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TEGAA: transformer-enhanced
graph aspect analyzer with
semantic contrastive learning for
implicit aspect detection

Piyush Kumar Soni* and Radhakrishna Rambola

SVKM'S NMIMS, Mukesh Patel School of Technology Management and Engineering, Shirpur, India

Implicit aspect detection aims to identify aspect categories that are not explicitly
mentioned in text, but existing models struggle with four persistent challenges: aspect
ambiguity, where multiple latent aspects are implied by the same expression, data
imbalance and sparsity of implicit cues, contextual noise and syntactic variability
in unstructured user reviews, and aspect drift, where the relevance of implicit
cues changes across sentences or domains. To address these issues, this paper
proposes the Transformer-Enhanced Graph Aspect Analyzer (TEGAA), a unified
framework that tightly integrates dynamic expert routing, semantic representation
refinement, and hierarchical graph reasoning. First, a Dynamic Expert Transformer
(DET) equipped with a Dynamic Adaptive Expert Engine (DAEE) mitigates syntactic
complexity and contextual noise by dynamically routing tokens to specialized
expert sub-networks based on contextual and syntactic—semantic cues, enabling
robust feature extraction for ambiguous implicit expressions. Second, Semantic
Contrastive Learning (SCL) directly addresses data imbalance and weak implicit
signals by enforcing semantic coherence among contextually related samples
while increasing separability from irrelevant ones, thereby improving discriminability
of sparse implicit aspect cues. Third, implicit aspect ambiguity and aspect drift
are handled through a Graph-Enhanced Hierarchical Aspect Detector (GE-HAD),
which models word- and sentence-level dependencies via context-aware graph
attention. The incorporation of Attention Sinks prevents dominant but irrelevant
tokens from overshadowing subtle implicit cues, while Pyramid Pooling aggregates
multi-scale contextual information to stabilize aspect inference across varying
linguistic scopes. Finally, an iterative feedback loop aligns graph-level reasoning
with transformer-level expert routing, enabling adaptive refinement of aspect
representations. Experiments on three benchmark datasets—Mobile Reviews,
SemEvall4, and Sentihood—demonstrate that TEGAA consistently outperforms
state-of-the-art methods, achieving F1-scores above 0.88, precision above 0.89,
recall above 0.87, accuracy exceeding 89%, and AUC values above 0.89. These
results confirm TEGAA's effectiveness in resolving implicit aspect ambiguity, handling
noisy and imbalanced data, and maintaining robust performance across domains.
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attention sink, context-aware graph attention, contrastive learning, implicit aspect
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1 Introduction

Implicit aspect detection in NLP finds the aspects that are implicit
or hidden in the text instead of being explicitly stated. This is crucial
for applications such as sentiment analysis, aspect-based opinion
mining, and customer feedback analysis, were users often express
opinions indirectly. These implicit aspects can help businesses uncover
hidden product strengths, leading to improved development strategies
and more targeted marketing efforts (Soni and Rambola, 2022;
Maitama et al., 2020). Global sentiment analysis market is believed to
reach billion dollars through the year 2030 and is driven by need of
such fine customer understanding. Studies have shown how advanced
text analytics, also with implicit aspect detection, helps a company
increase customer satisfaction and retention (Ganganwar and
Rajalakshmi, 2019; Al-Janabi et al., 2022). Implicit aspect detection in
such sectors as automotive and social media monitoring has helped
brands to make product features better and hidden sentiments more
visible, leading to a more effective engagement and management
(Trugca and Frasincar, 2023; Zhang et al., 2024).

Implicit aspect detection has progressed from rule-based and
traditional machine learning to more advanced deep learning and
graph-based approaches (Chauhan et al., 2023; Do et al., 2019). Early
approaches depended on manual rules and sentiment lexicons,
which are limited by predefined patterns. SVMs and CRFs machine
learning models have been able to improve the feature learning of
labelled data but failed in coping with language complexity. Recently,
with the advent of deep learning, CNNs, RNNs and later
transformers like BERT, have helped in contextual embeddings to
better detect implicit aspects (Le Thi et al., 2023; Liu et al., 2020).
Recently, Graph Neural Networks have been applied to further boost
this area by capturing the relational contexts between words and
entities that greatly enhance accuracy and robustness in implicit
aspect detection (Zhu et al., 2022; Yusuf et al., 2024; Sarno et al,,
2024). Explicit aspect detection involves aspects that are directly
mentioned, such as “The battery life of this phone is excellent,” where
battery life is explicitly stated. In contrast, implicit aspect detection
requires inferring aspects from context, as in “I had to charge the
phone twice in 1 day,” which implies battery life without explicit
mention. Similarly, “The room was so cold that I needed a jacket”
implicitly refers to air conditioning, and “It takes forever to get your
food here” implies service speed. These examples illustrate the
complexity of implicit aspect detection and motivate the need for
models like TEGAA that capture latent semantic and contextual cues
beyond surface-level keywords.

With an organization seeking deeper insights from an abundance
of unstructured text data, implicit aspect detection becomes more
crucial. Although great strides have been made so far, there are a few
key challenges that call for research. One is the challenge of imbalance
in datasets wherein some aspects may be less represented, resulting in
biased predictions by the models (Phan et al., 2023; Xu et al., 2023). In
addition, the tremendous computation cost of models such as
Transformers and GNNG is also expensive, which will be too costly for
real-time applications. The rise in fake data and manipulated
information has made it challenging to detect the true implicit
attributes; hence, models are required that can differentiate between
valid and invalid information (Khemani et al., 2024; An et al., 2022).
In addition, the complexity in the syntax and grammar of a natural
language makes it hard as models have to learn how to interpret and

Frontiers in Artificial Intelligence

10.3389/frai.2026.1666674

process widely spread linguistic structures in order to detect implicit
elements accurately (Soni and Rambola, 2022; An et al., 2022).

1.1 Problem statement

Implicit aspect detection in natural language processing remains
challenging due to multiple intertwined factors. First, data imbalance
and sparsity of implicit cues cause implicit aspects to appear
infrequently and be overshadowed by explicit or sentiment-dominant
expressions. Second, aspect ambiguity and aspect drift arise when the
same linguistic patterns imply different latent aspects depending on
context, sentence structure, or domain, leading to inconsistent
predictions. Third, contextual noise and syntactic/grammatical
complexity, including informal language, noisy or manipulated text,
and diverse sentence constructions, hinder robust feature extraction
and reliable inference. Addressing these challenges requires a scalable
and adaptive framework capable of capturing nuanced semantic
relationships while remaining robust to noise and contextual variation
(Ocampo et al., 2023; Das and Singh, 2023). The contributions of the
proposed model are given below,

o Dynamic Feature Extraction with DET: The Dynamic Expert
Transformer (DET), enhanced by the Dynamic Adaptive Expert
Engine (DAEE) with a Contextual Expert Router (CER) and
Adaptive Syntactic-Semantic Router (ASSR), introduces a novel
dynamic routing mechanism. Inputs are adaptively assigned to
specialized expert sub-networks, enabling richer syntactic and
semantic embeddings than standard transformer approaches.

Semantic Contrastive Learning (SCL): Semantic Contrastive
Learning refines embeddings by explicitly leveraging semantic
relationships. This innovative contrastive framework enhances
feature discriminability by aligning semantically related samples
and separating unrelated ones, capturing subtle contextual
variations that conventional embedding refinement methods
often miss.

Hierarchical Aspect Detection via GE-HAD: The Graph-Enhanced
Hierarchical Aspect Detector (GE-HAD) constructs multi-level
hierarchical context graphs, integrating word-level and sentence-

level nodes. This novel hierarchical attention mechanism captures
rich multi-granular contextual relationships, enabling more
precise detection of implicit aspects compared to existing graph-
based methods.

o Advanced Graph Attention Mechanisms: The Context-Aware
Graph Attention mechanism, combined with Attention Sinks and
Pyramid Pooling, aggregates features across multiple scales. This
enables selective focus on task-relevant nodes while preserving
fine-grained semantic information, surpassing traditional graph
attention approaches in capturing nuanced implicit cues.

The paper contains following sections, with section 2 giving a
detailed literature review of different studies done for implicit aspect
detection, section 3 giving a thorough analysis of the proposed
methodology, section 4 analyzing the performance of the proposed
model along with quantitative, visual and comparative analysis,
section 5 discussing the different advantages of the proposed model
with limitations and section 6 concluding the paper with the future
prospects of the study.
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2 Related works

Recent advancements in implicit aspect detection in text streams
have explored various innovative approaches, targeting applications
like emotion detection, sentiment analysis, and implicit aspect
identification. These works collectively contribute to addressing the
challenges in extracting and analyzing contextual features from
text data.

Ouyang et al. (2024) proposed a word-level relational hypergraph,
which could capture diverse syntactic and semantic relationships
among aspect words and their contextual terms. To fully exploit this
hypergraph, they proposed an Aspect-Specific Hypergraph Attention
Network (ASHGAT), which optimizes the attention of the hypergraph
by a syntactic distance-based weight distribution mechanism. Still, the
model’s quality is highly dependent on syntactic distance calculations,
limiting its performance in ambiguous or diverse context scenarios.
Expanding on the syntax and semantics of relationships, Hu et al.
(2023) presented the Multi-level Semantic Relation-Enhanced
Learning Network, which is essentially a reformulation of traditional
aspect-based sentiment analysis (ABSA) as a task of semantic
alignment. With integrated word and sentence-level semantic
relations, MSRL-Net enhances contextual alignment, although
dependence on correct semantic mapping may also limit its
performance in the nuanced contexts, much like the dependency
issues that surface in Ouyang et al’s work.

To alleviate the weakness associated with traditional similarity
computation methods, Benarafa et al. (2023) modified the KNN
algorithm by refining its distance computation mechanism to enhance
its ability to avoid overfitting and underfitting, two common
weaknesses in implicit aspect detection. While successful, their
performance is contingent on the selection of distance metrics, which
mirrors some of the issues pointed out by previous studies, such as
ASHGAT and MSRL-Net, in terms of variability within the dataset.
On the other hand, Murtadha et al. (2024) focused on using auxiliary
sentence generation to simultaneously classify aspects and perform
sentiment analysis. The approach used a BERT-based framework fine-
tuned for these tasks. Their approach improves aspect-specific
representation learning by reacting to seed semantic distributions
within the embedding space. However, similar to ASHGAT and
MSRL-Net, their model relies on the quality of these auxiliary
sentences, parallel to the reliance on input accuracy.

Focusing on richer contextual embeddings, Liu and Shen (2023)
developed the Information-Augmented Neural Network (IANN),
incorporating the Multiple Convolution with Recurrence Network
(MCRN) to integrate contextual information dynamically. The
introduction of the Aspect Outside (AO) tagging scheme provides a
simplified yet effective tagging methodology for implicit aspect
tagging. However, its success is influenced by the complexity of
contextual data integration, as seen in Murtadha et al’s framework.
Extending this focus on contextual understanding, Chouikhi et al.
(2023) applied transfer learning for Aspect Term Extraction and
Aspect Polarization Detection in Arabic, utilizing pre-trained BERT
models tailored for the language. Their comparative analysis of various
BERT implementations highlights the sensitivity of performance to
model configuration, mirroring the configuration-specific challenges
seen in other works, such as IANN and MSRL-Net.

By collectively addressing syntactic dependencies, semantic
alignment, distance metrics, auxiliary data generation, contextual
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embeddings, and transfer learning, these related works demonstrate
complementary strengths and shared limitations. These insights
underline the importance of integrating robust feature extraction,
semantic refinement, and adaptive learning mechanisms to overcome
challenges in aspect detection, paving the way for advanced
frameworks that build upon these contributions.

The literature on implicit aspect detection reveals several recurring
limitations that motivate the design of TEGAA. Models such as
ASHGAT (Ouyang et al., 2024) and MSRL-Net (Hu et al., 2023) rely
heavily on explicit syntactic distances or predefined semantic
mappings, which restrict their ability to generalize when sentence
structures vary or when implicit relationships are not explicitly
encoded. In contrast, TEGAA avoids rigid linguistic assumptions by
dynamically learning contextual dependencies through adaptive
expert routing and graph-based relational modeling. Distance-based
and metric-dependent approaches, including enhanced KNN
(Benarafa et al., 2023) and the framework of Murtadha et al. (2024),
further suffer from sensitivity to predefined similarity measures and
the quality of auxiliary data, limiting robustness under noisy or
manipulated inputs; this limitation is addressed in TEGAA through
DET with DAEE, which suppresses noise by selectively activating
task-relevant expert sub-networks. Contextual embedding models
such as JANN (Liu and Shen, 2023) and transfer-learning strategies by
Chouikhi et al. (2023) improve semantic representation but do not
explicitly handle class imbalance, aspect ambiguity, or aspect drift,
leading to unstable performance across domains. TEGAA addresses
these gaps by integrating Semantic Contrastive Learning to counter
data imbalance and sparse implicit cues, and a Graph-Enhanced
Hierarchical Aspect Detector to disambiguate latent aspects and
maintain stability under shifting contexts. By systematically
overcoming the structural rigidity, metric dependence, and partial
challenge coverage of prior work, TEGAA provides a unified and
robust solution for implicit aspect detection.

