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Increasingly many applications of machine vision and artificial intelligence (AI) can 
be observed in agriculture. Yet, high-quality training data remains a bottleneck in the 
development of many AI solutions, particularly for image segmentation. Therefore, 
ARAMSAM (agricultural rapid annotation module based on segment anything models) 
was developed, a user interface that orchestrates the pre-labelling capabilities of 
both the segment anything models (SAM 1, SAM 2) and conventional annotation 
tools. One in silico experiment on zero-shot performance of SAM 1 and SAM 2 
on three unseen agricultural datasets and another experiment on hyperparameter 
optimization of the automatic mask generators (AMG) were conducted. In a user 
experiment, 14 agricultural experts applied ARAMSAM to quantify the reduction 
of annotation times. SAM 2 benefited greatly from hyperparameter optimization 
of its AMG. Based on ground-truth masks matched with predicted masks, the 
F2-score of SAM 2 improved from 0.05 to 0.74, while that of SAM 1 was improved 
from 0.87 to 0.93. The user interaction time could be reduced to 2.1 s/mask on 
single images (SAM 1) and to 1.6 s/mask on image sequences (SAM 2) compared to 
polygon drawing (9.7 s/mask). This study demonstrates the potential of segment 
anything models as incorporated into ARAMSAM to significantly accelerate the 
process of segmentation mask annotation in agriculture and other fields. ARAMSAM 
will be released as open-source software (AGPL-3.0 license) at https://github.
com/DerOehmer/ARAMSAM.
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1 Introduction

In recent years, the rapid development of machine vision based on artificial intelligence 
(AI) has gained increasing attention in agriculture (Abbasi et al., 2022; Maraveas, 2024). This 
becomes especially apparent in the field of plant phenotyping, where AI enables more precise 
and efficient analysis of plant traits (Farooq et al., 2024; Sheikh et al., 2024; Visakh et al., 2024). 
However, the application of AI often necessitates large quantities of labeled data, the 
preparation of which demands substantial time and effort (Paton et al., 2024). Creating 
accurate labels in agriculture often requires specialized knowledge, such as determining 
whether a pixel belongs to a specific weed type, further increasing the cost of the annotation 
process. Among annotation tasks, creating segmentation masks is particularly labor-intensive 
compared to deep learning tasks like classification or object detection.

OPEN ACCESS

EDITED BY

Sathishkumar Samiappan,  
The University of Tennessee, Knoxville, United 
States

REVIEWED BY

Chrysanthos Maraveas,  
Agricultural University of Athens, Greece
Jesus Franco-Robles,  
UMR7252 XLIM, France

*CORRESPONDENCE

Leon H. Oehme  
 leon.oehme@uni-hohenheim.de

RECEIVED 17 November 2025
REVISED 27 December 2025
ACCEPTED 29 December 2025
PUBLISHED 22 January 2026

CITATION

Oehme LH, Boysen J, Wu Z, Stein A and 
Müller J (2026) Orchestrating segment 
anything models to accelerate segmentation 
annotation on agricultural image datasets.
Front. Artif. Intell. 8:1748468.
doi: 10.3389/frai.2025.1748468

COPYRIGHT

© 2026 Oehme, Boysen, Wu, Stein and 
Müller. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  22 January 2026
DOI  10.3389/frai.2025.1748468

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1748468&domain=pdf&date_stamp=2026-01-22
https://www.frontiersin.org/articles/10.3389/frai.2025.1748468/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1748468/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1748468/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1748468/full
https://github.com/DerOehmer/ARAMSAM
https://github.com/DerOehmer/ARAMSAM
mailto:leon.oehme@uni-hohenheim.de
https://doi.org/10.3389/frai.2025.1748468
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1748468


Oehme et al.� 10.3389/frai.2025.1748468

Frontiers in Artificial Intelligence 02 frontiersin.org

As a subfield of image segmentation, every object instance of each 
class is assigned to one mask in instance segmentation. Such instances 
could be, e.g., single blood cells in a histological exam (Pal et al., 2024) 
or single maize kernels in maize ear phenotyping (Oury et al., 2022). 
Further applications of instance segmentation in plant phenotyping are 
the segmentation of the grapevine inflorescence (Moreira et al., 2025), 
or the counting of wheat ears (Dandrifosse et al., 2022). All these 
studies have in common that the training and testing of the proposed 
deep learning models rely heavily on high-quality ground-truth data.

Traditionally, annotation of segmentation masks involved pixel-
wise labeling or drawing polygons to create precise masks (Castrejón 
et al., 2017). More recently, the adoption of AI-driven pre-labeling 
tools has emerged as a promising approach to accelerate the annotation 
process. Pre-labeling shifts the role of human annotators from manual 
labeling to refining AI-generated labels, reducing the effort required 
for data annotation (Shao et al., 2024). A suitable source for pre-labels 
in segmentation is the recently released foundation models segment 
anything model 1 (SAM 1) (Kirillov et al., 2023) and its successor, the 
segment anything model 2 (SAM 2) (Ravi et al., 2024). Both models 
were trained and successfully tested on various domains (Kirillov et al., 
2023; Ravi et al., 2024). While SAM 1 only predicts masks on individual 
images (Kirillov et al., 2023), SAM 2 was designed to predict and track 
masks along video frames (Ravi et al., 2024). Both models feature an 
automatic mask generator (AMG), proposing masks without required 
input, and the prediction of masks based on input prompts such as 
bounding boxes or points (Kirillov et al., 2023; Ravi et al., 2024). 
Instead of using SAM 1 for pre-labeling, its prompting capabilities were 
often applied directly on different phenotyping tasks, such as the 
segmentation of potato leaves (Williams et al., 2024) or for phenotypical 
measurements on pumpkin, radish, and cucumber (Zhang et al., 2024).

