
approach identified robust predictors less sensitive to random data
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TABLE 1 Summary of the demographic profile and clinical features of the study population.

10.3389/frai.2026.1690664

Characteristics All subjects CVD risk (N = 335) No CVD risk
(N = 670) (N = 335)
SMQO020 - Smoked at least 1 (Yes) 338 (50.45) 213 (63.58) 125 (37.31) <0.0001*
100 cigarettes in life, N (%) 2 (No) 332 (49.55) 122 (36.42) 210 (62.69)
PAD810Q - Frequency of 5.39760534693403e-79 5.39760534693403e-79 1.0 (5.39760534693403e- <0.0001°
vigorous LTPA, Median (5.39760534693403¢e-79, (5.39760534693403€-79, 2.0) 79,2.0)
(IQR) 2.0)
PAD790Q - Frequency of 3(2,4) 3(2,4) 3(2,4) <0.0001°
moderate LTPA, Median
(IQR)
PAD790U - Moderate LTPA D (Day) 91 (13.58) 56 (16.72) 35 (10.45) 0.1054*
unit, N (%) W (Week) 516 (77.01) 246 (73.43) 270 (80.6)
M (Month) 52(7.76) 27 (8.06) 25 (7.46)
Y (Year) 11 (1.64) 6 (1.79) 5(1.49)
PADS00 - Minutes moderate 45 (30, 60) 45 (30, 60) 45 (30, 60) <0.0001°
LTPA, Median (IQR)
PAD680 - Minutes sedentary 300 (240, 480) 300 (210, 480) 360 (240, 480) <0.0001°
activity, Median (IQR)
SLDO012 - Sleep hours - 3 to 13.5 (Range of values) 665 (99.25) 330 (98.51) 35 (100) 0.0806*
weekdays or workdays, N (%) 2 (Less than 3 h) 3(0.45) 3(0.90) 0(0.00)
14 (14 h or more) 2(0.30) 2 (0.60) 0 (0.00)
SLDO013 - Sleep hours - 3 to 13.5 (Range of values) 666 (99.40) 333(99.40) 333 (99.40) 1°
weekends, N (%) 2 (Less than 3 h) 2(0.30) 1(0.30) 1(0.30)
14 (14 h or more) 2 (0.30) 1(0.30) 1(0.30)
DIQO10 - Doctor told you 1 (Yes) 129 (19.25) 96 (28.66) 33(9.85) <0.001*
have diabetes, N (%) 2 (No) 511 (76.27) 220 (65.67) 291 (86.87)
3 (Borderline) 30 (4.48) 19 (5.67) 11 (3.28)
RIDAGEYR - Age in years at 0 to 79 (Range of values) 619 (92.39) 291 (86.87) 328 (97.91) <0.001*
screening, N (%) 80 (80 Years of age and over) 51(7.61) 44 (13.13) 7 (2.09)
RIAGENDR - Gender, N (%) 1 (Male) 337 (50.3) 207 (61.79) 130 (38.81) <0.001°
2 (Female) 333 (49.7) 128 (38.21) 205 (61.19)
RIDRETH3 - Race/Hispanic 1 (Mexican American) 28 (4.18) 8(2.39) 20 (5.97) 0.0792*
origin w/ NH Asian, N (%) 2 (Other Hispanic) 58 (8.66) 27 (8.06) 31(9.25)
3 (Non-Hispanic White) 425 (63.43) 220 (65.67) 205 (61.19)
4 (Non-Hispanic Black) 67 (10.0) 38 (11.34) 29 (8.66)
6 (Non-Hispanic Asian) 38 (5.67) 14 (4.18) 24 (7.16)
7 (Other Race - Including 54 (8.06) 28 (8.36) 26 (7.76)
Multi-Racial)
DMDEDUC?2 - Education 1 (Less than 9th grade) 27 (4.03) 21(6.27) 6(1.79) <0.001*
level - Adults 20+, N (%) 2 (9-11th grade (Includes 51(7.61) 35 (10.45) 16 (4.78)
12th grade with no
diploma))
3 (High school graduate/ 132 (19.7) 76 (22.69) 56 (16.72)
GED or equivalent)
4 (Some college or AA 209 (31.19) 111 (33.13) 98 (29.25)
degree)
5 (College graduate or 251 (37.46) 92 (27.46) 159 (47.46)
above)
(Continued)
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TABLE 1 (Continued)

Characteristics

All subjects

(N = 670)

CVD risk (N = 335)

10.3389/frai.2026.1690664

No CVD risk
(N = 335)

distribution width (%),
Median (IQR)