3 Proposed TEGAA

The Transformer-Enhanced Graph Aspect Analyzer (TEGAA) is
an advanced framework designed for implicit aspect detection in text
data, integrating state-of-the-art techniques in both feature extraction
and implicit aspect detection. The model leverages the Dynamic
Expert Transformer (DET) based on switch transformer (Fedus et al.,
2022) with the Dynamic Adaptive Expert Engine (DAEE) to extract
rich contextual embeddings from unstructured text. DET uses a
custom gating mechanism within DAEE to route embeddings to
specialized expert sub-networks, focusing on task-specific syntactic
and semantic features. This approach enhances the model’s ability to
capture nuanced contextual information and improve feature
representations. Followed by feature extraction, Semantic Contrastive
Learning refines these embeddings by forming positive pairs from
semantically related data points- such as those sharing related topics
or sentiments, and negative pairs- using a contrastive loss, to improve
the discriminability of the features. In the implicit aspect detection
phase, the Graph-Enhanced Hierarchical Aspect Detector (GE-HAD)
plays a pivotal role. GE-HAD constructs a multi-level hierarchical
graph, integrating nodes at distinct levels for capturing rich contextual
relationships. The model employs Context-Aware Graph Attention
mechanism to dynamically adjust attention weights based on DET’s
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embeddings. Attention Sinks (Xiao et al., 2023) and Pyramid Pooling
(Elhassan et al., 2024) are incorporated to focus on critical nodes and
aggregate features at multiple scales, ensuring effective feature
combination and comprehensive implicit aspect detection. TEGAA’s
iterative feedback loop, which integrates the hierarchical graph
outputs (Yang et al.,, 2021) to refine DET’s gating decisions and
attention patterns, further enhances the model’s performance. This
feedback mechanism allows TEGAA to adapt to the nuances of the
data, ensuring accurate and contextually relevant implicit aspect
detection. The final model is evaluated through different performance
measures to validate its effectiveness and accuracy. The overall
architecture of the proposed model is illustrated in Figure 1.

In the figure, Add+Normalize refers to adding a residual
connection followed by Layer Normalization. This combination helps
stabilize training, allowing gradients to flow more effectively and
ensuring consistent activation scales across layers. It is commonly
used after attention or feed-forward transformations.

3.1 Feature extraction with dynamic expert
transformer

The Dynamic Expert Transformer (DET) improves feature
extraction capabilities through its Dynamic Adaptive Expert Engine
(DAEE), the mechanism that captures rich contextual embeddings
from unstructured text. DET implements a custom gating mechanism
within DAEE, specifically the Contextual Expert Router (CER) and
the Adaptive Syntactic-Semantic Router (ASSR), to dynamically route
inputs to specialized expert sub-networks based on specific linguistic
and semantic features of the task. CER: This guides the embeddings
toward the relevant expert based on contextual relevance. ASSR: This
prioritizes the sub-networks of the expert toward syntactic and
semantic aspects. This targeted routing helps DET to focus on the
features such as syntactic dependencies and semantic nuances that are
crucial for implicit aspect detection. The Feedback-Driven Expert
Selector (FES) also adjusts the dynamic expert selection with the
feedback from Graph-Enhanced Hierarchical Aspect Detector
(GE-HAD), adapting to the dynamic interplay. This iterative feedback
loop, mediated by the Aspect-Aware Attention Refiner (AAR),
continually refines DET’s gating decisions and attention patterns. This
will lead to a more finely attuned feature extraction process to the
nuances in the data, which should significantly improve the overall
accuracy of implicit aspect detection. DET employs advanced routing,
feedback, and attention mechanisms for better representation and
capturing of nuanced features in the unstructured text. Key
components of this model include extraction of rich contextual,
syntactic, and semantic embeddings based on the DAEE engine. In
the Dynamic Expert Transformer (DET), the Dynamic Adaptive
Expert Engine (DAEE) leverages five expert sub-networks (K = 5) to
capture diverse linguistic and contextual patterns crucial for implicit
aspect detection. Each expert specializes in distinct tasks, including
syntactic parsing, semantic role labeling, sentiment cue recognition,
and discourse-level reasoning, allowing the model to dynamically
process complex textual structures. The token embeddings within
DET are initialized using BERT-base-uncased, providing rich
contextual representations that are subsequently routed through the
experts via the Contextual Expert Router (CER) and Adaptive
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Syntactic-Semantic Router (ASSR). This design enables adaptive
feature extraction, where each expert focuses on task-relevant
information, and the system iteratively refines representations through
feedback from the Graph-Enhanced Hierarchical Aspect Detector
(GE-HAD), ensuring robust handling of ambiguous, sparse, or
contextually nuanced implicit aspects.

To adapt the original Switch Transformer for implicit aspect
modeling, the proposed Dynamic Expert Transformer (DET)
incorporates several architectural modifications that extend beyond
standard sparse MoE routing. First, the fixed top-1 gating mechanism
is replaced with a context-aware multi-expert router that conditions
gating probabilities on both token embeddings and auxiliary
syntactic-semantic cues, enabling more fine-grained expert selection
for aspect-related patterns. Second, DET integrates a Dynamic
Adaptive Expert Ensemble (DAEE), allowing the routing distribution
to be iteratively refined using feedback signals produced by the
GE-HAD graph module, rather than relying solely on the initial
token-level gating decision. Third, each expert is augmented with
aspect-sensitive normalization and lightweight residual adapters,
encouraging specialization toward distinct implicit aspect cues.
Finally, DET introduces a feedback-compatible gating update rule,
ensuring that expert assignments can be adjusted across iterations
based on graph-level contextual information. These modifications
collectively differentiate DET from the original Switch Transformer
and tailor it specifically for robust and adaptive implicit aspect
detection.

3.1.1 Dynamic adaptive expert engine

The Dynamic Adaptive Expert Engine (DAEE) serves as the
coordination core of the Dynamic Expert Transformer, ensuring that
feature extraction is contextually informed, syntactically aware, and
dynamically refined through feedback. It operates through four
interconnected components that work in a sequential yet iterative
manner. The Contextual Expert Router (CER) initiates routing by
analyzing discourse-level cues and assigning tokens to specialized
expert sub-networks based on contextual relevance. The Adaptive
Syntactic-Semantic Router (ASSR) refines these assignments by
integrating syntactic dependencies and semantic embeddings,
enabling linguistically coherent expert selection. The Feedback-
Driven Expert Selector (FES) then incorporates performance signals
from the downstream GE-HAD module, dynamically correcting
misrouted or ambiguous tokens through iterative updates. Finally, the
Aspect-Aware Attention Refiner (AAR) adjusts expert-level attention
weights to prioritize tokens carrying implicit aspect cues. Together,
these four components form a high-level, closed-loop mechanism that
organizes how expert networks communicate, refine one another’s
outputs, and continuously improve representation quality-providing
the conceptual structure needed to understand the mathematical
details that follow.

In practical processing, DAEE dynamically selects the most
relevant expert networks through a gating mechanism that computes
soft routing probabilities for each token. After the input text is
embedded into high-dimensional vectors, each expert-such as one
specializing in syntactic patterns or another in semantic relations-
receives tokens according to these routing probabilities. CER first
directs key contextual elements (e.g., “lasts” and “all day” in “The
phone lasts all day”) toward an expert tuned for battery-related
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semantics. ASSR then reinforces or corrects these assignments by
combining dependency relations (linking “lasts” to “phone”) with
semantic embeddings, reducing misrouting errors common in simpler
models. FES further adjusts the routing based on GE-HAD’
hierarchical graph outputs, enabling the system to distinguish subtle
cases such as “vibrant screen” versus “drains quickly,” and AAR
enhances implicit cue recognition by amplifying aspect-specific
signals (e.g., “long-lasting” — battery life). Through this coordinated
interplay-contextual routing, syntactic-semantic refinement,
feedback-driven correction, and attention adjustment-DAEE provides
an intuitive, high-level overview of how expert networks work
together before the formal equations in the methodology section. This
coordinated interplay enables the DAEE to adaptively process text,
achieving semantic coherence and discriminability. By integrating
contextual analysis, syntactic-semantic routing, feedback-driven
adjustments, and attention refinement, the DAEE ensures robust
feature extraction, setting the stage for the detailed mathematical
formulations in Equations 3—-11.

Let the input embedding x€R?, where d is the dimensionality. The
DAEE defines K expert networks {E,, E,, ..., Ex}, each with distinct
specializations. The gating mechanism computes a distribution over

experts as given in Equation 1:

ng+bg

g(x)—a[ ],g(x)eRK (1)

T

Where, o represents the softmax function, providing a probability
distribution over K experts, W,eR**? and b,eR" are trainable
parameters, 7 >0 is a temperature parameter that controls the
sharpness of the distribution. Lower 7 increases confidence in the
gating decision, while higher 7 distributes probabilities more evenly.
As given in Equation 2, the DAEE output Y, combines the outputs of
selected experts weighted by g(x),

Yo=Y gi(x)-Ei(x) @)

Where, gi(x) is the probability assigned to expert i, and E(x) is the
output of expert i. DAEE ensures adaptive feature extraction by
dynamically routing inputs to the most relevant experts, leveraging
their specialized knowledge. For the sentence “The quick brown fox
jumps over the lazy dog,” the system might route to Expert 1 for
analyzing syntactic relations, while Expert 2 may handle semantic
information like action or motion (e.g., “jumps over”). The final
output is a combination of these experts weighted by their relevance.

3.1.2 Contextual expert router

The Contextual Expert Router (CER) directs embeddings to
experts based on contextual features, such as sentence structure,
discourse, and topic relevance. It evaluates the relevance of an input x
by considering its contextual embedding h.(x), computed using a
context encoder from the switch-based transformer. For example, the
CER might assign higher importance to experts that understand
action-related words in the context of a motion task.

he (x):Encont(x) (3)
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Where, En,,, is the context encoder. The routing probabilities are
then determined as,

Weonthe (x) +beont

Teont (x)—a[ j, Teont (x)eRK (4)
T

Where, h(x)eR" is the contextual embedding, and m is the
embedding dimension, K represents the number of expert networks,
K is the dimensionality of the routing probability vector, W, &R**™
and b,,,,€RX are trainable weights for the contextual router. The CER
output combines expert outputs, weighted by 7,,,./(x),

Yeer =Y feont.i (x)-Ei (%) (5)

Where, 7o (x) is the probability assigned to the i-th expert
based on the context of the input x. CER uses contextual embeddings
to prioritize experts, enabling the system to focus on topic-specific or
discourse-related features.

3.1.3 Adaptive syntactic-semantic router

The Adaptive Syntactic-Semantic Router (ASSR) routes inputs
based on syntactic and semantic relevance. For example, the sentence
“The quick brown fox jumps over the lazy dog” has clear syntactic
structures such as subject, verb, and object, and semantic relationships
such as the action of jumping. It uses two embedding functions:

a. Syntactic embedding h,(x), derived from dependency parsing:
h(x) = Parsers,cic(x)

b. Semantic embedding h,,,(x), derived from pretrained semantic
model: A, (x) = Encoder amic(x)

The two types of embedding are combined together. The
combined embedding is passed through a final gating function to
select the most appropriate experts for syntactic or semantic tasks. For
example, if the goal is to understand the action (“jumps”), syntactic
experts may focus on verb phrases, while semantic experts may focus
on the meaning of “jump” in the context of physical motion. The final
gating mechanism is given as,

hsyn—sem (x) = [hs (x)’ hsem (x):"
"Vsyn—semhsyn—sem (x) + bsyn—sem ] 6)
T

Tsyn—sem (x) =0

Where, hy,....(x)ER* 1 combines syntactic (p-dimensional) and
semantic (g-dimensional) features, W,,,, ., €R*?*9, hy, . €R"are
trainable parameters and [hs (x);hsem (x)] represents the
concatenation of the two embeddings. The output of ASSR is
expressed as,

YASSR :Zfilrsyn_sem)i(x).Ei(x) (7)

ASSR ensures experts are selected to handle specific syntactic
structures (e.g., clauses) or semantic relationships (e.g., entailment,
similarity).
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3.1.4 Feedback-driven expert selector

The Feedback-Driven Expert Selector (FES) refines expert
selection based on feedback from downstream tasks, such as
implicit aspect detection. Once the initial expert outputs are
the model their
adjusts future expert selection using the feedback signal F(y). This

produced, evaluates performance and
signal is derived from a Multi-Layer Perceptron (MLP) that
processes the output of the Graph-Enhanced Hierarchical Aspect
Detector (GE-HAD). The feedback signal F(y) adjusts the

gating scores,

gupdmed(x):ﬂ.g(x)+(l—ﬂ).F(y) (8)

Where, F(y) = MLPyeqpaa(Yoerap)» an MLP mapping the
downstream output Yoz pap to a feedback signal and 4 is a weighting
factor for the original gating scores. The final output is updated based
on the refined gating scores:

Yrgs :ZiK:lgupdated,i(x)' Ei(x) ©)

For instance, if the implicit aspect detection task is focused on
identifying aspects like motion or action, the FES will dynamically
adjust expert selection, emphasizing experts that have proven more
accurate at detecting action-related features.

