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Implicit aspect detection aims to identify aspect categories that are not explicitly 
mentioned in text, but existing models struggle with four persistent challenges: aspect 
ambiguity, where multiple latent aspects are implied by the same expression, data 
imbalance and sparsity of implicit cues, contextual noise and syntactic variability 
in unstructured user reviews, and aspect drift, where the relevance of implicit 
cues changes across sentences or domains. To address these issues, this paper 
proposes the Transformer-Enhanced Graph Aspect Analyzer (TEGAA), a unified 
framework that tightly integrates dynamic expert routing, semantic representation 
refinement, and hierarchical graph reasoning. First, a Dynamic Expert Transformer 
(DET) equipped with a Dynamic Adaptive Expert Engine (DAEE) mitigates syntactic 
complexity and contextual noise by dynamically routing tokens to specialized 
expert sub-networks based on contextual and syntactic–semantic cues, enabling 
robust feature extraction for ambiguous implicit expressions. Second, Semantic 
Contrastive Learning (SCL) directly addresses data imbalance and weak implicit 
signals by enforcing semantic coherence among contextually related samples 
while increasing separability from irrelevant ones, thereby improving discriminability 
of sparse implicit aspect cues. Third, implicit aspect ambiguity and aspect drift 
are handled through a Graph-Enhanced Hierarchical Aspect Detector (GE-HAD), 
which models word- and sentence-level dependencies via context-aware graph 
attention. The incorporation of Attention Sinks prevents dominant but irrelevant 
tokens from overshadowing subtle implicit cues, while Pyramid Pooling aggregates 
multi-scale contextual information to stabilize aspect inference across varying 
linguistic scopes. Finally, an iterative feedback loop aligns graph-level reasoning 
with transformer-level expert routing, enabling adaptive refinement of aspect 
representations. Experiments on three benchmark datasets—Mobile Reviews, 
SemEval14, and Sentihood—demonstrate that TEGAA consistently outperforms 
state-of-the-art methods, achieving F1-scores above 0.88, precision above 0.89, 
recall above 0.87, accuracy exceeding 89%, and AUC values above 0.89. These 
results confirm TEGAA’s effectiveness in resolving implicit aspect ambiguity, handling 
noisy and imbalanced data, and maintaining robust performance across domains.
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1 Introduction

Implicit aspect detection in NLP finds the aspects that are implicit 
or hidden in the text instead of being explicitly stated. This is crucial 
for applications such as sentiment analysis, aspect-based opinion 
mining, and customer feedback analysis, were users often express 
opinions indirectly. These implicit aspects can help businesses uncover 
hidden product strengths, leading to improved development strategies 
and more targeted marketing efforts (Soni and Rambola, 2022; 
Maitama et al., 2020). Global sentiment analysis market is believed to 
reach billion dollars through the year 2030 and is driven by need of 
such fine customer understanding. Studies have shown how advanced 
text analytics, also with implicit aspect detection, helps a company 
increase customer satisfaction and retention (Ganganwar and 
Rajalakshmi, 2019; Al-Janabi et al., 2022). Implicit aspect detection in 
such sectors as automotive and social media monitoring has helped 
brands to make product features better and hidden sentiments more 
visible, leading to a more effective engagement and management 
(Truşcǎ and Frasincar, 2023; Zhang et al., 2024).

Implicit aspect detection has progressed from rule-based and 
traditional machine learning to more advanced deep learning and 
graph-based approaches (Chauhan et al., 2023; Do et al., 2019). Early 
approaches depended on manual rules and sentiment lexicons, 
which are limited by predefined patterns. SVMs and CRFs machine 
learning models have been able to improve the feature learning of 
labelled data but failed in coping with language complexity. Recently, 
with the advent of deep learning, CNNs, RNNs and later 
transformers like BERT, have helped in contextual embeddings to 
better detect implicit aspects (Le Thi et al., 2023; Liu et al., 2020). 
Recently, Graph Neural Networks have been applied to further boost 
this area by capturing the relational contexts between words and 
entities that greatly enhance accuracy and robustness in implicit 
aspect detection (Zhu et al., 2022; Yusuf et al., 2024; Sarno et al., 
2024). Explicit aspect detection involves aspects that are directly 
mentioned, such as “The battery life of this phone is excellent,” where 
battery life is explicitly stated. In contrast, implicit aspect detection 
requires inferring aspects from context, as in “I had to charge the 
phone twice in 1 day,” which implies battery life without explicit 
mention. Similarly, “The room was so cold that I needed a jacket” 
implicitly refers to air conditioning, and “It takes forever to get your 
food here” implies service speed. These examples illustrate the 
complexity of implicit aspect detection and motivate the need for 
models like TEGAA that capture latent semantic and contextual cues 
beyond surface-level keywords.

With an organization seeking deeper insights from an abundance 
of unstructured text data, implicit aspect detection becomes more 
crucial. Although great strides have been made so far, there are a few 
key challenges that call for research. One is the challenge of imbalance 
in datasets wherein some aspects may be less represented, resulting in 
biased predictions by the models (Phan et al., 2023; Xu et al., 2023). In 
addition, the tremendous computation cost of models such as 
Transformers and GNNs is also expensive, which will be too costly for 
real-time applications. The rise in fake data and manipulated 
information has made it challenging to detect the true implicit 
attributes; hence, models are required that can differentiate between 
valid and invalid information (Khemani et al., 2024; An et al., 2022). 
In addition, the complexity in the syntax and grammar of a natural 
language makes it hard as models have to learn how to interpret and 

process widely spread linguistic structures in order to detect implicit 
elements accurately (Soni and Rambola, 2022; An et al., 2022).

1.1 Problem statement

Implicit aspect detection in natural language processing remains 
challenging due to multiple intertwined factors. First, data imbalance 
and sparsity of implicit cues cause implicit aspects to appear 
infrequently and be overshadowed by explicit or sentiment-dominant 
expressions. Second, aspect ambiguity and aspect drift arise when the 
same linguistic patterns imply different latent aspects depending on 
context, sentence structure, or domain, leading to inconsistent 
predictions. Third, contextual noise and syntactic/grammatical 
complexity, including informal language, noisy or manipulated text, 
and diverse sentence constructions, hinder robust feature extraction 
and reliable inference. Addressing these challenges requires a scalable 
and adaptive framework capable of capturing nuanced semantic 
relationships while remaining robust to noise and contextual variation 
(Ocampo et al., 2023; Das and Singh, 2023). The contributions of the 
proposed model are given below,

	•	 Dynamic Feature Extraction with DET: The Dynamic Expert 
Transformer (DET), enhanced by the Dynamic Adaptive Expert 
Engine (DAEE) with a Contextual Expert Router (CER) and 
Adaptive Syntactic-Semantic Router (ASSR), introduces a novel 
dynamic routing mechanism. Inputs are adaptively assigned to 
specialized expert sub-networks, enabling richer syntactic and 
semantic embeddings than standard transformer approaches.

	•	 Semantic Contrastive Learning (SCL): Semantic Contrastive 
Learning refines embeddings by explicitly leveraging semantic 
relationships. This innovative contrastive framework enhances 
feature discriminability by aligning semantically related samples 
and separating unrelated ones, capturing subtle contextual 
variations that conventional embedding refinement methods 
often miss.

	•	 Hierarchical Aspect Detection via GE-HAD: The Graph-Enhanced 
Hierarchical Aspect Detector (GE-HAD) constructs multi-level 
hierarchical context graphs, integrating word-level and sentence-
level nodes. This novel hierarchical attention mechanism captures 
rich multi-granular contextual relationships, enabling more 
precise detection of implicit aspects compared to existing graph-
based methods.

	•	 Advanced Graph Attention Mechanisms: The Context-Aware 
Graph Attention mechanism, combined with Attention Sinks and 
Pyramid Pooling, aggregates features across multiple scales. This 
enables selective focus on task-relevant nodes while preserving 
fine-grained semantic information, surpassing traditional graph 
attention approaches in capturing nuanced implicit cues.

The paper contains following sections, with section 2 giving a 
detailed literature review of different studies done for implicit aspect 
detection, section 3 giving a thorough analysis of the proposed 
methodology, section 4 analyzing the performance of the proposed 
model along with quantitative, visual and comparative analysis, 
section 5 discussing the different advantages of the proposed model 
with limitations and section 6 concluding the paper with the future 
prospects of the study.
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2 Related works

Recent advancements in implicit aspect detection in text streams 
have explored various innovative approaches, targeting applications 
like emotion detection, sentiment analysis, and implicit aspect 
identification. These works collectively contribute to addressing the 
challenges in extracting and analyzing contextual features from 
text data.

Ouyang et al. (2024) proposed a word-level relational hypergraph, 
which could capture diverse syntactic and semantic relationships 
among aspect words and their contextual terms. To fully exploit this 
hypergraph, they proposed an Aspect-Specific Hypergraph Attention 
Network (ASHGAT), which optimizes the attention of the hypergraph 
by a syntactic distance-based weight distribution mechanism. Still, the 
model’s quality is highly dependent on syntactic distance calculations, 
limiting its performance in ambiguous or diverse context scenarios. 
Expanding on the syntax and semantics of relationships, Hu et al. 
(2023) presented the Multi-level Semantic Relation-Enhanced 
Learning Network, which is essentially a reformulation of traditional 
aspect-based sentiment analysis (ABSA) as a task of semantic 
alignment. With integrated word and sentence-level semantic 
relations, MSRL-Net enhances contextual alignment, although 
dependence on correct semantic mapping may also limit its 
performance in the nuanced contexts, much like the dependency 
issues that surface in Ouyang et al.’s work.

To alleviate the weakness associated with traditional similarity 
computation methods, Benarafa et al. (2023) modified the KNN 
algorithm by refining its distance computation mechanism to enhance 
its ability to avoid overfitting and underfitting, two common 
weaknesses in implicit aspect detection. While successful, their 
performance is contingent on the selection of distance metrics, which 
mirrors some of the issues pointed out by previous studies, such as 
ASHGAT and MSRL-Net, in terms of variability within the dataset. 
On the other hand, Murtadha et al. (2024) focused on using auxiliary 
sentence generation to simultaneously classify aspects and perform 
sentiment analysis. The approach used a BERT-based framework fine-
tuned for these tasks. Their approach improves aspect-specific 
representation learning by reacting to seed semantic distributions 
within the embedding space. However, similar to ASHGAT and 
MSRL-Net, their model relies on the quality of these auxiliary 
sentences, parallel to the reliance on input accuracy.

Focusing on richer contextual embeddings, Liu and Shen (2023) 
developed the Information-Augmented Neural Network (IANN), 
incorporating the Multiple Convolution with Recurrence Network 
(MCRN) to integrate contextual information dynamically. The 
introduction of the Aspect Outside (AO) tagging scheme provides a 
simplified yet effective tagging methodology for implicit aspect 
tagging. However, its success is influenced by the complexity of 
contextual data integration, as seen in Murtadha et al.’s framework. 
Extending this focus on contextual understanding, Chouikhi et al. 
(2023) applied transfer learning for Aspect Term Extraction and 
Aspect Polarization Detection in Arabic, utilizing pre-trained BERT 
models tailored for the language. Their comparative analysis of various 
BERT implementations highlights the sensitivity of performance to 
model configuration, mirroring the configuration-specific challenges 
seen in other works, such as IANN and MSRL-Net.

By collectively addressing syntactic dependencies, semantic 
alignment, distance metrics, auxiliary data generation, contextual 

embeddings, and transfer learning, these related works demonstrate 
complementary strengths and shared limitations. These insights 
underline the importance of integrating robust feature extraction, 
semantic refinement, and adaptive learning mechanisms to overcome 
challenges in aspect detection, paving the way for advanced 
frameworks that build upon these contributions.

The literature on implicit aspect detection reveals several recurring 
limitations that motivate the design of TEGAA. Models such as 
ASHGAT (Ouyang et al., 2024) and MSRL-Net (Hu et al., 2023) rely 
heavily on explicit syntactic distances or predefined semantic 
mappings, which restrict their ability to generalize when sentence 
structures vary or when implicit relationships are not explicitly 
encoded. In contrast, TEGAA avoids rigid linguistic assumptions by 
dynamically learning contextual dependencies through adaptive 
expert routing and graph-based relational modeling. Distance-based 
and metric-dependent approaches, including enhanced KNN 
(Benarafa et al., 2023) and the framework of Murtadha et al. (2024), 
further suffer from sensitivity to predefined similarity measures and 
the quality of auxiliary data, limiting robustness under noisy or 
manipulated inputs; this limitation is addressed in TEGAA through 
DET with DAEE, which suppresses noise by selectively activating 
task-relevant expert sub-networks. Contextual embedding models 
such as IANN (Liu and Shen, 2023) and transfer-learning strategies by 
Chouikhi et al. (2023) improve semantic representation but do not 
explicitly handle class imbalance, aspect ambiguity, or aspect drift, 
leading to unstable performance across domains. TEGAA addresses 
these gaps by integrating Semantic Contrastive Learning to counter 
data imbalance and sparse implicit cues, and a Graph-Enhanced 
Hierarchical Aspect Detector to disambiguate latent aspects and 
maintain stability under shifting contexts. By systematically 
overcoming the structural rigidity, metric dependence, and partial 
challenge coverage of prior work, TEGAA provides a unified and 
robust solution for implicit aspect detection.