INDFMPIR - Ratio of family 0 to 4.99 (Range of values) 488 (72.84) 266 (79.40) 222 (66.27) 0.0002*
income to poverty, N (%) 5 (Value greater than or 182 (27.16) 69 (20.60) 113 (33.73)

equal to 5.00)
BMXBMI - Body Mass Index 28.70 (25.02, 33.10) 28.90 (25.40, 33.40) 28.30 (24.50, 33.05) <0.001°
(kg/m?), Median (IQR)
BMXWAIST - Waist 101.35 (91.03, 112.47) 104.00 (93.75, 115.90) 99.60 (88.30, 110.35) <0.001°
Circumference (cm), Median
(IQR)
BPXOSY]1 - Systolic - 122.00 (111.00, 135.00) 127.00 (114.00, 140.00) 117.00 (109.00, 129.00) <0.001°
oscillometric reading,
Median (IQR)
BPXODI1 - Diastolic - 75.00 (67.00, 82.00) 74.00 (66.00, 82.00) 76.00 (68.00, 81.50) <0.001°
oscillometric reading,
Median (IQR)
LBXTC - Total Cholesterol 177.00 (146.00, 206.75) 158.00 (134.00, 189.50) 193.00 (165.50, 216.50) <0.001°
(mg/dL), Median (IQR)
LBDHDD - Direct HDL- 51.00 (43.00, 61.00) 49.00 (42.00, 59.00) 54.00 (45.00, 64.50) <0.001°
Cholesterol (mg/dL) - Total
Cholesterol (mg/dL), Median
(IQR)
LBXGH - Glycohemoglobin 5.60 (5.30, 6.00) 5.80 (5.50, 6.40) 5.40 (5.20, 5.80) <0.001°
(%), Median (IQR)
LBXHSCRP - HS C-Reactive 1.77 (0.85, 4.29) 1.64 (0.83, 4.30) 1.92 (0.90, 4.28) <0.001°
Protein (mg/L), Median
(IQR)
BPQIOID - Taking meds to 1 (Yes) 311 (46.42) 242 (72.24) 69 (20.6) <0.001°
lower blood cholesterol? N 2 (No) 359 (53.58) 93 (27.76) 266 (79.4)
(%)
BPQ020 - Ever told you had 1 (Yes) 326 (48.66) 235 (70.15) 91 (27.16) <0.001*
high blood pressure, N (%) 2 (No) 344 (51.34) 100 (29.85) 244 (72.84)
BPQO80 - Doctor told you 1 (Yes) 380 (56.72) 250 (74.63) 130 (38.81) <0.001*
- high cholesterol level, N (%) 2 (No) 290 (43.28) 85 (25.37) 205 (61.19)
RXQ033 - Taken prescription 1 (Yes) 551 (82.24) 324 (96.72) 227 (67.76) <0.001°
medicine, past month, N (%) 2 (No) 119 (17.76) 11 (3.28) 108 (32.24)
LBXSNASI - Sodium 139.00 (138.00, 141.00) 139.00 (138.00, 141.00) 139.00 (138.00, 141.00) <0.001°
(mmol/L), Median (IQR)
LBXWBCSI - White blood 6.60 (5.70, 7.88) 6.70 (5.70, 7.90) 6.60 (5.70, 7.80) <0.001°
cell count (1,000 cells/uL),
Median (IQR)
LBXHGB - Hemoglobin (g/ 14.00 (13.00, 14.88) 13.90 (13.00, 14.80) 14.00 (12.95, 14.90) <0.001°
dL), Median (IQR)
LBXPLTSI - Platelet count 239.00 (199.00, 283.00) 230.00 (185.00, 273.00) 250.00 (212.50, 293.50) <0.001°
(1,000 cells/uL), Median
(IQR)
LBXRDW - Red cell 13.60 (13.10, 14.30) 13.80 (13.30, 14.60) 13.50 (13.00, 14.00) <0.001°

*Chi-squared test.
*Wilcoxon two-sample test.

N, Number of individuals; LTPA, leisure-time physical activity, IQR, interquartile range, 25 and 75%.
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FIGURE 2

Visual representation of the feature selection process using the cross-validated feature evaluation (CVFE) method.

partitions. This consensus-oriented process mitigates noise introduced
by individual sampling variations and yields a reproducible,
generalizable feature subset suitable for downstream model training.
This entire process was repeated e times, resulting in e intersected
feature sets. Subsequently, any feature appearing in at least (p x 100)%
of these intersected sets was incorporated into the final selected
feature list. Table 2 details the quantity of features obtained from
CVFE under various parameter settings of ¢, e, and p. A comprehensive
list of the selected key features can be found in Supplementary Tables
54-§7.