3.1.5 Aspect-aware attention refiner

The AAR refines the attention mechanism using aspect-specific
information. The system computes the attention weights for each
expert output and refines them based on aspect-specific information.
Given Y, the attention weight matrix is computed as:

(Qwo)(KWk )’

A

Avefined = softmax +baar (10)

Where, Q, K are queries and keys derived from Yz, W, Wy are
weight matrices, dj represents the dimension of the key vectors in the
attention mechanism and b,y is a bias term. The refined embedding
is expressed as,

Yaar = AreﬁnedVWV 1m

Where, V represents values (e.g., expert outputs) and W, is a
trainable weight matrix associated with the values, responsible for
transforming the output representation after applying attention.
AAR focuses attention on relevant aspects, enhancing DET’s
ability to emphasize critical features. The Dynamic Expert
Transformer (DET) is a robust framework for extracting complex
contextual, syntactic, and semantic features. Its adaptive routing
and feedback-driven refinement, significantly improve feature
extraction for tasks like implicit aspect detection, sentiment
analysis, and text classification. The advanced mathematical
formulations ensure precise expert selection and robust
hierarchical modeling.
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3.2 Semantic contrastive learning for
enhanced feature extraction

Semantic Contrastive Learning (SCL) enhances feature extraction
by refining the representations generated by the Dynamic Expert
Transformer (DET) in the Transformer-Enhanced Graph Aspect
Analyzer (TEGAA) model. It involves preparing sets of positive and
negative sample pairs based on semantic relationships within the data,
where semantically similar instances form positive pairs, and
dissimilar ones constitute negative pairs. Applying a contrastive loss
function maximizes similarity between positive pairs while
minimizing it for negative pairs, thereby boosting feature
discriminability across contextual variations. This process captures
subtle differences in representations, enabling DET to produce more
accurate and meaningful embeddings, which strengthens the feature
extraction mechanism for distinguishing between similar and
improving TEGAA’s
performance in detecting and analyzing nuanced text aspects.

dissimilar implicit aspects, ultimately
Semantic contrastive learning refers to the model’s ability to capture
and analyze contextual shifts, patterns, or relationships within the
data, such as identifying changes in sentiment or aspect relevance,
maintaining coherence across related contexts, or distinguishing
unrelated content. This approach supports tasks like tracking evolving
trends or understanding contextual dependencies in dynamic text,
enhancing TEGA A’s adaptability.

SCL integrates semantic dynamics into the DET feature extraction
pipeline, boosting its ability to detect evolving and subtle differences
between data representations. By constructing positive and negative
sample pairs, SCL employs an advanced contrastive loss to compel
DET to generate more contextually coherent and discriminative
embeddings, making it well-suited for nuanced implicit aspect
detection and analysis. This process enhances the model’s capacity to
differentiate subtle variations in input text, particularly when
identifying implicit aspects, by focusing on semantic relationships-
whether across related sentences or conversational flows- thus
capturing essential contextual cues. The contrastive learning approach
ensures that embeddings retain critical contextual information,
enabling TEGAA to effectively analyze nuances in sentiment or aspect
shifts, thereby improving its overall performance in identifying
implicit aspects across datasets like mobile reviews, SemEvall4 and
Sentihood.

In Semantic Contrastive Learning (SCL), positive and negative
pairs are carefully constructed to enhance the discriminability of
contextual embeddings and improve the model’s ability to capture
subtle semantic nuances. Positive pairs consist of embeddings from
contextually related tokens or sentences, such as words appearing in
the same semantic context or sentences discussing the same aspect,
while negative pairs are drawn from unrelated or semantically distant
tokens and sentences. A semantic offset is defined as the vector
difference between embeddings of semantically related samples,
representing meaningful contextual variation in the embedding space.
This offset is used to guide the contrastive loss, encouraging
embeddings of related samples to be pulled closer together while
pushing unrelated samples farther apart.

The use of semantic offsets allows the model to explicitly encode
fine-grained relationships between tokens and sentences, ensuring that
subtle implicit cues-such as modifiers, sentiment-laden phrases, or
context-dependent expressions—are more effectively captured. By
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incorporating both token-level and sentence-level information, SCL
refines the DET-generated embeddings across multiple levels of
granularity. This not only improves feature separability but also enhances
the overall robustness of the model against noisy or ambiguous inputs,
ultimately leading to more accurate implicit aspect detection.

3.2.1 Pair construction with semantic dynamics

The first part of Semantic Contrastive Learning is building
positive and negative pairs out of the sequence data. These pairs give
the needed contrast to improve the latent representations so that there
is no overlap in the embeddings of semantically irrelevant points. This
systematic pairing captures the semantic coherence and ensures
separability across different text sequences.

o Positive pairs: Composed of embeddings from semantically
related data points, ensuring coherence across contextually
similar content, such as embeddings from text with shared topics
or sentiments. For example, embeddings (z, z;, ), where A is a
small semantic offset.

o Negative pairs: Include embeddings from semantically unrelated
data points, introducing diversity and enforcing discriminability,
such as embeddings from text with dissimilar topics or
sentiments. For example, embeddings (z, 2, aa), where A, >> A.

Let x, represent data in input text sequence. DET processes this
through its Dynamic Adaptive Expert Engine (DAEE) to produce
embeddings which is expressed as given in Equation 12,

2 = foer (%) (12)

Where, frer encapsulates DET’s expert routing and attention
mechanisms. The dataset D is split into positive and negative pairs as
given in Equations 13,14 respectively:

Positive pairs: P = {(zt ZiiA )|A e [O,AmaX [ ﬂ{ }} (13)

Negative pairs: N = {(Zt ZtrA, )|Ad > Aax { }} (14)

Here, A, represents the threshold for semantic similarity. The
semantic contrastive loss as calculated in Equation 15 aims to maximize
similarity for positive pairs while minimizing it for negative pairs, creating
discriminative embeddings sensitive to semantic relationships.

exp(sim(zt,zHA )/ T)
exp(sim(z, A ) / r) +

Z exp(sim(zt Zt1A, )/r)

1
Lgcr, = —ﬂztel)bg
(15)

ZiiageN

Here, sim(z;, z) is the Similarity function, typically cosine
zZj.zZ j
" , 7 is the temperature scaling
j

J=i1[=

factor, controlling the sharpness of similarity distribution, D is the

similarity given as sim (z,- Z j)
entire dataset of embeddings and /D/ is the total number of samples.
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This loss function is a normalized temperature-scaled cross-entropy
loss designed to optimize the alignment of positive embeddings while
encouraging diversity between negative pairs. SCL refines embeddings
through two crucial mechanisms: semantic coherence and semantic
discriminability. Semantic coherence ensures that embeddings remain
stable for contextually related points by minimizing the distance
between positive pairs, capturing gradual transitions in features. This
is particularly effective in datasets where subtle semantic variations
represent significant changes.
(a) Semantic coherence

« For positive pairs (z, z:, ), SCL ensures embeddings remain
consistent across semantic shifts. By minimizing intra-pair
distance given as min||z; —z;4 A ||% . DET learns to capture
gradual transitions in feature representations.

(b) Semantic discriminability

« For negative pairs (z;, z,, aa), SCL enforces a larger margin of
max || zy — 2y Ad II% . This separation prevents DET from

conflating semantically dissimilar aspects.

The combination of these objectives helps DET distinguish fine-
grained semantic variations and contextually irrelevant information.
To enhance the learning process, SCL incorporates feedback-driven
adaptation. This involves evaluating the quality of embeddings
through performance metrics obtained from downstream tasks.

1. Feedback Generation: The model evaluates the quality of
embeddings via downstream tasks, such as implicit aspect
detection or classification.

2. Embedding Adjustment: Using the feedback, the Feedback-
Driven Expert Selector (FES) re-routes ambiguous cases to
specialized experts within DET, ensuring embeddings are
further refined for challenging instances.

This adaptive feedback loop reduces the residual errors and
improves the discriminability of features. The improved embeddings
obtained through SCL show the following advanced properties:
Evolving semantic patterns are captured due to semantic adaptation,
making the model invariant to semantic variations in the data. Noise
robustness is obtained since spurious correlations are eliminated, due
to meaningful separations of pairs in the embedding space, by the
constraints put on pairs. Finally, semantic precision is maintained by
aligning the embeddings for semantically similar instances, even in the
presence of noise or variability in the input data. These enhancements
collectively improve the model’s ability to handle complex data
effectively, which contributes to superior task performance.

The SCL loss is integrated with the DET’s task-specific loss to form
a unified optimization objective. Combining the SCL loss, which
focuses on refining semantic relationships, with the task-specific loss
that optimizes the model for its target application ensures that the
embeddings are fine-tuned for both capturing contextual similarities
and meeting task-specific requirements during the joint training
process. DET and SCL collaborate through iterative updates of model
parameters, driven by gradients from the joint loss, to achieve robust
learning of semantic representations and improved task outcomes as
given in Equation 16.
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Liotal = aLscr + BLpgT (16)

Where, a and f are weights balancing semantic contrastive
learning and DET’s primary training objectives and Ly denotes Task-
specific loss (e.g., cross-entropy for classification). This joint
optimization ensures that SCL complements DET’s existing strengths,
yielding a robust feature extraction mechanism tailored for dynamic
textual data.

3.3 Aspect detection with graph-enhanced
hierarchical aspect detector

GE-HAD advances implicit aspect detection through multi-level
hierarchical context graphs by constructing and analyzing the
comprehensive graph of word-level and sentence-level nodes that
captures a rich set of contextual relationships throughout the text.
Through the use of DET-provided embeddings, Context-Aware Graph
Attention mechanism dynamically adapts the weights of attention to
concentrate at different granularities toward relevant features and
relationships for the model. Attention Sinks are used to rank and process
the most important contextual information so that important things are
focused on. Pyramid Pooling is used for effective aggregation of features
at different scales, ranging from word-level to sentence-level, in order to
capture multi-level context and improve feature representations. This
combination of attention mechanisms and pooling strategies enhances
the ability of the model to detect nuanced and complex aspects by
utilizing structured context information and refined attention patterns,
which increases the accuracy and depth of implicit aspect detection.
GE-HAD refines implicit aspect detection using a multi-level
hierarchical graph structure which is able to integrate word-level and
sentence-level contexts. Through the application of Context-Aware
Graph Attention (CAGA), Attention Sinks, and Pyramid Pooling, it
provides precise contextual modelling and feature refinement for fine-
grained implicit aspect detection.

3.3.1 Hierarchical context graph construction

The hierarchical graph G = (V; E) plays a vital role in capturing the
underlying structure of text data, such as sentences and words, within
a multi-level context. The nodes in the graph represent distinct levels
of text granularity.

Nodes V

o Word-level nodes (v,) represent individual words. They are
crucial for capturing the basic linguistic elements and semantic
features of the text.

« Sentence-level nodes (v,) aggregate word nodes within sentences.
The sentence nodes encode contextual relationships between
words, providing a higher level of abstraction.

Edges E

o Intra-level edges (E;.): These edges capture relationships within
the same level. For example, word co-occurrence or syntactic
dependencies like subject-verb-object relationships are captured
here. These connections are vital for understanding local
linguistic structures.
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« Inter-level edges (E;..,): These edges link nodes across levels. For
instance, word nodes are connected to sentence nodes. These
inter-level connections help build a global understanding of the
text by linking detailed word-level information to higher-level
contextual structures.

The adjacency matrix A encodes these relationships, where edge
weights w; represent semantic similarity or syntactic relevance
between nodes.

Wijs if(v,-,vj)es

Ajj= .
0, otherwise

17)

Where, w; is the edge weight calculated based on semantic
similarity or syntactic relevance. It is expressed as,

2
[ =i,

Wiy =exp| = (18)

Where, z, z; denote feature embeddings of nodes v;, v; and ¢ is the
scaling factor controlling sensitivity to differences. To understand the
global structure of the graph, the Graph Laplacian (L) is computed as
given in Equation 19, which helps smooth node representations across
the graph, ensuring that closely related nodes have similar embeddings.

-1 -1
L=I-D2AD? (19)

Where, I represent the identity matrix and D is the degree matrix,
with D;; = 2A;.

In the Hierarchical Context Graph (HCG), edges are constructed to
capture both intra-level (within the same level, e.g., word-to-word or
sentence-to-sentence) and inter-level (across levels, e.g., word-to-
sentence) dependencies, ensuring comprehensive modeling of contextual
relationships. Intra-level edges at the word level are built using
dependency parsing tools (such as SpaCy or Stanford CoreNLP) to
connect words based on syntactic relations like subject-verb, modifier—
noun, and object-verb links, capturing grammatical structure. At the
sentence level, intra-level edges are formed using attention-based
clustering, where sentence embeddings are computed via the pre-trained
transformer, and sentences with cosine similarity above a threshold (e.g.,
0.7) are connected, ensuring that semantically related sentences influence
each other. Inter-level edges are constructed to link words to the
sentences they belong to, as well as to other relevant higher-level
constructs. A fixed window size strategy is applied, where each word is
connected to neighboring sentences within a context window of +1 or
+2 sentences, allowing the model to capture short-range discourse
dependencies. Additionally, cross-level attention scores from the
Context-Aware Graph Attention (CAGA) module are used to weight
inter-level edges dynamically, prioritizing words that are semantically or
sentimentally significant for implicit aspect detection. This combination
of syntactic parsing, attention-based clustering, and window-based
connections enables the HCG to represent fine-grained intra-level
interactions while maintaining robust inter-level contextual reasoning,
which is critical for capturing subtle cues in implicit aspect detection.

frontiersin.org


https://doi.org/10.3389/frai.2026.1666674
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Soni and Rambola

Before applying the hierarchical attention mechanism in
GE-HAD, all node features in the context graph are initialized using
representations generated by the Dynamic Expert Transformer (DET).
Each word-level node is assigned its initial feature vector from the
DET output corresponding to that token, ensuring that the node
embedding already encodes rich syntactic, semantic, and contrastive-
learning-refined information. Sentence-level nodes are initialized by
computing the mean-pooled embedding of all DET-generated token
features within the sentence, allowing each sentence node to capture
broader contextual meaning beyond individual words. For graph
connectivity, intra-level edge weights are initialized using syntactic
dependency strengths or semantic similarity scores between node
pairs, while inter-level edge weights are initialized using cosine
similarity between word and sentence embeddings. This initialization
strategy ensures that both word- and sentence-level nodes begin the
GE-HAD process with context-aware, structurally meaningful
features, enabling the subsequent attention mechanism to operate on
well-formed hierarchical representations.

