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Cardiovascular disease (CVD) remains the foremost contributor to global illness 
and death, underscoring the critical need for effective tools that can predict risk 
at early stages to support preventive care and timely clinical decisions. With the 
growing complexity of healthcare data, machine learning has shown considerable 
promise in extracting insights that enhance medical decision-making. Nonetheless, 
the effectiveness and clarity of machine learning models largely rely on the 
relevance and quality of input features. In this work, we explored and compared 
four feature-selection strategies—Pearson correlation + Chi-squared test, Alternating 
Decision Tree (ADT)-based scoring, Cross-Validated Feature Evaluation (CVFE), 
and Hypergraph-Based Feature Evaluation (HFE)—to identify the most predictive 
factors for CVD risk. Our analysis utilized data from the National Health and 
Nutrition Examination Survey (NHANES), administered by the National Center for 
Health Statistics under the Centers for Disease Control and Prevention (CDC), 
encompassing demographic, clinical, laboratory, and survey data collected across 
the U.S. from August 2021 through August 2023. Distinct sets of features obtained 
through these selection techniques were used to develop random forest (RF), 
support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) models, 
which were then assessed for predictive effectiveness. To improve clarity and 
understanding of model decision-making, SHapley Additive exPlanations (SHAP) 
was used to interpret feature contributions in the top-performing model. Among 
the evaluated methods, the HFE approach combined with SVM achieved the highest 
overall accuracy (82.84%) and AUC (0.9027), outperforming both classical and 
alternative strategies. The most influential predictors included age, total cholesterol, 
history of high blood pressure, use of cholesterol-lowering medication, recent 
prescription medication use, lifetime smoking history, family income-to-poverty 
ratio, gender, educational attainment, and red cell distribution width. The web 
application, accessible at https://shiny.tricities.wsu.edu/cvdr-prediction/, presents 
predictive results, probability scores, and SHAP plots generated from the model 
trained using the feature set selected by the hypergraph-based approach. This 
study highlights the importance of strategic feature selection in refining predictive 
accuracy and interpretability, offering a practical data-driven approach that could 
aid clinicians in evaluating cardiovascular risk and tailoring preventive care.
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Introduction

Globally, cardiovascular diseases (CVDs) remain the primary 
cause of death, responsible for around 17.9 million fatalities each year, 
which equates to nearly one-third of all deaths worldwide (World 
Health Organization, 2017). This broad category includes multiple 
heart and circulatory system disorders such as coronary artery disease, 
stroke, peripheral artery disease, rheumatic heart conditions, and 
congenital cardiovascular defects (Ogunpola et al., 2024; Mousa et al., 
2014). Among these, coronary artery disease constitutes the majority, 
accounting for approximately 64% of CVD occurrences (Ogunpola et 
al., 2024). These statistics underscore the urgent need for effective 
early detection strategies and preventive interventions to reduce the 
global burden of CVD. CVD risk arises from a multifaceted interaction 
between modifiable and non-modifiable factors. Lifestyle related 
factors including elevated cholesterol, diabetes, obesity, tobacco use, 
and physical inactivity are among the most influential modifiable 
contributors (Sen, 2017; Yazdani et al., 2021). In contrast, 
non-modifiable determinants include age, biological sex, and racial or 
ethnic background (Guarneros-Nolasco et al., 2021; Mandava, 2024; 
Pu et al., 2012; Hossen et al., 2021). The widespread adoption of 
unhealthy behaviors in today’s society has intensified these risks 
(Pouriyeh et al., 2017; Ambekar and Phalnikar, 2018). Therefore, 
identifying high-risk individuals with precision and at an early stage 
is essential to enable preventive actions, slow disease progression, and 
decrease mortality rates.

Several traditional clinical risk assessment tools, such as the 
Framingham Risk Score, SCORE charts, and the REGICOR model, 
have been widely used to estimate cardiovascular risk (Gil-Guillen et 
al., 2007; Khandoker et al., 2019; Assmann et al., 2002). However, 
these approaches often rely on a limited set of predictors and assume 
linear relationships, potentially oversimplifying the complex 
mechanisms underlying CVD. In addition, their performance may 
vary across populations, limiting generalizability. To overcome these 
limitations, machine learning has emerged as a powerful alternative 
for cardiovascular risk prediction. Machine learning methods can 
model nonlinear and high-order interactions among heterogeneous 
variables, offering greater flexibility and predictive accuracy than 
traditional statistical techniques (Patel et al., 2015; Solanki and Barot, 
2019; Kiran et al., 2022). Commonly used machine learning 
algorithms include decision trees, support vector machines, k-nearest 
neighbors, random forests, gradient boosting methods, XGBoost, and 
deep learning architectures such as convolutional neural networks 
(Ogunpola et al., 2024; Mandava, 2024; Azmi et al., 2022; Rahim et al., 
2021; Rubini et al., 2021; Elsayed and Syed, 2017; DeGroat et al., 2024).

Numerous machine learning-based studies have demonstrated 
improved performance in predicting CVD risk using both clinical and 
population-level datasets (Azmi et al., 2022; Rahim et al., 2021; Rubini et 
al., 2021; Elsayed and Syed, 2017; DeGroat et al., 2024; Peng et al., 2023; 
Shishehbori and Awan, 2024; Mansoori et al., 2024; van Os et al., 2023; 
Neumann et al., 2022; Wallisch et al., 2021). Meta-analyses indicate that 
ensemble and neural-network models often outperform conventional 
statistical approaches (Cai et al., 2024; Krittanawong et al., 2020). 
However, social and behavioral determinants remain underrepresented 
in many models (Zhao et al., 2021). Several explainable-AI frameworks 
combining machine learning with SHAP have revealed key predictors—
blood pressure, lipids, glycated hemoglobin, inflammatory markers, and 
smoking status—that drive model decisions (Peng et al., 2023; Lundberg 

et al., 2020). Large-scale population datasets such as NHANES have been 
widely used to model cardiovascular risk across diverse socioeconomic 
and lifestyle profiles (Peng et al., 2023; Shishehbori and Awan, 2024; 
Mansoori et al., 2024; van Os et al., 2023; Cai et al., 2024; Krittanawong 
et al., 2020; Zhao et al., 2021; Terry et al., 2024). Despite these advances, 
two major gaps persist. First, most CVD prediction studies employ a 
single feature-selection strategy—typically univariate ranking or tree-
based importance—without comparing distinct paradigms, even though 
feature selection strongly influences both model performance and 
interpretability. Recent research underscores the importance of 
evaluating stability-based methods (e.g., resampling or stability selection) 
(Meinshausen and Bühlmann, 2010) and structure-aware paradigms 
such as hypergraph-based feature selection, which can capture multi-way 
relationships among features (Yang and Wu, 2023; Misiorek and 
Janowski, 2023; Qu et al., 2024; Jin et al., 2023). Second, although many 
machine learning models achieve high predictive accuracy, few have 
been deployed as open, web-accessible, and reproducible tools that unite 
interpretability with clinical usability.