In agriculture, images are typically collected from mobile platforms 
such as unmanned aerial vehicles (UAV) (Oehme et al., 2022; Rejeb et 
al., 2022), tractors (Boysen et al., 2023) or stationary plant phenotyping 
systems (Daviet et al., 2022; Kirchgessner et al., 2024). Here, one or 
more cameras move relative to one or more objects of interest, resulting 
in image sequences having varying overlap between images. In 
scenarios where such overlapping images need to be annotated, a 
human may need to annotate the same object on multiple images. 
Photogrammetry allows the orientation and merging of overlapping 
images, which is often applied in UAV imagery, resulting in 
orthomosaics (Rejeb et al., 2022). Annotators could, e.g., annotate 
masks on one combined orthomosaic instead of multiple original 
images. Yet orthomosaics can contain artifacts or distortions (Manzini 
et al., 2024), leading to bad annotations that might affect machine vision 
applications. In contrast, SAM 2’s mask propagation capabilities allow 
transferring masks from one consecutive image to the next without 
relying on photogrammetry. SAM 2’s design for video segmentation 

indicates robustness even on complex scenes, whereas photogrammetry 
assumes scenes do not move between captured images.

Although open-source annotation software, such as LabelMe, has 
already integrated SAM 1 as a pre-labeling tool (Wada, 2025), the 
effect of such tools on annotation time efficiency has not been studied 
on agricultural datasets. Similarly, to this date, no systematic 
optimization of AMG parameter selection has been conducted.

This study investigates the feasibility of using SAM 1 and SAM 2 
as a pre-labeling tool to reduce instance segmentation annotation 
efforts on agricultural datasets. The study serves as a pathway to 
designing efficient annotation strategies, ranging from encoder 
selection to AMG hyperparameter optimization to the selection of 
suitable annotation tools. Therefore, the agricultural rapid annotation 
module based on segment anything models (ARAMSAM) is 
proposed, an open-source application built on top of SAM 1 and SAM 
2. In this study, three key objectives are addressed:

	 i	 Evaluating the zero-shot performance of SAM 1 and SAM 2 
encoders on previously unseen agricultural datasets;

	 ii	 Optimizing AMG hyperparameters via a systematic grid search 
and analyzing its impact on annotation efforts;

	 iii	 Quantifying the reduction in user interaction time of 
SAM-based methods as orchestrated by ARAMSAM and 
comparing them to polygon drawing as the previous 
standard method.

2 Materials and methods

2.1 Datasets

Three datasets of RGB images, representing a range of common 
agricultural applications, were included in the experiments: (a) a 
maize ear dataset (MED), (b) a maize field UAV dataset (MUD) and 
(c) a soil surface dataset (SOD) (Figure 1).

Images of the MED, as shown in Figure 1a, were captured under 
controlled lighting conditions using an Alvium 1800 C-2050 camera 
(Allied Vision Technologies GmbH, Stadtroda, Germany) with a 
resolution of up to 5,376 × 3,672 pixels. The sensor was attached to a 
Kowa LM8FC24M lens (Kowa Company, Ltd., Nagoya, Japan) with an 
8.5 mm focal length. Each ear was captured at 50 evenly distributed 
horizontal positions around the ear, rotating it stepwise by an angle ω 
of 7.1° between each image using a motorized rotating platform. To 
exclude the background area and to limit the annotation time per 
maize ear, the images were cropped to include only the upper half of 
the ear. Individual maize kernels represent the target object instances 
during later experiments.

The MUD comprises images of juvenile maize plants cultivated in 
two-row plots during a field trial (Figure 1b). These images were 
acquired in June 2024 using an UAV DJI M350 (SZ DJI Technology 
Co., Ltd., Shenzhen, China) operating at an altitude of 20 m above 
ground at an experimental farm of the University of Hohenheim in 
Stuttgart, Germany. The UAV was equipped with a DJI’s Zenmuse P1 
sensor (8,192 × 5,460 pixels) and a P1 50 mm lens resulting in a 
ground sample distance of 3.1 mm/pixel. When conducting field 
experiments, the phenotypic data are usually collected per plot. To 
simulate the common postprocessing of experimental field data, the 
images were cropped to show one plot per image. The target instances 

Abbreviations: AI, artificial intelligence; AMG, automatic mask generator; ARAMSAM, 

agricultural rapid annotation module based on segment anything models; BRIEF, 

binary robust independent elementary features; FAST, features from the accelerated 

segment test; GDS, generalized dice score; Hiera, hierarchical vision transformers; 

IoU, intersection over union; mIoU, mean intersection over union; MED, maize 

ear dataset; MUD, maize field UAV dataset; ORB, oriented FAST and rotated BRIEF; 

PPDLS, plant phenotyping datasets leaf segmentation; SAM 1, SAM 2, segment 
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are individual maize plants, and occluded parts are also included in 
the segmentation masks. Neither the MED nor the MUD has been 
published previously.