3 Proposed TEGAA

The Transformer-Enhanced Graph Aspect Analyzer (TEGAA) is 
an advanced framework designed for implicit aspect detection in text 
data, integrating state-of-the-art techniques in both feature extraction 
and implicit aspect detection. The model leverages the Dynamic 
Expert Transformer (DET) based on switch transformer (Fedus et al., 
2022) with the Dynamic Adaptive Expert Engine (DAEE) to extract 
rich contextual embeddings from unstructured text. DET uses a 
custom gating mechanism within DAEE to route embeddings to 
specialized expert sub-networks, focusing on task-specific syntactic 
and semantic features. This approach enhances the model’s ability to 
capture nuanced contextual information and improve feature 
representations. Followed by feature extraction, Semantic Contrastive 
Learning refines these embeddings by forming positive pairs from 
semantically related data points- such as those sharing related topics 
or sentiments, and negative pairs- using a contrastive loss, to improve 
the discriminability of the features. In the implicit aspect detection 
phase, the Graph-Enhanced Hierarchical Aspect Detector (GE-HAD) 
plays a pivotal role. GE-HAD constructs a multi-level hierarchical 
graph, integrating nodes at distinct levels for capturing rich contextual 
relationships. The model employs Context-Aware Graph Attention 
mechanism to dynamically adjust attention weights based on DET’s 
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embeddings. Attention Sinks (Xiao et al., 2023) and Pyramid Pooling 
(Elhassan et al., 2024) are incorporated to focus on critical nodes and 
aggregate features at multiple scales, ensuring effective feature 
combination and comprehensive implicit aspect detection. TEGAA’s 
iterative feedback loop, which integrates the hierarchical graph 
outputs (Yang et al., 2021) to refine DET’s gating decisions and 
attention patterns, further enhances the model’s performance. This 
feedback mechanism allows TEGAA to adapt to the nuances of the 
data, ensuring accurate and contextually relevant implicit aspect 
detection. The final model is evaluated through different performance 
measures to validate its effectiveness and accuracy. The overall 
architecture of the proposed model is illustrated in Figure 1.

In the figure, Add+Normalize refers to adding a residual 
connection followed by Layer Normalization. This combination helps 
stabilize training, allowing gradients to flow more effectively and 
ensuring consistent activation scales across layers. It is commonly 
used after attention or feed-forward transformations.

3.1 Feature extraction with dynamic expert 
transformer

The Dynamic Expert Transformer (DET) improves feature 
extraction capabilities through its Dynamic Adaptive Expert Engine 
(DAEE), the mechanism that captures rich contextual embeddings 
from unstructured text. DET implements a custom gating mechanism 
within DAEE, specifically the Contextual Expert Router (CER) and 
the Adaptive Syntactic-Semantic Router (ASSR), to dynamically route 
inputs to specialized expert sub-networks based on specific linguistic 
and semantic features of the task. CER: This guides the embeddings 
toward the relevant expert based on contextual relevance. ASSR: This 
prioritizes the sub-networks of the expert toward syntactic and 
semantic aspects. This targeted routing helps DET to focus on the 
features such as syntactic dependencies and semantic nuances that are 
crucial for implicit aspect detection. The Feedback-Driven Expert 
Selector (FES) also adjusts the dynamic expert selection with the 
feedback from Graph-Enhanced Hierarchical Aspect Detector 
(GE-HAD), adapting to the dynamic interplay. This iterative feedback 
loop, mediated by the Aspect-Aware Attention Refiner (AAR), 
continually refines DET’s gating decisions and attention patterns. This 
will lead to a more finely attuned feature extraction process to the 
nuances in the data, which should significantly improve the overall 
accuracy of implicit aspect detection. DET employs advanced routing, 
feedback, and attention mechanisms for better representation and 
capturing of nuanced features in the unstructured text. Key 
components of this model include extraction of rich contextual, 
syntactic, and semantic embeddings based on the DAEE engine. In 
the Dynamic Expert Transformer (DET), the Dynamic Adaptive 
Expert Engine (DAEE) leverages five expert sub-networks (K = 5) to 
capture diverse linguistic and contextual patterns crucial for implicit 
aspect detection. Each expert specializes in distinct tasks, including 
syntactic parsing, semantic role labeling, sentiment cue recognition, 
and discourse-level reasoning, allowing the model to dynamically 
process complex textual structures. The token embeddings within 
DET are initialized using BERT-base-uncased, providing rich 
contextual representations that are subsequently routed through the 
experts via the Contextual Expert Router (CER) and Adaptive 

Syntactic-Semantic Router (ASSR). This design enables adaptive 
feature extraction, where each expert focuses on task-relevant 
information, and the system iteratively refines representations through 
feedback from the Graph-Enhanced Hierarchical Aspect Detector 
(GE-HAD), ensuring robust handling of ambiguous, sparse, or 
contextually nuanced implicit aspects.

To adapt the original Switch Transformer for implicit aspect 
modeling, the proposed Dynamic Expert Transformer (DET) 
incorporates several architectural modifications that extend beyond 
standard sparse MoE routing. First, the fixed top-1 gating mechanism 
is replaced with a context-aware multi-expert router that conditions 
gating probabilities on both token embeddings and auxiliary 
syntactic–semantic cues, enabling more fine-grained expert selection 
for aspect-related patterns. Second, DET integrates a Dynamic 
Adaptive Expert Ensemble (DAEE), allowing the routing distribution 
to be iteratively refined using feedback signals produced by the 
GE-HAD graph module, rather than relying solely on the initial 
token-level gating decision. Third, each expert is augmented with 
aspect-sensitive normalization and lightweight residual adapters, 
encouraging specialization toward distinct implicit aspect cues. 
Finally, DET introduces a feedback-compatible gating update rule, 
ensuring that expert assignments can be adjusted across iterations 
based on graph-level contextual information. These modifications 
collectively differentiate DET from the original Switch Transformer 
and tailor it specifically for robust and adaptive implicit aspect 
detection.

3.1.1 Dynamic adaptive expert engine
The Dynamic Adaptive Expert Engine (DAEE) serves as the 

coordination core of the Dynamic Expert Transformer, ensuring that 
feature extraction is contextually informed, syntactically aware, and 
dynamically refined through feedback. It operates through four 
interconnected components that work in a sequential yet iterative 
manner. The Contextual Expert Router (CER) initiates routing by 
analyzing discourse-level cues and assigning tokens to specialized 
expert sub-networks based on contextual relevance. The Adaptive 
Syntactic-Semantic Router (ASSR) refines these assignments by 
integrating syntactic dependencies and semantic embeddings, 
enabling linguistically coherent expert selection. The Feedback-
Driven Expert Selector (FES) then incorporates performance signals 
from the downstream GE-HAD module, dynamically correcting 
misrouted or ambiguous tokens through iterative updates. Finally, the 
Aspect-Aware Attention Refiner (AAR) adjusts expert-level attention 
weights to prioritize tokens carrying implicit aspect cues. Together, 
these four components form a high-level, closed-loop mechanism that 
organizes how expert networks communicate, refine one another’s 
outputs, and continuously improve representation quality-providing 
the conceptual structure needed to understand the mathematical 
details that follow.

In practical processing, DAEE dynamically selects the most 
relevant expert networks through a gating mechanism that computes 
soft routing probabilities for each token. After the input text is 
embedded into high-dimensional vectors, each expert-such as one 
specializing in syntactic patterns or another in semantic relations-
receives tokens according to these routing probabilities. CER first 
directs key contextual elements (e.g., “lasts” and “all day” in “The 
phone lasts all day”) toward an expert tuned for battery-related 
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FIGURE 1

Overall architecture of TEGAA.
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semantics. ASSR then reinforces or corrects these assignments by 
combining dependency relations (linking “lasts” to “phone”) with 
semantic embeddings, reducing misrouting errors common in simpler 
models. FES further adjusts the routing based on GE-HAD’s 
hierarchical graph outputs, enabling the system to distinguish subtle 
cases such as “vibrant screen” versus “drains quickly,” and AAR 
enhances implicit cue recognition by amplifying aspect-specific 
signals (e.g., “long-lasting” → battery life). Through this coordinated 
interplay-contextual routing, syntactic–semantic refinement, 
feedback-driven correction, and attention adjustment-DAEE provides 
an intuitive, high-level overview of how expert networks work 
together before the formal equations in the methodology section. This 
coordinated interplay enables the DAEE to adaptively process text, 
achieving semantic coherence and discriminability. By integrating 
contextual analysis, syntactic-semantic routing, feedback-driven 
adjustments, and attention refinement, the DAEE ensures robust 
feature extraction, setting the stage for the detailed mathematical 
formulations in Equations 3–11.

Let the input embedding x∈Rd, where d is the dimensionality. The 
DAEE defines K expert networks {E1, E2, …, EK}, each with distinct 
specializations. The gating mechanism computes a distribution over 
experts as given in Equation 1:

	
( ) ( ),g g KW x b

g x g xσ
τ
+ 

= ∈  
 


	

(1)

Where, σ represents the softmax function, providing a probability 
distribution over K experts, Wg∈RK × d and bg∈RK are trainable 
parameters, τ > 0 is a temperature parameter that controls the 
sharpness of the distribution. Lower τ increases confidence in the 
gating decision, while higher τ distributes probabilities more evenly. 
As given in Equation 2, the DAEE output YD combines the outputs of 
selected experts weighted by g(x),

	
( ) ( )=

=∑ 1 .K
D i iiY g x E x

	
(2)

Where, gi(x) is the probability assigned to expert i, and Ei(x) is the 
output of expert i. DAEE ensures adaptive feature extraction by 
dynamically routing inputs to the most relevant experts, leveraging 
their specialized knowledge. For the sentence “The quick brown fox 
jumps over the lazy dog,” the system might route to Expert 1 for 
analyzing syntactic relations, while Expert 2 may handle semantic 
information like action or motion (e.g., “jumps over”). The final 
output is a combination of these experts weighted by their relevance.

3.1.2 Contextual expert router
The Contextual Expert Router (CER) directs embeddings to 

experts based on contextual features, such as sentence structure, 
discourse, and topic relevance. It evaluates the relevance of an input x 
by considering its contextual embedding hc(x), computed using a 
context encoder from the switch-based transformer. For example, the 
CER might assign higher importance to experts that understand 
action-related words in the context of a motion task.

	 ( ) ( )c conth x En x=
	

(3)

Where, Encont is the context encoder. The routing probabilities are 
then determined as,

	
( ) ( ) ( )σ

τ
 +

= ∈  
 

,cont c cont K
cont cont

W h x b
r x r x 

	
(4)

Where, hc(x)∈Rm is the contextual embedding, and m is the 
embedding dimension, K represents the number of expert networks, 
K is the dimensionality of the routing probability vector, Wcont∈RK × m 
and bcont∈RK are trainable weights for the contextual router. The CER 
output combines expert outputs, weighted by rcont(x),

	
( ) ( )=

=∑ ,1 .K
CER cont i iiY r x E x

	
(5)

Where, ( ),cont ir x  is the probability assigned to the i-th expert 
based on the context of the input x. CER uses contextual embeddings 
to prioritize experts, enabling the system to focus on topic-specific or 
discourse-related features.

3.1.3 Adaptive syntactic-semantic router
The Adaptive Syntactic-Semantic Router (ASSR) routes inputs 

based on syntactic and semantic relevance. For example, the sentence 
“The quick brown fox jumps over the lazy dog” has clear syntactic 
structures such as subject, verb, and object, and semantic relationships 
such as the action of jumping. It uses two embedding functions:

	 a.	 Syntactic embedding hs(x), derived from dependency parsing: 
hs​(x) = Parsersyntactic(x)

	 b.	 Semantic embedding hsem(x), derived from pretrained semantic 
model: hsem(x) = Encodersemantic(x)

The two types of embedding are combined together. The 
combined embedding is passed through a final gating function to 
select the most appropriate experts for syntactic or semantic tasks. For 
example, if the goal is to understand the action (“jumps”), syntactic 
experts may focus on verb phrases, while semantic experts may focus 
on the meaning of “jump” in the context of physical motion. The final 
gating mechanism is given as,

	

( ) ( ) ( )

( ) ( )
−

− − −
−

 =  
 +

= σ  τ 

syn sem sem

syn sem syn sem syn sem
syn sem

; ,sh x h x h x
W h x b

r x
	

(6)

Where, hsyn-sem​(x)∈Rp + q combines syntactic (p-dimensional) and 
semantic (q-dimensional) features, Wsyn-sem∈RK × (p + q), hsyn-sem∈RK are 
trainable parameters and ( ) ( );s semh x h x    represents the 
concatenation of the two embeddings. The output of ASSR is 
expressed as,

	
( ) ( )−=

=∑ ,1 .K
ASSR syn sem i iiY r x E x

	
(7)

ASSR ensures experts are selected to handle specific syntactic 
structures (e.g., clauses) or semantic relationships (e.g., entailment, 
similarity).
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3.1.4 Feedback-driven expert selector
The Feedback-Driven Expert Selector (FES) refines expert 

selection based on feedback from downstream tasks, such as 
implicit aspect detection. Once the initial expert outputs are 
produced, the model evaluates their performance and 
adjusts future expert selection using the feedback signal F(y). This 
signal is derived from a Multi-Layer Perceptron (MLP) that 
processes the output of the Graph-Enhanced Hierarchical Aspect 
Detector (GE-HAD). The feedback signal F(y) adjusts the 
gating scores,

	 ( ) ( ) ( ) ( )λ λ= + −. 1 .updatedg x g x F y
	

(8)

Where, F(y) = MLPfeedback(YGE-HAD), an MLP mapping the 
downstream output YGE-HAD to a feedback signal and λ is a weighting 
factor for the original gating scores. The final output is updated based 
on the refined gating scores:

	
( ) ( )=

=∑ ,1 .K
FES updated i iiY g x E x

	
(9)

For instance, if the implicit aspect detection task is focused on 
identifying aspects like motion or action, the FES will dynamically 
adjust expert selection, emphasizing experts that have proven more 
accurate at detecting action-related features.