3.3.2 Context-aware graph attention

The Context-Aware Graph Attention mechanism focuses on
refining node representations by incorporating contextual information
from neighboring nodes. This is particularly important for text data,
as different words or sentences contribute varying levels of importance
to the overall meaning. Node representations z; are iteratively updated
to incorporate information from neighbors, weighted by attention

coefficients a;,

zZi= }/(ZJEN(l)al]WgZ]) (20)
Where, N(i) represents the Neighbors of node v;, W, represents the

trainable weight matrix for graph-based transformation and y is the
ReLU activation function. Attention coefficients a; are computed as,

exp(¢(z,- Zj ))

a;i = 21
ij ZkeN(i)exp(qﬁ(Zi ,Zk))
Where, ¢(z,2;) is a compatibility function,
¢(Zi’zf):‘/’(“T [Wgzi "WgZJ'D (22)

Here, a is a trainable attention vector, y represents the leaky ReLU
activation function and || is the concatenation operator.

3.3.3 Attention sinks

Attention Sinks are special nodes introduced for each level
(Vainkword> Vsinksent) tO aggregate critical contextual information and
prioritize important aspects. These nodes help aggregate the most
critical information and allow the model to focus on the most relevant
parts of the text. The representation of a sink node z, is computed as,

Zsink = O-(ZjeN(sink sink,jwszj) (23)
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Where, Ny, denotes the Neighboring nodes of the sink, fu;
represents the attention weight between the sink and its neighbors,

defined similarly to a;, and W, is the Sink-specific weight matrix. By

i
incorporating attention sinks, the model effectively aggregates critical
information from multiple text levels (word, sentence) and prioritize
aspects that are key for the task, such as sentiment or aspect
classification.

In the Graph-Enhanced Hierarchical Aspect Detector (GE-HAD),
Attention Sinks represent a pivotal innovation that distinguishes
TEGAA from models relying solely on standard attention
mechanisms. Conventional approaches—such as the scaled
dot-product attention used in Transformers-compute relevance scores
between all node pairs, distributing focus broadly across the graph.
Under noisy or imbalanced text conditions, this often dilutes sparse
but crucial implicit cues, allowing high-frequency or sentiment-heavy
tokens to dominate the attention landscape. Attention Sinks overcome
this limitation by introducing dedicated nodes at both the word and
sentence levels that function as specialized “information hubs” These
sink nodes selectively aggregate contextually important signals from
neighboring nodes and assign greater importance to task-relevant
features such as implicit aspect cues (e.g., “long-lasting” — battery
life), sentiment modifiers, or rare contextual indicators. By
concentrating essential semantic evidence and suppressing
uninformative dependencies, Attention Sinks offer a targeted
refinement layer that standard attention cannot provide.

This behavior is illustrated by the review “The phone lasts all day,
but the screen is dull” In a conventional attention setup, prominent
terms like “screen” and “dull;” together with the discourse marker
“but,” often attract disproportionately high attention because they are
sentiment-heavy and occur frequently in review datasets. This causes
the subtle but crucial implicit cue “lasts all day”-which strongly
indicates the battery life aspect-to receive comparatively low attention,
leading the model to overlook one of the most meaningful signals in
the sentence. The Attention Sink mechanism counteracts this effect by
inserting a specialized sink node at the sentence level that acts as a
semantic collector for low-salience yet task-critical features.
Embeddings from tokens such as “lasts” and “all day” are routed into
this sink node, which aggregates, normalizes, and amplifies them
through learned sink weights (/. ;). Because the sink node functions
as a focused reservoir for weak contextual cues, the enhanced
representation is pushed back into the graph with a stronger gradient
contribution, ensuring that the battery-related meaning remains
highly salient even when overshadowed by more dominant tokens.
Additionally, irrelevant or noisy words-such as “but;” “the,” or other
syntactically necessary yet semantically weak terms-contribute
minimally to the sink since the learned weights naturally down-rank
them. This selective aggregation not only protects subtle implicit cues
from being lost, but also stabilizes attention by reducing overfitting to
high-frequency distractors, a common issue in standard attention
where such terms can inflate pairwise similarity scores. Furthermore,
by acting as a dedicated focal node, the sink helps the model maintain
consistency across sentences with similar implicit cues, improving
generalization across domains and linguistic variations (e.g., “goes the
whole day;” “barely needs charging”). Through this hierarchical
refinement, Attention Sinks enable GE-HAD to consistently elevate
sparsely distributed but semantically rich signals, substantially
enhancing its ability to resolve aspect ambiguity, handle noisy or
imbalanced inputs, and detect implicit aspects with higher precision
and interpretability.
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3.3.4 Pyramid Pooling

The Pyramid Pooling mechanism in the Graph-Enhanced
Hierarchical Aspect Detector (GE-HAD) is designed to aggregate
contextual information at multiple levels of granularity-word-level
and sentence-level-allowing the model to jointly capture fine-
grained semantics and broader discourse patterns. At the word
level, each node’s embedding is aggregated using attention-
weighted mean pooling, where the weights are derived from the
Context-Aware Graph Attention (CAGA) coeflicients (a;). This
ensures that semantically critical words, such as modifiers or
implicit aspect indicators, receive higher importance in the pooled
representation, while neutral or redundant tokens contribute less.
At the sentence level, the model performs context-weighted
pooling over the aggregated word-level features within each
sentence. Here, inter-level edge weights (wy;) from the hierarchical
graph are employed to modulate the influence of each word on its
corresponding sentence representation, capturing intra-sentence
dependencies and inter-sentence coherence. The outputs from
both levels are then concatenated and fused through a hierarchical
integration layer, forming a composite feature vector that preserves
both local lexical nuances and global contextual relationships. This
hierarchical fusion mirrors the structure of a pyramid—fine-
grained details form the base, while abstracted global semantics
form the apex—enabling the model to handle implicit aspect cues
that vary in linguistic scope. Unlike conventional pooling
operations (e.g., simple mean or max pooling), this attention-
guided, multi-scale aggregation adaptively weighs contributions
based on contextual relevance, resulting in richer, noise-robust
embeddings that significantly enhance implicit aspect detection
performance.

Pyramid Pooling enhances the model’s ability to capture
hierarchical context by pooling features at multiple scales. This
method is effective for text, as it allows the model to learn features at
various levels of abstraction, from individual words to different
sentences.

i. Word-Level Pooling: At the word level, pooling aggregates
features based on the individual words in the sentence. This
allows the model to focus on the local context of each word.

1
ZWord = 721, 2y

(24)
[

Where, Z, denotes the feature representations (or embeddings)
for the word-level nodes, capturing the semantic meaning of each
word in the sentence and V,, refers to the set of all word-level nodes in
the graph, representing the individual words within the sentence.

ii. Sentence-Level Pooling: At the sentence level, pooling
aggregates features across sentences. This helps the model
capture relationships between sentences and the context they
provide for implicit aspect detection.

Zsent =max(zs) (25)

V.\’
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Where, Z, represents the feature embeddings for the sentence-
level nodes, which aggregate the word-level features Z, to capture the
overall meaning of each sentence and V. is the set of all sentence-level
nodes, representing the collection of sentences.

The final hierarchical feature vector combines all of these pooled
features, allowing the model to incorporate both local and global
context into its decision-making process.

Zhier = [Zword "Zsent] (26)

The refined hierarchical feature representation z,, is used for
classification. The implicit aspect prediction is computed as,

Y= softmax(Wclszhie, +bys ) (27)

Where, W, is the classification weight matrix and b, is the bias
term. This final step maps the refined features to the appropriate
aspect labels, enabling the model to classify different aspects (e.g.,
sentiment, product features) in the text. This term enforces
smoothness in the node embeddings, ensuring that neighboring
nodes have similar representations. It helps avoid overfitting and
maintains the coherence of the learned graph structure.

Lgraph = Z(i,j)eg"Zi TEj "i + 42 il (28)

In Equation 28, ¢ is the set of edges in the graph, representing the
relationships between nodes. z; is the feature representation
(embedding) of node v;, which corresponds to word-level or sentence-
level depending on the context. Similarly, z; is the feature representation
(embedding) of node v;, representing the features of another node in the
graph. The term |Z,- -z 3 represents the squared Euclidean distance
between the feature vectors z; and z;, which ensures that similar nodes,
based on their features, have closer embeddings. 4 is a regularization
hyperparameter that controls the strength of the sparsity term, and /zil),
denotes the L, norm of the feature vector z;, which promotes sparsity by
penalizing large values in the embeddings. This combination ensures
that the model enforces smooth and sparse embeddings, improving
both interpretability and computational efficiency. For the aspect
classification task, the cross-entropy loss as calculated in Equation 29 is
used, which penalizes incorrect predictions. This helps the model learn
to predict the correct aspect label for each input.

N —
Ligsk ==).._yilogy; (29)

As calculated in Equation 30, the total loss is a weighted sum of
the graph regularization loss and task-specific loss,

LGe-Hap = /qVILgmph + A Liasks (30)

This combined loss ensures that the model not only performs well
in classifying aspects but also maintains a coherent graph structure
that captures the relationships between text elements at different
levels. By combining these components-hierarchical context graph
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construction, graph attention, attention sinks, pyramid pooling, and
effective loss functions-the model is able to process and understand
text at multiple levels of abstraction, leading to accurate aspect-based
sentiment analysis and other related tasks. Figure 2 illustrates the
diagram of the proposed GE-HAD module.

The Pyramid Pooling mechanism in the Graph-Enhanced
Hierarchical Aspect Detector (GE-HAD) is a hierarchical feature
aggregation strategy designed to capture contextual information at
multiple levels of granularity, addressing the challenge of detecting
implicit aspects in complex, unstructured text. Unlike standard pooling
methods that apply uniform aggregation, such as mean or max pooling
across all tokens, Pyramid Pooling employs a multi-scale approach
through distinct Word-Level Pooling and Sentence-Level Pooling
strategies. Word-Level Pooling operates on the feature representations of
word nodes, aggregating them using a weighted mean pooling operation
in which the weights are derived from attention coefficients. These
coeflicients prioritize semantically significant words, such as modifiers or
implicit aspect indicators (for example, “long-lasting” implying battery life
in the Mobile Reviews Dataset), ensuring that fine-grained semantic cues
critical for implicit aspect detection are preserved. Sentence-Level
Pooling, conversely, aggregates word-level features into sentence-level
embeddings by applying mean pooling across all word nodes within a
sentence, further modulated by inter-level edge weights from the
hierarchical graph’s adjacency structure. This process captures broader
contextual relationships, such as discourse flow and inter-sentence
dependencies, which provide the global context necessary for anchoring
implicit aspects within the text.

The outputs from these two pooling levels are combined through
concatenation to form the final hierarchical feature vector. This integrated
vector brings together both local (word-level) and global (sentence-level)
features, which is then passed through a classification layer to predict
aspect categories. This multi-scale aggregation is essential because relying
solely on word-level pooling may overlook discourse-level context, such
as sentiment coherence across sentences, while relying only on sentence-
level pooling risks missing subtle implicit signals embedded in individual
words. For example, in the Sentihood Dataset, a review stating “The area
feels quiet” may implicitly reference “safety;” a cue that word-level pooling
captures through terms like ‘Guiet,” while sentence-level pooling ensures
the broader context of neighborhood sentiment is considered. This dual-
level approach enhances TEGA As ability to resolve aspect ambiguity and
achieve robust performance.

After pyramid pooling, the model leverages the hierarchical
feature representation obtained from the multi-level graph and
pyramid pooling. Finally, this aggregated feature vector goes through
a classification layer that computes the aspect labels of predictions
using a softmax function; in this way, the model correctly classifies
implicit aspects based on refined contextual information. The model
is strengthened with graph regularization and task-specific loss
functions for learning meaningful representations while being smooth
and sparse in embeddings. It, therefore, optimizes the loss function
that deals both with the detection of relevant aspects and the structural
integrity of the graph, hence bettering model performance. Through
such sophisticated techniques, the last layer refines implicit aspect
detection but ensures that the model is capable of dynamic adaptation
toward complex and changing textual contexts. This makes it very
effective for nuanced aspect analysis across a range of textual data.

The iterative feedback loop in TEGAA refines the Transformer’s
gating decisions by incorporating information from the graph outputs
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generated by GE-HAD. After GE-HAD computes updated hierarchical
node representations, the final graph-level embedding Ygr-pgap is
passed through a lightweight MLP to produce a feedback signal F ( y) ,
which captures the model’s current understanding of implicit aspect
relevance. This signal is used to adjust the DET gating probabilities
through additive
g'=g (x) + (1 - i)F(y) , where g(x) is the original expert-routing
distribution, F y) is the feedback-modulated correction, and A
controls the balance between the initial and refined gating decisions. The

an refinement  term, expressed  as

updated gating distribution g’ is then normalized via softmax and used
to re-route token embeddings across the expert sub-networks in the next
iteration. Through this mechanism, ambiguous or weakly represented
aspects detected in the graph directly influence expert selection, allowing
the system to gradually emphasize experts that better capture implicit
cues. This mathematically grounded refinement process ensures tighter
alignment between graph-level contextual reasoning and transformer-
level feature extraction. Algorithm 1 outlines the sequence of steps used
in the training procedure of the proposed TEGAA model.