The SOD, as shown in Figure 1c, was collected after sowing with 
a power harrow sowing combination on ploughed fields around 
Stuttgart, Germany, in October and November 2022. The camera was 
mounted on the back of the machine and captured the images from a 
bird’s eye view. The images were captured with the SceneScan 
Pro-system of Nerian vision technologies (Allied Vision Technologies 
GmbH, Stadtroda, Germany) and were cropped to a size of 512 × 512 
pixels. The ground sampling distance of the images is 1 mm/pixel. The 
dataset has been previously used to model the soil-machine interaction 
during secondary tillage by utilizing a deep learning model in Boysen 
et al. (2023). Individual soil clods represent the target instances for 
segmentation. Neither of the three datasets has been included in the 
training datasets of SAM 1 or SAM 2.

2.2 Encoder experiment

The architecture of SAM 1 (Kirillov et al., 2023) and its successor 
SAM 2 (Ravi et al., 2024) heavily rely on their image encoders for 
feature extraction. The encoder constitutes the largest part of the 
models and has a large influence on the resulting inference speed and 
segmentation quality. While SAM 1 employs the original vision 
transformers (ViT) by Dosovitskiy et al. (2020) as encoders, SAM 2 is 
based on less computationally complex hierarchical vision 
transformers (Hiera) (Ravi et al., 2024). For encoder selection, the 
performance of the three released encoders of SAM 1 (Kirillov et al., 
2023) (ViT-B, ViT-L, ViT-H) was evaluated. Additionally, the four 
encoders of SAM 2 (Ravi et al., 2024) (Hiera-T, Hiera-S, Hiera-B+, 
Hiera-L) were evaluated in both their initially released version (SAM 

2.0) and their updated version (SAM 2.1). To assess segmentation 
quality, the models were applied to all three datasets (MED, MUD, 
SOD). Therefore, 10 images and 10 object instances per image were 
randomly selected and annotated with the polygon feature of 
ARAMSAM (see chapter 2.4). The geometric median of the respective 
ground-truth masks, as defined by Vardi and Zhang (2000), was used 
as a positive point prompt for the model. A positive point prompt 
indicates to the model where to find a mask at the specific point in the 
image. Multiple points may be prompted to SAM to generate a mask. 
In contrast, negative points can be prompted to confine masks or 
exclude regions from a mask (Kirillov et al., 2023). To quantify 
segmentation accuracy while accommodating class imbalance 
between relatively small object instances and the background, the 
generalized dice score (GDS) (Sudre et al., 2017) implemented in 
Monai (1.4) (Cardoso et al., 2022) was used as a metric to evaluate the 
models’ performance. For this specific two-class case, the GDS can be 
defined for N pixels as:
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Where ,i ly  is the one-hot encoded ground-truth label at pixel 
position i for class l.

FIGURE 1

Image datasets: (a) Maize ear dataset (MED), (b) maize UAV dataset (MUD), (c) soil dataset (SOD); blue boxes highlight one segmentation instance as 
example, with the mask shown in pink.
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2.3 Automatic mask generator (AMG) 
hyperparameter optimization

Both SAM 1 and SAM 2 feature an AMG, which proposes masks 
without requiring a specific prompt input. Instead, a point grid is 
prompted internally, and predicted masks are filtered based on different 
tunable hyperparameters (Kirillov et al., 2023; Ravi et al., 2024). Both 
the density of the point grid and the strictness of mask filtering can be 
set via the hyperparameters. Definitions of the hyperparameters can be 
found in the docstrings of the “AutomaticMaskGenerator” classes 
within the SAM 1 and SAM 2 Python packages.

To optimize the AMG hyperparameters per encoder, a grid search 
over the given sets of hyperparameter variations was conducted on 10 
previously annotated maize ear images, which show, other than images 
of the MED, only the maize ear center (Supplementary Figure S1). As 
can be seen in Table 1. The hyperparameter search space covered three 
different values for six hyperparameters, which covers 729 possible 
configurations in total. Some combinations did not produce any masks 
and even led to crashes of the SAM 2 package in 8 instances, which is 
why only 721 combinations are reported in this study. The specific 
faulty hyperparameter configurations can be seen in the ARAMSAM 
repository under the “preprint_v0.1” tag.

The chosen search space aims to increase the number of proposed 
masks compared to the default configuration. At the same time, it also 
explores hyperparameter values close to the default configuration. 
Hyperparameter settings that were considered less significant were not 
tested but were kept at default values and are not listed in Table 1.

The Fβ-score with β = 2, weighing recall R four times as high as 
precision P, was chosen as a metric. Thereby, the production of more 
masks has been encouraged. The goal to increase the number of masks 
proposed by the AMG was driven by the assumption that manually 
discarding masks is less time-consuming than creating new masks 
manually for a human annotator. For precision and recall calculations, 
predicted and ground-truth masks were matched based on the 
intersection over union (IoU).

The IoU is defined as:

	

∩
= =

∪
Area of Intersection ,

Area of Union
A B

IoU
A B 	

(3)

Where the area of intersection is the overlapping region of two masks, 
and the area of union is the area covered by both masks combined.