3.1.5 Aspect-aware attention refiner
The AAR refines the attention mechanism using aspect-specific 

information. The system computes the attention weights for each 
expert output and refines them based on aspect-specific information. 
Given YFES, the attention weight matrix is computed as:

	

( )( )TQ K
refined AAR

k

QW KW
A softmax b

d

 
 = +
 
  	

(10)

Where, Q, K are queries and keys derived from YFES, WQ, WK are 
weight matrices, dk represents the dimension of the key vectors in the 
attention mechanism and bAAR is a bias term. The refined embedding 
is expressed as,

	 AAR refined VY A VW=
	

(11)

Where, V represents values (e.g., expert outputs) and Wv is a 
trainable weight matrix associated with the values, responsible for 
transforming the output representation after applying attention. 
AAR focuses attention on relevant aspects, enhancing DET’s 
ability to emphasize critical features. The Dynamic Expert 
Transformer (DET) is a robust framework for extracting complex 
contextual, syntactic, and semantic features. Its adaptive routing 
and feedback-driven refinement, significantly improve feature 
extraction for tasks like implicit aspect detection, sentiment 
analysis, and text classification. The advanced mathematical 
formulations ensure precise expert selection and robust 
hierarchical modeling.

3.2 Semantic contrastive learning for 
enhanced feature extraction

Semantic Contrastive Learning (SCL) enhances feature extraction 
by refining the representations generated by the Dynamic Expert 
Transformer (DET) in the Transformer-Enhanced Graph Aspect 
Analyzer (TEGAA) model. It involves preparing sets of positive and 
negative sample pairs based on semantic relationships within the data, 
where semantically similar instances form positive pairs, and 
dissimilar ones constitute negative pairs. Applying a contrastive loss 
function maximizes similarity between positive pairs while 
minimizing it for negative pairs, thereby boosting feature 
discriminability across contextual variations. This process captures 
subtle differences in representations, enabling DET to produce more 
accurate and meaningful embeddings, which strengthens the feature 
extraction mechanism for distinguishing between similar and 
dissimilar implicit aspects, ultimately improving TEGAA’s 
performance in detecting and analyzing nuanced text aspects. 
Semantic contrastive learning refers to the model’s ability to capture 
and analyze contextual shifts, patterns, or relationships within the 
data, such as identifying changes in sentiment or aspect relevance, 
maintaining coherence across related contexts, or distinguishing 
unrelated content. This approach supports tasks like tracking evolving 
trends or understanding contextual dependencies in dynamic text, 
enhancing TEGAA’s adaptability.

SCL integrates semantic dynamics into the DET feature extraction 
pipeline, boosting its ability to detect evolving and subtle differences 
between data representations. By constructing positive and negative 
sample pairs, SCL employs an advanced contrastive loss to compel 
DET to generate more contextually coherent and discriminative 
embeddings, making it well-suited for nuanced implicit aspect 
detection and analysis. This process enhances the model’s capacity to 
differentiate subtle variations in input text, particularly when 
identifying implicit aspects, by focusing on semantic relationships- 
whether across related sentences or conversational flows- thus 
capturing essential contextual cues. The contrastive learning approach 
ensures that embeddings retain critical contextual information, 
enabling TEGAA to effectively analyze nuances in sentiment or aspect 
shifts, thereby improving its overall performance in identifying 
implicit aspects across datasets like mobile reviews, SemEval14 and 
Sentihood.

In Semantic Contrastive Learning (SCL), positive and negative 
pairs are carefully constructed to enhance the discriminability of 
contextual embeddings and improve the model’s ability to capture 
subtle semantic nuances. Positive pairs consist of embeddings from 
contextually related tokens or sentences, such as words appearing in 
the same semantic context or sentences discussing the same aspect, 
while negative pairs are drawn from unrelated or semantically distant 
tokens and sentences. A semantic offset is defined as the vector 
difference between embeddings of semantically related samples, 
representing meaningful contextual variation in the embedding space. 
This offset is used to guide the contrastive loss, encouraging 
embeddings of related samples to be pulled closer together while 
pushing unrelated samples farther apart.

The use of semantic offsets allows the model to explicitly encode 
fine-grained relationships between tokens and sentences, ensuring that 
subtle implicit cues-such as modifiers, sentiment-laden phrases, or 
context-dependent expressions—are more effectively captured. By 
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incorporating both token-level and sentence-level information, SCL 
refines the DET-generated embeddings across multiple levels of 
granularity. This not only improves feature separability but also enhances 
the overall robustness of the model against noisy or ambiguous inputs, 
ultimately leading to more accurate implicit aspect detection.

3.2.1 Pair construction with semantic dynamics
The first part of Semantic Contrastive Learning is building 

positive and negative pairs out of the sequence data. These pairs give 
the needed contrast to improve the latent representations so that there 
is no overlap in the embeddings of semantically irrelevant points. This 
systematic pairing captures the semantic coherence and ensures 
separability across different text sequences.

	•	 Positive pairs: Composed of embeddings from semantically 
related data points, ensuring coherence across contextually 
similar content, such as embeddings from text with shared topics 
or sentiments. For example, embeddings (zt​, zt + Δ​), where Δ is a 
small semantic offset.

	•	 Negative pairs: Include embeddings from semantically unrelated 
data points, introducing diversity and enforcing discriminability, 
such as embeddings from text with dissimilar topics or 
sentiments. For example, embeddings (zt, zt + Δd), where Δd ≫ Δ.

Let xt represent data in input text sequence. DET processes this 
through its Dynamic Adaptive Expert Engine (DAEE) to produce 
embeddings which is expressed as given in Equation 12,

	 ( )t DET tz f x=
	

(12)

Where, fDET encapsulates DET’s expert routing and attention 
mechanisms. The dataset D is split into positive and negative pairs as 
given in Equations 13,14 respectively:

	
( ) { }{ }maxPositive pairs : , | 0,t tP z z +∆  = ∆∈ ∆     	

(13)

	 ( ) { }{ }maxNegative pairs : , |
dt t dN z z +∆= ∆ > ∆

	
(14)

Here, Δmax represents the threshold for semantic similarity. The 
semantic contrastive loss as calculated in Equation 15 aims to maximize 
similarity for positive pairs while minimizing it for negative pairs, creating 
discriminative embeddings sensitive to semantic relationships.
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(15)

Here, sim(zi, zj) is the Similarity function, typically cosine 

similarity given as ( ) = .
, i j

i j
i j

z z
sim z z

z z
, τ is the temperature scaling 

factor, controlling the sharpness of similarity distribution, D is the 
entire dataset of embeddings and ǀDǀ is the total number of samples. 

This loss function is a normalized temperature-scaled cross-entropy 
loss designed to optimize the alignment of positive embeddings while 
encouraging diversity between negative pairs. SCL refines embeddings 
through two crucial mechanisms: semantic coherence and semantic 
discriminability. Semantic coherence ensures that embeddings remain 
stable for contextually related points by minimizing the distance 
between positive pairs, capturing gradual transitions in features. This 
is particularly effective in datasets where subtle semantic variations 
represent significant changes.

(a) Semantic coherence

	•	 For positive pairs (zt, zt + Δ), SCL ensures embeddings remain 
consistent across semantic shifts. By minimizing intra-pair 
distance given as 2

2t tmin z z +∆−  . DET learns to capture 
gradual transitions in feature representations.

(b) Semantic discriminability

	•	 For negative pairs (zt, zt + Δd), SCL enforces a larger margin of 
2
2t t dmax z z +∆−  . This separation prevents DET from 

conflating semantically dissimilar aspects.

The combination of these objectives helps DET distinguish fine-
grained semantic variations and contextually irrelevant information. 
To enhance the learning process, SCL incorporates feedback-driven 
adaptation. This involves evaluating the quality of embeddings 
through performance metrics obtained from downstream tasks.

	 1.	 Feedback Generation: The model evaluates the quality of 
embeddings via downstream tasks, such as implicit aspect 
detection or classification.

	 2.	 Embedding Adjustment: Using the feedback, the Feedback-
Driven Expert Selector (FES) re-routes ambiguous cases to 
specialized experts within DET, ensuring embeddings are 
further refined for challenging instances.

This adaptive feedback loop reduces the residual errors and 
improves the discriminability of features. The improved embeddings 
obtained through SCL show the following advanced properties: 
Evolving semantic patterns are captured due to semantic adaptation, 
making the model invariant to semantic variations in the data. Noise 
robustness is obtained since spurious correlations are eliminated, due 
to meaningful separations of pairs in the embedding space, by the 
constraints put on pairs. Finally, semantic precision is maintained by 
aligning the embeddings for semantically similar instances, even in the 
presence of noise or variability in the input data. These enhancements 
collectively improve the model’s ability to handle complex data 
effectively, which contributes to superior task performance.

The SCL loss is integrated with the DET’s task-specific loss to form 
a unified optimization objective. Combining the SCL loss, which 
focuses on refining semantic relationships, with the task-specific loss 
that optimizes the model for its target application ensures that the 
embeddings are fine-tuned for both capturing contextual similarities 
and meeting task-specific requirements during the joint training 
process. DET and SCL collaborate through iterative updates of model 
parameters, driven by gradients from the joint loss, to achieve robust 
learning of semantic representations and improved task outcomes as 
given in Equation 16.
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	 total SCL DETL L Lα β= + 	 (16)

Where, α and β are weights balancing semantic contrastive 
learning and DET’s primary training objectives and LDET denotes Task-
specific loss (e.g., cross-entropy for classification). This joint 
optimization ensures that SCL complements DET’s existing strengths, 
yielding a robust feature extraction mechanism tailored for dynamic 
textual data.

3.3 Aspect detection with graph-enhanced 
hierarchical aspect detector

GE-HAD advances implicit aspect detection through multi-level 
hierarchical context graphs by constructing and analyzing the 
comprehensive graph of word-level and sentence-level nodes that 
captures a rich set of contextual relationships throughout the text. 
Through the use of DET-provided embeddings, Context-Aware Graph 
Attention mechanism dynamically adapts the weights of attention to 
concentrate at different granularities toward relevant features and 
relationships for the model. Attention Sinks are used to rank and process 
the most important contextual information so that important things are 
focused on. Pyramid Pooling is used for effective aggregation of features 
at different scales, ranging from word-level to sentence-level, in order to 
capture multi-level context and improve feature representations. This 
combination of attention mechanisms and pooling strategies enhances 
the ability of the model to detect nuanced and complex aspects by 
utilizing structured context information and refined attention patterns, 
which increases the accuracy and depth of implicit aspect detection. 
GE-HAD refines implicit aspect detection using a multi-level 
hierarchical graph structure which is able to integrate word-level and 
sentence-level contexts. Through the application of Context-Aware 
Graph Attention (CAGA), Attention Sinks, and Pyramid Pooling, it 
provides precise contextual modelling and feature refinement for fine-
grained implicit aspect detection.

3.3.1 Hierarchical context graph construction
The hierarchical graph G = (V, E) plays a vital role in capturing the 

underlying structure of text data, such as sentences and words, within 
a multi-level context. The nodes in the graph represent distinct levels 
of text granularity.

Nodes V

	•	 Word-level nodes (vw) represent individual words. They are 
crucial for capturing the basic linguistic elements and semantic 
features of the text.

	•	 Sentence-level nodes (vs) aggregate word nodes within sentences. 
The sentence nodes encode contextual relationships between 
words, providing a higher level of abstraction.

Edges E

	•	 Intra-level edges (Eintra): These edges capture relationships within 
the same level. For example, word co-occurrence or syntactic 
dependencies like subject-verb-object relationships are captured 
here. These connections are vital for understanding local 
linguistic structures.

	•	 Inter-level edges (Einter): These edges link nodes across levels. For 
instance, word nodes are connected to sentence nodes. These 
inter-level connections help build a global understanding of the 
text by linking detailed word-level information to higher-level 
contextual structures.

The adjacency matrix A encodes these relationships, where edge 
weights wij represent semantic similarity or syntactic relevance 
between nodes.

	

( ), ,

0,
ij i j

ij
w if v v

A
otherwise

ε ∈= 
 	

(17)

Where, wij is the edge weight calculated based on semantic 
similarity or syntactic relevance. It is expressed as,

	
σ

 − = − 
 
 

2
2

2exp
i j

ij
z z

W

	

(18)

Where, zi​, zj denote feature embeddings of nodes vi, vj and σ is the 
scaling factor controlling sensitivity to differences. To understand the 
global structure of the graph, the Graph Laplacian (L) is computed as 
given in Equation 19, which helps smooth node representations across 
the graph, ensuring that closely related nodes have similar embeddings.

	
1 1

2 2L I D AD
− −

= − 	 (19)

Where, I represent the identity matrix and D is the degree matrix, 
with Dii = ∑jAij.