The HFE technique involves modeling feature interactions
through a hypergraph structure. Unlike traditional graphs, represented
as G(V, E), where vertices (V) are connected by pairwise edges (E), a
hypergraph generalizes this concept by permitting each edge, termed
a hyperedge, to link multiple vertices simultaneously. Formally, a
hypergraph is defined as G(V, E), with V as the set of nodes and E
comprising hyperedges, each of which is a subset of V. Figure 3
contrasts a standard graph with a hypergraph. Building on the

Frontiers in Artificial Intelligence

hypergraph-based importance assessment framework proposed by
Misiorek and Janowski (2023), continuous features were discretized
as a preprocessing step to enable their representation within a
hypergraph model originally defined for categorical feature values.
Each discretized feature value was modeled as a hyperedge connecting
all samples sharing that value, while class labels were represented as a
partition over the vertex set. Feature-value importance was derived
from random walks on the hypergraph and their contribution to
hypergraph cut conductance, which quantifies how strongly a given
feature value connects samples across class-label partitions. Feature-
level importance scores were obtained by aggregating importance
ratings across all values of a given feature, consistent with the feature
aggregation strategy described in the original framework. Feature
ranking was guided by the hypergraph cut conductance minimization
principle, which penalizes feature values whose class distributions are
proportional to overall class sizes and promotes values whose
distributions deviate from class proportions. To determine the final
feature subset, features were ranked according to their aggregated
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TABLE 2 Summary of the number of selected features and corresponding evaluation metrics—accuracy, 95% confidence intervals, precision, recall, F1
score, and AUC—on the testing dataset for different feature subsets. The most effective model for each feature set is highlighted in bold.

Feature Configuration Number ML Testy. 95% Testprecision = 1€Stpecar = T€Stry;  Testyyc
evaluation of model confidence
algorithm features interval
Pearson - 26 XGBoost 0.7537 (0.6719, 0.824) 0.7361 0.7910 0.7626 0.8485
correlation + RF 0.7537 (0.6719, 0.824) 0.7297 0.8060 07660 0.8552
Chi-squared test
SVM 0.7612 (0.6799, 0.8306) 0.7333 0.8209 0.7746  0.8258
ADT B =50 15 XGBoost 0.7836 (0.7042, 0.85) 0.7568 0.8358 0.7943 | 0.8732
RF 0.7761 (0.6961, 0.8436) 0.7467 0.8358 0.7887 0.8793
SVM 0.7687 (0.688, 0.8371) 0.7368 0.8358 0.7832 0.8641
CVFE (c=2,e=10,p=0.2) 31 XGBoost 0.791 (0.7124, 0.8564) 0.7671 0.8358 0.8000 0.8813
RF 0.8134 (0.737, 0.8755) 0.7692 0.8955 0.8276 = 0.8875
SVM 0.7761 (0.6961, 0.8436) 0.7403 0.8507 0.7917 0.8599
(c=2,e=10,p=0.6) 31 XGBoost 0.791 (0.7124, 0.8564) 0.7671 0.8358 0.8000 0.8813
RF 0.8134 (0.737, 0.8755) 0.7692 0.8955 0.8275  0.8875
SVM 0.7761 (0.6961, 0.8436) 0.7403 0.8507 0.7917 0.8599
(c=2,e=5p=08) 28 XGBoost 0.791 (0.7124, 0.8564) 0.7532 0.8657 0.8056 0.8781
RF 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194  0.8795
SVM 0.7687 (0.688, 0.8371) 0.7368 0.8358 0.7832 0.8594
(c=3,e=5p=0.6) 28 XGBoost 0.7761 (0.6961, 0.8436) 0.7467 0.8358 0.7887 0.8819
RF 0.7985 (0.7205, 0.8628) 0.7564 0.8806 0.8138  0.8866
SVM 0.7612 (0.6799, 0.8306) 0.7333 0.8209 0.7746 0.8568
HFE bin =5 p=25 8 XGBoost 0.7836 (0.7042, 0.85) 0.7500 0.8507 0.7972 0.8630
RE 0.7761 (0.6961, 0.8436) 0.7342 0.8657 0.7945 0.8646
SVM 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194  0.8846
f=50 16 XGBoost 0.7985 (0.7205, 0.8628) 0.7778 0.8358 0.8058 0.8915
RE 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194 0.9018
SVM 0.8284 (0.7537, 0.888) 0.7895 0.8955 0.8392  0.9027
p=75 23 XGBoost 0.7761 (0.6961, 0.8436) 0.7403 0.7206 0.7917 0.8906
RF 0.8134 (0.737, 0.8755) 0.7692 0.8955 0.8276 = 0.8995
SVM 0.7836 (0.7042, 0.85) 0.7436 0.8657 0.8000 0.8866
HEFE bin = 10 p=25 8 XGBoost 0.7537 (0.6719, 0.824) 0.7179 0.8358 0.7724 0.8717
RE 0.7537 (0.6719, 0.824) 0.7125 0.8507 0.7755 0.8603
SVM 0.7985 (0.7205, 0.8628) 0.7632 0.8657 0.8112  0.8868
f=50 16 XGBoost 0.7836 (0.7042, 0.85) 0.7568 0.8358 0.7943 0.8882
RE 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194 0.8946
SVM 0.806 (0.7288, 0.8692) 0.7808 0.8507 0.8143  0.9076
p=75 23 XGBoost 0.7985 (0.7205, 0.8628) 0.7703 0.8507 0.8085 0.8991
RF 0.806 (0.7288, 0.8692) 0.7595 0.8955 0.8219  0.8989
SVM 0.7836 (0.7042, 0.85) 0.7436 0.8657 0.8000 0.8866