Since predicted masks are not directly used for a downstream task 
but instead are used as annotations, true positives (TP) are defined at 
the ground-truth level. A ground-truth mask is counted as a TP if 
there exists at least one predicted mask with an Intersection-over-
Union (IoU) greater than 0.8. This threshold was selected empirically 
based on preliminary tests that demonstrated sufficient mask quality. 
If a ground-truth mask is not matched with any predicted mask, it is 
counted as FN. False positives (FP) are predicted masks that cannot 
be associated with any ground-truth mask above the IoU threshold. 
Consequently, these definitions do not follow conventional one-to-one 
matching between predictions and ground truths. This is intentional 
since the annotation pipeline, in theory, allows a single predicted mask 
to be reused for multiple ground-truth instances, though this is very 
rare. Such a scenario would be a ground-truth instance that is 
occluded by another ground-truth instance. Here, the same predicted 
mask could be suitable to represent both the occluded instance and 
the instance on top. Thus, a single prediction could represent 
multiple TP.

Precision P is defined as:

	
=

+
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while recall R is defined as:

	
=

+
.TPR

TP FN 	
(5)

Thus, the Fβ = 2-score is defined as:
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2.4 ARAMSAM software

ARAMSAM is a previously unpublished open-source image 
annotation software, developed in this study for instance segmentation 
and mask transfer from one overlapping image to the next. The 
software uses Python (3.10) (Van Rossum and Drake, 2009) and is 
based on publicly available packages of the Python universe. The 
software’s front end runs on PyQt6 (6.7) (Riverbank Computing, 2025) 

TABLE 1  Hyperparameter search space for automatic mask generators (AMG) of SAM 1 (ViT-H) and SAM 2.1 (Hiera-S).

Hyperparameter
Values

SAM 1 (ViT-H) SAM 2.1 (Hiera-S)

points_per_side {32, 64, 128} {32, 64, 128}

points_per_batch {128} {128}

pred_iou_thresh {0.72, 0.8, 0.88} {0.72, 0.8, 0.88}

stability_score_thresh {0.92, 0.95, 0.98} {0.92, 0.95, 0.98}

stability_score_offset {0.7, 1.0, 1.3} {0.7, 1.0, 1.3}

crop_n_layers {0, 1, 2} {0, 1, 2}

crop_n_points_downscale_factor {1, 2, 4} {1, 2, 4}

Italic values mark default values. Bold values mark optimal values.
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while the back end uses OpenCV (4.10) (Bradski, 2000) for 
conventional computer vision tasks, Pandas for data wrangling (2.2) 
(McKinney, 2010), PyTorch (2.4) (Paszke et al., 2019) for AI utilities 
and SAM 1 (Kirillov et al., 2023) and SAM 2 (Ravi et al., 2024) for 
semiautomatic zero-shot segmentation tasks.

The user interface of ARAMSAM features a top bar with general 
settings and buttons for annotation actions (Figure 2). Below the bar, 
four freely selectable views of the image that is being annotated are 
visible. To ensure a comparable annotation process during the 
experiments, users were not allowed to change any settings themselves, 
and the views were predefined. The top-left view showed the original 
RGB image, and the top-right view showed the collection of previously 
annotated masks on the original. The bottom-right view showed the 
previously annotated masks in white, with overlapping mask parts 
being highlighted in red to avoid unintended overlap. The bottom-left 
view indicated points for both drawing polygons and interactively 
prompting with SAM 1 or SAM 2.

ARAMSAM enables creating segmentation masks with a set of 
tools to meet different demands for specific applications. The most 
common approach is to draw polygons around the object of interest. 
Another tool is the interactive prompting based on SAM 1 or SAM 2. 
Here, the user hovers the mouse over the image for real-time mask 
proposals (Figure 2). The image is embedded by the encoder 
beforehand. Multiple positive and negative points can be added to 
refine the proposed mask. Additionally, ARAMSAM employs AMG 
as a supplementary tool within SAM 1 and SAM 2. Thereby, masks are 
proposed sequentially, and the user’s task is to choose whether each 
mask represents an object of interest or should be discarded instead.

Furthermore, ARAMSAM includes functionalities to transfer 
masks from one image to another if the dataset contains 
consecutive, overlapping images. Since SAM 1 does not inherently 

feature mask propagation, a panorama-based algorithm is used to 
transfer masks. Here, image key points are detected by the ORB 
(oriented FAST and rotated BRIEF) feature detector (Rublee et al., 
2011), which is based on FAST (features from accelerated segment 
test) (Rosten and Drummond, 2006) and BRIEF (binary robust 
independent elementary features) (Calonder et al., 2010). The key 
points are matched as shown by Brown and Lowe (2007). The 
resulting image orientation can be exploited to project bounding 
boxes of objects annotated on the first image to the following 
image. The projected bounding boxes are then prompted to SAM 
1 with the second image. When using SAM 2 in ARAMSAM, 
masks are propagated by means of the mask propagation 
functionalities, which were originally designed for video object 
segmentation (Ravi et al., 2024). To load image sequences instead 
of video frames into the memory bank of SAM 2, a custom 
function was added to the original Python package.

2.5 User experiment

Fourteen experts in the field of agriculture were asked to 
annotate images of three randomly selected maize ears from MED 
in the ARAMSAM user interface. To familiarize participants with 
the software, each individual completed a tutorial demonstrating 
how to identify valid kernel masks and how to use all relevant tools 
for the experiment. During the experiment, every participant 
applied three different annotation methods to the same three 
initially selected maize ears. To mitigate potential learning effects 
over time, the order of these nine method–ear combinations was 
randomized for each user. An overview of the annotation methods 
is provided in Table 2.