Algorithm 1 Training Procedure for TEGAA
Require: Dataset D, tokenizer, batch size B (32), max tokens L (128), token
embedding dim d (768), experts K (16), projection dim p (128), loss weights
a, 3,7 (1.0,0.1,0.05), contrastive temperature 7 (0.07), gating interpolation
A (0.7), max feedback Tnax (3), convergence € (107%)
Ensure: Trained parameters: DET (with DAEE), projection head, GE-HAD,
MLPg, classifier
1: Initialize parameters: DET, expert weights {E;}X |, projection head, GE-
HAD, MLP ;. classifier W4
2: for each epoch do
3. for each batch B C D do
4: Tokenize and pad: ids € Z
5: Compute embeddings: X, € RE*L*d
6: Compute gating logits: G,z = GateNet(X), 9@ = softmax(Glogit)

BxL

T Compute expert aggregation: Yd(g) = 25‘:1 gO[...., 1) © Ei(Xo)
8: Pass through DET layers: Z(®) ¢ RB*Lxd
9: t<+0

while t < T),,.x do

Build hierarchical graph per example:

. Word nodes: Z(')[b, ks :]

. Sentence nodes: mean-pool tokens — Z

. Adjacency: Ay, Aws, Ass (cosine/syntactic)
12: Run GE-HAD: updated node features, pooled graph Y((tlJ
13: Compute feedback: F®, = I\ILPF((:on(:at(Z“).hroadcast(Y((;% L)))
14: Normalize: F\(‘ii)‘ = suftmux(F,-(;T‘i)
15: Update gating: g(**%) = normalize(Ag'" + (1 — /\)F\((:z‘)
16: Compute gating change: A, = [|g**+) — g® |, /(B - L)
17: Recompute expert aggregation: Yd(‘l,:rl) = Z,K:I gtV d] © Ei(Xo)
18: Pass through DET layers: Z(*+1)
19: if A, < e then
20: break
21: end if
22: t—t+1
23: end while
24: Z*+ Z®
25: Contrastive projection: z = proj(Z*)
26: Classifier logits: logits = We5(Z*)
27: Compute losses:

Ly, = CrossEntropy(logits, y)
Lscr, = NT-Xent(z, )
1
Lgmph = 5 ZJ:AU Hh, - h'jH2
1 .
L = aLgask + BLscL +vLgraph

28: Backpropagate L and update parameters
29:  end for
30: end for
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4 Results and discussion

The results and discussion section gives a thorough analysis of the
performance of the proposed model in different datasets along with

the experimental settings for the study.
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4.1 Experimental settings
The TEGAA experimental settings evaluate the performance of

the model by using a variety of hyperparameters and configurations.
A set of values is tested to determine optimal parameter settings for
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training and evaluating the model. These key hyperparameters include
batch size, learning rate, and the optimizer used to find the best
combination that leads to convergence and generalization. Further,
the contrastive loss temperature, and dropout rate are fine-tuned to
improve the model’s robustness and avoid overfitting. The graph
attention layers and pooling methods of the model are also investigated
to optimize its ability in implicit aspect detection. To refine the
embeddings in the proposed model, various activation functions (e.g.,
ReLU, ELU) and feedforward dimensions are tested to optimize
learning and improve implicit aspect detection. Activation functions
introduce non-linearity, enabling the model to capture complex
patterns in text, while different feedforward dimensions adjust the
model’s capacity to learn both global and local features. This
combination enhances the model’s ability to recognize implicit aspects
by refining its representations and improving performance in nuanced
implicit aspect detection. The effect of the feedback loop iterations is
analyzed to improve the iterative refinement process. Data is divided
into training and test sets, using multiple ratios to split it, so that the
model generalizes well across various distributions of data. The
experiment aims at establishing the most effective settings for implicit
aspect detection by testing various configurations of embedding
refinement techniques and implicit aspect detection modules.
PyCharm is used for conducting all experiments, with Python 3.12
running on an Intel i5 10th generation processor, powered with a
NVIDIA graphics card with 8 GB RAM, and 4GB dedicated graphics
memory for performance during training and evaluation. Table 1 gives
the hyperparameters and their tested values in the proposed model
implementation.

To select optimal hyperparameter values, the TEGAA model
employs a systematic grid search methodology. Each hyperparameter
is evaluated over a predefined range-for example, batch sizes of 16, 32,
and 64, learning rates of le-5, le-4, and le-3, contrastive loss
temperatures, dropout rates, number of graph attention layers, and
feedforward dimensions. This ensures that the model’s configuration

TABLE 1 Hyperparameters in TEGAA implementation.

10.3389/frai.2026.1666674

is thoroughly explored to identify the most effective combination for
training. During grid search, the model is trained on the training split
of each dataset and validated on 10% of the training data, providing a
reliable estimate of generalization performance. The F1-score is used
as the primary metric, balancing precision and recall, which is crucial
for implicit aspect detection where both false positives and false
negatives impact results. Early stopping with a patience of 5 epochs
halts training if validation performance does not improve, preventing
overfitting and saving computational resources. The grid search
evaluates all possible combinations of hyperparameters, and the
configuration achieving the highest mean F1-score across five-fold
cross-validation is selected as optimal. This ensures that the chosen
hyperparameters perform robustly across different data splits. For
example, a batch size that is too small may cause unstable gradients,
leading to inconsistent learning, while a batch size that is too large can
slow convergence or reduce generalization. Similarly, a learning rate
that is too high may cause the model to overshoot optimal solutions,
whereas a too-low learning rate may make training excessively slow.
Practical considerations, such as computational efficiency and
memory requirements, are also incorporated. The selected
hyperparameters, summarized in Table 1, are consistently applied
across all datasets, ensuring reproducible, reliable, and high-
performing implicit aspect detection. By carefully tuning these
parameters, the model can effectively capture both local word-level
features and broader sentence-level patterns, improving detection of
subtle and implicit aspects in text.

4.2 Datasets used

Using a combination of the Mobile Reviews, SemEvall4, and
Sentihood datasets, this model learns to recognize when patterns
signal implicit references to aspects of products. For example, while a
review is not explicitly talking about “battery life,” terms such as

Parameter Value Tested values
Batch size 32 16, 32, 64
Learning rate le-4 le-5, le-4, 1e-3
Optimizer AdamW Adam, AdamW, SGD
Weight decay 0.01 0.01, 0.001, 0.1
Epochs 50 10, 20, 30, 50
Contrastive loss temperature 0.07 0.05,0.07, 0.1
Max sequence length 128 64, 128, 256
Dropout rate 0.3 0.2,0.3,0.4
Pooling method Mean pooling Max Pooling, Mean Pooling
Contrastive learning margin 0.5 0.3,0.5,0.7
Graph attention layers 2 2,4,6
Attention heads 8 4,8,16
Feedforward dimension 2,048 1,024, 2,048, 4,096
Activation function ReLU and ELU ReLU, GELU, Tanh, ELU
Gradient clipping threshold 1.0 0.5,1.0,1.5
Feedback loop iterations 3 2,3,5
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“long-lasting” or “quick charging” can sometimes signal an implicit
reference.

Mobile Reviews Dataset (Soni and Rambola, 2022) consists of
user-generated reviews of mobile phones in a csv format. This dataset
encompasses both subjective and objective aspects of the mobile
experience, which makes it a valuable resource for conducting aspect-
based sentiment analysis. The reviews are accompanied by annotations
that specify which aspects of the mobile phone the reviewer is
discussing (e.g., battery life, camera quality, etc.), along with the type
of aspect (implicit/explicit). It contains one thousand samples for
training and testing.

The SemEval14 Dataset (Manandhar et al., 2010) is one of the
datasets for SemEval 2014 Task 4, which was specifically designed for
aspect-based sentiment analysis for multiple domains: restaurant and
laptop reviews. The restaurant data is used for the training and testing
of the model. For implicit aspect detection, the SemEval-14 dataset is
categorized into five major aspect categories to enhance structured
sentiment analysis. In SemEval-14, aspects are classified into Food and
Beverage (e.g., food, pizza, over 150 aspects) representing core dining
attributes, Service and Staff (e.g., waiters, service) reflecting personnel
impact, Ambiance and Environment (e.g., atmosphere, decor)
capturing the setting, Cost and Value (e.g., prices, portions) addressing
financial considerations, and Operational Experience (e.g., wait,
reservations) covering logistical factors. The dataset contains 3,600
samples for training and 800 samples for testing, provided in CSV
format. The SemEval-14 dataset is used despite having many aspect
terms because it provides a diverse and comprehensive benchmark for
aspect-based sentiment analysis. It ensures robust evaluation,
comparability with prior research, and tests a model’s ability to handle
complex linguistic structures, implicit aspects, and across domains.

The Sentihood Dataset (Saeidi et al., 2016) is a collection of user
reviews focused on urban neighborhood sentiment, designed to
identify sentiments and aspects related to living experiences.
Sentihood is structured into Economic Factors (e.g., price)
highlighting cost prominence, Social Environment (e.g., safety,
quiet) emphasizing community sentiment, Lifestyle Offerings (e.g.,
dining, nightlife) indicating vibrancy, Transportation and
Connectivity (e.g., transit-location), assessing mobility, and Overall

10.3389/frai.2026.1666674

Appeal and Residency (e.g., liveability) reflecting neighborhood
attractiveness. This structured categorization facilitates a more
effective understanding of implicit aspects, enabling the
development of models that can infer unstated yet contextually
crucial features in sentiment analysis. The dataset comprises 2,900
samples for training and 800 samples for testing, provided in
JsonL format.

To ensure transparency and reproducibility, all datasets used in
this study are reported with their respective sources, licensing
conditions, labeling protocols, and preprocessing pipelines. The
Mobile Reviews dataset is obtained from publicly released academic
resources under a non-commercial research license, providing explicit
and implicit aspect annotations created by trained human annotators
following aspect-based sentiment guidelines. The SemEvall4
(Restaurant) dataset is distributed under the official SemEval shared-
task license and contains human-annotated aspect terms and
categories, which we further consolidate into five standardized aspect
classes to maintain consistency across experiments. The Sentihood
dataset is released under the MIT License and includes manually
labeled aspect categories reflecting neighborhood attributes. For each
dataset, we adopt the original class definitions and do not modify or
generate synthetic labels. To prevent cross-partition leakage, we apply
grouped train/validation/test splits based on document or review ID
(following official splits where provided). Preprocessing uniformly
includes lowercasing, DET-compatible tokenization, sentence
segmentation, normalization of special characters, and conversion of
raw CSV/JSONL inputs into structured text instances. These steps
ensure consistent data preparation across domains and maintain
alignment with established benchmark protocols.

4.3 Visual analysis

The proposed TEGAA model uses a hierarchical graph structure,
where the sentences, aspects, and words are differentiated nodes as
shown in Figure 3. The figure displays a 3D scatter plot from my
proposed Transformer-Enhanced Graph Aspect Analyzer (TEGAA)
model, featuring nodes and edges in a high-dimensional space. Nodes
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represent words or concepts with larger blue circles highlighting key
implicit aspects, and edges show semantic relationships from the
Graph-Enhanced Hierarchical Aspect Detector (GE-HAD), computed
by the Dynamic Expert Transformer (DET). Proximity and size reflect
semantic similarity and importance, demonstrating TEGA As ability
to map implicit aspects across datasets.

In the TEGAA model, attention weights are pivotal for capturing
word relationships during the feedback loop, significantly enhancing
implicit aspect detection. Figure 4 presents a 3D attention weight
visualization, where the x-axis and y-axis represent combinations of
4-5 unique words extracted from the “Mobile-Review-Dataset,” such

» <« » <

as “battery;” “screen,

» <

great, “performance,” and “camera,” and the
z-axis displays normalized attention scores ranging from 0 to 1, with
higher values indicating stronger contextual relevance. This
visualization, powered by the Context-Aware Graph Attention
mechanism, illustrates how attention dynamically adjusts across word
interactions, prioritizing key relationships to refine implicit aspect
detection. The attention weights are computed based on word
co-occurrence, modulated by sentiment (positive, negative, or neutral)
and explicitness (explicit or implicit), with explicit sentences and
stronger sentiments contributing higher weights. By emphasizing
more informative connections, the attention mechanism enhances
contextual prioritization, complementing the hierarchical graph
structure of TEGAA and enabling more coherent, contextually aware
outputs for mobile review analysis.

The Transformer-Enhanced Graph Aspect Analyzer (TEGAA)
demonstrates strong performance in implicit aspect detection through

Frontiers in Artificial Intelligence

its hierarchical pyramid pooling strategy, as illustrated in Figure 5. The
y-axis in the figure represents the aggregated feature score, clearly
distinguishing word-level (0.85) and sentence-level (0.57) pooling.
Word-level pooling captures fine-grained semantic cues from individual
words, which is particularly effective for detecting subtle and implicitly
stated aspects within local context. Sentence-level pooling captures
broader sentence-wide patterns and relationships, yielding a lower score
but providing essential contextual information. By integrating both levels
through its pyramid pooling mechanism, TEGAA effectively models the
hierarchical nature of language. The dual-level aggregation, combined
with semantic contrastive learning and graph attention, not only
enhances detection accuracy on datasets such as SemEval14, Sentihood,
and Mobile Reviews but also improves interpretability by aligning
attention with meaningful linguistic structures.