Testgce: Accuracy on the testing dataset.

Testprecjsjon: Precision on the testing dataset.

Testrgcal): Recall on the testing dataset.

TestFq: F1 score on the testing dataset.

TestA(C: AUC on the testing dataset.

B: Number of boosting cycles.

¢: Number of disjoint sub-parts.

e: Number of repeated runs.

p: Proportions of repeated runs for extracting common features.
p: percentage of features selected.
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importance scores, and the top z features were retained, where
z =} X m, m denotes the total number of features, and f controls the
proportion of selected predictors. In our experiments, discretization
settings of 5 and 10 bins were used to examine the impact of coarse
versus fine value partitioning, while different values of p were
evaluated to analyze the trade-off between feature sparsity and
information retention. The resulting feature counts for different g
values and bin sizes are reported in Table 2, and the specific features
retained under each discretization configuration are detailed in
Supplementary Tables S8, S9.

Each of the feature-selection methods employed in this study
contributes differently to managing feature correlation and
redundancy. The Pearson correlation filter directly identifies linear
associations among continuous variables, while the Chi-squared
test evaluates dependency between categorical variables and the
outcome. The ADT method inherently reduces redundancy because
tree-based algorithms prioritize features that provide unique
information gain, thereby minimizing overlap among correlated
predictors. The CVFE technique emphasizes feature stability across
folds, indirectly controlling multicollinearity by retaining only
features that consistently contribute to predictive performance. The
HFE further extends this concept by modeling higher-order,
non-linear dependencies among features, enabling detection of
interactions beyond pairwise relationships. Together, these
complementary approaches provide a robust framework for
selecting the most informative and non-redundant predictors of
CVD risk.

Web application

As shown in Figure 4, the best feature evaluation approach (HFE)
was incorporated into a machine learning-powered web application.
This tool delivers both classification outcomes and associated
probability scores. Instructions for uploading datasets, performing
binary classification, and estimating probabilities are provided within
the application interface. Users have the option to download relevant
output files and contribute additional training data, thereby improving
model performance. The tool also supports the export of a SHAP
visualization, allowing users to examine how top-ranked features
influence predictions.

Code and data availability

The scripts used in this study are available at https://github.com/
suraiyal4/CVDRP.

Results

Following the reduction of the original feature set using four
independent feature-selection strategies, we developed individual
predictive models based on the selected features using the RF,
SVM, and XGBoost algorithms. Each classifier was optimized
using a grid-search procedure with 10-fold cross-validation on the
training data to ensure robust hyperparameter tuning and reduce
performance variance. To interpret and analyze the contribution
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of each feature in the best-performing model, we applied the SHAP
method (Lundberg et al., 2020). SHAP is a model-independent
method based on cooperative game theory that explains
predictions by estimating the average marginal effect of each
different
top-performing model, SHAP values were computed using a

feature across feature combinations. For the
kernel-based SHAP approach, which provides an approximation
of Shapley values for nonlinear classifiers that do not natively

expose feature attribution scores.