FIGURE 2

Overview of the ARAMSAM user interface. Top-left: Original RGB image. Top-right: Annotated masks overlaid on the original RGB image, with numbers 
indicating the mask ID. The white mask represents the preview generated by SAM 1/SAM 2. Bottom-left: Point view showing annotation prompts. Red 
points indicate negative prompts guiding SAM 1/SAM 2 to avoid these locations. White points indicate positive prompts guiding SAM 1/SAM 2 to include 
these locations. The preview mask is shown in green. Bottom-right: Annotated masks on black background. Overlapping mask areas are highlighted in 
red and the preview mask is shown in blue.
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When participants were asked to use the polygon method, they 
were only required to annotate three maize kernels to avoid excessive 
effort. Before the experiment, three kernels per image were randomly 
selected and highlighted by bounding boxes, ensuring that all users 
annotated the same kernels.

For the annotation methods based on SAM 1 and SAM 2, users 
were given a fixed structure, as listed in the tool’s column of Table 2. 
These annotation methods with a fixed structure had to be applied 
to three image pairs that contain two consecutive images. The three 
image pairs were the same for SAM 1 and SAM 2, and the first 
image of each of the image pairs is used during the polygon method. 
The fixed structure is ordered from tasks requiring less interaction 
(e.g., selecting AMG masks) to tasks requiring more interaction 
(e.g., polygon drawing). If, e.g., all valid maize kernels of one image 
had been assigned a good mask created by the AMG, there was no 
need to apply interactive prompting or polygon drawing. After 
transferring masks from the first image to the second (either by the 
panorama approach or the SAM 2 propagation), the users were 
asked to check whether all masks had been transferred correctly 
and to remove invalid masks by clicking on them. The criteria for a 
mask being transferred correctly are assessed only by the quality of 
the mask on the second image. Individual maize kernels are not 
tracked back to the preceding image.

To evaluate whether annotation methods based on SAM 1 and 
SAM 2 can accelerate the annotation process of instance 
segmentation masks over previous standard methods, the drawing 
of polygons was used as a baseline. Since the annotation of the 
second image of an ear is influenced by the mask transfer 
capabilities of both the SAM 1 and the SAM 2 method, only the first 
image of an ear was taken for comparison across the polygon and 
both SAM methods. When the users were applying annotation 
methods based on SAM 1 and SAM 2, the users had to 
independently decide which object represented a valid maize 
kernel. To study the consistency of annotation decisions across 

different users, the annotation frequency per image pixel fa,px was 
defined as:

	
= assigned

,
rounds

,a px
N

f
N 	

(7)

Where Nassigned is the number of times a pixel has been assigned to 
a mask; Nrounds is the number of annotation rounds per image. With 14 
users, each employing two annotation methods based on SAM 1 and 
SAM 2, the total number of annotation rounds per image was 
Nrounds = 28.

All experiments have been conducted on systems using a single 
RTX 3090 (NVIDIA Corporation, Santa Clara, USA) as a GPU.

2.6 Statistical analysis and data 
visualization

All statistical analyses were performed using R (4.3.2) (Team, 
2025). Data wrangling and manipulation were carried out with 
Dplyr (1.1), Tidyr (1.3), and Tibble (3.2) from the Tidyverse 
universe (Wickham et al., 2019). Statistical tests and post hoc 
analyses were conducted using Rstatix (0.7) (Kassambara, 2019). 
Normalized metric result data [p ∈ (0,1)] was pre-processed with a 
logit transformation before applying statistical tests. Thereby, 
boundary constraints close to 0 or 1 and variance heterogeneity 
were tackled as shown in Zou et al. (2004). Repeated measures 
ANOVA results have been corrected by the Greenhouse–Geisser 
approach to mitigate sphericity of within-subject factors. Two-sided 
pairwise t-tests with Bonferroni correction have been conducted as 
post-hoc tests. Both the repeated measures ANOVA and the 
post-hoc tests rejected the H0-Hypothesis with a significance level 
of α = 0.05.

TABLE 2  Overview of annotation methods in the user experiment.

Annotation method Tools Number of ears Instance limit Images per ear Mask transfer

Polygon

Polygon annotation of 

highlighted maize 

kernels

3

3 1 –

SAM 1

1. Select AMG masks 

(image 1)

2. Interactive 

prompting (image 1)

3. Polygon drawing 

(image 1)

4. Mask transfer and 

manual control 

(from image 1 to 2)

5. Select AMG masks 

(image 2)

6. Interactive 

prompting (image 2)

7. Polygon drawing 

(image 2)

– 2

Panorama matching

SAM 2 Mask propagation

The users had to apply the three different annotation methods in separate steps of the experiment. SAM 1 and SAM 2 represent annotation methods consisting of multiple sequentially applied 
tools based on SAM 1 (Vit-H) and SAM 2.1 (Hiera-S), respectively. AMG: Automatic mask generator.
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Python (3.10) (Van Rossum and Drake, 2009) and the Pandas 
package (2.2) (McKinney, 2010) were used for data preparation, 
followed by data visualization based on Matplotlib (3.10) (Hunter, 
2007) and Seaborn (0.13) (Waskom et al., 2021). In all boxplots 
displayed in this study, the central box spans from the first quartile to 
the third quartile with a line inside marking the median. The whiskers 
extend to the smallest and largest data points within 1.5 times the 
interquartile range from the quartiles. Data points falling outside these 
limits are plotted individually as outliers.