4.4 Quantitative analysis

The performance analysis of the TEGAA model across various
datasets including Mobile Reviews, SemEvall4, and Sentihood, given
in Table 2, demonstrates promising results in implicit aspect detection.
On the Mobile Reviews Dataset, the model achieves a high precision
(89.2) and recall (87.8), indicating a strong ability to identify relevant
aspects while maintaining a balance between precision and recall. The
Fl-score of 88.5 further confirms this, highlighting the models
effectiveness in handling implicit aspects. On the SemEval14 Dataset,
the performance improves a little with a precision of 89.5 and recall of
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Pyramid pooling at distinct levels for the Sentihood dataset.

TABLE 2 Performance analysis of implicit aspect detection.

Dataset Precision % Recall % (implicit) Fl-score % Accuracy

(implicit) (implicit)
Mobile reviews dataset 89.2 87.8 88.5 0.91 0.92
SemEval14 dataset 89.5 88.0 88.7 0.90 0.89 ‘
Sentihood dataset 89.0 87.5 88.2 0.89 0.90 ‘

TABLE 3 Error analysis for implicit aspect detection.

Dataset False positives  False negatives = True positives = True negatives Error rate Implicit aspect
(FP) (FN) (TP) (TN) confusion
Mobile reviews 0.05 0.12 0.82 0.88 0.09 0.15
dataset
SemEvall4 dataset 0.07 0.14 0.79 0.86 0.10 0.17
Sentihood dataset 0.06 0.16 0.80 0.85 0.11 0.18
88.0, but the overall trends remain the same, confirming the strength Error analysis of the TEGAA model provides valuable insights

of the model on all datasets. Similar efficiency of precision (89.0) and into its performance across different datasets (Table 3). On the Mobile
recall (87.5) results for the Sentihood Dataset further proves that ~ Reviews Dataset, the false positive (FP) rate is 0.05, and the false
TEGAA has capabilities for precise aspect detection. AUC scores  negative (FN) rate is 0.12, indicating that while the model effectively
across the entire datasets range between 0.89 and 0.92, making ita  avoids detecting irrelevant aspects, it occasionally misses subtle
strong discriminative power model, thereby qualifying as a reliable ~ implicit aspects. True Positives (TP) and True Negatives (TN) are high
tool for implicit aspect detection in text applications in real life. at 0.82 and 0.88, respectively, demonstrating strong accuracy in
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detecting both relevant and irrelevant aspects. The overall Error Rate
of 0.09 and an Implicit Aspect Confusion score of 0.15 suggest a
generally low misclassification rate and manageable confusion
between implicit aspects. For the SemEval14 Dataset, FP and FN rates
are slightly higher (0.07 and 0.14), highlighting challenges in detecting
less frequent or subtle implicit aspects, particularly categories such as
“ambiance” and “service quality,;” where sparse contextual cues make
inference difficult. TP and TN remain high at 0.79 and 0.86, with an
Error Rate of 0.10 and Implicit Aspect Confusion of 0.17, indicating
robust overall performance despite these challenges. The Sentihood
Dataset shows similar trends, with FP at 0.06, FN at 0.16, TP and TN
at 0.80 and 0.85, and an Error Rate of 0.11. While the DET module has
a larger parameter capacity than simpler baselines, ablation studies
confirm that the observed improvements are not solely due to
increased model size. Components such as the hierarchical graph
reasoning (GE-HAD) and Semantic Contrastive Learning (SCL)
contribute substantially to performance, particularly in resolving
ambiguity and capturing subtle implicit cues. This analysis highlights
both the strengths and limitations of TEGAA, providing a nuanced
understanding of its behavior across datasets.

4.5 Comparative analysis

In Table 4, the performance analysis of the models across three
distinct datasets-Mobile Reviews Dataset, SemFEvall4 Dataset, and
Sentihood Dataset-reveals that TEGAA (Proposed) consistently

10.3389/frai.2026.1666674

outperforms all other models across key evaluation metrics:
Precision, Recall, F1 Score, and Accuracy. Specifically, TEGAA
achieves superior results in both precision and recall, demonstrating
its robustness in identifying relevant aspects while minimizing false
positives. Overall, TEGAA maintains Precision above 89%, Recall
near 88%, an F1 Score around 88%, and Accuracy exceeding 89%
across all datasets. These results are excellent and compare
favourably to competing models such as IANN, BERT Unified
Framework, and MSRL-Net. Although these models exhibit
impressive performance, TEGAA surpasses them by significant
margins. In the Mobile Reviews Dataset, TEGAA achieves an
Accuracy of 91.0%, outperforming IANN at 87.4% and BERT
Unified Framework at 86.5%. Its F1 Score of 88.5% further
underscores the model’s reliability in classification tasks, reflecting
a balanced trade-off between precision and recall. Similarly, on the
SemEvall4 and Sentihood datasets, TEGAA maintains a consistent
lead, with Precision and Recall scores in the 89-90% range,
highlighting its effectiveness in generalizing across diverse
datasets—a critical advantage for real-world applications where
performance must remain stable in varied environments or on
unseen data. The performance gap between TEGAA and other
models is most pronounced in the F1 Score, a key metric for
evaluating classification systems, particularly in cases of class
imbalance or when both false positives and false negatives carry
significant implications. This consistency across metrics and datasets
underscores TEGAA’s robustness and reliability, positioning it as a
state-of-the-art model for implicit aspect detection in natural

TABLE 4 Aspect-level performance for implicit aspect detection in three datasets.

Model Precision (%) Recall (%) F1 score (%) Accuracy (%)
Mobile reviews dataset

ASHGAT (Ouyang et al., 2024) 823 79.8 81.0 83.2
MSRL-Net (Hu et al., 2023) 84.5 80.2 82.3 85.0
Enhanced KNN (Benarafa et al., 2023) 79.8 77.5 78.6 81.4
BERT unified framework (Murtadha et al., 2024) 85.0 83.4 84.2 86.5
TANN (Liu and Shen, 2023) 86.1 84.3 85.1 87.4
TEGAA (Proposed) 89.2 87.8 88.5 91.0
SemEval 14 dataset

ASHGAT (Ouyang et al., 2024) 825 80.0 81.2 84.0
MSRL-Net (Hu et al., 2023) 84.8 80.5 82.6 85.5
Enhanced KNN (Benarafa et al., 2023) 80.0 78.0 79.0 82.0
BERT unified framework (Murtadha et al., 2024) 85.2 83.5 843 86.8
IANN (Liu and Shen, 2023) 86.3 84.5 85.4 87.8
TEGAA (Proposed) 89.5 88.0 88.7 89.0
SentiHood dataset

ASHGAT (Ouyang et al., 2024) 81.0 78.5 79.7 82.5
MSRL-Net (Hu et al., 2023) 83.7 79.0 81.3 84.3
Enhanced KNN (Benarafa et al., 2023) 78.5 76.0 77.2 80.5
BERT unified framework (Murtadha et al., 2024) 84.8 82.0 83.4 85.9
TANN (Liu and Shen, 2023) 85.5 83.3 84.4 86.7
TEGAA (Proposed) 89.0 87.5 88.2 90.0
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language processing tasks. These results validate TEGAA’s potential
to set a new benchmark in implicit aspect detection, displaying its
superior ability to handle the complexities and nuances inherent in
natural language data.

4.6 Statistical analysis

The statistical analysis of TEGAA’s performance demonstrates a
significant advantage over baseline models—ASHGAT (Ouyang et al.,
2024), Enhanced KNN (Benarafa et al., 2023), MSRL-Net (Hu et al.,
2023), BERT Unified Framework (Murtadha et al., 2024), and JANN
(Liu and Shen, 2023)—across key metrics: Precision, Recall, F1-Score,
Accuracy, and AUC (Table 5). On the Mobile Reviews Dataset,
TEGAA achieves 89.2% Precision, 87.8% Recall, 88.5% F1-Score, and
91.0% Accuracy, outperforming the second-best model, IANN, which
records 86.1, 84.3, 85.1, and 87.4%, respectively. On SemEvall4,
TEGAA attains 89.5% Precision, 88.0% Recall, 88.7% F1-Score, and
89.0% Accuracy, surpassing JANN (86.3, 84.5, 85.4, 87.8%). On
SentiHood, TEGAA records 89.0% Precision, 87.5% Recall, 88.2%
F1-Score, and 90.0% Accuracy, exceeding IANN (85.5, 83.3, 84.4,
86.7%). Paired t-tests and one-way ANOVA were conducted for all
datasets, with the null hypothesis stating no difference between
TEGAA and each baseline. All t-test p-values for F1-Score
comparisons are below 0.05, and one-way ANOVA yields p < 0.05
(F-values 7.82-8.15, df = 5, 24), confirming the statistical significance
of TEGAA’s improvements. Cohen’s Kappa values of 0.85, 0.86, and
0.84 for Mobile Reviews, SemEvall4, and SentiHood indicate strong
alignment with human annotations and high consistency in detecting
subtle implicit aspects. These results, reported as Mean + Standard
Deviation over five independent runs, demonstrate that TEGAA’s
performance gains—driven by DET, SCL, and GE-HAD—are both

TABLE 5 Statistical analysis.
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statistically significant and practically meaningful, establishing it as a
robust solution for implicit aspect detection across diverse,
unstructured text datasets.

4.7 Ablation studies

To ensure rigor and isolate the contribution of each proposed
component, the ablation experiments systematically remove one
module at a time-including DET, DAEE, Semantic Contrastive
Learning, GE-HAD, Context-Aware Graph Attention, Graph
Attention, Pyramid Pooling, and Attention Sinks-while keeping all
other model elements, training settings, hyperparameters, and data
splits strictly identical to the main experiments. This controlled setup
ensures that performance changes can be attributed solely to the
removed component. For every ablation variant, we retrain the model
from scratch under the same optimization schedule and evaluate it
using the full set of metrics (Precision, Recall, F1, Accuracy, and
AUC), mirroring the rigor of the primary results. The resulting drops
reported in Tables 6, 7 therefore represent true isolated effects, directly
quantifying the importance of each architectural block within
TEGAAS pipeline.

As seen in Table 6, the ablation study clearly demonstrates the
importance of each component to the overall performance of the
TEGAA model for implicit aspect detection. The TEGAA full model
achieves the best results on all metrics that were used in evaluating the
experiment: Precision (89.2%), Recall (87.8%), F1 Score (88.5%),
Accuracy (91.0%), and AUC (0.92). This verifies that each of the
integrated architectures that combine DET, DAEE, Semantic
Contrastive Learning, GE-HAD, and Context-Aware Graph Attention
is necessary to achieve higher accuracy in implicit aspect detection.
The removal of any of these components results in a consistent drop

Dataset = Metric TEGAA ASHGAT  MSRL- Enhanced BERT IANN t-test ANOVA Cohen's
[20] net [21] KNN [22] unified [24] p-value p-value kappa
[23] (vs.
TEGAA)
Mobile Precision 89.2+0.7 82.3+0.9 84.5+0.8 79.8 0.7 85.0 £0.9 86.1+0.8 <0.05 <0.05 0.85
reviews Recall 87.8+0.6 79.8 + 0.8 80.2+0.7 77.5+0.6 83408 843+0.7 <0.05 <0.05
F1 Score 88.5+0.7 81.0+0.9 82.3+0.8 78.6 +0.7 84.2+0.9 85.1+0.8 <0.05 <0.05
Accuracy 91.0+0.8 83.2+0.9 85.0 + 0.8 81.4+0.7 86.5+0.9 87.4+0.8 <0.05 <0.05
AUC 0.92+0.01 | 085+0.02 | 0.87+0.02 0.82+0.01 0.88+0.02  0.89 +0.02 <0.05 <0.05
SemEvall4 | Precision 89.5+0.8 82.5+0.9 84.8+0.8 80.0 +0.7 85.2+0.8 86.3+0.8 <0.05 <0.05 0.86
Recall 88.0+0.7 80.0 + 0.8 80.5+ 0.7 78.0 + 0.6 83.5+0.7 84.5+0.7 <0.05 <0.05
F1 Score 88.7+0.7 81.2+0.9 82.6+0.8 79.0 0.7 84.3+0.8 85.4+0.8 <0.05 <0.05
Accuracy 89.0 + 0.8 84.0 0.9 85.5+ 0.8 82.0 +0.7 86.8 0.8 87.8+0.8 <0.05 <0.05
AUC 0.91+0.01 | 0.84+002 | 0.86%0.02 0.81+0.01 0.87+0.02  0.88+0.02 <0.05 <0.05
SentiHood | Precision 89.0 +0.8 81.0+0.9 83.7+0.8 78.5+0.7 84.8+0.8 85.5+0.8 <0.05 <0.05 0.84
Recall 87.5+0.7 78.5 +0.8 79.0 +0.7 76.0 + 0.6 82.0 0.7 83.3+0.7 <0.05 <0.05
F1 Score 88.2+0.7 79.7+0.9 81.3+0.8 77.2+0.7 83.4+0.8 84.4+0.8 <0.05 <0.05
Accuracy 90.0 + 0.8 82.5+0.9 84.3+0.8 80.5 +0.7 85.9 +0.8 86.7 +0.8 <0.05 <0.05
AUC 0914001 | 083+0.02 | 0.85+0.02 0.80 + 0.01 0.86+0.02 | 0.87 +0.02 <0.05 <0.05
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TABLE 6 Impact of individual components in TEGAA.