Performance assessment

The predictive models were constructed by utilizing different
sets of features selected through Pearson correlation + Chi-squared
test, ADT, CVFE, and HFE methodologies in conjunction with the
training data. The model’s performance was assessed on the test
data using the metrics defined in Equations 1-4, where TP, TN, FP,
and FN represent true positive, true negative, false positive, and
false negative counts, respectively. Among these evaluation metrics,
accuracy was employed to determine the ratio of correctly
predicted outcomes relative to the overall number of samples in the

dataset.
Test . = TP+TN
A =D TN+ FP+ FN M)
TP

Test =

recall TP+FEN 2)
TP
Test precision = ————— 3

prectswn TP+FP ( )

Test 2% (TeStprecision xTestrecall )
estp) =

)
( Test precision + Test recall )

In addition, we computed recall and precision to further
evaluate model performance. Recall quantifies the ability of the
model to correctly detect actual positive cases, whereas precision
reflects the proportion of positive predictions that are genuinely
correct. To provide a balanced evaluation that incorporates both
precision and recall, we utilized the F1 score, which is defined as
their harmonic mean. Moreover, the Area Under the Curve (AUC)
metric was used to assess the effectiveness of the binary classifier.
Higher AUC values correspond to stronger model performance,
with a score of 1 indicating flawless classification and 0.5
representing performance equivalent to random guessing. We also
computed 95% confidence intervals for the model outputs to
represent the range within which the true performance measure is
expected to fall. Wider intervals correspond to greater uncertainty
in the model’s predictive estimates.

Table 2 presents a detailed comparison of model performance
using feature subsets selected through the Pearson correlation +
Chi-squared test, ADT, CVFE, and HFE techniques. Corresponding
confusion matrices for each reduced feature set are visualized in
Supplementary Figure S2. The machine learning models employing
features selected through the Pearson correlation + Chi-squared filter
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Comparison between a standard graph and a hypergraph. (a) A standard graph where each edge connects two vertices. (b) A hypergraph where each
hyperedge can connect multiple vertices.

CVDRP: A Web Application for Cardiovascular Disease Risk Prediction

Choose an input CSV file Welcome  pregicted CVOR  Probability Scores  Help  Data
BROWSE... No file selected
Upload Files
This web. i dicts cardiovascular disea: ise risk from an input CSV file. The CSV file must include the following columns: SEQN, BPQ101D, RIDAGEYR, BPQ020, BPQOSO,

Add new cardiovascular diseases risk data to training (CSV)
RXQO33, SMQ020, LBXTC, DIQO10, RIAGENDR, DMDEDUC2, LBXRDW, BPXOSY1, INDFMPIR, LBXPLTSI, LBDHDD, LBXGH, and CVD_risk. If any of these columns are missing, the

application will return an error. A sample input file is provided below. The user be found under

To predict cardiovascular disease risk, please upload a CSV file using the data fields listed above. If you wish to add new data to the model (training set), please use the 'Add new

cardiovascular diseases risk data to training (CSV)' upload box for cardiovascular and the 'Add new non-cardiovascular diseases risk data to training (CSV)' upload box for non-

cardiovascular, respectively.

After uploading the necessary file, click the 'CVDR PREDICTION' button. Once th , you will be

page. Then, click the 'PROBABILITY ESTIMATION' button to view the probability scores on the 'Probability Score's page.

BROWSE...  No file selected

Add new non-cardiovascular diseases risk data to training (CSV)

redirected to the 'Predicted CVDR'

BROWSE...  No file selected

Download Results
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FIGURE 4
The web application for CVD risk prediction.

ility results can be
training/testing datasets are available in the 'Data’ menu.

An example CSV file can be obtained by clicking on the ‘Download Input Samples' button. To predict new data, the example CSV file should be in the form shown below:

1f you find our web application useful, please cite the following paper.
Akhter, S. and Miller, J.H., 2025. Evaluating Feature Selection Methods and Feature Contributions for Cardiovascular Disease Risk Prediction. medRxiv, pp.2025-07.

by clicking the 'PREDICTION RESULTS' and 'PROBABILITY RESULTS' buttons, respectively. Additionally, the

achieved moderate predictive performance. In contrast, the ADT,
CVEFE, and HFE methods provided enhanced predictive performance.
Overall, the HFE feature set (bin = 5, # = 50) combined with SVM
model yielded superior predictive performance compared to the ADT
and CVFE sets, with the best model successfully identifying 60 out of
67 patients with CVD.

Features identified using the HFE approach

As mentioned earlier, the highest predictive performance was
attained using the SVM algorithm paired with the HFE feature
selection method configured with bin = 5 and f = 50. Figure 5 shows
a SHAP summary bar chart illustrating the ranking of selected
features according to their importance derived from SHAP value
analysis for this model. The top 10 most influential features ranked
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by their SHAP values were RIDAGEYR (age in years at screening),
LBXTC (total cholesterol, mg/dL), BPQ020 (ever told you had high
blood pressure), BPQ101D (taking medication to lower blood
cholesterol), RXQ033 (taken prescription medicine in the past
month), SMQO020 (smoked at least 100 cigarettes in life), INDFMPIR
(ratio of family income to poverty), RIAGENDR (gender),
DMDEDUC2 (education level, adults aged 20 and above), and
LBXRDW (red cell distribution width, %).