In the Hierarchical Context Graph (HCG), edges are constructed to 
capture both intra-level (within the same level, e.g., word-to-word or 
sentence-to-sentence) and inter-level (across levels, e.g., word-to-
sentence) dependencies, ensuring comprehensive modeling of contextual 
relationships. Intra-level edges at the word level are built using 
dependency parsing tools (such as SpaCy or Stanford CoreNLP) to 
connect words based on syntactic relations like subject–verb, modifier–
noun, and object–verb links, capturing grammatical structure. At the 
sentence level, intra-level edges are formed using attention-based 
clustering, where sentence embeddings are computed via the pre-trained 
transformer, and sentences with cosine similarity above a threshold (e.g., 
0.7) are connected, ensuring that semantically related sentences influence 
each other. Inter-level edges are constructed to link words to the 
sentences they belong to, as well as to other relevant higher-level 
constructs. A fixed window size strategy is applied, where each word is 
connected to neighboring sentences within a context window of ±1 or 
±2 sentences, allowing the model to capture short-range discourse 
dependencies. Additionally, cross-level attention scores from the 
Context-Aware Graph Attention (CAGA) module are used to weight 
inter-level edges dynamically, prioritizing words that are semantically or 
sentimentally significant for implicit aspect detection. This combination 
of syntactic parsing, attention-based clustering, and window-based 
connections enables the HCG to represent fine-grained intra-level 
interactions while maintaining robust inter-level contextual reasoning, 
which is critical for capturing subtle cues in implicit aspect detection.
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Before applying the hierarchical attention mechanism in 
GE-HAD, all node features in the context graph are initialized using 
representations generated by the Dynamic Expert Transformer (DET). 
Each word-level node is assigned its initial feature vector from the 
DET output corresponding to that token, ensuring that the node 
embedding already encodes rich syntactic, semantic, and contrastive-
learning–refined information. Sentence-level nodes are initialized by 
computing the mean-pooled embedding of all DET-generated token 
features within the sentence, allowing each sentence node to capture 
broader contextual meaning beyond individual words. For graph 
connectivity, intra-level edge weights are initialized using syntactic 
dependency strengths or semantic similarity scores between node 
pairs, while inter-level edge weights are initialized using cosine 
similarity between word and sentence embeddings. This initialization 
strategy ensures that both word- and sentence-level nodes begin the 
GE-HAD process with context-aware, structurally meaningful 
features, enabling the subsequent attention mechanism to operate on 
well-formed hierarchical representations.

3.3.2 Context-aware graph attention
The Context-Aware Graph Attention mechanism focuses on 

refining node representations by incorporating contextual information 
from neighboring nodes. This is particularly important for text data, 
as different words or sentences contribute varying levels of importance 
to the overall meaning. Node representations zi are iteratively updated 
to incorporate information from neighbors, weighted by attention 
coefficients αij,

	 ( )i ij g jj N i
z W zγ α′

∈
 =  
 ∑

	
(20)

Where, N(i) represents the Neighbors of node vi, Wg represents the 
trainable weight matrix for graph-based transformation and γ is the 
ReLU activation function. Attention coefficients αij are computed as,
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Where, ϕ(zi​,zj) is a compatibility function,

	
( ) ( )φ ψ  =  , T

i j g i g jz z a W z W z
	

(22)

Here, a is a trainable attention vector, ψ represents the leaky ReLU 
activation function and || is the concatenation operator.

3.3.3 Attention sinks
Attention Sinks are special nodes introduced for each level 

(vsink,word, vsink,sent) to aggregate critical contextual information and 
prioritize important aspects. These nodes help aggregate the most 
critical information and allow the model to focus on the most relevant 
parts of the text. The representation of a sink node zsink is computed as,

	 ( )sin sin ,sink k j s jj N k
z W zσ β

∈
 =  
 ∑

	
(23)

Where, N(sink) denotes the Neighboring nodes of the sink, βsink,j 
represents the attention weight between the sink and its neighbors, 
defined similarly to αij, and Ws is the Sink-specific weight matrix. By 
incorporating attention sinks, the model effectively aggregates critical 
information from multiple text levels (word, sentence) and prioritize 
aspects that are key for the task, such as sentiment or aspect 
classification.

In the Graph-Enhanced Hierarchical Aspect Detector (GE-HAD), 
Attention Sinks represent a pivotal innovation that distinguishes 
TEGAA from models relying solely on standard attention 
mechanisms. Conventional approaches—such as the scaled 
dot-product attention used in Transformers-compute relevance scores 
between all node pairs, distributing focus broadly across the graph. 
Under noisy or imbalanced text conditions, this often dilutes sparse 
but crucial implicit cues, allowing high-frequency or sentiment-heavy 
tokens to dominate the attention landscape. Attention Sinks overcome 
this limitation by introducing dedicated nodes at both the word and 
sentence levels that function as specialized “information hubs.” These 
sink nodes selectively aggregate contextually important signals from 
neighboring nodes and assign greater importance to task-relevant 
features such as implicit aspect cues (e.g., “long-lasting” → battery 
life), sentiment modifiers, or rare contextual indicators. By 
concentrating essential semantic evidence and suppressing 
uninformative dependencies, Attention Sinks offer a targeted 
refinement layer that standard attention cannot provide.

This behavior is illustrated by the review “The phone lasts all day, 
but the screen is dull.” In a conventional attention setup, prominent 
terms like “screen” and “dull,” together with the discourse marker 
“but,” often attract disproportionately high attention because they are 
sentiment-heavy and occur frequently in review datasets. This causes 
the subtle but crucial implicit cue “lasts all day”-which strongly 
indicates the battery life aspect-to receive comparatively low attention, 
leading the model to overlook one of the most meaningful signals in 
the sentence. The Attention Sink mechanism counteracts this effect by 
inserting a specialized sink node at the sentence level that acts as a 
semantic collector for low-salience yet task-critical features. 
Embeddings from tokens such as “lasts” and “all day” are routed into 
this sink node, which aggregates, normalizes, and amplifies them 
through learned sink weights (βsink, j). Because the sink node functions 
as a focused reservoir for weak contextual cues, the enhanced 
representation is pushed back into the graph with a stronger gradient 
contribution, ensuring that the battery-related meaning remains 
highly salient even when overshadowed by more dominant tokens. 
Additionally, irrelevant or noisy words-such as “but,” “the,” or other 
syntactically necessary yet semantically weak terms-contribute 
minimally to the sink since the learned weights naturally down-rank 
them. This selective aggregation not only protects subtle implicit cues 
from being lost, but also stabilizes attention by reducing overfitting to 
high-frequency distractors, a common issue in standard attention 
where such terms can inflate pairwise similarity scores. Furthermore, 
by acting as a dedicated focal node, the sink helps the model maintain 
consistency across sentences with similar implicit cues, improving 
generalization across domains and linguistic variations (e.g., “goes the 
whole day,” “barely needs charging”). Through this hierarchical 
refinement, Attention Sinks enable GE-HAD to consistently elevate 
sparsely distributed but semantically rich signals, substantially 
enhancing its ability to resolve aspect ambiguity, handle noisy or 
imbalanced inputs, and detect implicit aspects with higher precision 
and interpretability.

https://doi.org/10.3389/frai.2026.1666674
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Soni and Rambola� 10.3389/frai.2026.1666674

Frontiers in Artificial Intelligence 11 frontiersin.org

3.3.4 Pyramid Pooling
The Pyramid Pooling mechanism in the Graph-Enhanced 

Hierarchical Aspect Detector (GE-HAD) is designed to aggregate 
contextual information at multiple levels of granularity-word-level 
and sentence-level-allowing the model to jointly capture fine-
grained semantics and broader discourse patterns. At the word 
level, each node’s embedding is aggregated using attention-
weighted mean pooling, where the weights are derived from the 
Context-Aware Graph Attention (CAGA) coefficients (αᵢⱼ). This 
ensures that semantically critical words, such as modifiers or 
implicit aspect indicators, receive higher importance in the pooled 
representation, while neutral or redundant tokens contribute less. 
At the sentence level, the model performs context-weighted 
pooling over the aggregated word-level features within each 
sentence. Here, inter-level edge weights (wᵢⱼ) from the hierarchical 
graph are employed to modulate the influence of each word on its 
corresponding sentence representation, capturing intra-sentence 
dependencies and inter-sentence coherence. The outputs from 
both levels are then concatenated and fused through a hierarchical 
integration layer, forming a composite feature vector that preserves 
both local lexical nuances and global contextual relationships. This 
hierarchical fusion mirrors the structure of a pyramid—fine-
grained details form the base, while abstracted global semantics 
form the apex—enabling the model to handle implicit aspect cues 
that vary in linguistic scope. Unlike conventional pooling 
operations (e.g., simple mean or max pooling), this attention-
guided, multi-scale aggregation adaptively weighs contributions 
based on contextual relevance, resulting in richer, noise-robust 
embeddings that significantly enhance implicit aspect detection 
performance.

Pyramid Pooling enhances the model’s ability to capture 
hierarchical context by pooling features at multiple scales. This 
method is effective for text, as it allows the model to learn features at 
various levels of abstraction, from individual words to different 
sentences.

	 i.	 Word-Level Pooling: At the word level, pooling aggregates 
features based on the individual words in the sentence. This 
allows the model to focus on the local context of each word.

	
= ∑1

w
Word wvw

z z
v

	
(24)

Where, Zw denotes the feature representations (or embeddings) 
for the word-level nodes, capturing the semantic meaning of each 
word in the sentence and Vw refers to the set of all word-level nodes in 
the graph, representing the individual words within the sentence.

	 ii.	 Sentence-Level Pooling: At the sentence level, pooling 
aggregates features across sentences. This helps the model 
capture relationships between sentences and the context they 
provide for implicit aspect detection.
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(25)

Where, Zs represents the feature embeddings for the sentence-
level nodes, which aggregate the word-level features Zw to capture the 
overall meaning of each sentence and Vs is the set of all sentence-level 
nodes, representing the collection of sentences.

The final hierarchical feature vector combines all of these pooled 
features, allowing the model to incorporate both local and global 
context into its decision-making process.

	
 =  hier word sentz z z

	
(26)

The refined hierarchical feature representation zhier is used for 
classification. The implicit aspect prediction is computed as,

	 ( )ˆ cls hier clsY softmax W z b= +
	

(27)

Where, Wcls is the classification weight matrix and bcls is the bias 
term. This final step maps the refined features to the appropriate 
aspect labels, enabling the model to classify different aspects (e.g., 
sentiment, product features) in the text. This term enforces 
smoothness in the node embeddings, ensuring that neighboring 
nodes have similar representations. It helps avoid overfitting and 
maintains the coherence of the learned graph structure.

	 ( ) ε
λ

∈
= − +∑ ∑

2
1, 2graph i j ii j iL z z z

	
(28)

In Equation 28, ɛ is the set of edges in the graph, representing the 
relationships between nodes. zi is the feature representation 
(embedding) of node vi, which corresponds to word-level or sentence-
level depending on the context. Similarly, zj is the feature representation 
(embedding) of node vj, representing the features of another node in the 
graph. The term − 2

2i jz z  represents the squared Euclidean distance 
between the feature vectors zi and zj, which ensures that similar nodes, 
based on their features, have closer embeddings. λ is a regularization 
hyperparameter that controls the strength of the sparsity term, and ǀǀziǀǀ1 
denotes the L1 norm of the feature vector zi, which promotes sparsity by 
penalizing large values in the embeddings. This combination ensures 
that the model enforces smooth and sparse embeddings, improving 
both interpretability and computational efficiency. For the aspect 
classification task, the cross-entropy loss as calculated in Equation 29 is 
used, which penalizes incorrect predictions. This helps the model learn 
to predict the correct aspect label for each input.
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1
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L y y
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(29)

As calculated in Equation 30, the total loss is a weighted sum of 
the graph regularization loss and task-specific loss,

	 1 2GE HAD graph tasksL L Lλ λ− = +
	

(30)

This combined loss ensures that the model not only performs well 
in classifying aspects but also maintains a coherent graph structure 
that captures the relationships between text elements at different 
levels. By combining these components-hierarchical context graph 
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construction, graph attention, attention sinks, pyramid pooling, and 
effective loss functions-the model is able to process and understand 
text at multiple levels of abstraction, leading to accurate aspect-based 
sentiment analysis and other related tasks. Figure 2 illustrates the 
diagram of the proposed GE-HAD module.

The Pyramid Pooling mechanism in the Graph-Enhanced 
Hierarchical Aspect Detector (GE-HAD) is a hierarchical feature 
aggregation strategy designed to capture contextual information at 
multiple levels of granularity, addressing the challenge of detecting 
implicit aspects in complex, unstructured text. Unlike standard pooling 
methods that apply uniform aggregation, such as mean or max pooling 
across all tokens, Pyramid Pooling employs a multi-scale approach 
through distinct Word-Level Pooling and Sentence-Level Pooling 
strategies. Word-Level Pooling operates on the feature representations of 
word nodes, aggregating them using a weighted mean pooling operation 
in which the weights are derived from attention coefficients. These 
coefficients prioritize semantically significant words, such as modifiers or 
implicit aspect indicators (for example, “long-lasting” implying battery life 
in the Mobile Reviews Dataset), ensuring that fine-grained semantic cues 
critical for implicit aspect detection are preserved. Sentence-Level 
Pooling, conversely, aggregates word-level features into sentence-level 
embeddings by applying mean pooling across all word nodes within a 
sentence, further modulated by inter-level edge weights from the 
hierarchical graph’s adjacency structure. This process captures broader 
contextual relationships, such as discourse flow and inter-sentence 
dependencies, which provide the global context necessary for anchoring 
implicit aspects within the text.

The outputs from these two pooling levels are combined through 
concatenation to form the final hierarchical feature vector. This integrated 
vector brings together both local (word-level) and global (sentence-level) 
features, which is then passed through a classification layer to predict 
aspect categories. This multi-scale aggregation is essential because relying 
solely on word-level pooling may overlook discourse-level context, such 
as sentiment coherence across sentences, while relying only on sentence-
level pooling risks missing subtle implicit signals embedded in individual 
words. For example, in the Sentihood Dataset, a review stating “The area 
feels quiet” may implicitly reference “safety,” a cue that word-level pooling 
captures through terms like “quiet,” while sentence-level pooling ensures 
the broader context of neighborhood sentiment is considered. This dual-
level approach enhances TEGAA’s ability to resolve aspect ambiguity and 
achieve robust performance.