While personalized predictive modeling has advanced 
considerably, significant challenges remain in fully understanding the 
complex relationships among contributing factors and in tailoring the 
most effective treatment strategies for individual patients. A wide 
range of socio-demographic, behavioral, and clinical factors contribute 
to variability in CVD outcomes, including age, gender, race or Hispanic 
origin, education, socioeconomic status, smoking history, physical 
activity, sleep duration, diabetes status, body mass index, blood 
pressure, lipid and glycemic profiles, inflammatory and hematological 
markers, and medication use related to blood pressure and cholesterol 
control. The complexity and interplay of these variables highlight the 
need for data-driven models capable of capturing such nuances. We 
hypothesize that machine learning methods can uncover and rank the 
most influential factors in predicting CVD risk, offering an objective 
and individualized framework for risk evaluation. Such a model has 
the potential to assist healthcare professionals in selecting the most 
suitable, patient-specific treatment plans to improve outcomes.

Unlike prior studies that primarily emphasized performance, this 
work integrates a robust feature-selection paradigm with SHAP-
driven interpretability into an interactive, web-based framework, 
addressing the gap between algorithmic explainability and clinical 
usability. Using data from the NHANES, we developed a machine 
learning pipeline for CVD risk prediction that integrates the optimal 
feature evaluation method with interpretable model assessment. By 
quantifying feature contributions, this framework helps prioritize the 
most influential clinical, lifestyle, and demographic factors for 
enhancing cardiovascular risk assessment and guiding individualized 
treatment planning. This approach supports evidence-based decision-
making by health professionals and improves treatment outcomes for 
patients at risk of CVD. The publicly available web application 
provides predictive outputs, probability scores, and SHAP-based 
visualizations. It also supports batch analysis and continuous 
integration of new data to further enhance model performance and 
adaptability.

Methods

Figure 1 outlines the full workflow of our proposed methodology. 
The process begins with collecting data from individuals classified as 
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either at risk for CVD or not at risk. From this data, a pool of candidate 
features is generated. We then apply multiple feature evaluation 
techniques—including Pearson correlation + Chi-squared test 
(Pearson, 1896; Pearson, 1900), Alternating Decision Tree (ADT) 
(Akhter and Miller, 2024; Freund and Mason, 1999), Cross-Validated 
Feature Evaluation (CVFE) (Yang and Wu, 2023), and Hypergraph-
Based Feature Evaluation (HFE) (Misiorek and Janowski, 2023)—to 
eliminate features with low relevance or minimal impact. The refined 
feature subsets are subsequently utilized to train random forest (RF), 
support vector machine (SVM), and Extreme Gradient Boosting 
(XGBoost) models, which are evaluated for their predictive 
performance.

Data and features

The data for this study were sourced from the NHANES, a publicly 
available national health survey (Terry et al., 2024). The analysis used 
demographics, examination, laboratory, and questionnaire data 
collected between August 2021 and August 2023 as part of the 
NHANES 2021–2023 cycle, which provides updated, post-pandemic 
information on the health and nutritional status of the U.S. civilian, 
noninstitutionalized population. NHANES is a cross-sectional survey, 

and therefore no longitudinal follow-up data are available. Each year, 
approximately 5,000 participants from 15 survey locations across the 
United States were selected through a multistage, probability-based 
sampling design to ensure national representativeness. Data were 
obtained through household interviews and standardized health 
examinations conducted in Mobile Examination Centers (MECs), 
which traveled to selected counties for roughly 9 weeks per site.

Participants aged 20 years or older with complete data on CVD 
outcomes and predictor variables were included in this study. Those 
who were institutionalized, on active military duty, or had missing 
responses for key demographic, laboratory, or clinical variables were 
excluded. For any feature with more than 30% missing data, that 
variable was removed from the analysis to ensure data quality and 
consistency. We considered only records that were complete for all 
retained features. The outcome variable, CVD status, was defined 
based on self-reported, physician-diagnosed stroke, heart attack, 
coronary heart disease, or heart failure. This definition of CVD status 
follows the CDC guidelines for NHANES analytic studies, where 
cardiovascular outcomes are based on self-reported, physician-
diagnosed conditions. Although this approach does not involve 
adjudicated clinical records or imaging confirmation, it has been 
widely used and validated in prior epidemiological and machine-
learning investigations employing NHANES and similar large-scale 

FIGURE 1

Overview of the procedure for detecting cardiovascular risk.

https://doi.org/10.3389/frai.2026.1690664
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Akhter and Miller� 10.3389/frai.2026.1690664

Frontiers in Artificial Intelligence 04 frontiersin.org

survey datasets (Martin-Morales et al., 2023; Dinh et al., 2019), 
demonstrating their utility for population-level cardiovascular-risk 
modeling.

The final dataset comprised 335 individuals with CVD and 3,187 
individuals without CVD. To mitigate class imbalance, a random 
undersampling approach was applied to the non-CVD group, 
resulting in a balanced dataset of 335 CVD and 335 non-CVD 
participants. This balancing was conducted exclusively for predictive 
modeling to ensure fair classifier evaluation and stable performance 
metrics. The balanced dataset does not reflect population-level CVD 
prevalence and was not used for causal inference. Therefore, all 
performance metrics and feature contributions represent predictive 
associations within the analytic dataset rather than causal effects.

The dataset was randomly divided into 80% training and 20% 
testing subsets using stratified sampling to maintain proportional 
representation of CVD and non-CVD participants. This approach was 
consistently applied across all feature selection strategies to ensure a 
fair comparison of model performance under identical data partitions. 
All preprocessing and feature-selection steps were conducted 
exclusively on the training subset to prevent data leakage, and model 
evaluation was performed on the independent test subset. A total of 
31 features were initially considered as candidate predictors and are 
listed in Supplementary Table S1. Table 1 summarizes the demographic 
and clinical features, their categorical groupings, distributions, and 
corresponding p-values, with p < 0.05 denoting statistical significance.

Assessment of predictive features

To build an effective predictive model, it is vital to discard 
non-contributory features during the preprocessing stage. In our 
study, we independently applied four feature reduction techniques—
Pearson correlation + Chi-squared test (Pearson, 1896; Pearson, 
1900), ADT (Akhter and Miller, 2024; Freund and Mason, 1999), 
CVFE (Yang and Wu, 2023), and HFE (Misiorek and Janowski, 
2023)—to refine the original feature set by eliminating attributes with 
limited predictive value.