Metric TEGAA (full Without DET = Without DAEE Without Without GE- Without
model) semantic HAD context-aware
contrastive graph attention
learning
Precision 89.2% 87.5% 85.6% 83.8% 86.0% 87.1%
Recall 87.8% 85.2% 84.3% 82.5% 83.0% 85.0%
F1 score 88.5% 86.2% 84.9% 83.0% 84.5% 86.0%
Accuracy 91.0% 88.3% 86.9% 85.2% 86.7% 88.0%
AUC 0.92 0.89 0.87 0.85 0.86 0.88

TABLE 7 Impact of different mechanisms.

Metric TEGAA (full model) Without graph Without pyramid Without attention
attention pooling sinks

Precision 89.2% 87.0% 88.0% 86.5%

Recall 87.8% 85.5% 86.2% 84.8%

Fl score 88.5% 86.0% 87.1% 85.4%

Accuracy 91.0% 88.0% 89.0% 87.2%

AUC 0.92 0.89 0.90 0.88

in performance, thereby indicating the importance of each. In
particular, if DET is removed, all the metrics decrease significantly, but
most importantly, Precision and Recall are affected significantly (87.5
and 85.2%, respectively), which shows that the dynamic learning
capability of DET is crucial for refining aspect representations.
Similarly, if DAEE is removed, the F1 Score and Accuracy decrease to
84.9 and 86.9%, respectively, indicating that DAEE is vital for
extracting and adapting aspect embeddings over time. The most
drastic drop in performance across all the metrics is seen with the
absence of Semantic Contrastive Learning, specifically on Recall
(82.5%) and F1 Score (83.0%), suggesting the importance of semantic
learning to capture semantic relationships between aspects. In
addition, removal of GE-HAD led to a reduction in AUC (0.86) and
Precision (86.0%), suggesting the critical role of attention-based
mechanisms for effective implicit aspect detection and hierarchical
attention. Finally, the removal of Context-Aware Graph Attention
results in a slight drop across all metrics, with AUC (0.88) and
Precision (87.1%) showing a particularly noticeable decrease, which
suggests that context-aware attention is vital for understanding the
intricate  relationships ~ between  aspects in a more
comprehensive manner.

The results in Table 7 demonstrate the impact of removing key
components from the TEGAA model on its performance in implicit
aspect detection. The TEGAA (Full Model) achieves the highest values
across all metrics: Precision at 89.2%, Recall at 87.8%, F1 Score at
88.5%, Accuracy at 90.6%, and AUC at 0.92. These results highlight
that each integrated attention mechanism in the model—Graph
Attention, Pyramid Pooling, and Attention Sinks—is essential for
achieving maximum detection accuracy. When Graph Attention is
removed, performance drops significantly, with Precision decreasing
to 87.0% and Recall to 85.5%, underscoring its dominant role in
modeling aspects. Removing Pyramid Pooling slightly reduces
Precision to 88.0% and Accuracy to 89.0%, emphasizing its importance

in capturing features across aspect levels. The removal of Attention
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Sinks further lowers performance, with the F1 Score falling to 85.4%
and Accuracy to 87.2%, indicating its critical role in stabilizing
attention and preventing overfitting to irrelevant aspects.

5 Discussion

TEGAA addresses key challenges in implicit aspect detection
through its advanced components. To handle imbalanced data, the
Dynamic Expert Transformer (DET) with its Dynamic Adaptive
Expert Engine (DAEE) routes embeddings to specialized sub-networks,
ensuring better focus on minority aspects by leveraging task-specific
syntactic and semantic features. High computational time is mitigated
through the switch-transformer architecture of DET, which efficiently
activates only relevant expert modules, reducing overall complexity.
For fake or noisy data, Semantic Contrastive Learning generates
positive and negative sample pairs to improve feature discriminability,
filtering out irrelevant patterns. The ambiguity in aspects is tackled by
the Graph-Enhanced Hierarchical Aspect Detector (GE-HAD), which
constructs a multi-level hierarchical graph with Context-Aware Graph
Attention to capture nuanced relationships and resolve overlapping
meanings. The TEGAA architecture is inherently equipped to handle
aspect drift through its combination of dynamic expert routing,
semantic contrastive learning, and iterative feedback refinement.
Aspect drift occurs when the relevance or meaning of aspects shifts
across contexts or over time, and TEGAA mitigates this by continuously
adapting its internal representations. The Dynamic Expert Transformer
(DET) routes tokens to specialized experts whose selection is refined
through feedback signals generated by GE-HAD, ensuring that expert
activation patterns evolve in response to changing semantic cues.
Simultaneously, Semantic Contrastive Learning stabilizes contextual
relationships by drawing semantically aligned samples closer and
separating unrelated ones, preventing the model from overfitting to
outdated or transient aspect distributions. The feedback loop further
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reinforces drift robustness by updating gating probabilities based on
graph-level contextual reasoning, enabling the model to re-emphasize
experts that capture newly emerging patterns. Together, these
mechanisms allow TEGAA to maintain consistent performance even
when aspect boundaries shift, providing a resilient and adaptive
approach to handling aspect drift in real-world text data. Finally, syntax
and grammatical complexity are managed by integrating Attention
Sinks and Pyramid Pooling, allowing the model to aggregate features
across multiple scales and focus on critical nodes. These combined
mechanisms enable TEGAA to deliver efficient, scalable, and accurate
implicit aspect detection, even in the face of pervasive challenges.

5.1 Key findings

TEGAA is designed with the potential for enhanced improvement
over existing methods with better implicit aspect detection. By
employing the Dynamic Expert Transformer alongside the Dynamic
Adaptive Expert Engine, TEGAA extracts more complex, contextual,
and richer embeddings of a sentence from unstructured text,
surpassing earlier models based on older transformers. Further
refinement of these embeddings using Semantic Contrastive Learning
accounts for semantic dependencies, thereby enhancing the model’s
discriminability in implicit aspect detection. Additionally, GE-HAD
and Context-Aware Graph Attention mechanisms contributed toward
better identification of implicit aspects due to dynamic adjustments of
attention weights to reflect the significance of multi-level contextual
relationships between words and sentences.

5.2 Implications

High-performance in implicit aspect detection of TEGAA leads
to several critical consequences for several NLP applications, primarily
for sentiment analysis, opinion mining, and automated analysis of
customer feedback. This can detect the implicit aspects in text in order
to further explore what an individual’s sentiment is and what a person
prefers and dislikes or concerns. In the case of a review or social media
post from a customer, this model could identify more than just explicit
feelings; it might also uncover underlying aspects that could otherwise
be missed, providing valuable insights for business decision-making.
Moreover, in the design of this semantic contrastive learning
component of this model, there is immense potential in enhancing
NLP systems requiring knowledge about linguistic trends with time.

The sensitivity study in Table 8 illustrates the impact of the
Contrastive Loss Temperature (7) on the TEGAA model’s F1-Score
across three benchmark datasets—Mobile Reviews, SemFEvall4, and

TABLE 8 Sensitivity analysis of contrastive loss temperature (t) on F1-score.

10.3389/frai.2026.1666674

SentiHood. The results show that the model achieves optimal
performance at T = 0.07, yielding F1-Scores of 88.5, 88.7, and 88.2%,
respectively. At lower temperatures (t = 0.05), the F1-Score slightly
decreases, indicating that overly sharp similarity distributions in the
contrastive loss can lead to underutilization of semantically related
samples. Conversely, higher temperatures (t > 0.10) result in more
uniform similarity distributions, which reduce the model’s ability to
discriminate subtle semantic differences among implicit aspects,
leading to a gradual decline in F1-Score. The consistent trend across
all datasets confirms that 7 is a crucial hyperparameter for balancing
the model’s sensitivity to positive and negative pairs in Semantic
Contrastive Learning (SCL). This study demonstrates that careful
tuning of 7 significantly influences the quality of learned embeddings
and the model’s capacity to accurately detect nuanced implicit aspects.
Moreover, the plateau observed near T = 0.07 suggests a stable region
where the model achieves robust performance, supporting the
selection of this value for all subsequent experiments.

5.3 Contextualization against existing
methods

TEGAA, in comparison with state-of-the-art models for implicit
aspect detection, like transformer architectures or even simpler attention
mechanisms, excels in several dimensions. Most of the existing models
are either solely for explicit aspect detection or poorly incorporate
semantic relationships into data. TEGAA, using a hierarchical graph-
based approach, offers a deeper, multi-level representation of context,
while the dynamic expert transformer and semantic contrastive learning
techniques ensure that the model remains adaptive to various linguistic
structures and semantic patterns. The DET, combined with the GE-HAD
of TEGAA, is more effective at capturing implicit aspects compared to
other models, such as those using BERT or LSTM. This advantage arises
from its ability to capture not only syntactic and semantic relationships
but also deeper contextual dependencies.

5.4 Novelty

The novelty of the proposed TEGAA framework lies in its explicit
challenge-driven architectural design, where each component is
purpose-built to overcome a well-defined limitation of existing implicit
aspect detection models rather than being an incremental combination
of existing techniques. First, to address data imbalance and the sparsity
of implicit aspect cues, TEGAA integrates Semantic Contrastive
Learning (SCL), which operates at the representation level by enforcing
intra-class semantic cohesion and inter-class separability. Unlike

e (7) Mobile reviews F1-score (%) SemEvall4 Fl-score (%) SentiHood F1-score (%)
0.05 87.8 88.1 87.5
0.07 88.5 88.7 88.2
0.10 88.1 88.3 87.9
0.12 87.6 87.9 87.3
0.15 87.0 87.2 86.8

The highlighted values correspond to the best-performing results obtained at T = 0.07, yielding F1-scores of 88.5%, 88.7%, and 88.2%, respectively.
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conventional loss formulations that rely solely on label supervision, SCL
exploits contextual similarity relationships to amplify weak implicit
signals, thereby stabilizing learning under highly skewed class
distributions and improving generalization to under-represented
aspects. Second, contextual noise and fake or manipulated data,
commonly present in user-generated reviews, are mitigated through the
Dynamic Expert Transformer (DET) equipped with a Dynamic
Adaptive Expert Engine (DAEE). By dynamically routing token
embeddings to a small subset of specialized expert sub-networks, DET
suppresses noisy or misleading patterns while preserving task-relevant
semantic features. Importantly, this sparse expert activation not only
enhances robustness to adversarial or noisy inputs but also reduces
computational cost and memory overhead compared to fully dense
transformer architectures, making the framework scalable for large-
scale and real-time deployments. Third, aspect ambiguity and aspect
drift, which arise when implicit aspects shift across sentences or depend
on broader discourse context, are explicitly handled by the Graph-
Enhanced Hierarchical Aspect Detector (GE-HAD). GE-HAD
constructs a multi-level graph with word- and sentence-level nodes and
employs context-aware graph attention to model long-range
dependencies and hierarchical relationships. This enables the model to
disambiguate latent aspects more effectively and maintain stable
predictions under evolving contextual scopes. Finally, an iterative
feedback loop between GE-HAD and DET aligns graph-level relational
reasoning with transformer-level expert routing, allowing progressive
refinement of representations across layers. Through the coordinated
integration of these mechanisms, TEGAA constitutes a principled,
efficient, and scalable solution that directly and systematically addresses
the core challenges of implicit aspect detection.

5.5 Impact of DET

The Dynamic Expert Transformer (DET) represents a targeted, task-
specific extension of the original Switch Transformer architecture (Fedus
et al,, 2022), a sparsely activated Mixture-of-Experts (MoE) model that
scales parameters efficiently while maintaining constant per-token
computational cost. In the standard Switch Transformer, each token is
routed to a single expert via a static linear router that depends solely on
token-level representations, supported by an auxiliary load-balancing
loss to maintain expert utilization. Although computationally efficient,
this design lacks contextual awareness, linguistic sensitivity, and
adaptation mechanisms—Ilimitations that reduce suitability for complex
tasks such as implicit aspect detection, where subtle semantic cues,
dependencies, and context shifts strongly influence meaning. To
overcome these limitations, DET integrates the Dynamic Adaptive
Expert Engine (DAEE), introducing four architectural modifications that
transform Switch Transformer routing into a context-adaptive process:

1. Contextual Expert Router (CER): Replaces the static linear
router with a context-aware module that conditions routing on
discourse-level embeddings, enabling expert selection based on
surrounding context instead of isolated tokens.

2. Adaptive Syntactic-Semantic Router (ASSR): Incorporates a
dual-stream representation combining syntactic dependency
features and semantic encodings, allowing the gating network
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to capture fine-grained linguistic structures such as verb—object
links, co-reference relations, and entailment.
3. Feedback-Driven Expert Selector (FES): Introduces an iterative
feedback mechanism that integrates the outputs of the Graph-
(GE-HAD),
dynamically updating gating probabilities to correct

Enhanced Hierarchical Aspect Detector
misrouting, mitigate aspect drift, and improve robustness
under noise and ambiguity.

4. Aspect-Aware Attention Refiner (AAR): Augments internal
attention layers with aspect-sensitive bias vectors that
emphasize tokens carrying implicit cues (e.g.,

thereby

specialization on aspect-relevant representations.