After pyramid pooling, the model leverages the hierarchical 
feature representation obtained from the multi-level graph and 
pyramid pooling. Finally, this aggregated feature vector goes through 
a classification layer that computes the aspect labels of predictions 
using a softmax function; in this way, the model correctly classifies 
implicit aspects based on refined contextual information. The model 
is strengthened with graph regularization and task-specific loss 
functions for learning meaningful representations while being smooth 
and sparse in embeddings. It, therefore, optimizes the loss function 
that deals both with the detection of relevant aspects and the structural 
integrity of the graph, hence bettering model performance. Through 
such sophisticated techniques, the last layer refines implicit aspect 
detection but ensures that the model is capable of dynamic adaptation 
toward complex and changing textual contexts. This makes it very 
effective for nuanced aspect analysis across a range of textual data.

The iterative feedback loop in TEGAA refines the Transformer’s 
gating decisions by incorporating information from the graph outputs 

generated by GE-HAD. After GE-HAD computes updated hierarchical 
node representations, the final graph-level embedding GE HADY −  is 
passed through a lightweight MLP to produce a feedback signal ( )F y , 
which captures the model’s current understanding of implicit aspect 
relevance. This signal is used to adjust the DET gating probabilities 
through an additive refinement term, expressed as 

( ) ( ) ( )1g g x F yλ λ= + −′ , where ( )g x  is the original expert-routing 
distribution, ( )F y  is the feedback-modulated correction, and λ  
controls the balance between the initial and refined gating decisions. The 
updated gating distribution g ′  is then normalized via softmax and used 
to re-route token embeddings across the expert sub-networks in the next 
iteration. Through this mechanism, ambiguous or weakly represented 
aspects detected in the graph directly influence expert selection, allowing 
the system to gradually emphasize experts that better capture implicit 
cues. This mathematically grounded refinement process ensures tighter 
alignment between graph-level contextual reasoning and transformer-
level feature extraction. Algorithm 1 outlines the sequence of steps used 
in the training procedure of the proposed TEGAA model.
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4 Results and discussion

The results and discussion section gives a thorough analysis of the 
performance of the proposed model in different datasets along with 
the experimental settings for the study.

4.1 Experimental settings

The TEGAA experimental settings evaluate the performance of 
the model by using a variety of hyperparameters and configurations. 
A set of values is tested to determine optimal parameter settings for 

FIGURE 2

GE-HAD architecture.
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training and evaluating the model. These key hyperparameters include 
batch size, learning rate, and the optimizer used to find the best 
combination that leads to convergence and generalization. Further, 
the contrastive loss temperature, and dropout rate are fine-tuned to 
improve the model’s robustness and avoid overfitting. The graph 
attention layers and pooling methods of the model are also investigated 
to optimize its ability in implicit aspect detection. To refine the 
embeddings in the proposed model, various activation functions (e.g., 
ReLU, ELU) and feedforward dimensions are tested to optimize 
learning and improve implicit aspect detection. Activation functions 
introduce non-linearity, enabling the model to capture complex 
patterns in text, while different feedforward dimensions adjust the 
model’s capacity to learn both global and local features. This 
combination enhances the model’s ability to recognize implicit aspects 
by refining its representations and improving performance in nuanced 
implicit aspect detection. The effect of the feedback loop iterations is 
analyzed to improve the iterative refinement process. Data is divided 
into training and test sets, using multiple ratios to split it, so that the 
model generalizes well across various distributions of data. The 
experiment aims at establishing the most effective settings for implicit 
aspect detection by testing various configurations of embedding 
refinement techniques and implicit aspect detection modules. 
PyCharm is used for conducting all experiments, with Python 3.12 
running on an Intel i5 10th generation processor, powered with a 
NVIDIA graphics card with 8 GB RAM, and 4GB dedicated graphics 
memory for performance during training and evaluation. Table 1 gives 
the hyperparameters and their tested values in the proposed model 
implementation.

To select optimal hyperparameter values, the TEGAA model 
employs a systematic grid search methodology. Each hyperparameter 
is evaluated over a predefined range-for example, batch sizes of 16, 32, 
and 64, learning rates of 1e-5, 1e-4, and 1e-3, contrastive loss 
temperatures, dropout rates, number of graph attention layers, and 
feedforward dimensions. This ensures that the model’s configuration 

is thoroughly explored to identify the most effective combination for 
training. During grid search, the model is trained on the training split 
of each dataset and validated on 10% of the training data, providing a 
reliable estimate of generalization performance. The F1-score is used 
as the primary metric, balancing precision and recall, which is crucial 
for implicit aspect detection where both false positives and false 
negatives impact results. Early stopping with a patience of 5 epochs 
halts training if validation performance does not improve, preventing 
overfitting and saving computational resources. The grid search 
evaluates all possible combinations of hyperparameters, and the 
configuration achieving the highest mean F1-score across five-fold 
cross-validation is selected as optimal. This ensures that the chosen 
hyperparameters perform robustly across different data splits. For 
example, a batch size that is too small may cause unstable gradients, 
leading to inconsistent learning, while a batch size that is too large can 
slow convergence or reduce generalization. Similarly, a learning rate 
that is too high may cause the model to overshoot optimal solutions, 
whereas a too-low learning rate may make training excessively slow. 
Practical considerations, such as computational efficiency and 
memory requirements, are also incorporated. The selected 
hyperparameters, summarized in Table 1, are consistently applied 
across all datasets, ensuring reproducible, reliable, and high-
performing implicit aspect detection. By carefully tuning these 
parameters, the model can effectively capture both local word-level 
features and broader sentence-level patterns, improving detection of 
subtle and implicit aspects in text.

4.2 Datasets used

Using a combination of the Mobile Reviews, SemEval14, and 
Sentihood datasets, this model learns to recognize when patterns 
signal implicit references to aspects of products. For example, while a 
review is not explicitly talking about “battery life,” terms such as 

TABLE 1  Hyperparameters in TEGAA implementation.

Parameter Value Tested values

Batch size 32 16, 32, 64

Learning rate 1e-4 1e-5, 1e-4, 1e-3

Optimizer AdamW Adam, AdamW, SGD

Weight decay 0.01 0.01, 0.001, 0.1

Epochs 50 10, 20, 30, 50

Contrastive loss temperature 0.07 0.05, 0.07, 0.1

Max sequence length 128 64, 128, 256

Dropout rate 0.3 0.2, 0.3, 0.4

Pooling method Mean pooling Max Pooling, Mean Pooling

Contrastive learning margin 0.5 0.3, 0.5, 0.7

Graph attention layers 2 2, 4, 6

Attention heads 8 4, 8, 16

Feedforward dimension 2,048 1,024, 2,048, 4,096

Activation function ReLU and ELU ReLU, GELU, Tanh, ELU

Gradient clipping threshold 1.0 0.5, 1.0, 1.5

Feedback loop iterations 3 2, 3, 5
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“long-lasting” or “quick charging” can sometimes signal an implicit 
reference.

Mobile Reviews Dataset (Soni and Rambola, 2022) consists of 
user-generated reviews of mobile phones in a csv format. This dataset 
encompasses both subjective and objective aspects of the mobile 
experience, which makes it a valuable resource for conducting aspect-
based sentiment analysis. The reviews are accompanied by annotations 
that specify which aspects of the mobile phone the reviewer is 
discussing (e.g., battery life, camera quality, etc.), along with the type 
of aspect (implicit/explicit). It contains one thousand samples for 
training and testing.

The SemEval14 Dataset (Manandhar et al., 2010) is one of the 
datasets for SemEval 2014 Task 4, which was specifically designed for 
aspect-based sentiment analysis for multiple domains: restaurant and 
laptop reviews. The restaurant data is used for the training and testing 
of the model. For implicit aspect detection, the SemEval-14 dataset is 
categorized into five major aspect categories to enhance structured 
sentiment analysis. In SemEval-14, aspects are classified into Food and 
Beverage (e.g., food, pizza, over 150 aspects) representing core dining 
attributes, Service and Staff (e.g., waiters, service) reflecting personnel 
impact, Ambiance and Environment (e.g., atmosphere, decor) 
capturing the setting, Cost and Value (e.g., prices, portions) addressing 
financial considerations, and Operational Experience (e.g., wait, 
reservations) covering logistical factors. The dataset contains 3,600 
samples for training and 800 samples for testing, provided in CSV 
format. The SemEval-14 dataset is used despite having many aspect 
terms because it provides a diverse and comprehensive benchmark for 
aspect-based sentiment analysis. It ensures robust evaluation, 
comparability with prior research, and tests a model’s ability to handle 
complex linguistic structures, implicit aspects, and across domains.

The Sentihood Dataset (Saeidi et al., 2016) is a collection of user 
reviews focused on urban neighborhood sentiment, designed to 
identify sentiments and aspects related to living experiences. 
Sentihood is structured into Economic Factors (e.g., price) 
highlighting cost prominence, Social Environment (e.g., safety, 
quiet) emphasizing community sentiment, Lifestyle Offerings (e.g., 
dining, nightlife) indicating vibrancy, Transportation and 
Connectivity (e.g., transit-location), assessing mobility, and Overall 

Appeal and Residency (e.g., liveability) reflecting neighborhood 
attractiveness. This structured categorization facilitates a more 
effective understanding of implicit aspects, enabling the 
development of models that can infer unstated yet contextually 
crucial features in sentiment analysis. The dataset comprises 2,900 
samples for training and 800 samples for testing, provided in 
JsonL format.

To ensure transparency and reproducibility, all datasets used in 
this study are reported with their respective sources, licensing 
conditions, labeling protocols, and preprocessing pipelines. The 
Mobile Reviews dataset is obtained from publicly released academic 
resources under a non-commercial research license, providing explicit 
and implicit aspect annotations created by trained human annotators 
following aspect-based sentiment guidelines. The SemEval14 
(Restaurant) dataset is distributed under the official SemEval shared-
task license and contains human-annotated aspect terms and 
categories, which we further consolidate into five standardized aspect 
classes to maintain consistency across experiments. The Sentihood 
dataset is released under the MIT License and includes manually 
labeled aspect categories reflecting neighborhood attributes. For each 
dataset, we adopt the original class definitions and do not modify or 
generate synthetic labels. To prevent cross-partition leakage, we apply 
grouped train/validation/test splits based on document or review ID 
(following official splits where provided). Preprocessing uniformly 
includes lowercasing, DET-compatible tokenization, sentence 
segmentation, normalization of special characters, and conversion of 
raw CSV/JSONL inputs into structured text instances. These steps 
ensure consistent data preparation across domains and maintain 
alignment with established benchmark protocols.

4.3 Visual analysis

The proposed TEGAA model uses a hierarchical graph structure, 
where the sentences, aspects, and words are differentiated nodes as 
shown in Figure 3. The figure displays a 3D scatter plot from my 
proposed Transformer-Enhanced Graph Aspect Analyzer (TEGAA) 
model, featuring nodes and edges in a high-dimensional space. Nodes 

FIGURE 3

Hierarchical graph representation.
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represent words or concepts with larger blue circles highlighting key 
implicit aspects, and edges show semantic relationships from the 
Graph-Enhanced Hierarchical Aspect Detector (GE-HAD), computed 
by the Dynamic Expert Transformer (DET). Proximity and size reflect 
semantic similarity and importance, demonstrating TEGAA’s ability 
to map implicit aspects across datasets.

In the TEGAA model, attention weights are pivotal for capturing 
word relationships during the feedback loop, significantly enhancing 
implicit aspect detection. Figure 4 presents a 3D attention weight 
visualization, where the x-axis and y-axis represent combinations of 
4–5 unique words extracted from the “Mobile-Review-Dataset,” such 
as “battery,” “screen,” “great,” “performance,” and “camera,” and the 
z-axis displays normalized attention scores ranging from 0 to 1, with 
higher values indicating stronger contextual relevance. This 
visualization, powered by the Context-Aware Graph Attention 
mechanism, illustrates how attention dynamically adjusts across word 
interactions, prioritizing key relationships to refine implicit aspect 
detection. The attention weights are computed based on word 
co-occurrence, modulated by sentiment (positive, negative, or neutral) 
and explicitness (explicit or implicit), with explicit sentences and 
stronger sentiments contributing higher weights. By emphasizing 
more informative connections, the attention mechanism enhances 
contextual prioritization, complementing the hierarchical graph 
structure of TEGAA and enabling more coherent, contextually aware 
outputs for mobile review analysis.

The Transformer-Enhanced Graph Aspect Analyzer (TEGAA) 
demonstrates strong performance in implicit aspect detection through 

its hierarchical pyramid pooling strategy, as illustrated in Figure 5. The 
y-axis in the figure represents the aggregated feature score, clearly 
distinguishing word-level (0.85) and sentence-level (0.57) pooling. 
Word-level pooling captures fine-grained semantic cues from individual 
words, which is particularly effective for detecting subtle and implicitly 
stated aspects within local context. Sentence-level pooling captures 
broader sentence-wide patterns and relationships, yielding a lower score 
but providing essential contextual information. By integrating both levels 
through its pyramid pooling mechanism, TEGAA effectively models the 
hierarchical nature of language. The dual-level aggregation, combined 
with semantic contrastive learning and graph attention, not only 
enhances detection accuracy on datasets such as SemEval14, Sentihood, 
and Mobile Reviews but also improves interpretability by aligning 
attention with meaningful linguistic structures.

4.4 Quantitative analysis

The performance analysis of the TEGAA model across various 
datasets including Mobile Reviews, SemEval14, and Sentihood, given 
in Table 2, demonstrates promising results in implicit aspect detection. 
On the Mobile Reviews Dataset, the model achieves a high precision 
(89.2) and recall (87.8), indicating a strong ability to identify relevant 
aspects while maintaining a balance between precision and recall. The 
F1-score of 88.5 further confirms this, highlighting the model’s 
effectiveness in handling implicit aspects. On the SemEval14 Dataset, 
the performance improves a little with a precision of 89.5 and recall of 

FIGURE 4

Attention weights for different words.

https://doi.org/10.3389/frai.2026.1666674
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Soni and Rambola� 10.3389/frai.2026.1666674

Frontiers in Artificial Intelligence 17 frontiersin.org

88.0, but the overall trends remain the same, confirming the strength 
of the model on all datasets. Similar efficiency of precision (89.0) and 
recall (87.5) results for the Sentihood Dataset further proves that 
TEGAA has capabilities for precise aspect detection. AUC scores 
across the entire datasets range between 0.89 and 0.92, making it a 
strong discriminative power model, thereby qualifying as a reliable 
tool for implicit aspect detection in text applications in real life.