In the Pearson correlation + Chi-squared test approach, redundant 
features were removed through a two-step filtering process. First, 
Pearson’s correlation coefficient was calculated among continuous 
variables to identify highly correlated pairs; when the absolute 
correlation coefficient was ≥ 0.90, one of the correlated features was 
removed. Second, the Chi-squared test was applied to categorical 
variables to assess pairwise associations, and for feature pairs with 
p ≤ 0.001, one variable was retained while the other was excluded. 
This traditional filter approach served as a reference to benchmark the 
performance and stability of the more advanced feature-evaluation 
strategies. A total of 26 out of 31 features were ultimately retained 
through this selection procedure, as detailed in Supplementary Table S2.

The ADT approach merges the straightforward, interpretable 
form of a conventional decision tree with the performance 
enhancements derived from boosting algorithms. This technique 
structures its model using decision tree stumps, which are 
foundational units commonly associated with boosting. One of the 
notable advantages of ADT is its flexible branching structure; unlike 
traditional trees with mutually exclusive paths, ADT allows 
overlapping routes, enabling multiple decision paths to contribute 
simultaneously to a prediction. The structure begins with a prediction 

node that assigns a numerical score, followed by layers of decision 
nodes that contain conditions used to evaluate input features. These 
layers alternate in a pattern—prediction nodes followed by decision 
nodes and vice versa. Decision nodes apply specific logical criteria, 
while prediction nodes assign fixed numeric contributions to the 
outcome. Importantly, prediction nodes appear at both the starting 
point (root) and terminal ends (leaves) of the tree, underscoring the 
distinctive, layered composition and operational logic that sets ADT 
apart from conventional decision tree models.

The ADT constructs a series of classification rules, each composed 
of three main elements: a prerequisite condition, a logical condition, 
and a pair of numerical scores. The logical condition takes the form of 
a predicate expressed as “feature <operator> threshold,” while the 
prerequisite is a compound logical statement formed by combining 
multiple such conditions using conjunctions. These rules are evaluated 
hierarchically using nested “if ” statements, and their respective scores 
are used to compute the final prediction for a data sample. The 
procedure initiates with a root rule defined by unconditional logic—
both the prerequisite and condition are set to “true”—and 
corresponding scores are computed using the weights assigned to 
training instances. Initially, each training sample is assigned an equal 
weight of 1

t
, where t denotes the total number of training examples. 

During the training process, the ADT algorithm repeatedly generates 
new rules by identifying the most effective pair of prerequisite and 
condition that minimizes a specific objective function, denoted as z. 
This function evaluates the discriminatory power of a rule based on 
its ability to separate positive and negative classes effectively. For every 
new rule created, updated scores are computed through a boosting-
based mechanism. Training sample weights are also revised in 
accordance with the rule’s classification accuracy on each example, 
emphasizing incorrectly predicted instances to refine future splits. 
This iterative process continues until a predetermined stopping 
criterion is satisfied—such as reaching the maximum number of 
iterations or when further performance gains become negligible. The 
resulting rule set defines an alternating decision tree, where each 
prediction node holds a scalar value, and the tree’s topology is dictated 
by the prerequisite logic embedded within the constructed rules. Only 
a portion of the total feature set is used in the final ADT, reflecting the 
most relevant variables identified through this process. For 
implementation, we evaluated 50 randomly selected values for B, 
representing the number of boosting cycles. The final ADT model—
shown in Supplementary Figure S1—demonstrates the decision 
structure derived from 31 candidate features. Ultimately, 15 features 
were retained through the ADT-based selection process, as presented 
in Supplementary Table S3.

In addition, we incorporated both the CVFE approach and a 
hypergraph-based technique to refine the initial collection of features. 
The CVFE process is illustrated in Figure 2. Initially, the dataset was 
randomly divided into c distinct subsets. For each subset, we applied 
the XGBoost algorithm to determine the most influential features, 
optimizing model hyperparameters through a grid search procedure. 
Feature selection was conducted independently for every subset, 
followed by the construction of an intersected feature set comprising 
features common to all subsets. This intersection-based strategy was 
intentionally adopted to enhance feature stability and reproducibility 
rather than as an arbitrary choice. By retaining only those features that 
consistently appeared across multiple resampled subsets, the CVFE 
approach identified robust predictors less sensitive to random data 
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TABLE 1  Summary of the demographic profile and clinical features of the study population.

Characteristics All subjects 
(N = 670)

CVD risk (N = 335) No CVD risk 
(N = 335)

p-value

SMQ020 - Smoked at least 

100 cigarettes in life, N (%)

1 (Yes) 338 (50.45) 213 (63.58) 125 (37.31) <0.0001a

2 (No) 332 (49.55) 122 (36.42) 210 (62.69)

PAD810Q - Frequency of 

vigorous LTPA, Median 

(IQR)

5.39760534693403e-79 

(5.39760534693403e-79, 

2.0)

5.39760534693403e-79 

(5.39760534693403e-79, 2.0)

1.0 (5.39760534693403e-

79, 2.0)

<0.0001b

PAD790Q - Frequency of 

moderate LTPA, Median 

(IQR)

3 (2, 4) 3 (2, 4) 3 (2, 4) <0.0001b

PAD790U - Moderate LTPA 

unit, N (%)

D (Day) 91 (13.58) 56 (16.72) 35 (10.45) 0.1054a

W (Week) 516 (77.01) 246 (73.43) 270 (80.6)

M (Month) 52 (7.76) 27 (8.06) 25 (7.46)

Y (Year) 11 (1.64) 6 (1.79) 5 (1.49)

PAD800 - Minutes moderate 

LTPA, Median (IQR)

45 (30, 60) 45 (30, 60) 45 (30, 60) <0.0001b

PAD680 - Minutes sedentary 

activity, Median (IQR)

300 (240, 480) 300 (210, 480) 360 (240, 480) <0.0001b

SLD012 - Sleep hours - 

weekdays or workdays, N (%)

3 to 13.5 (Range of values) 665 (99.25) 330 (98.51) 35 (100) 0.0806a

2 (Less than 3 h) 3 (0.45) 3 (0.90) 0 (0.00)

14 (14 h or more) 2 (0.30) 2 (0.60) 0 (0.00)

SLD013 - Sleep hours - 

weekends, N (%)

3 to 13.5 (Range of values) 666 (99.40) 333 (99.40) 333 (99.40) 1a

2 (Less than 3 h) 2 (0.30) 1 (0.30) 1 (0.30)