It is important to note that the SHAP analysis was employed
solely to improve model interpretability by quantifying each
feature’s relative contribution to the prediction outcomes. The
SHAP values capture associational relationships between features
and predicted CVD risk rather than causal effects. Because the
NHANES dataset is cross-sectional and observational, causal
inference cannot be drawn from these results. The SHAP findings
are therefore intended to provide interpretive insight into the
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model’s behavior and to guide hypothesis generation for future
longitudinal or causal investigations.

Feature impact assessment

Figure 6 illustrates the contributions and directions of influence
of the continuous predictors identified in Figure 5, based on SHAP
value analysis. Each point represents an individual participant, with
overlapping points jittered to show data density. The x-axis indicates
SHAP values, where positive values (right) increase the model
predicted likelihood of CVD and negative values (left) decrease it.
The color gradient represents feature magnitude, with dark blue
indicating high feature values and light blue indicating low
feature values.

RIDAGEYR (age) shows that higher age values correspond to
positive SHAP values, indicating that older individuals have a
higher predicted CVD risk, which agrees with established
epidemiologic evidence. LBXTC (total cholesterol) displays an
inverse pattern, where higher cholesterol values correspond to
negative SHAP values and lower predicted CVD risk. This
unexpected direction, often referred to as the cholesterol paradox,
has been observed in older or treated populations and may reflect
survivor bias or treatment effects rather than a true protective
influence (Orkaby, 2020; Majnari¢ et al., 2021). INDFMPIR (family
income to poverty ratio) indicates that higher income ratios
correspond to negative SHAP values and lower predicted CVD risk,
whereas lower ratios are associated with positive SHAP values and
higher predicted risk, consistent with the adverse cardiovascular
impact of socioeconomic disadvantage. LBXRDW (red cell
distribution width) shows that higher values are associated with

10.3389/frai.2026.1690664

positive SHAP values, indicating that greater red cell heterogeneity
increases predicted CVD risk. This finding aligns with
epidemiologic evidence demonstrating that elevated RDW is
independently associated with cardiovascular morbidity and
mortality in diverse populations (Danese et al., 2015; Patel et al.,
2009; Shantsila et al., 2023). LBXPLTSI (platelet count) shows that
higher platelet values correspond to negative SHAP values and
lower predicted CVD risk, while lower platelet values correspond
to positive SHAP values and higher predicted risk. This inverse
pattern may reflect platelet consumption or systemic inflammation
rather than a true protective effect of reduced platelet levels. Similar
non-linear or inverse associations have been reported in population
studies, where low platelet counts were linked with greater
likely
inflammation and disease burden rather than protection (Vinholt
etal., 2016; Fawzy et al., 2019). LBXGH (glycohemoglobin) displays
higher values aligned with positive SHAP values, confirming that
elevated HbAlc levels increase the predicted CVD probability.
LBDHDD (high-density lipoprotein cholesterol) generally shows

cardiovascular morbidity and mortality, reflecting

that lower HDL values correspond to positive SHAP values and
higher predicted cardiovascular disease risk, whereas higher HDL
values are mostly associated with negative SHAP values and lower
risk. However, a subset of both low and high HDL observations
exhibited opposite SHAP directions, indicating that the relationship
between HDL and predicted CVD is non-linear and context-
dependent. Such bidirectional effects likely reflect complex
interactions between HDL and other metabolic or hemodynamic
factors considered by the model. BPXOSY1 (systolic blood pressure)
shows that higher systolic pressure values correspond to negative
SHAP values, suggesting a lower predicted CVD probability,
whereas lower pressures are linked with positive SHAP values. This

RIDAGEYR
LBXTC
BPQO020
BPQ101D
RXQ033
SMQ020
INDFMPIR
RIAGENDR
DMDEDUC2
LBXRDW
LBXPLTSI
LBXGH
BPQOS0
LBDHDD
BPX0OSY1
DIQ010

Feature

o
&
o
o

0.025

FIGURE 5
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Mean |SHAP value|
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Importance of features selected by the SVM model shown as a bar chart. The x-axis represents the mean absolute SHAP value for each feature,
reflecting its average contribution to the model's predictions. Features are arranged from most to least influential.
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inverse pattern does not imply a protective effect of elevated blood
pressure but may instead reflect the J-shaped association observed
in treated or frail older adults, where excessively low systolic
pressure relates to increased cardiovascular events and mortality
due to antihypertensive overtreatment or comorbid burden
(Shantsila et al., 2023; Rodriguez et al., 2014).