Error analysis of the TEGAA model provides valuable insights 
into its performance across different datasets (Table 3). On the Mobile 
Reviews Dataset, the false positive (FP) rate is 0.05, and the false 
negative (FN) rate is 0.12, indicating that while the model effectively 
avoids detecting irrelevant aspects, it occasionally misses subtle 
implicit aspects. True Positives (TP) and True Negatives (TN) are high 
at 0.82 and 0.88, respectively, demonstrating strong accuracy in 

FIGURE 5

Pyramid pooling at distinct levels for the Sentihood dataset.

TABLE 2  Performance analysis of implicit aspect detection.

Dataset Precision % 
(implicit)

Recall % (implicit) F1-score % 
(implicit)

Accuracy AUC

Mobile reviews dataset 89.2 87.8 88.5 0.91 0.92

SemEval14 dataset 89.5 88.0 88.7 0.90 0.89

Sentihood dataset 89.0 87.5 88.2 0.89 0.90

TABLE 3  Error analysis for implicit aspect detection.

Dataset False positives 
(FP)

False negatives 
(FN)

True positives 
(TP)

True negatives 
(TN)

Error rate Implicit aspect 
confusion

Mobile reviews 

dataset

0.05 0.12 0.82 0.88 0.09 0.15

SemEval14 dataset 0.07 0.14 0.79 0.86 0.10 0.17

Sentihood dataset 0.06 0.16 0.80 0.85 0.11 0.18
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detecting both relevant and irrelevant aspects. The overall Error Rate 
of 0.09 and an Implicit Aspect Confusion score of 0.15 suggest a 
generally low misclassification rate and manageable confusion 
between implicit aspects. For the SemEval14 Dataset, FP and FN rates 
are slightly higher (0.07 and 0.14), highlighting challenges in detecting 
less frequent or subtle implicit aspects, particularly categories such as 
“ambiance” and “service quality,” where sparse contextual cues make 
inference difficult. TP and TN remain high at 0.79 and 0.86, with an 
Error Rate of 0.10 and Implicit Aspect Confusion of 0.17, indicating 
robust overall performance despite these challenges. The Sentihood 
Dataset shows similar trends, with FP at 0.06, FN at 0.16, TP and TN 
at 0.80 and 0.85, and an Error Rate of 0.11. While the DET module has 
a larger parameter capacity than simpler baselines, ablation studies 
confirm that the observed improvements are not solely due to 
increased model size. Components such as the hierarchical graph 
reasoning (GE-HAD) and Semantic Contrastive Learning (SCL) 
contribute substantially to performance, particularly in resolving 
ambiguity and capturing subtle implicit cues. This analysis highlights 
both the strengths and limitations of TEGAA, providing a nuanced 
understanding of its behavior across datasets.

4.5 Comparative analysis

In Table 4, the performance analysis of the models across three 
distinct datasets-Mobile Reviews Dataset, SemEval14 Dataset, and 
Sentihood Dataset-reveals that TEGAA (Proposed) consistently 

outperforms all other models across key evaluation metrics: 
Precision, Recall, F1 Score, and Accuracy. Specifically, TEGAA 
achieves superior results in both precision and recall, demonstrating 
its robustness in identifying relevant aspects while minimizing false 
positives. Overall, TEGAA maintains Precision above 89%, Recall 
near 88%, an F1 Score around 88%, and Accuracy exceeding 89% 
across all datasets. These results are excellent and compare 
favourably to competing models such as IANN, BERT Unified 
Framework, and MSRL-Net. Although these models exhibit 
impressive performance, TEGAA surpasses them by significant 
margins. In the Mobile Reviews Dataset, TEGAA achieves an 
Accuracy of 91.0%, outperforming IANN at 87.4% and BERT 
Unified Framework at 86.5%. Its F1 Score of 88.5% further 
underscores the model’s reliability in classification tasks, reflecting 
a balanced trade-off between precision and recall. Similarly, on the 
SemEval14 and Sentihood datasets, TEGAA maintains a consistent 
lead, with Precision and Recall scores in the 89–90% range, 
highlighting its effectiveness in generalizing across diverse 
datasets—a critical advantage for real-world applications where 
performance must remain stable in varied environments or on 
unseen data. The performance gap between TEGAA and other 
models is most pronounced in the F1 Score, a key metric for 
evaluating classification systems, particularly in cases of class 
imbalance or when both false positives and false negatives carry 
significant implications. This consistency across metrics and datasets 
underscores TEGAA’s robustness and reliability, positioning it as a 
state-of-the-art model for implicit aspect detection in natural 

TABLE 4  Aspect-level performance for implicit aspect detection in three datasets.

Model Precision (%) Recall (%) F1 score (%) Accuracy (%)

Mobile reviews dataset

ASHGAT (Ouyang et al., 2024) 82.3 79.8 81.0 83.2

MSRL-Net (Hu et al., 2023) 84.5 80.2 82.3 85.0

Enhanced KNN (Benarafa et al., 2023) 79.8 77.5 78.6 81.4

BERT unified framework (Murtadha et al., 2024) 85.0 83.4 84.2 86.5

IANN (Liu and Shen, 2023) 86.1 84.3 85.1 87.4

TEGAA (Proposed) 89.2 87.8 88.5 91.0

SemEval 14 dataset

ASHGAT (Ouyang et al., 2024) 82.5 80.0 81.2 84.0

MSRL-Net (Hu et al., 2023) 84.8 80.5 82.6 85.5

Enhanced KNN (Benarafa et al., 2023) 80.0 78.0 79.0 82.0

BERT unified framework (Murtadha et al., 2024) 85.2 83.5 84.3 86.8

IANN (Liu and Shen, 2023) 86.3 84.5 85.4 87.8

TEGAA (Proposed) 89.5 88.0 88.7 89.0

SentiHood dataset

ASHGAT (Ouyang et al., 2024) 81.0 78.5 79.7 82.5

MSRL-Net (Hu et al., 2023) 83.7 79.0 81.3 84.3

Enhanced KNN (Benarafa et al., 2023) 78.5 76.0 77.2 80.5

BERT unified framework (Murtadha et al., 2024) 84.8 82.0 83.4 85.9

IANN (Liu and Shen, 2023) 85.5 83.3 84.4 86.7

TEGAA (Proposed) 89.0 87.5 88.2 90.0
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language processing tasks. These results validate TEGAA’s potential 
to set a new benchmark in implicit aspect detection, displaying its 
superior ability to handle the complexities and nuances inherent in 
natural language data.

4.6 Statistical analysis

The statistical analysis of TEGAA’s performance demonstrates a 
significant advantage over baseline models—ASHGAT (Ouyang et al., 
2024), Enhanced KNN (Benarafa et al., 2023), MSRL-Net (Hu et al., 
2023), BERT Unified Framework (Murtadha et al., 2024), and IANN 
(Liu and Shen, 2023)—across key metrics: Precision, Recall, F1-Score, 
Accuracy, and AUC (Table 5). On the Mobile Reviews Dataset, 
TEGAA achieves 89.2% Precision, 87.8% Recall, 88.5% F1-Score, and 
91.0% Accuracy, outperforming the second-best model, IANN, which 
records 86.1, 84.3, 85.1, and 87.4%, respectively. On SemEval14, 
TEGAA attains 89.5% Precision, 88.0% Recall, 88.7% F1-Score, and 
89.0% Accuracy, surpassing IANN (86.3, 84.5, 85.4, 87.8%). On 
SentiHood, TEGAA records 89.0% Precision, 87.5% Recall, 88.2% 
F1-Score, and 90.0% Accuracy, exceeding IANN (85.5, 83.3, 84.4, 
86.7%). Paired t-tests and one-way ANOVA were conducted for all 
datasets, with the null hypothesis stating no difference between 
TEGAA and each baseline. All t-test p-values for F1-Score 
comparisons are below 0.05, and one-way ANOVA yields p < 0.05 
(F-values 7.82–8.15, df = 5, 24), confirming the statistical significance 
of TEGAA’s improvements. Cohen’s Kappa values of 0.85, 0.86, and 
0.84 for Mobile Reviews, SemEval14, and SentiHood indicate strong 
alignment with human annotations and high consistency in detecting 
subtle implicit aspects. These results, reported as Mean ± Standard 
Deviation over five independent runs, demonstrate that TEGAA’s 
performance gains—driven by DET, SCL, and GE-HAD—are both 

statistically significant and practically meaningful, establishing it as a 
robust solution for implicit aspect detection across diverse, 
unstructured text datasets.

4.7 Ablation studies

To ensure rigor and isolate the contribution of each proposed 
component, the ablation experiments systematically remove one 
module at a time-including DET, DAEE, Semantic Contrastive 
Learning, GE-HAD, Context-Aware Graph Attention, Graph 
Attention, Pyramid Pooling, and Attention Sinks-while keeping all 
other model elements, training settings, hyperparameters, and data 
splits strictly identical to the main experiments. This controlled setup 
ensures that performance changes can be attributed solely to the 
removed component. For every ablation variant, we retrain the model 
from scratch under the same optimization schedule and evaluate it 
using the full set of metrics (Precision, Recall, F1, Accuracy, and 
AUC), mirroring the rigor of the primary results. The resulting drops 
reported in Tables 6, 7 therefore represent true isolated effects, directly 
quantifying the importance of each architectural block within 
TEGAA’s pipeline.

As seen in Table 6, the ablation study clearly demonstrates the 
importance of each component to the overall performance of the 
TEGAA model for implicit aspect detection. The TEGAA full model 
achieves the best results on all metrics that were used in evaluating the 
experiment: Precision (89.2%), Recall (87.8%), F1 Score (88.5%), 
Accuracy (91.0%), and AUC (0.92). This verifies that each of the 
integrated architectures that combine DET, DAEE, Semantic 
Contrastive Learning, GE-HAD, and Context-Aware Graph Attention 
is necessary to achieve higher accuracy in implicit aspect detection. 
The removal of any of these components results in a consistent drop 

TABLE 5  Statistical analysis.

Dataset Metric TEGAA ASHGAT 
[20]

MSRL-
net [21]

Enhanced 
KNN [22]

BERT 
unified 

[23]

IANN 
[24]

t-test 
p-value 

(vs. 
TEGAA)

ANOVA 
p-value

Cohen’s 
kappa

Mobile 

reviews

Precision 89.2 ± 0.7 82.3 ± 0.9 84.5 ± 0.8 79.8 ± 0.7 85.0 ± 0.9 86.1 ± 0.8 <0.05 <0.05 0.85

Recall 87.8 ± 0.6 79.8 ± 0.8 80.2 ± 0.7 77.5 ± 0.6 83.4 ± 0.8 84.3 ± 0.7 <0.05 <0.05

F1 Score 88.5 ± 0.7 81.0 ± 0.9 82.3 ± 0.8 78.6 ± 0.7 84.2 ± 0.9 85.1 ± 0.8 <0.05 <0.05

Accuracy 91.0 ± 0.8 83.2 ± 0.9 85.0 ± 0.8 81.4 ± 0.7 86.5 ± 0.9 87.4 ± 0.8 <0.05 <0.05

AUC 0.92 ± 0.01 0.85 ± 0.02 0.87 ± 0.02 0.82 ± 0.01 0.88 ± 0.02 0.89 ± 0.02 <0.05 <0.05

SemEval14 Precision 89.5 ± 0.8 82.5 ± 0.9 84.8 ± 0.8 80.0 ± 0.7 85.2 ± 0.8 86.3 ± 0.8 <0.05 <0.05 0.86

Recall 88.0 ± 0.7 80.0 ± 0.8 80.5 ± 0.7 78.0 ± 0.6 83.5 ± 0.7 84.5 ± 0.7 <0.05 <0.05

F1 Score 88.7 ± 0.7 81.2 ± 0.9 82.6 ± 0.8 79.0 ± 0.7 84.3 ± 0.8 85.4 ± 0.8 <0.05 <0.05

Accuracy 89.0 ± 0.8 84.0 ± 0.9 85.5 ± 0.8 82.0 ± 0.7 86.8 ± 0.8 87.8 ± 0.8 <0.05 <0.05

AUC 0.91 ± 0.01 0.84 ± 0.02 0.86 ± 0.02 0.81 ± 0.01 0.87 ± 0.02 0.88 ± 0.02 <0.05 <0.05

SentiHood Precision 89.0 ± 0.8 81.0 ± 0.9 83.7 ± 0.8 78.5 ± 0.7 84.8 ± 0.8 85.5 ± 0.8 <0.05 <0.05 0.84

Recall 87.5 ± 0.7 78.5 ± 0.8 79.0 ± 0.7 76.0 ± 0.6 82.0 ± 0.7 83.3 ± 0.7 <0.05 <0.05

F1 Score 88.2 ± 0.7 79.7 ± 0.9 81.3 ± 0.8 77.2 ± 0.7 83.4 ± 0.8 84.4 ± 0.8 <0.05 <0.05

Accuracy 90.0 ± 0.8 82.5 ± 0.9 84.3 ± 0.8 80.5 ± 0.7 85.9 ± 0.8 86.7 ± 0.8 <0.05 <0.05

AUC 0.91 ± 0.01 0.83 ± 0.02 0.85 ± 0.02 0.80 ± 0.01 0.86 ± 0.02 0.87 ± 0.02 <0.05 <0.05
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in performance, thereby indicating the importance of each. In 
particular, if DET is removed, all the metrics decrease significantly, but 
most importantly, Precision and Recall are affected significantly (87.5 
and 85.2%, respectively), which shows that the dynamic learning 
capability of DET is crucial for refining aspect representations. 
Similarly, if DAEE is removed, the F1 Score and Accuracy decrease to 
84.9 and 86.9%, respectively, indicating that DAEE is vital for 
extracting and adapting aspect embeddings over time. The most 
drastic drop in performance across all the metrics is seen with the 
absence of Semantic Contrastive Learning, specifically on Recall 
(82.5%) and F1 Score (83.0%), suggesting the importance of semantic 
learning to capture semantic relationships between aspects. In 
addition, removal of GE-HAD led to a reduction in AUC (0.86) and 
Precision (86.0%), suggesting the critical role of attention-based 
mechanisms for effective implicit aspect detection and hierarchical 
attention. Finally, the removal of Context-Aware Graph Attention 
results in a slight drop across all metrics, with AUC (0.88) and 
Precision (87.1%) showing a particularly noticeable decrease, which 
suggests that context-aware attention is vital for understanding the 
intricate relationships between aspects in a more 
comprehensive manner.