14 (14 h or more) 2 (0.30) 1 (0.30) 1 (0.30)

DIQ010 - Doctor told you 

have diabetes, N (%)

1 (Yes) 129 (19.25) 96 (28.66) 33 (9.85) <0.001a

2 (No) 511 (76.27) 220 (65.67) 291 (86.87)

3 (Borderline) 30 (4.48) 19 (5.67) 11 (3.28)

RIDAGEYR - Age in years at 

screening, N (%)

0 to 79 (Range of values) 619 (92.39) 291 (86.87) 328 (97.91) <0.001a

80 (80 Years of age and over) 51 (7.61) 44 (13.13) 7 (2.09)

RIAGENDR – Gender, N (%) 1 (Male) 337 (50.3) 207 (61.79) 130 (38.81) <0.001a

2 (Female) 333 (49.7) 128 (38.21) 205 (61.19)

RIDRETH3 - Race/Hispanic 

origin w/ NH Asian, N (%)

1 (Mexican American) 28 (4.18) 8 (2.39) 20 (5.97) 0.0792a

2 (Other Hispanic) 58 (8.66) 27 (8.06) 31 (9.25)

3 (Non-Hispanic White) 425 (63.43) 220 (65.67) 205 (61.19)

4 (Non-Hispanic Black) 67 (10.0) 38 (11.34) 29 (8.66)

6 (Non-Hispanic Asian) 38 (5.67) 14 (4.18) 24 (7.16)

7 (Other Race - Including 

Multi-Racial)

54 (8.06) 28 (8.36) 26 (7.76)

DMDEDUC2 - Education 

level - Adults 20+, N (%)

1 (Less than 9th grade) 27 (4.03) 21 (6.27) 6 (1.79) <0.001a

2 (9-11th grade (Includes 

12th grade with no 

diploma))

51 (7.61) 35 (10.45) 16 (4.78)

3 (High school graduate/

GED or equivalent)

132 (19.7) 76 (22.69) 56 (16.72)

4 (Some college or AA 

degree)

209 (31.19) 111 (33.13) 98 (29.25)

5 (College graduate or 

above)

251 (37.46) 92 (27.46) 159 (47.46)

(Continued)
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TABLE 1  (Continued)

Characteristics All subjects 
(N = 670)

CVD risk (N = 335) No CVD risk 
(N = 335)

p-value

INDFMPIR - Ratio of family 

income to poverty, N (%)

0 to 4.99 (Range of values) 488 (72.84) 266 (79.40) 222 (66.27) 0.0002a

5 (Value greater than or 

equal to 5.00)

182 (27.16) 69 (20.60) 113 (33.73)

BMXBMI - Body Mass Index 

(kg/m2), Median (IQR)

28.70 (25.02, 33.10) 28.90 (25.40, 33.40) 28.30 (24.50, 33.05) <0.001b

BMXWAIST - Waist 

Circumference (cm), Median 

(IQR)

101.35 (91.03, 112.47) 104.00 (93.75, 115.90) 99.60 (88.30, 110.35) <0.001b

BPXOSY1 - Systolic - 

oscillometric reading, 

Median (IQR)

122.00 (111.00, 135.00) 127.00 (114.00, 140.00) 117.00 (109.00, 129.00) <0.001b

BPXODI1 - Diastolic - 

oscillometric reading, 

Median (IQR)

75.00 (67.00, 82.00) 74.00 (66.00, 82.00) 76.00 (68.00, 81.50) <0.001b

LBXTC - Total Cholesterol 

(mg/dL), Median (IQR)

177.00 (146.00, 206.75) 158.00 (134.00, 189.50) 193.00 (165.50, 216.50) <0.001b

LBDHDD - Direct HDL-

Cholesterol (mg/dL) - Total 

Cholesterol (mg/dL), Median 

(IQR)

51.00 (43.00, 61.00) 49.00 (42.00, 59.00) 54.00 (45.00, 64.50) <0.001b

LBXGH - Glycohemoglobin 

(%), Median (IQR)

5.60 (5.30, 6.00) 5.80 (5.50, 6.40) 5.40 (5.20, 5.80) <0.001b

LBXHSCRP - HS C-Reactive 

Protein (mg/L), Median 

(IQR)

1.77 (0.85, 4.29) 1.64 (0.83, 4.30) 1.92 (0.90, 4.28) <0.001b

BPQ101D - Taking meds to 

lower blood cholesterol? N 

(%)

1 (Yes) 311 (46.42) 242 (72.24) 69 (20.6) <0.001a

2 (No) 359 (53.58) 93 (27.76) 266 (79.4)

BPQ020 - Ever told you had 

high blood pressure, N (%)

1 (Yes) 326 (48.66) 235 (70.15) 91 (27.16) <0.001a

2 (No) 344 (51.34) 100 (29.85) 244 (72.84)

BPQ080 - Doctor told you 

- high cholesterol level, N (%)

1 (Yes) 380 (56.72) 250 (74.63) 130 (38.81) <0.001a

2 (No) 290 (43.28) 85 (25.37) 205 (61.19)

RXQ033 - Taken prescription 

medicine, past month, N (%)

1 (Yes) 551 (82.24) 324 (96.72) 227 (67.76) <0.001a

2 (No) 119 (17.76) 11 (3.28) 108 (32.24)

LBXSNASI - Sodium 

(mmol/L), Median (IQR)

139.00 (138.00, 141.00) 139.00 (138.00, 141.00) 139.00 (138.00, 141.00) <0.001b

LBXWBCSI - White blood 

cell count (1,000 cells/uL), 

Median (IQR)

6.60 (5.70, 7.88) 6.70 (5.70, 7.90) 6.60 (5.70, 7.80) <0.001b

LBXHGB - Hemoglobin (g/

dL), Median (IQR)

14.00 (13.00, 14.88) 13.90 (13.00, 14.80) 14.00 (12.95, 14.90) <0.001b

LBXPLTSI - Platelet count 

(1,000 cells/uL), Median 

(IQR)

239.00 (199.00, 283.00) 230.00 (185.00, 273.00) 250.00 (212.50, 293.50) <0.001b

LBXRDW - Red cell 

distribution width (%), 

Median (IQR)

13.60 (13.10, 14.30) 13.80 (13.30, 14.60) 13.50 (13.00, 14.00) <0.001b

aChi-squared test.
bWilcoxon two-sample test.
N, Number of individuals; LTPA, leisure-time physical activity, IQR, interquartile range, 25 and 75%.
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partitions. This consensus-oriented process mitigates noise introduced 
by individual sampling variations and yields a reproducible, 
generalizable feature subset suitable for downstream model training. 
This entire process was repeated e times, resulting in e intersected 
feature sets. Subsequently, any feature appearing in at least (p × 100)% 
of these intersected sets was incorporated into the final selected 
feature list. Table 2 details the quantity of features obtained from 
CVFE under various parameter settings of c, e, and p. A comprehensive 
list of the selected key features can be found in Supplementary Tables 
S4–S7.