Figure 7 illustrates the SHAP-based evaluation of key categorical
predictors influencing CVD risk, with each subfigure presenting
boxplots of SHAP values for distinct categorical features, where
higher SHAP values represent stronger positive contributions to the
predicted likelihood of CVD and vice versa. As shown in Figures 7a-c,
participants who were ever told they had high blood pressure
(BPQO20 = Yes), were informed of having high cholesterol
(BPQO080 = Yes), or were taking cholesterol-lowering medication
(BPQ101D = Yes) exhibited notably higher SHAP values, indicating
greater predicted CVD risk. Figure 7d shows that SHAP values for
individuals with diabetes (DIQO010 = Yes) were broadly distributed
and did not consistently exceed those of non-diabetic participants.
This indicates that diabetes status, although a well-established risk
factor for cardiovascular disease, exerted only a modest independent
influence in the current model. Such attenuation may reflect
other
glycohemoglobin (LBXGH) and lipid parameters—or the influence

collinearity ~ with metabolic  predictors—particularly
of effective glycemic control and treatment among participants. This
observation is consistent with previous studies suggesting that
diabetes-related cardiovascular risk varies substantially depending on
comorbidity burden and glycemic management (Rawshani et al.,
2018; Einarson et al., 2018). As shown in Figure 7e, higher education
levels (DMDEDUC2) were associated with lower SHAP values,
suggesting an inverse relationship between educational attainment
and CVD risk. Figure 7f indicates modest sex-based differences

10.3389/frai.2026.1690664

(RIAGENDR), with males showing slightly higher predicted risk
overall. In Figure 7g, individuals who reported taking prescription
medications within the past month (RXQ033 = Yes) had higher
SHAP values, which may reflect the presence of underlying health
conditions associated with increased CVD risk. Finally, Figure 7h
shows that participants who had smoked at least 100 cigarettes in
their lifetime (SMQ020 = Yes) had elevated SHAP values, reinforcing
smoking’s well-established association with cardiovascular risk.

Discussion

Accurate individualized prediction of CVD risk is essential
for prevention, early intervention, and improved clinical outcomes.
In this study, we developed an interpretable, web-accessible
machine learning framework that combines HFE with SHAP to
prioritize predictive features and explain model behavior. Among
all evaluated combinations of feature-selection strategy and
classifier, the SVM trained on the HFE-selected features (bin = 10,
P =50) achieved the best overall performance on the held-out test
set. This demonstrates the advantage of HFE in capturing complex
feature dependencies that conventional pairwise methods overlook.
Coupled with SHAP-based interpretability, the framework delivers
both strong predictive accuracy and transparent, clinically
meaningful explanations.

These findings align with recent studies demonstrating that nonlinear
machine learning algorithms, including support vector machines,
random forests, and XGBoost, achieve superior predictive accuracy for
cardiovascular and coronary artery disease risk compared with
conventional statistical or regression-based scores (Azmi et al., 2022;
DeGroat et al., 2024; Peng et al., 2023; Cai et al., 2024; Krittanawong et al.,

RIDAGEYR 0.119 " of
LBXTC 0.075
INDFMPIR 0.027
LBXRDW 0.017
LBXPLTSI 0.013
LBXGH 0.013

LBDHDD 0.012

BPXOSY1 0.012

FIGURE 6
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SHAP analysis illustrating the contribution and direction of the continuous features to model predictions.
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2020; Rahim et al., 2021; Wang J. et al., 2024). Unlike traditional regression
approaches that rely on prespecified functional forms, these algorithms
flexibly capture complex, higher-order interactions among demographic,
clinical, and biochemical variables. At the same time, growing evidence
emphasizes that model interpretability is essential for clinical acceptance.
SHAP explanation frameworks, in particular, have proven valuable for
quantifying feature contributions and illustrating how physiological and
behavioral factors influence cardiovascular risk predictions (Peng et al.,
2023; Lundberg et al., 2020; Wang J. et al., 2024).