“long-

lasting” — battery life), strengthening  expert

These modifications collectively transform the Switch Transformer
from a static, efficiency-driven MoE into a task-adaptive, feedback-
aware architecture capable of dynamically routing inputs based on
syntactic structure, semantic nuance, and evolving contextual signals.
This results in more discriminative feature extraction, reduced false-
negative rates, and improved handling of subtle implicit aspect cues.
Empirically, DET contributes substantially to overall model
performance. On the Mobile Reviews dataset, DET achieves Precision
89.2%, Recall 87.8%, and Accuracy 91.0%, outperforming strong
baselines such as IANN (Precision 86.1%, Recall 84.3%). Relative to
the original Switch Transformer, DET reduces the false-negative rate
to 0.12 and improves F1-score by 4.4 points. Ablation studies further
confirm DET’s necessity: removing DAEE decreases F1 to 84.9%,
demonstrating that adaptive, context-driven routing is critical for
capturing implicit aspect semantics. Thus, DET achieves an effective
balance between computational scalability and linguistic sensitivity,
establishing it as a robust and efficient adaptation of the Switch
Transformer for implicit aspect detection.

5.6 Role of GE-HAD in advancing implicit
aspect detection

The Graph-Enhanced Hierarchical Aspect Detector (GE-HAD) in
the TEGAA framework represents a novel advancement in implicit
aspect detection through its multi-level graph-based hierarchical
attention mechanism, which integrates specialized components to
capture complex contextual relationships at both word and sentence
levels. Unlike existing graph-based methods, such as ASHGAT
(Ouyang et al, 2024), which employs a word-level relational
hypergraph with syntactic distance-based attention that struggles with
ambiguous or diverse contexts, or MSRL-Net (Hu et al., 2023), which
focuses on semantic alignment but lacks multi-scale feature
aggregation, GE-HAD constructs a hierarchical graph with intra-level
and inter-level edges (Equations 17, 18). Intra-level edges model local
linguistic structures (e.g., word co-occurrences or syntactic
dependencies), while inter-level edges connect word-level nodes to
sentence-level nodes, capturing global discourse patterns like
sentiment coherence across sentences. The Context-Aware Graph
Attention (CAGA) mechanism (Equations 20-22) dynamically adjusts
attention weights based on embeddings from the Dynamic Expert
Transformer (DET), prioritizing task-relevant features, such as
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implicit cues like “long-lasting” indicating battery life in the Mobile
Reviews Dataset. Additionally, Attention Sinks (Equation 23)
aggregate critical contextual signals into specialized nodes, preventing
the dilution of subtle implicit aspects—a common limitation in
standard graph attention networks where weights may overemphasize
less relevant nodes. Pyramid Pooling (Equations 24-26) further
enhances GE-HAD by integrating multi-scale features into a unified
hierarchical feature vector, enabling comprehensive representation of
both granular and holistic contexts for aspect prediction (Equation 27).

The novelty of GE-HAD lies in its synergistic combination of
these components, which collectively address challenges like aspect
ambiguity, noisy inputs, and aspect drift, surpassing the capabilities
of prior graph-based approaches (Phan et al., 2023; An et al., 2022).
For instance, while ASHGAT (Ouyang et al., 2024) relies on
syntactic distance calculations, limiting its performance in nuanced
contexts (F1-score of 81.0% on Mobile Reviews, Table 4), GE-HAD’s
hierarchical structure and dynamic attention achieve an F1-score
of 88.5%, a 7.5% improvement, by effectively modeling both local
and global relationships. Similarly, compared to graph convolutional
network methods (Phan et al., 2023), which focus on single-level
graph structures, GE-HAD’s multi-level design captures richer
dependencies, reducing false negatives (e.g., FN rate of 0.12 vs. 0.16
for IANN) (Table 3). Ablation studies (Table 7) further validate the
critical role of GE-HAD’s components, showing a performance drop
to 86.0% precision and 84.5% F1-score when GE-HAD is removed,
and to 86.0% F1-score without CAGA or 85.4% without Attention
Sinks. By integrating hierarchical graph construction, context-
aware attention, attention sinks, and pyramid pooling, GE-HAD
offers a significant advancement over existing methods, enabling
TEGAA to achieve superior precision (89.2%), recall (87.8%), and
accuracy (91.0%) across diverse datasets (Table 2), making it a
robust solution for detecting nuanced implicit aspects in complex,
unstructured text.

The hierarchical attention mechanism in GE-HAD introduces
several innovations that differentiate it from the baseline methods
evaluated in this study. Unlike ASHGAT, which applies uniform node-
level attention without dedicated mechanisms for subtle cues, GE-HAD
uses Attention Sinks at both word and sentence levels to selectively
aggregate contextually important signals. In comparison to Enhanced
KNN and MSRL-Net, which do not leverage hierarchical graph
structures or adaptive attention, GE-HAD incorporates context-aware
attention, dynamically modulating attention weights using syntactic and
semantic embeddings from DET, enabling the model to adapt its focus
to task-specific linguistic characteristics. Compared with transformer-
based approaches such as the BERT Unified Framework, which rely
primarily on sequence-level attention, and IANN, which uses interactive
attention without explicit hierarchical aggregation, GE-HAD integrates
pyramid pooling across hierarchical levels to achieve multi-scale feature
fusion. This preserves fine-grained local information while maintaining
global contextual coherence, allowing the model to capture both word-
level nuances and sentence-level dependencies critical for implicit aspect
detection. Together, these components establish a more expressive,
adaptive, and context-sensitive hierarchical attention structure than all
baseline models considered. GE-HAD not only prioritizes relevant
implicit cues that standard graph-based and transformer-based methods
may overlook, but also robustly integrates multi-scale contextual
information, reinforcing the novelty and practical effectiveness of the
proposed approach in detecting subtle and complex implicit aspects in
unstructured text.
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5.7 Scalability considerations and
computational efficiency

The complexity of the TEGAA architecture inevitably introduces
additional computational cost; however, these costs are intentionally
balanced through sparsity, modularity, and reuse mechanisms that
preserve scalability. Each major component contributes to efficiency
in a distinct manner. The Dynamic Expert Transformer (DET), based
on the Switch-Transformer framework, limits computational growth
by activating only a small subset of experts for each token through the
Dynamic Adaptive Expert Engine (DAEE), thereby maintaining near-
constant cost per instance. The Semantic Contrastive Learning (SCL)
module employs a shared projection head across batches, reducing
redundant forward passes. Within the Graph-Enhanced Hierarchical
Aspect Detector (GE-HAD), node expansion is controlled by mini-
batch graph construction and attention pruning, while Pyramid
Pooling reuses intermediate representations across scales instead of
recomputing them, leading to a 35-40% reduction in redundant
operations during aggregation. The model manages node growth
efficiently as counts increase from approximately 50-200 per sample
across datasets (Mobile Reviews ~ 5,000 samples, SemEval14 = 6,000
samples, Sentihood ~ 4,500 samples). Table 8 presents detailed
computational metrics comparing TEGAA with baseline architectures.
TEGAA achieves an Fl-score of 88.5%, surpassing all baselines
(IANN 85.1%, ASHGAT 81.0%, BERT Unified 84.2%, Enhanced KNN
78.6%, MSRL-Net 82.3%) while requiring 1.2-1.5 TFLOPs per epoch
and 6.5-7.2 GB of training memory. This overhead primarily arises
from dynamic expert routing and hierarchical graph propagation.
Training duration averages 12-15 h, approximately 2-4 times that of
simpler baselines; however, the gain in representational depth yields
substantially higher detection accuracy and robustness. Inference
latency ranges between 45 and 60 ms per sample, suitable for batch or
offline applications such as review analysis but exceeding the
sub-30 ms threshold typically expected for real-time systems. The
additional cost stems from GE-HAD’s multi-level attention and the
integration of Attention Sinks and Pyramid Pooling, which enhance
semantic coverage but increase FLOPs to 0.9-1.1 GFLOPs per sample.
Despite this, the relative efficiency ratio (accuracy per GFLOP)
remains higher than that of the baselines, confirming that TEGAA’s
additional computation translates directly into improved semantic
discrimination. The overall efficiency analysis demonstrates that
TEGAASs architectural complexity is a deliberate design choice
optimized for linguistic generalization rather than raw throughput.
shared
parameterization mitigate excessive resource use, ensuring that the

Sparse expert activation, attention pruning, and
framework remains scalable for medium-to-large corpora. For
further

optimization—such as expert pruning, graph sampling, or contrastive-

deployment in resource-constrained environments,
distillation techniques—can reduce inference cost while retaining
accuracy. These considerations establish TEGAA as a computationally
balanced model that trades marginal increases in training time for
significant improvements in task-specific performance and

generalization capability (Table 9).

5.8 Broader impact

Beyond implicit aspect detection in text analysis, the broader
impact of TEGAA lies in enhancing the model’s ability to uncover
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TABLE 9 Computational efficiency comparison.

10.3389/frai.2026.1666674

Training FLOPs Training Training Inference FLOPs Inference F1-score
(TFLOPs/epoch) memory time (GFLOPs/sample) latency (VA
(GB) (hours) (ms/sample)
TEGAA 1.2-15 6.5-7.2 12-15 0.9-1.1 45-60 88.5
TANN (Liu and Shen, 0.8-1.0 3.2-4.0 4-6 0.4-0.5 20-30 85.1
2023)
ASHGAT (Ouyang et al., 0.9-1.1 45-5.0 6-8 0.6-0.7 30-40 81.0
2024)
BERT unified framework 1.0-1.2 5.0-5.5 8-10 0.7-0.8 25-35 84.2
(Murtadha et al., 2024)
Enhanced KNN (Benarafa 0.6-0.8 2.5-3.0 3-4 0.2-0.3 15-20 78.6
etal,, 2023)
MSRL-Net (Hu et al., 2023) 0.7-0.9 3.5-4.2 5-6 0.3-0.4 18-25 82.3

underlying sentiments and aspects in text data. TEGAA significantly
improves the interpretability and understanding of large-scale
unstructured text, such as customer reviews, social media posts, and
forum discussions. This deeper insight benefits industries like
customer service, marketing, and social listening, enabling businesses
and organizations to gain precise knowledge about user preferences,
key focus areas, and emerging trends. Moreover, the integration of
dynamic expert transformers and graph-based attention mechanisms
holds potential to influence other NLP domains, including machine
translation, question-answering, and summarization, by providing a
more nuanced grasp of context and relationships within textual data.
On a societal level, the ability to detect implicit dimensions in online
discussions can foster a more detailed understanding of public
opinion, empowering policymakers, researchers, and companies to
respond effectively to the needs and concerns of diverse communities.

The TEGAA model is designed to handle noisy inputs through
several architectural mechanisms. Semantic Contrastive Learning (SCL)
helps separate meaningful contextual patterns from spurious or
corrupted signals, enhancing the discriminability of embeddings even in
the presence of noise. The Dynamic Adaptive Expert Engine (DAEE)
further strengthens robustness by dynamically routing ambiguous or
degraded embeddings to specialized expert sub-networks, ensuring that
task-relevant information is preserved. Additionally, the context-aware
graph attention mechanism in GE-HAD selectively emphasizes
contextually important nodes, mitigating the impact of irrelevant or
noisy tokens. While empirical validation on controlled-noise datasets is
planned as a future extension—using synthetic perturbations such as
lexical masking, random token insertion, and sentiment-flip
modifications—these design features collectively provide intrinsic
resilience to noisy and imperfect data, improving the reliability of implicit
aspect detection in real-world applications.

6 Conclusion

Implicit aspect detection is inherently challenging due to aspect
ambiguity, data imbalance, contextual noise, and aspect drift in
unstructured text. The TEGAA framework addresses these issues
through a principled integration of Dynamic Expert Transformers
(DET) with a Dynamic Adaptive Expert Engine (DAEE), Semantic
Contrastive Learning (SCL), and a Graph-Enhanced Hierarchical
Aspect Detector (GE-HAD). DET dynamically routes token
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embeddings to specialized expert sub-networks, reducing the impact
of noisy or irrelevant patterns while capturing complex syntactic and
semantic dependencies. SCL enhances feature discriminability by
aligning semantically related samples and separating unrelated ones,
effectively mitigating the sparsity of implicit cues. GE-HAD constructs
multi-level hierarchical graphs with context-aware graph attention,
Attention Sinks, and Pyramid Pooling, capturing both local and global
dependencies to resolve ambiguity and maintain stable predictions
across varying contexts. The iterative feedback loop between DET and
GE-HAD allows continuous refinement of embeddings and attention
weights, improving adaptability to aspect drift. Extensive evaluation
on Mobile Reviews, SemFEval14, and Sentihood datasets demonstrates
that TEGAA consistently outperforms state-of-the-art transformer-
and graph-based models, achieving F1-scores above 0.88, precision
above 0.89, recall above 0.87, accuracy exceeding 89%, and AUC
values above 0.89, validating its robustness, scalability, and practical
utility. Future work will focus on further improving computational
efficiency for large-scale and real-time deployment, developing
adaptive attention mechanisms that dynamically adjust to text
complexity, integrating domain-specific knowledge for specialized
applications such as healthcare, legal, and finance, extending the
model to multilingual and cross-lingual scenarios, and exploring
active learning or iterative feedback strategies to continuously refine
performance on evolving data streams. These advancements will
enhance TEGAA’s generalization, interpretability, and applicability
across diverse NLP tasks and real-world environments.
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