The HFE technique involves modeling feature interactions 
through a hypergraph structure. Unlike traditional graphs, represented 
as G(V, E), where vertices (V) are connected by pairwise edges (E), a 
hypergraph generalizes this concept by permitting each edge, termed 
a hyperedge, to link multiple vertices simultaneously. Formally, a 
hypergraph is defined as G(V, E), with V as the set of nodes and E 
comprising hyperedges, each of which is a subset of V. Figure 3 
contrasts a standard graph with a hypergraph. Building on the 

hypergraph-based importance assessment framework proposed by 
Misiorek and Janowski (2023), continuous features were discretized 
as a preprocessing step to enable their representation within a 
hypergraph model originally defined for categorical feature values. 
Each discretized feature value was modeled as a hyperedge connecting 
all samples sharing that value, while class labels were represented as a 
partition over the vertex set. Feature-value importance was derived 
from random walks on the hypergraph and their contribution to 
hypergraph cut conductance, which quantifies how strongly a given 
feature value connects samples across class-label partitions. Feature-
level importance scores were obtained by aggregating importance 
ratings across all values of a given feature, consistent with the feature 
aggregation strategy described in the original framework. Feature 
ranking was guided by the hypergraph cut conductance minimization 
principle, which penalizes feature values whose class distributions are 
proportional to overall class sizes and promotes values whose 
distributions deviate from class proportions. To determine the final 
feature subset, features were ranked according to their aggregated 

FIGURE 2

Visual representation of the feature selection process using the cross-validated feature evaluation (CVFE) method.
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TABLE 2  Summary of the number of selected features and corresponding evaluation metrics—accuracy, 95% confidence intervals, precision, recall, F1 
score, and AUC—on the testing dataset for different feature subsets. The most effective model for each feature set is highlighted in bold.

Feature 
evaluation 
algorithm

Configuration Number 
of 

features

ML 
model

TestAcc 95% 
confidence 

interval

TestPrecision TestRecall TestF1 TestAUC

Pearson 

correlation + 

Chi-squared test

– 26 XGBoost 0.7537 (0.6719, 0.824) 0.7361 0.7910 0.7626 0.8485

RF 0.7537 (0.6719, 0.824) 0.7297 0.8060 07660 0.8552

SVM 0.7612 (0.6799, 0.8306) 0.7333 0.8209 0.7746 0.8258

ADT B = 50 15 XGBoost 0.7836 (0.7042, 0.85) 0.7568 0.8358 0.7943 0.8732

RF 0.7761 (0.6961, 0.8436) 0.7467 0.8358 0.7887 0.8793

SVM 0.7687 (0.688, 0.8371) 0.7368 0.8358 0.7832 0.8641

CVFE (c = 2, e = 10, p = 0.2) 31 XGBoost 0.791 (0.7124, 0.8564) 0.7671 0.8358 0.8000 0.8813

RF 0.8134 (0.737, 0.8755) 0.7692 0.8955 0.8276 0.8875

SVM 0.7761 (0.6961, 0.8436) 0.7403 0.8507 0.7917 0.8599

(c = 2, e = 10, p = 0.6) 31 XGBoost 0.791 (0.7124, 0.8564) 0.7671 0.8358 0.8000 0.8813

RF 0.8134 (0.737, 0.8755) 0.7692 0.8955 0.8275 0.8875

SVM 0.7761 (0.6961, 0.8436) 0.7403 0.8507 0.7917 0.8599

(c = 2, e = 5, p = 0.8) 28 XGBoost 0.791 (0.7124, 0.8564) 0.7532 0.8657 0.8056 0.8781

RF 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194 0.8795

SVM 0.7687 (0.688, 0.8371) 0.7368 0.8358 0.7832 0.8594

(c = 3, e = 5, p = 0.6) 28 XGBoost 0.7761 (0.6961, 0.8436) 0.7467 0.8358 0.7887 0.8819

RF 0.7985 (0.7205, 0.8628) 0.7564 0.8806 0.8138 0.8866

SVM 0.7612 (0.6799, 0.8306) 0.7333 0.8209 0.7746 0.8568

HFE bin = 5 β = 25 8 XGBoost 0.7836 (0.7042, 0.85) 0.7500 0.8507 0.7972 0.8630

RF 0.7761 (0.6961, 0.8436) 0.7342 0.8657 0.7945 0.8646

SVM 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194 0.8846

β = 50 16 XGBoost 0.7985 (0.7205, 0.8628) 0.7778 0.8358 0.8058 0.8915

RF 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194 0.9018

SVM 0.8284 (0.7537, 0.888) 0.7895 0.8955 0.8392 0.9027

β = 75 23 XGBoost 0.7761 (0.6961, 0.8436) 0.7403 0.7206 0.7917 0.8906

RF 0.8134 (0.737, 0.8755) 0.7692 0.8955 0.8276 0.8995

SVM 0.7836 (0.7042, 0.85) 0.7436 0.8657 0.8000 0.8866

HFE bin = 10 β = 25 8 XGBoost 0.7537 (0.6719, 0.824) 0.7179 0.8358 0.7724 0.8717

RF 0.7537 (0.6719, 0.824) 0.7125 0.8507 0.7755 0.8603

SVM 0.7985 (0.7205, 0.8628) 0.7632 0.8657 0.8112 0.8868

β = 50 16 XGBoost 0.7836 (0.7042, 0.85) 0.7568 0.8358 0.7943 0.8882

RF 0.806 (0.7288, 0.8692) 0.7662 0.8806 0.8194 0.8946

SVM 0.806 (0.7288, 0.8692) 0.7808 0.8507 0.8143 0.9076

β = 75 23 XGBoost 0.7985 (0.7205, 0.8628) 0.7703 0.8507 0.8085 0.8991

RF 0.806 (0.7288, 0.8692) 0.7595 0.8955 0.8219 0.8989

SVM 0.7836 (0.7042, 0.85) 0.7436 0.8657 0.8000 0.8866

Testacc: Accuracy on the testing dataset.
Testprecision : Precision on the testing dataset.
Testrecall : Recall on the testing dataset.