The results in Table 7 demonstrate the impact of removing key 
components from the TEGAA model on its performance in implicit 
aspect detection. The TEGAA (Full Model) achieves the highest values 
across all metrics: Precision at 89.2%, Recall at 87.8%, F1 Score at 
88.5%, Accuracy at 90.6%, and AUC at 0.92. These results highlight 
that each integrated attention mechanism in the model—Graph 
Attention, Pyramid Pooling, and Attention Sinks—is essential for 
achieving maximum detection accuracy. When Graph Attention is 
removed, performance drops significantly, with Precision decreasing 
to 87.0% and Recall to 85.5%, underscoring its dominant role in 
modeling aspects. Removing Pyramid Pooling slightly reduces 
Precision to 88.0% and Accuracy to 89.0%, emphasizing its importance 
in capturing features across aspect levels. The removal of Attention 

Sinks further lowers performance, with the F1 Score falling to 85.4% 
and Accuracy to 87.2%, indicating its critical role in stabilizing 
attention and preventing overfitting to irrelevant aspects.

5 Discussion

TEGAA addresses key challenges in implicit aspect detection 
through its advanced components. To handle imbalanced data, the 
Dynamic Expert Transformer (DET) with its Dynamic Adaptive 
Expert Engine (DAEE) routes embeddings to specialized sub-networks, 
ensuring better focus on minority aspects by leveraging task-specific 
syntactic and semantic features. High computational time is mitigated 
through the switch-transformer architecture of DET, which efficiently 
activates only relevant expert modules, reducing overall complexity. 
For fake or noisy data, Semantic Contrastive Learning generates 
positive and negative sample pairs to improve feature discriminability, 
filtering out irrelevant patterns. The ambiguity in aspects is tackled by 
the Graph-Enhanced Hierarchical Aspect Detector (GE-HAD), which 
constructs a multi-level hierarchical graph with Context-Aware Graph 
Attention to capture nuanced relationships and resolve overlapping 
meanings. The TEGAA architecture is inherently equipped to handle 
aspect drift through its combination of dynamic expert routing, 
semantic contrastive learning, and iterative feedback refinement. 
Aspect drift occurs when the relevance or meaning of aspects shifts 
across contexts or over time, and TEGAA mitigates this by continuously 
adapting its internal representations. The Dynamic Expert Transformer 
(DET) routes tokens to specialized experts whose selection is refined 
through feedback signals generated by GE-HAD, ensuring that expert 
activation patterns evolve in response to changing semantic cues. 
Simultaneously, Semantic Contrastive Learning stabilizes contextual 
relationships by drawing semantically aligned samples closer and 
separating unrelated ones, preventing the model from overfitting to 
outdated or transient aspect distributions. The feedback loop further 

TABLE 6  Impact of individual components in TEGAA.

Metric TEGAA (full 
model)

Without DET Without DAEE Without 
semantic 

contrastive 
learning

Without GE-
HAD

Without 
context-aware 
graph attention

Precision 89.2% 87.5% 85.6% 83.8% 86.0% 87.1%

Recall 87.8% 85.2% 84.3% 82.5% 83.0% 85.0%

F1 score 88.5% 86.2% 84.9% 83.0% 84.5% 86.0%

Accuracy 91.0% 88.3% 86.9% 85.2% 86.7% 88.0%

AUC 0.92 0.89 0.87 0.85 0.86 0.88

TABLE 7  Impact of different mechanisms.

Metric TEGAA (full model) Without graph 
attention

Without pyramid 
pooling

Without attention 
sinks

Precision 89.2% 87.0% 88.0% 86.5%

Recall 87.8% 85.5% 86.2% 84.8%

F1 score 88.5% 86.0% 87.1% 85.4%

Accuracy 91.0% 88.0% 89.0% 87.2%

AUC 0.92 0.89 0.90 0.88
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reinforces drift robustness by updating gating probabilities based on 
graph-level contextual reasoning, enabling the model to re-emphasize 
experts that capture newly emerging patterns. Together, these 
mechanisms allow TEGAA to maintain consistent performance even 
when aspect boundaries shift, providing a resilient and adaptive 
approach to handling aspect drift in real-world text data. Finally, syntax 
and grammatical complexity are managed by integrating Attention 
Sinks and Pyramid Pooling, allowing the model to aggregate features 
across multiple scales and focus on critical nodes. These combined 
mechanisms enable TEGAA to deliver efficient, scalable, and accurate 
implicit aspect detection, even in the face of pervasive challenges.

5.1 Key findings

TEGAA is designed with the potential for enhanced improvement 
over existing methods with better implicit aspect detection. By 
employing the Dynamic Expert Transformer alongside the Dynamic 
Adaptive Expert Engine, TEGAA extracts more complex, contextual, 
and richer embeddings of a sentence from unstructured text, 
surpassing earlier models based on older transformers. Further 
refinement of these embeddings using Semantic Contrastive Learning 
accounts for semantic dependencies, thereby enhancing the model’s 
discriminability in implicit aspect detection. Additionally, GE-HAD 
and Context-Aware Graph Attention mechanisms contributed toward 
better identification of implicit aspects due to dynamic adjustments of 
attention weights to reflect the significance of multi-level contextual 
relationships between words and sentences.

5.2 Implications

High-performance in implicit aspect detection of TEGAA leads 
to several critical consequences for several NLP applications, primarily 
for sentiment analysis, opinion mining, and automated analysis of 
customer feedback. This can detect the implicit aspects in text in order 
to further explore what an individual’s sentiment is and what a person 
prefers and dislikes or concerns. In the case of a review or social media 
post from a customer, this model could identify more than just explicit 
feelings; it might also uncover underlying aspects that could otherwise 
be missed, providing valuable insights for business decision-making. 
Moreover, in the design of this semantic contrastive learning 
component of this model, there is immense potential in enhancing 
NLP systems requiring knowledge about linguistic trends with time.

The sensitivity study in Table 8 illustrates the impact of the 
Contrastive Loss Temperature (τ) on the TEGAA model’s F1-Score 
across three benchmark datasets—Mobile Reviews, SemEval14, and 

SentiHood. The results show that the model achieves optimal 
performance at τ = 0.07, yielding F1-Scores of 88.5, 88.7, and 88.2%, 
respectively. At lower temperatures (τ = 0.05), the F1-Score slightly 
decreases, indicating that overly sharp similarity distributions in the 
contrastive loss can lead to underutilization of semantically related 
samples. Conversely, higher temperatures (τ ≥ 0.10) result in more 
uniform similarity distributions, which reduce the model’s ability to 
discriminate subtle semantic differences among implicit aspects, 
leading to a gradual decline in F1-Score. The consistent trend across 
all datasets confirms that τ is a crucial hyperparameter for balancing 
the model’s sensitivity to positive and negative pairs in Semantic 
Contrastive Learning (SCL). This study demonstrates that careful 
tuning of τ significantly influences the quality of learned embeddings 
and the model’s capacity to accurately detect nuanced implicit aspects. 
Moreover, the plateau observed near τ = 0.07 suggests a stable region 
where the model achieves robust performance, supporting the 
selection of this value for all subsequent experiments.

5.3 Contextualization against existing 
methods

TEGAA, in comparison with state-of-the-art models for implicit 
aspect detection, like transformer architectures or even simpler attention 
mechanisms, excels in several dimensions. Most of the existing models 
are either solely for explicit aspect detection or poorly incorporate 
semantic relationships into data. TEGAA, using a hierarchical graph-
based approach, offers a deeper, multi-level representation of context, 
while the dynamic expert transformer and semantic contrastive learning 
techniques ensure that the model remains adaptive to various linguistic 
structures and semantic patterns. The DET, combined with the GE-HAD 
of TEGAA, is more effective at capturing implicit aspects compared to 
other models, such as those using BERT or LSTM. This advantage arises 
from its ability to capture not only syntactic and semantic relationships 
but also deeper contextual dependencies.

5.4 Novelty

The novelty of the proposed TEGAA framework lies in its explicit 
challenge-driven architectural design, where each component is 
purpose-built to overcome a well-defined limitation of existing implicit 
aspect detection models rather than being an incremental combination 
of existing techniques. First, to address data imbalance and the sparsity 
of implicit aspect cues, TEGAA integrates Semantic Contrastive 
Learning (SCL), which operates at the representation level by enforcing 
intra-class semantic cohesion and inter-class separability. Unlike 

TABLE 8  Sensitivity analysis of contrastive loss temperature (τ) on F1-score.

`e (τ) Mobile reviews F1-score (%) SemEval14 F1-score (%) SentiHood F1-score (%)

0.05 87.8 88.1 87.5

0.07 88.5 88.7 88.2

0.10 88.1 88.3 87.9

0.12 87.6 87.9 87.3

0.15 87.0 87.2 86.8

The highlighted values correspond to the best-performing results obtained at τ = 0.07, yielding F1-scores of 88.5%, 88.7%, and 88.2%, respectively.
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conventional loss formulations that rely solely on label supervision, SCL 
exploits contextual similarity relationships to amplify weak implicit 
signals, thereby stabilizing learning under highly skewed class 
distributions and improving generalization to under-represented 
aspects. Second, contextual noise and fake or manipulated data, 
commonly present in user-generated reviews, are mitigated through the 
Dynamic Expert Transformer (DET) equipped with a Dynamic 
Adaptive Expert Engine (DAEE). By dynamically routing token 
embeddings to a small subset of specialized expert sub-networks, DET 
suppresses noisy or misleading patterns while preserving task-relevant 
semantic features. Importantly, this sparse expert activation not only 
enhances robustness to adversarial or noisy inputs but also reduces 
computational cost and memory overhead compared to fully dense 
transformer architectures, making the framework scalable for large-
scale and real-time deployments. Third, aspect ambiguity and aspect 
drift, which arise when implicit aspects shift across sentences or depend 
on broader discourse context, are explicitly handled by the Graph-
Enhanced Hierarchical Aspect Detector (GE-HAD). GE-HAD 
constructs a multi-level graph with word- and sentence-level nodes and 
employs context-aware graph attention to model long-range 
dependencies and hierarchical relationships. This enables the model to 
disambiguate latent aspects more effectively and maintain stable 
predictions under evolving contextual scopes. Finally, an iterative 
feedback loop between GE-HAD and DET aligns graph-level relational 
reasoning with transformer-level expert routing, allowing progressive 
refinement of representations across layers. Through the coordinated 
integration of these mechanisms, TEGAA constitutes a principled, 
efficient, and scalable solution that directly and systematically addresses 
the core challenges of implicit aspect detection.

5.5 Impact of DET

The Dynamic Expert Transformer (DET) represents a targeted, task-
specific extension of the original Switch Transformer architecture (Fedus 
et al., 2022), a sparsely activated Mixture-of-Experts (MoE) model that 
scales parameters efficiently while maintaining constant per-token 
computational cost. In the standard Switch Transformer, each token is 
routed to a single expert via a static linear router that depends solely on 
token-level representations, supported by an auxiliary load-balancing 
loss to maintain expert utilization. Although computationally efficient, 
this design lacks contextual awareness, linguistic sensitivity, and 
adaptation mechanisms—limitations that reduce suitability for complex 
tasks such as implicit aspect detection, where subtle semantic cues, 
dependencies, and context shifts strongly influence meaning. To 
overcome these limitations, DET integrates the Dynamic Adaptive 
Expert Engine (DAEE), introducing four architectural modifications that 
transform Switch Transformer routing into a context-adaptive process:

	 1.	 Contextual Expert Router (CER): Replaces the static linear 
router with a context-aware module that conditions routing on 
discourse-level embeddings, enabling expert selection based on 
surrounding context instead of isolated tokens.

	 2.	 Adaptive Syntactic–Semantic Router (ASSR): Incorporates a 
dual-stream representation combining syntactic dependency 
features and semantic encodings, allowing the gating network 

to capture fine-grained linguistic structures such as verb–object 
links, co-reference relations, and entailment.

	 3.	 Feedback-Driven Expert Selector (FES): Introduces an iterative 
feedback mechanism that integrates the outputs of the Graph-
Enhanced Hierarchical Aspect Detector (GE-HAD), 
dynamically updating gating probabilities to correct 
misrouting, mitigate aspect drift, and improve robustness 
under noise and ambiguity.

	 4.	 Aspect-Aware Attention Refiner (AAR): Augments internal 
attention layers with aspect-sensitive bias vectors that 
emphasize tokens carrying implicit cues (e.g., “long-
lasting” → battery life), thereby strengthening expert 
specialization on aspect-relevant representations.