Our SHAP analysis highlighted the dominant role of metabolic,
hemodynamic, and behavioral domains in driving cardiovascular risk,
emphasizing glycemic control, lipid metabolism, blood pressure
regulation, and smoking behavior rather than isolated biomarkers. These
findings are consistent with large-scale epidemiologic and mechanistic
studies linking metabolic dysregulation, hypertension, and tobacco
exposure to elevated CVD risk (Singh et al.,, 2013; Consortium GCR,
2023; Rawshani et al, 2019; Joseph et al, 2017). Importantly,
socioeconomic and behavioral indicators, including education level and
family income to poverty ratio, also emerged as influential features,
echoing prior work showing that social determinants and lifestyle factors
substantially modulate cardiometabolic outcomes in U.S. populations
(Zhao et al., 2021; Zhou et al., 2024). Together, these results underscore
the value of population-based resources such as NHANES, which
integrate demographic, laboratory, behavioral, and socioeconomic
dimensions to support interpretable, data-driven cardiovascular-risk
modeling.

Methodologically, this work contributes by operationalizing
hypergraph-based feature evaluation within an explainable
CVD-risk-prediction pipeline. Hypergraph frameworks extend
conventional feature modeling by allowing each “edge” to connect
multiple variables simultaneously, thereby capturing higher-order
relationships beyond pairwise correlations (Misiorek and Janowski,
2023; Jin et al., 2023). Prior studies in biomedical prediction have
demonstrated that such hypergraph learning effectively represents
complex structures in heterogeneous data (Jin et al., 2023). By
integrating HFE with SHAP, the proposed framework maintains
interpretability by providing explicit attributions for individual
features while leveraging these richer relational patterns. This
integration addresses a central challenge in clinical AI by balancing
statistical rigor with practical interpretability for clinicians
(Lundberg et al.,, 2020; Wang N. et al.,, 2024). Moreover, the
accompanying web application delivers classification results,
probability estimates, and SHAP visualizations. This design
enhances reproducibility and facilitates external validation, both
essential for trustworthy AI in cardiovascular and preventive
medicine (DeGroat et al., 2024).

Several limitations should be noted. Although SHAP analysis
enhances interpretability and model transparency, it does not establish
causality between predictors and cardiovascular outcomes. The NHANES
dataset is cross-sectional, and the balanced endpoint used for training was
achieved through random undersampling of the majority non-CVD class
and was designed for predictive fairness rather than causal estimation;
thus, the relationships identified reflect statistical associations rather than
mechanistic effects. Although random undersampling was used to
mitigate class imbalance, alternative strategies such as class weighting or
synthetic sampling methods may preserve additional information from
the majority class and will be explored in future work. Model performance
was evaluated using an internal stratified train—test split within a single
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NHANES cycle, and external validation using independent datasets or
additional NHANES cycles was not performed in this study. CVD status
was defined using self-reported, physician-diagnosed conditions in
accordance with CDC/NHANES analytic protocols. While this approach
may introduce recall bias or minor misclassification compared with
adjudicated clinical records, such definitions are standard in population-
based machine learning studies and have been validated in prior
CVD-prediction research (Martin-Morales et al., 2023; Dinh et al., 2019).
Although the feature-selection strategies collectively addressed linear and
nonlinear dependencies, residual correlations may persist; future studies
could incorporate dimensionality-reduction or penalization methods
(e.g., PCA or elastic-net regularization) to further minimize redundancy
and improve interpretability. In addition, computational performance
metrics such as inference latency, throughput under concurrent user
access, and detailed resource utilization were not formally benchmarked
in this study. While the web design improves accessibility and encourages
iterative model refinement, systematic evaluation of inference time,
retraining time, scalability under concurrent access, and hardware
resource requirements will be addressed in future deployment-focused
work. Future work will integrate longitudinal and multi-omics data,
external validation across NHANES cycles, and federated-learning
approaches to improve generalizability, and will also benchmark the
proposed framework against validated clinical risk models such as
Framingham, SCORE, and REGICOR when applied to datasets with
complete longitudinal and treatment information. Finally, although the
model identifies clinically relevant predictors such as age, blood pressure,
cholesterol, glycohemoglobin, diabetes, smoking, and socioeconomic
indicators, it is intended to complement rather than replace established
clinical risk tools. The proposed framework provides a transparent,
population-level approach for prioritizing risk factors, offering outputs
that remain biologically plausible and consistent with known
cardiovascular physiology.

In summary, we present a transparent cardiovascular-risk-
prediction framework that integrates hypergraph-based feature
evaluation with SHAP explainability and deploys this pipeline in an
accessible web tool. The approach demonstrated high discriminative
performance on held-out test data, recovered physiologically and
socially meaningful predictors, and revealed higher-order interactions
among demographic, clinical, and behavioral features. These results
support the potential of explainable, structure-aware machine learning
to inform population-level cardiovascular-risk assessment in a
reproducible and clinically interpretable manner.
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