1TestF : F1 score on the testing dataset.
TestAUC: AUC on the testing dataset.
B: Number of boosting cycles.
c: Number of disjoint sub-parts.
e: Number of repeated runs.
p: Proportions of repeated runs for extracting common features.
β: percentage of features selected.
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importance scores, and the top 𝑧 features were retained, where 
z = β × m, m denotes the total number of features, and 𝛽 controls the 
proportion of selected predictors. In our experiments, discretization 
settings of 5 and 10 bins were used to examine the impact of coarse 
versus fine value partitioning, while different values of 𝛽 were 
evaluated to analyze the trade-off between feature sparsity and 
information retention. The resulting feature counts for different 𝛽 
values and bin sizes are reported in Table 2, and the specific features 
retained under each discretization configuration are detailed in 
Supplementary Tables S8, S9.

Each of the feature-selection methods employed in this study 
contributes differently to managing feature correlation and 
redundancy. The Pearson correlation filter directly identifies linear 
associations among continuous variables, while the Chi-squared 
test evaluates dependency between categorical variables and the 
outcome. The ADT method inherently reduces redundancy because 
tree-based algorithms prioritize features that provide unique 
information gain, thereby minimizing overlap among correlated 
predictors. The CVFE technique emphasizes feature stability across 
folds, indirectly controlling multicollinearity by retaining only 
features that consistently contribute to predictive performance. The 
HFE further extends this concept by modeling higher-order, 
non-linear dependencies among features, enabling detection of 
interactions beyond pairwise relationships. Together, these 
complementary approaches provide a robust framework for 
selecting the most informative and non-redundant predictors of 
CVD risk.

Web application

As shown in Figure 4, the best feature evaluation approach (HFE) 
was incorporated into a machine learning-powered web application. 
This tool delivers both classification outcomes and associated 
probability scores. Instructions for uploading datasets, performing 
binary classification, and estimating probabilities are provided within 
the application interface. Users have the option to download relevant 
output files and contribute additional training data, thereby improving 
model performance. The tool also supports the export of a SHAP 
visualization, allowing users to examine how top-ranked features 
influence predictions.

Code and data availability

The scripts used in this study are available at https://github.com/
suraiya14/CVDRP.

Results

Following the reduction of the original feature set using four 
independent feature-selection strategies, we developed individual 
predictive models based on the selected features using the RF, 
SVM, and XGBoost algorithms. Each classifier was optimized 
using a grid-search procedure with 10-fold cross-validation on the 
training data to ensure robust hyperparameter tuning and reduce 
performance variance. To interpret and analyze the contribution 

of each feature in the best-performing model, we applied the SHAP 
method (Lundberg et al., 2020). SHAP is a model-independent 
method based on cooperative game theory that explains 
predictions by estimating the average marginal effect of each 
feature across different feature combinations. For the 
top-performing model, SHAP values were computed using a 
kernel-based SHAP approach, which provides an approximation 
of Shapley values for nonlinear classifiers that do not natively 
expose feature attribution scores.

Performance assessment

The predictive models were constructed by utilizing different 
sets of features selected through Pearson correlation + Chi-squared 
test, ADT, CVFE, and HFE methodologies in conjunction with the 
training data. The model’s performance was assessed on the test 
data using the metrics defined in Equations 1–4, where TP, TN, FP, 
and FN represent true positive, true negative, false positive, and 
false negative counts, respectively. Among these evaluation metrics, 
accuracy was employed to determine the ratio of correctly 
predicted outcomes relative to the overall number of samples in the 
dataset.
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In addition, we computed recall and precision to further 
evaluate model performance. Recall quantifies the ability of the 
model to correctly detect actual positive cases, whereas precision 
reflects the proportion of positive predictions that are genuinely 
correct. To provide a balanced evaluation that incorporates both 
precision and recall, we utilized the F1 score, which is defined as 
their harmonic mean. Moreover, the Area Under the Curve (AUC) 
metric was used to assess the effectiveness of the binary classifier. 
Higher AUC values correspond to stronger model performance, 
with a score of 1 indicating flawless classification and 0.5 
representing performance equivalent to random guessing. We also 
computed 95% confidence intervals for the model outputs to 
represent the range within which the true performance measure is 
expected to fall. Wider intervals correspond to greater uncertainty 
in the model’s predictive estimates.

Table 2 presents a detailed comparison of model performance 
using feature subsets selected through the Pearson correlation + 
Chi-squared test, ADT, CVFE, and HFE techniques. Corresponding 
confusion matrices for each reduced feature set are visualized in 
Supplementary Figure S2. The machine learning models employing 
features selected through the Pearson correlation + Chi-squared filter 
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achieved moderate predictive performance. In contrast, the ADT, 
CVFE, and HFE methods provided enhanced predictive performance. 
Overall, the HFE feature set (bin = 5, β = 50) combined with SVM 
model yielded superior predictive performance compared to the ADT 
and CVFE sets, with the best model successfully identifying 60 out of 
67 patients with CVD.

Features identified using the HFE approach

As mentioned earlier, the highest predictive performance was 
attained using the SVM algorithm paired with the HFE feature 
selection method configured with bin = 5 and β = 50. Figure 5 shows 
a SHAP summary bar chart illustrating the ranking of selected 
features according to their importance derived from SHAP value 
analysis for this model. The top 10 most influential features ranked 

by their SHAP values were RIDAGEYR (age in years at screening), 
LBXTC (total cholesterol, mg/dL), BPQ020 (ever told you had high 
blood pressure), BPQ101D (taking medication to lower blood 
cholesterol), RXQ033 (taken prescription medicine in the past 
month), SMQ020 (smoked at least 100 cigarettes in life), INDFMPIR 
(ratio of family income to poverty), RIAGENDR (gender), 
DMDEDUC2 (education level, adults aged 20 and above), and 
LBXRDW (red cell distribution width, %).

It is important to note that the SHAP analysis was employed 
solely to improve model interpretability by quantifying each 
feature’s relative contribution to the prediction outcomes. The 
SHAP values capture associational relationships between features 
and predicted CVD risk rather than causal effects. Because the 
NHANES dataset is cross-sectional and observational, causal 
inference cannot be drawn from these results. The SHAP findings 
are therefore intended to provide interpretive insight into the 

FIGURE 3

Comparison between a standard graph and a hypergraph. (a) A standard graph where each edge connects two vertices. (b) A hypergraph where each 
hyperedge can connect multiple vertices.

FIGURE 4

The web application for CVD risk prediction.
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model’s behavior and to guide hypothesis generation for future 
longitudinal or causal investigations.