These modifications collectively transform the Switch Transformer 
from a static, efficiency-driven MoE into a task-adaptive, feedback-
aware architecture capable of dynamically routing inputs based on 
syntactic structure, semantic nuance, and evolving contextual signals. 
This results in more discriminative feature extraction, reduced false-
negative rates, and improved handling of subtle implicit aspect cues. 
Empirically, DET contributes substantially to overall model 
performance. On the Mobile Reviews dataset, DET achieves Precision 
89.2%, Recall 87.8%, and Accuracy 91.0%, outperforming strong 
baselines such as IANN (Precision 86.1%, Recall 84.3%). Relative to 
the original Switch Transformer, DET reduces the false-negative rate 
to 0.12 and improves F1-score by 4.4 points. Ablation studies further 
confirm DET’s necessity: removing DAEE decreases F1 to 84.9%, 
demonstrating that adaptive, context-driven routing is critical for 
capturing implicit aspect semantics. Thus, DET achieves an effective 
balance between computational scalability and linguistic sensitivity, 
establishing it as a robust and efficient adaptation of the Switch 
Transformer for implicit aspect detection.

5.6 Role of GE-HAD in advancing implicit 
aspect detection

The Graph-Enhanced Hierarchical Aspect Detector (GE-HAD) in 
the TEGAA framework represents a novel advancement in implicit 
aspect detection through its multi-level graph-based hierarchical 
attention mechanism, which integrates specialized components to 
capture complex contextual relationships at both word and sentence 
levels. Unlike existing graph-based methods, such as ASHGAT 
(Ouyang et al., 2024), which employs a word-level relational 
hypergraph with syntactic distance-based attention that struggles with 
ambiguous or diverse contexts, or MSRL-Net (Hu et al., 2023), which 
focuses on semantic alignment but lacks multi-scale feature 
aggregation, GE-HAD constructs a hierarchical graph with intra-level 
and inter-level edges (Equations 17, 18). Intra-level edges model local 
linguistic structures (e.g., word co-occurrences or syntactic 
dependencies), while inter-level edges connect word-level nodes to 
sentence-level nodes, capturing global discourse patterns like 
sentiment coherence across sentences. The Context-Aware Graph 
Attention (CAGA) mechanism (Equations 20–22) dynamically adjusts 
attention weights based on embeddings from the Dynamic Expert 
Transformer (DET), prioritizing task-relevant features, such as 
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implicit cues like “long-lasting” indicating battery life in the Mobile 
Reviews Dataset. Additionally, Attention Sinks (Equation 23) 
aggregate critical contextual signals into specialized nodes, preventing 
the dilution of subtle implicit aspects—a common limitation in 
standard graph attention networks where weights may overemphasize 
less relevant nodes. Pyramid Pooling (Equations 24–26) further 
enhances GE-HAD by integrating multi-scale features into a unified 
hierarchical feature vector, enabling comprehensive representation of 
both granular and holistic contexts for aspect prediction (Equation 27).

The novelty of GE-HAD lies in its synergistic combination of 
these components, which collectively address challenges like aspect 
ambiguity, noisy inputs, and aspect drift, surpassing the capabilities 
of prior graph-based approaches (Phan et al., 2023; An et al., 2022). 
For instance, while ASHGAT (Ouyang et al., 2024) relies on 
syntactic distance calculations, limiting its performance in nuanced 
contexts (F1-score of 81.0% on Mobile Reviews, Table 4), GE-HAD’s 
hierarchical structure and dynamic attention achieve an F1-score 
of 88.5%, a 7.5% improvement, by effectively modeling both local 
and global relationships. Similarly, compared to graph convolutional 
network methods (Phan et al., 2023), which focus on single-level 
graph structures, GE-HAD’s multi-level design captures richer 
dependencies, reducing false negatives (e.g., FN rate of 0.12 vs. 0.16 
for IANN) (Table 3). Ablation studies (Table 7) further validate the 
critical role of GE-HAD’s components, showing a performance drop 
to 86.0% precision and 84.5% F1-score when GE-HAD is removed, 
and to 86.0% F1-score without CAGA or 85.4% without Attention 
Sinks. By integrating hierarchical graph construction, context-
aware attention, attention sinks, and pyramid pooling, GE-HAD 
offers a significant advancement over existing methods, enabling 
TEGAA to achieve superior precision (89.2%), recall (87.8%), and 
accuracy (91.0%) across diverse datasets (Table 2), making it a 
robust solution for detecting nuanced implicit aspects in complex, 
unstructured text.

The hierarchical attention mechanism in GE-HAD introduces 
several innovations that differentiate it from the baseline methods 
evaluated in this study. Unlike ASHGAT, which applies uniform node-
level attention without dedicated mechanisms for subtle cues, GE-HAD 
uses Attention Sinks at both word and sentence levels to selectively 
aggregate contextually important signals. In comparison to Enhanced 
KNN and MSRL-Net, which do not leverage hierarchical graph 
structures or adaptive attention, GE-HAD incorporates context-aware 
attention, dynamically modulating attention weights using syntactic and 
semantic embeddings from DET, enabling the model to adapt its focus 
to task-specific linguistic characteristics. Compared with transformer-
based approaches such as the BERT Unified Framework, which rely 
primarily on sequence-level attention, and IANN, which uses interactive 
attention without explicit hierarchical aggregation, GE-HAD integrates 
pyramid pooling across hierarchical levels to achieve multi-scale feature 
fusion. This preserves fine-grained local information while maintaining 
global contextual coherence, allowing the model to capture both word-
level nuances and sentence-level dependencies critical for implicit aspect 
detection. Together, these components establish a more expressive, 
adaptive, and context-sensitive hierarchical attention structure than all 
baseline models considered. GE-HAD not only prioritizes relevant 
implicit cues that standard graph-based and transformer-based methods 
may overlook, but also robustly integrates multi-scale contextual 
information, reinforcing the novelty and practical effectiveness of the 
proposed approach in detecting subtle and complex implicit aspects in 
unstructured text.

5.7 Scalability considerations and 
computational efficiency

The complexity of the TEGAA architecture inevitably introduces 
additional computational cost; however, these costs are intentionally 
balanced through sparsity, modularity, and reuse mechanisms that 
preserve scalability. Each major component contributes to efficiency 
in a distinct manner. The Dynamic Expert Transformer (DET), based 
on the Switch-Transformer framework, limits computational growth 
by activating only a small subset of experts for each token through the 
Dynamic Adaptive Expert Engine (DAEE), thereby maintaining near-
constant cost per instance. The Semantic Contrastive Learning (SCL) 
module employs a shared projection head across batches, reducing 
redundant forward passes. Within the Graph-Enhanced Hierarchical 
Aspect Detector (GE-HAD), node expansion is controlled by mini-
batch graph construction and attention pruning, while Pyramid 
Pooling reuses intermediate representations across scales instead of 
recomputing them, leading to a 35–40% reduction in redundant 
operations during aggregation. The model manages node growth 
efficiently as counts increase from approximately 50–200 per sample 
across datasets (Mobile Reviews ≈ 5,000 samples, SemEval14 ≈ 6,000 
samples, Sentihood ≈ 4,500 samples). Table 8 presents detailed 
computational metrics comparing TEGAA with baseline architectures. 
TEGAA achieves an F1-score of 88.5%, surpassing all baselines 
(IANN 85.1%, ASHGAT 81.0%, BERT Unified 84.2%, Enhanced KNN 
78.6%, MSRL-Net 82.3%) while requiring 1.2–1.5 TFLOPs per epoch 
and 6.5–7.2 GB of training memory. This overhead primarily arises 
from dynamic expert routing and hierarchical graph propagation. 
Training duration averages 12–15 h, approximately 2–4 times that of 
simpler baselines; however, the gain in representational depth yields 
substantially higher detection accuracy and robustness. Inference 
latency ranges between 45 and 60 ms per sample, suitable for batch or 
offline applications such as review analysis but exceeding the 
sub-30 ms threshold typically expected for real-time systems. The 
additional cost stems from GE-HAD’s multi-level attention and the 
integration of Attention Sinks and Pyramid Pooling, which enhance 
semantic coverage but increase FLOPs to 0.9–1.1 GFLOPs per sample. 
Despite this, the relative efficiency ratio (accuracy per GFLOP) 
remains higher than that of the baselines, confirming that TEGAA’s 
additional computation translates directly into improved semantic 
discrimination. The overall efficiency analysis demonstrates that 
TEGAA’s architectural complexity is a deliberate design choice 
optimized for linguistic generalization rather than raw throughput. 
Sparse expert activation, attention pruning, and shared 
parameterization mitigate excessive resource use, ensuring that the 
framework remains scalable for medium-to-large corpora. For 
deployment in resource-constrained environments, further 
optimization—such as expert pruning, graph sampling, or contrastive-
distillation techniques—can reduce inference cost while retaining 
accuracy. These considerations establish TEGAA as a computationally 
balanced model that trades marginal increases in training time for 
significant improvements in task-specific performance and 
generalization capability (Table 9).

5.8 Broader impact

Beyond implicit aspect detection in text analysis, the broader 
impact of TEGAA lies in enhancing the model’s ability to uncover 

https://doi.org/10.3389/frai.2026.1666674
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Soni and Rambola� 10.3389/frai.2026.1666674

Frontiers in Artificial Intelligence 24 frontiersin.org

underlying sentiments and aspects in text data. TEGAA significantly 
improves the interpretability and understanding of large-scale 
unstructured text, such as customer reviews, social media posts, and 
forum discussions. This deeper insight benefits industries like 
customer service, marketing, and social listening, enabling businesses 
and organizations to gain precise knowledge about user preferences, 
key focus areas, and emerging trends. Moreover, the integration of 
dynamic expert transformers and graph-based attention mechanisms 
holds potential to influence other NLP domains, including machine 
translation, question-answering, and summarization, by providing a 
more nuanced grasp of context and relationships within textual data. 
On a societal level, the ability to detect implicit dimensions in online 
discussions can foster a more detailed understanding of public 
opinion, empowering policymakers, researchers, and companies to 
respond effectively to the needs and concerns of diverse communities.

The TEGAA model is designed to handle noisy inputs through 
several architectural mechanisms. Semantic Contrastive Learning (SCL) 
helps separate meaningful contextual patterns from spurious or 
corrupted signals, enhancing the discriminability of embeddings even in 
the presence of noise. The Dynamic Adaptive Expert Engine (DAEE) 
further strengthens robustness by dynamically routing ambiguous or 
degraded embeddings to specialized expert sub-networks, ensuring that 
task-relevant information is preserved. Additionally, the context-aware 
graph attention mechanism in GE-HAD selectively emphasizes 
contextually important nodes, mitigating the impact of irrelevant or 
noisy tokens. While empirical validation on controlled-noise datasets is 
planned as a future extension—using synthetic perturbations such as 
lexical masking, random token insertion, and sentiment-flip 
modifications—these design features collectively provide intrinsic 
resilience to noisy and imperfect data, improving the reliability of implicit 
aspect detection in real-world applications.

6 Conclusion

Implicit aspect detection is inherently challenging due to aspect 
ambiguity, data imbalance, contextual noise, and aspect drift in 
unstructured text. The TEGAA framework addresses these issues 
through a principled integration of Dynamic Expert Transformers 
(DET) with a Dynamic Adaptive Expert Engine (DAEE), Semantic 
Contrastive Learning (SCL), and a Graph-Enhanced Hierarchical 
Aspect Detector (GE-HAD). DET dynamically routes token 

embeddings to specialized expert sub-networks, reducing the impact 
of noisy or irrelevant patterns while capturing complex syntactic and 
semantic dependencies. SCL enhances feature discriminability by 
aligning semantically related samples and separating unrelated ones, 
effectively mitigating the sparsity of implicit cues. GE-HAD constructs 
multi-level hierarchical graphs with context-aware graph attention, 
Attention Sinks, and Pyramid Pooling, capturing both local and global 
dependencies to resolve ambiguity and maintain stable predictions 
across varying contexts. The iterative feedback loop between DET and 
GE-HAD allows continuous refinement of embeddings and attention 
weights, improving adaptability to aspect drift. Extensive evaluation 
on Mobile Reviews, SemEval14, and Sentihood datasets demonstrates 
that TEGAA consistently outperforms state-of-the-art transformer- 
and graph-based models, achieving F1-scores above 0.88, precision 
above 0.89, recall above 0.87, accuracy exceeding 89%, and AUC 
values above 0.89, validating its robustness, scalability, and practical 
utility. Future work will focus on further improving computational 
efficiency for large-scale and real-time deployment, developing 
adaptive attention mechanisms that dynamically adjust to text 
complexity, integrating domain-specific knowledge for specialized 
applications such as healthcare, legal, and finance, extending the 
model to multilingual and cross-lingual scenarios, and exploring 
active learning or iterative feedback strategies to continuously refine 
performance on evolving data streams. These advancements will 
enhance TEGAA’s generalization, interpretability, and applicability 
across diverse NLP tasks and real-world environments.
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TABLE 9  Computational efficiency comparison.

Model Training FLOPs 
(TFLOPs/epoch)
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(GB)

Training 
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(hours)

Inference FLOPs 
(GFLOPs/sample)

Inference 
latency 

(ms/sample)

F1-score 
(%)

TEGAA 1.2–1.5 6.5–7.2 12–15 0.9–1.1 45–60 88.5

IANN (Liu and Shen, 

2023)

0.8–1.0 3.2–4.0 4–6 0.4–0.5 20–30 85.1

ASHGAT (Ouyang et al., 

2024)

0.9–1.1 4.5–5.0 6–8 0.6–0.7 30–40 81.0

BERT unified framework 

(Murtadha et al., 2024)
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Enhanced KNN (Benarafa 

et al., 2023)
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