2.7 Declaration of generative AI and 
AI-assisted technologies in the writing 
process

During the preparation of this study, the authors used ChatGPT 
4-o (OpenAI, Inc., San Francisco, USA) to improve the writing. After 
using this tool/service, the authors reviewed and edited the content as 
needed and take full responsibility for the published article.

3 Results

3.1 Zero-shot performance of different 
SAM 1 and SAM 2 encoders

To evaluate mask quality as predicted by SAM 1 and SAM 2, all 
encoders have been applied on the agricultural datasets (MED, MUD, 

SOD), with a single point (the geometric median) for each of the 100 
ground-truth masks—a comparison between the predicted mask and 
the ground-truth mask results in the GDS. In Figure 3, the resulting 
GDS of the encoder experiments are displayed for the MED, MUD 
and SOD dataset (from top to bottom). The scores range from 0 to 1 
and are displayed as a boxplot indicating the distribution of the 
quartiles. All encoders achieve relatively high mean GDS for both the 
MED (0.87) and the SOD (0.94) compared to the MUD (0.50). These 
results were expected as the ground-truth masks of both the MED and 
SOD resemble compact round objects, whereas the plant objects in the 
MUD are complex and partially overlap with neighboring plants.

To compare the results of all individual encoders, a repeated 
measures ANOVA was conducted per dataset. Significant effects 
across encoders were revealed for all datasets, with the test results 
being F(2.96, 292.92) = 165.48, p < 0.001, for the MED, F(6.23, 
616.59) = 17.60, p < 0.001, for the MUD, and F(4.44, 439.61) = 7.71, 
p < 0.001, for the SOD. A pairwise t-test was used as a post-hoc test 
(α < 0.05) with significant differences shown in Figure 3. Two 
encoders not sharing a letter achieved significantly different 
performance on the respective dataset. The alphabetical order of the 
letters indicates the performance ranking from “a” the best to “g” the 
worst performing group.

The Hiera-T encoder of SAM 2.0, as well as both versions (SAM 
2.0 and SAM2.1) of the Hiera-L encoder, had to be excluded from 
statistical tests of the MED since normality of the data could not be 
assumed. This is indicated by the absence of a letter. Since these three 
encoders apparently do not show good performance, they are 
irrelevant for further experiments and thus can be excluded from 

FIGURE 3

Segmentation quality of SAM 1 and SAM 2 across different encoder versions tested on the maize ear dataset (MED), maize UAV dataset (MUD), and soil 
dataset (SOD). The x-axis indicates the encoder versions, and the y-axis shows the generalized dice score (GDS) per mask. Significant differences are 
denoted by letters arranged from the highest mean GDS to the lowest (α < 0.05).
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statistical tests. This performance test of the encoders was conducted 
to identify the best encoders for later experiments.

Notably, at least one encoder of SAM 1 belongs to the significant 
letter “a” for all three datasets. Moreover, all encoders of SAM 1 show 
significantly higher GDS per mask than any encoder of SAM 2 when 
tested on MED, indicating stronger or equal performance of SAM 1 
on all datasets when compared to SAM 2.

The compared encoders vary regarding their network 
architecture and the number of parameters (Kirillov et al., 2023; 
Ravi et al., 2024). Thus, the largest ViT-H (SAM 1) and Hiera-L 
(SAM 2) encoders are less computation-efficient than their smaller 
counterparts. Figure 3 indicates that the smallest encoder types of 
both SAM 1 (ViT-B) and SAM 2 (Hiera-T) show significantly lower 
GDS than the larger encoders. However, the largest encoder types 
(ViT-H, Hiera-L) do not perform significantly better than the 
medium-sized encoders. Interestingly, the updated encoders of 
SAM 2.1 only show a significantly higher GDS than their 
predecessors for the Hiera-S encoder at MED and for the Hiera-L 
encoder at the SOD. In contrast, the old SAM 2.0 encoders achieved 
a significantly higher GDS for the Hiera-B+ encoder at MED and 
the Hiera-S encoder at the SOD. These results indicate no 
improvement of the updated SAM 2.1 encoders over the initially 
released ones on the proposed agricultural use cases.

3.2 Automatic mask generator (AMG) 
hyperparameter optimization

The following experiments focused on images of the MED because 
maize ears are complex, round objects that were captured from 
different angles. Thus, object tracking was expected to be a more 
challenging task than with images of the MUD and SOD where all 
image planes are parallel to another and to the soil surface. Moreover, 
only the best performing encoders of SAM 1 (ViT-H) and SAM 2.1 
(Hiera-S) according to GDS, as achieved on the MED, were selected 
for optimizing hyperparameters of the AMG. The best performing 
hyperparameters according to the mean F2 over all images have been 
identified on a new subset of the MED, where ground-truth masks for 
all kernels have been annotated manually (Table 1).

Within the optimal settings of SAM 1 (ViT-H), the identified 
values for the hyperparameters points_per_side and pred_iou_thresh 
are increasing the number of proposed masks compared to the default 
values but in contrast, the setting of stability_score_thresh is applying 
a stronger filter to the proposed masks than the default value. 
However, the settings of hyperparameters for SAM 2.1 (Hiera-S) 
increases the number of masks by a reduced value of pred_iou_thresh, 
by an increased number of crop_n_layers and with reduced stability_
score_thresh as well as reduced stability_score_offset. Notably, the 
optimal hyperparameters of SAM 2.1 (Hiera-S) include no deviation 
from the default settings that would reduce the number of masks. 
These different optimal settings highlight the models’ network 
architectural differences as revealed on the MED.