Feature impact assessment

Figure 6 illustrates the contributions and directions of influence 
of the continuous predictors identified in Figure 5, based on SHAP 
value analysis. Each point represents an individual participant, with 
overlapping points jittered to show data density. The x-axis indicates 
SHAP values, where positive values (right) increase the model 
predicted likelihood of CVD and negative values (left) decrease it. 
The color gradient represents feature magnitude, with dark blue 
indicating high feature values and light blue indicating low 
feature values.

RIDAGEYR (age) shows that higher age values correspond to 
positive SHAP values, indicating that older individuals have a 
higher predicted CVD risk, which agrees with established 
epidemiologic evidence. LBXTC (total cholesterol) displays an 
inverse pattern, where higher cholesterol values correspond to 
negative SHAP values and lower predicted CVD risk. This 
unexpected direction, often referred to as the cholesterol paradox, 
has been observed in older or treated populations and may reflect 
survivor bias or treatment effects rather than a true protective 
influence (Orkaby, 2020; Majnarić et al., 2021). INDFMPIR (family 
income to poverty ratio) indicates that higher income ratios 
correspond to negative SHAP values and lower predicted CVD risk, 
whereas lower ratios are associated with positive SHAP values and 
higher predicted risk, consistent with the adverse cardiovascular 
impact of socioeconomic disadvantage. LBXRDW (red cell 
distribution width) shows that higher values are associated with 

positive SHAP values, indicating that greater red cell heterogeneity 
increases predicted CVD risk. This finding aligns with 
epidemiologic evidence demonstrating that elevated RDW is 
independently associated with cardiovascular morbidity and 
mortality in diverse populations (Danese et al., 2015; Patel et al., 
2009; Shantsila et al., 2023). LBXPLTSI (platelet count) shows that 
higher platelet values correspond to negative SHAP values and 
lower predicted CVD risk, while lower platelet values correspond 
to positive SHAP values and higher predicted risk. This inverse 
pattern may reflect platelet consumption or systemic inflammation 
rather than a true protective effect of reduced platelet levels. Similar 
non-linear or inverse associations have been reported in population 
studies, where low platelet counts were linked with greater 
cardiovascular morbidity and mortality, likely reflecting 
inflammation and disease burden rather than protection (Vinholt 
et al., 2016; Fawzy et al., 2019). LBXGH (glycohemoglobin) displays 
higher values aligned with positive SHAP values, confirming that 
elevated HbA1c levels increase the predicted CVD probability. 
LBDHDD (high-density lipoprotein cholesterol) generally shows 
that lower HDL values correspond to positive SHAP values and 
higher predicted cardiovascular disease risk, whereas higher HDL 
values are mostly associated with negative SHAP values and lower 
risk. However, a subset of both low and high HDL observations 
exhibited opposite SHAP directions, indicating that the relationship 
between HDL and predicted CVD is non-linear and context-
dependent. Such bidirectional effects likely reflect complex 
interactions between HDL and other metabolic or hemodynamic 
factors considered by the model. BPXOSY1 (systolic blood pressure) 
shows that higher systolic pressure values correspond to negative 
SHAP values, suggesting a lower predicted CVD probability, 
whereas lower pressures are linked with positive SHAP values. This 

FIGURE 5

Importance of features selected by the SVM model shown as a bar chart. The x-axis represents the mean absolute SHAP value for each feature, 
reflecting its average contribution to the model’s predictions. Features are arranged from most to least influential.
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inverse pattern does not imply a protective effect of elevated blood 
pressure but may instead reflect the J-shaped association observed 
in treated or frail older adults, where excessively low systolic 
pressure relates to increased cardiovascular events and mortality 
due to antihypertensive overtreatment or comorbid burden 
(Shantsila et al., 2023; Rodriguez et al., 2014).

Figure 7 illustrates the SHAP-based evaluation of key categorical 
predictors influencing CVD risk, with each subfigure presenting 
boxplots of SHAP values for distinct categorical features, where 
higher SHAP values represent stronger positive contributions to the 
predicted likelihood of CVD and vice versa. As shown in Figures 7a–c, 
participants who were ever told they had high blood pressure 
(BPQ020 = Yes), were informed of having high cholesterol 
(BPQ080 = Yes), or were taking cholesterol-lowering medication 
(BPQ101D = Yes) exhibited notably higher SHAP values, indicating 
greater predicted CVD risk. Figure 7d shows that SHAP values for 
individuals with diabetes (DIQ010 = Yes) were broadly distributed 
and did not consistently exceed those of non-diabetic participants. 
This indicates that diabetes status, although a well-established risk 
factor for cardiovascular disease, exerted only a modest independent 
influence in the current model. Such attenuation may reflect 
collinearity with other metabolic predictors—particularly 
glycohemoglobin (LBXGH) and lipid parameters—or the influence 
of effective glycemic control and treatment among participants. This 
observation is consistent with previous studies suggesting that 
diabetes-related cardiovascular risk varies substantially depending on 
comorbidity burden and glycemic management (Rawshani et al., 
2018; Einarson et al., 2018). As shown in Figure 7e, higher education 
levels (DMDEDUC2) were associated with lower SHAP values, 
suggesting an inverse relationship between educational attainment 
and CVD risk. Figure 7f indicates modest sex-based differences 

(RIAGENDR), with males showing slightly higher predicted risk 
overall. In Figure 7g, individuals who reported taking prescription 
medications within the past month (RXQ033 = Yes) had higher 
SHAP values, which may reflect the presence of underlying health 
conditions associated with increased CVD risk. Finally, Figure 7h 
shows that participants who had smoked at least 100 cigarettes in 
their lifetime (SMQ020 = Yes) had elevated SHAP values, reinforcing 
smoking’s well-established association with cardiovascular risk.

Discussion

Accurate individualized prediction of CVD risk is essential 
for prevention, early intervention, and improved clinical outcomes. 
In this study, we developed an interpretable, web-accessible 
machine learning framework that combines HFE with SHAP to 
prioritize predictive features and explain model behavior. Among 
all evaluated combinations of feature-selection strategy and 
classifier, the SVM trained on the HFE-selected features (bin = 10, 
β = 50) achieved the best overall performance on the held-out test 
set. This demonstrates the advantage of HFE in capturing complex 
feature dependencies that conventional pairwise methods overlook. 
Coupled with SHAP-based interpretability, the framework delivers 
both strong predictive accuracy and transparent, clinically 
meaningful explanations.

These findings align with recent studies demonstrating that nonlinear 
machine learning algorithms, including support vector machines, 
random forests, and XGBoost, achieve superior predictive accuracy for 
cardiovascular and coronary artery disease risk compared with 
conventional statistical or regression-based scores (Azmi et al., 2022; 
DeGroat et al., 2024; Peng et al., 2023; Cai et al., 2024; Krittanawong et al., 

FIGURE 6

SHAP analysis illustrating the contribution and direction of the continuous features to model predictions.
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FIGURE 7

SHAP analysis of categorical predictors influencing CVD risk. (a) BPQ020 (ever told had high blood pressure), (b) BPQ080 (doctor told—high 
cholesterol level), (c) BPQ101D (taking medication to lower blood cholesterol), (d) DIQ010 (doctor told you have diabetes), (e) DMDEDUC2 (education 
level for adults aged 20+), (f) RIAGENDR (gender), (g) RXQ033 (taken prescription medicine in the past month), and (h) SMQ020 (smoked at least 100 
cigarettes in life). Each subfigure shows the distribution of SHAP values for the corresponding categorical feature, indicating its contribution to the 
model’s prediction of CVD risk.
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2020; Rahim et al., 2021; Wang J. et al., 2024). Unlike traditional regression 
approaches that rely on prespecified functional forms, these algorithms 
flexibly capture complex, higher-order interactions among demographic, 
clinical, and biochemical variables. At the same time, growing evidence 
emphasizes that model interpretability is essential for clinical acceptance. 
SHAP explanation frameworks, in particular, have proven valuable for 
quantifying feature contributions and illustrating how physiological and 
behavioral factors influence cardiovascular risk predictions (Peng et al., 
2023; Lundberg et al., 2020; Wang J. et al., 2024).

Our SHAP analysis highlighted the dominant role of metabolic, 
hemodynamic, and behavioral domains in driving cardiovascular risk, 
emphasizing glycemic control, lipid metabolism, blood pressure 
regulation, and smoking behavior rather than isolated biomarkers. These 
findings are consistent with large-scale epidemiologic and mechanistic 
studies linking metabolic dysregulation, hypertension, and tobacco 
exposure to elevated CVD risk (Singh et al., 2013; Consortium GCR, 
2023; Rawshani et al., 2019; Joseph et al., 2017). Importantly, 
socioeconomic and behavioral indicators, including education level and 
family income to poverty ratio, also emerged as influential features, 
echoing prior work showing that social determinants and lifestyle factors 
substantially modulate cardiometabolic outcomes in U.S. populations 
(Zhao et al., 2021; Zhou et al., 2024). Together, these results underscore 
the value of population-based resources such as NHANES, which 
integrate demographic, laboratory, behavioral, and socioeconomic 
dimensions to support interpretable, data-driven cardiovascular-risk 
modeling.

Methodologically, this work contributes by operationalizing 
hypergraph-based feature evaluation within an explainable 
CVD-risk-prediction pipeline. Hypergraph frameworks extend 
conventional feature modeling by allowing each “edge” to connect 
multiple variables simultaneously, thereby capturing higher-order 
relationships beyond pairwise correlations (Misiorek and Janowski, 
2023; Jin et al., 2023). Prior studies in biomedical prediction have 
demonstrated that such hypergraph learning effectively represents 
complex structures in heterogeneous data (Jin et al., 2023). By 
integrating HFE with SHAP, the proposed framework maintains 
interpretability by providing explicit attributions for individual 
features while leveraging these richer relational patterns. This 
integration addresses a central challenge in clinical AI by balancing 
statistical rigor with practical interpretability for clinicians 
(Lundberg et al., 2020; Wang N. et al., 2024). Moreover, the 
accompanying web application delivers classification results, 
probability estimates, and SHAP visualizations. This design 
enhances reproducibility and facilitates external validation, both 
essential for trustworthy AI in cardiovascular and preventive 
medicine (DeGroat et al., 2024).

Several limitations should be noted. Although SHAP analysis 
enhances interpretability and model transparency, it does not establish 
causality between predictors and cardiovascular outcomes. The NHANES 
dataset is cross-sectional, and the balanced endpoint used for training was 
achieved through random undersampling of the majority non-CVD class 
and was designed for predictive fairness rather than causal estimation; 
thus, the relationships identified reflect statistical associations rather than 
mechanistic effects. Although random undersampling was used to 
mitigate class imbalance, alternative strategies such as class weighting or 
synthetic sampling methods may preserve additional information from 
the majority class and will be explored in future work. Model performance 
was evaluated using an internal stratified train–test split within a single 

NHANES cycle, and external validation using independent datasets or 
additional NHANES cycles was not performed in this study. CVD status 
was defined using self-reported, physician-diagnosed conditions in 
accordance with CDC/NHANES analytic protocols. While this approach 
may introduce recall bias or minor misclassification compared with 
adjudicated clinical records, such definitions are standard in population-
based machine learning studies and have been validated in prior 
CVD-prediction research (Martin-Morales et al., 2023; Dinh et al., 2019). 
Although the feature-selection strategies collectively addressed linear and 
nonlinear dependencies, residual correlations may persist; future studies 
could incorporate dimensionality-reduction or penalization methods 
(e.g., PCA or elastic-net regularization) to further minimize redundancy 
and improve interpretability. In addition, computational performance 
metrics such as inference latency, throughput under concurrent user 
access, and detailed resource utilization were not formally benchmarked 
in this study. While the web design improves accessibility and encourages 
iterative model refinement, systematic evaluation of inference time, 
retraining time, scalability under concurrent access, and hardware 
resource requirements will be addressed in future deployment-focused 
work. Future work will integrate longitudinal and multi-omics data, 
external validation across NHANES cycles, and federated-learning 
approaches to improve generalizability, and will also benchmark the 
proposed framework against validated clinical risk models such as 
Framingham, SCORE, and REGICOR when applied to datasets with 
complete longitudinal and treatment information. Finally, although the 
model identifies clinically relevant predictors such as age, blood pressure, 
cholesterol, glycohemoglobin, diabetes, smoking, and socioeconomic 
indicators, it is intended to complement rather than replace established 
clinical risk tools. The proposed framework provides a transparent, 
population-level approach for prioritizing risk factors, offering outputs 
that remain biologically plausible and consistent with known 
cardiovascular physiology.

In summary, we present a transparent cardiovascular-risk-
prediction framework that integrates hypergraph-based feature 
evaluation with SHAP explainability and deploys this pipeline in an 
accessible web tool. The approach demonstrated high discriminative 
performance on held-out test data, recovered physiologically and 
socially meaningful predictors, and revealed higher-order interactions 
among demographic, clinical, and behavioral features. These results 
support the potential of explainable, structure-aware machine learning 
to inform population-level cardiovascular-risk assessment in a 
reproducible and clinically interpretable manner.
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