Figure 4 shows the F2-score of the selected SAM 1 encoder 
(ViT-H) and SAM 2.1 encoder (Hiera-S) per test image. A significant 
effect of the encoders and hyperparameters was revealed by repeated 
measures ANOVA (F(1.04, 9.4) = 31.27, p < 0.001). The AMG of both 
SAM benefits significantly from the hyperparameter optimization 
compared to the default configuration. While SAM 1 (ViT-H) 

improved from a mean F2-score of 0.87–0.93, SAM 2.1 (Hiera-S) 
improved from 0.05 to 0.74.

Again, the encoder representing SAM 1 (ViT-H) performs 
significantly better than SAM 2.1 (Hiera-S). Moreover, the SAM 2.1 
(Hiera-S) encoder achieved an especially low F2 on one image, 
depicted as an outlier in Figure 4. Conversely, the selected SAM 1 
(ViT-H) encoder does not show any outliers, indicating more stable 
performance on the MED.

3.3 User experiment

After identifying the best-performing encoders and the optimal 
AMG hyperparameters for SAM 1 (ViT-H) and SAM 2 (SAM 2.1 
Hiera-S), respectively, a user experiment based on ARAMSAM was 
conducted with these configurations. All users had to apply annotation 
methods based on SAM 1, SAM 2, and the drawing of polygons. Thus, 
each image has been annotated by each user in multiple rounds. 
While, the objects of interest were highlighted during the polygon 
method, when using the other methods, the participants had to decide 
on their own which objects represent valid kernels according to the 
instructions they were given in the tutorial. The annotation decisions 
for all three image pairs are shown in Figure 5. As shown in the 
bottom row of Figure 5, the number of annotated instances (maize 
kernels) varied little across different users. The highest standard 
deviation of annotated instances per image (3.9 kernels) is observed 
for the first image of the left image pair. Consistent annotations across 
users are also confirmed by the top row of Figure 5, where most 
kernels have been annotated at annotation frequency fa, px close to 1.0. 
Nevertheless, lower fa, px can be observed for kernels in the area of the 
infertile tip, as shown in the left and the center image pairs. An 
enlarged view of the leftmost image is displayed in the supplementary 
data (Supplementary Figure S2). The rare occurrence of pink color on 
some kernel edges indicates that overlapping masks were assigned to 
neighboring kernels, which represents under-segmentation. 

FIGURE 4

Mask quality predicted by automatic mask generators (AMG) before 
(default) and after hyperparameter optimization (best). The models 
were evaluated per image using F2 calculated from the number of 
predicted masks that matched ground-truth masks. Significant 
differences (pairwise t-test, α < 0.05) are indicated by different letters.
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Conversely, the light-blue color on kernel edges indicates that the 
assigned kernel masks were too small and did not cover the entire 
kernel. This over-segmentation can be observed on all ear images 
(Figure 5). Yet, both under-segmentation and over-segmentation 
usually cover a few pixels, which should have a minor influence on 
applications such as phenotyping.

In Figure 6, the annotation time per mask is displayed for the 
SAM 1 and SAM 2 approaches for both the first and the second of the 
consecutive images, as well as for the polygon method for the first of 
the consecutive images. Each boxplot contains 42 data points (14 users 
times 3 images). A significant effect of the annotation method on the 
annotation time per mask was revealed by a repeated measures 
ANOVA (F(1.11, 14.43) = 64.70, p < 0.001). The subsequent post-hoc 
test shows significant differences between the polygon method and 
both SAM methods (indicated by different letters). Accordingly, a 
significant difference in annotation time was observed with 9.7 s/mask 
for the polygon method. The approaches based on SAM 1 and SAM 2 
took 2.1 and 2.6 s/mask, respectively. However, no significant 
differences between SAM 1 and SAM 2 were observed in the 
first images.

In the next step, masks from the first images were transferred to 
the second images either by the panorama-based algorithm (SAM 1) 
or mask propagation (SAM 2). On the second images a significant 
difference between SAM 1 and SAM 2 could be shown by both the 
ANOVA (F(1, 13) = 24.177, p < 0.001) and the post-hoc test. The latter 
indicated a significantly lower annotation time of SAM 2 when 
compared to SAM 1 (Figure 6). Strikingly, the mean of SAM 1 on the 
second image (3.3 s/mask) is higher than that on the first image 
(2.1 s/mask).

Figure 7 depicts the number of masks generated and the annotation 
time (s/mask) for each tool. The AMG was the most applied tool of the 
SAM 1 method on the second image (56.0%) (Figure 7), suggesting that 
the majority of masks were not transferred correctly from the first to the 

FIGURE 5

Annotation decisions of 14 users for three maize image pairs. Top: Relative frequency a pixel has been assigned to a mask (fa, px) for the total number of 
annotation rounds for the first (ω = 0°) and second rotated image (ω = 7.1°) of a maize ear. Only pixels assigned to a mask more than once are 
included. Bottom: Number of kernel instances annotated per image over all applied methods. The polygon method is excluded from the figure.

FIGURE 6

Annotation time per mask across different methods (X-axis). 
Significant differences are indicated by lowercase letters across first 
images and by capital letters across second images (pairwise t-test, 
α < 0.05).
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second image. Likewise, the AMG of SAM 1 and the AMG of SAM 2 
were also the predominant tools on the first images, where users could 
not benefit from transferred masks. Here, AMG was the origin of 95.8% 
(SAM 1) and 94.9% (SAM 2) of the selected masks (Figure 7). Thus, the 
users’ annotation behavior when transferring a mask from panorama 
matching (SAM 1) was similar to starting from a new image. This shows 
that SAM 1 did not benefit from the previous annotations and the 
panorama-inspired method for mask transfer of SAM 1 appears to not 
be suitable for the MED.

However, the SAM 2 method on the second image represents the 
fastest method over both image positions by requiring 1.6 s/mask on 
average. This is also supported by mask transfer being the predominant 
origin of masks created by the SAM 2 method on the second image 
(94.0%) (Figure 7). To determine whether the SAM 2 method, 
benefiting from masks propagated from the previous image, allows 
significantly faster annotation time than applying SAM 1 directly on 
the first image, a one-sided pairwise t-test was conducted. Here, the 
time per mask has been averaged over the images. The test results 
show significantly faster annotation times of SAM 2 (t(13) = 2.03, 
p = 0.032), suggesting that applying SAM 2 with mask propagation on 
image sequences of the MED is the fastest of the proposed methods.

4 Discussion

4.1 Comparing zero-shot performance of 
SAM1 and SAM2

Throughout this study, SAM 1 and SAM 2 were compared 
according to mask quality per prompt on three datasets (MED, 

MUD, SOD), mask coverage of the respective AMG on one dataset 
(MED), and temporal annotation effort for users on one dataset 
(MED). SAM 2 did not outperform its predecessor in any of these 
disciplines when applied to single images. Architecture-specific 
problems became apparent during the encoder experiment, where 
both Hiera-L encoders and the initial Hiera-T (2.0) encoder of 
SAM 2 are predicting the entire ear as a single mask instead of 
individual kernels in multiple instances (Figure 3). These problems 
specific to a certain encoder size highlight the need for proper 
model selection depending on the data.

While this study covered only agricultural use cases with RGB 
data, Sengupta et al. (2025), compared SAM 1 and SAM 2 on medical 
datasets covering both RGB and grayscale data. The authors showed 
that SAM 2 does not consistently perform better than SAM 1, which 
appears to be independent of image data type. However, SAM 2 
achieved higher mask accuracy metrics in segmenting solar panels on 
remote sensing data (Rafaeli et al., 2024), in contrast to this study 
especially SAM 2.1 (Hiera-L) outperformed SAM 1 (ViT-L). Ravi et 
al. (2024) showed an improvement of SAM 2 for zero-shot 
performance (single images) on the most of 37 datasets from multiple 
domains. However, the 37 datasets barely focus on agriculture, besides 
the PPDLS (plant phenotyping datasets leaf segmentation) (Minervini 
et al., 2016), containing plant phenotyping data. Here, the performance 
of SAM 2 showed a delta of −4.8 mIoU (mean intersection over 
union) compared to the performance of SAM 1 (Ravi et al., 2024), 
indicating a setback in the performance of SAM 2 over its predecessor. 
The findings from Ravi et al. (2024) on the PPDLS, together with the 
results presented here, suggest that SAM 2 does not represent an 
improvement over its predecessor regarding zero-shot performance 
on single images of agricultural datasets.

FIGURE 7

Applied tools within annotation methods. Data points represent one annotation round per user. Time (s/mask) is based on the mean temporal distance 
between individual masks when more than one mask was annotated per tool. AMG: Automatic Mask Generator.
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Yet, Ravi et al. (2024) and Rafaeli et al. (2024) showed better 
performance of SAM 2 compared to SAM 1 in most domains. This is 
especially noteworthy because of SAM 2 enormous time savings in 
computation. Due to the smaller hierarchical image encoders, SAM 2 
is six times faster than SAM 1 (Ravi et al., 2024). The architectural 
differences could be considered as a reason why the optimal 
parameters of the selected encoders of SAM 1 and SAM 2 differ 
greatly. Another benefit of SAM 2 is its ability to propagate masks 
from one image frame to the next. Incorporated in ARAMSAM, this 
feature accelerated the annotation time from 2.1 s/mask to 1.6 s/mask, 
by about 23% (Figure 6). Despite SAM 2 not showing improved mask 
quality compared to SAM 1, the mask propagation capability, as well 
as the more efficient model architecture, can lead to SAM 2 
accelerating annotation times and saving human labor. Especially on 
image sequences, SAM 2 is considered the most suited method for 
annotation with ARAMSAM on the MED.

The positive results of our experiments are valid for the controlled 
environments represented by the datasets that all originated from the 
same geographical region. Transferring the results to less controlled 
conditions would expose the models to challenging properties like the 
tempo-spatial variations of environments, e.g., through weather effects 
or seasonal growth. These include background disturbances, partial 
or full occlusion of relevant object features or complete objects, 
different object sizes, rotations, or deformed objects, e.g., through 
wind and illumination changes due to varying daylight conditions 
(Song et al., 2025). Furthermore, the process of image acquisition 
(sensor type, motion blur, processing algorithms) also affects the 
image quality, which is important for successful use with deep learning 
methods (Dodge and Karam, 2016). Despite the limited variability of 
datasets in the experiments of this study, a certain robustness of 
ARAMSAM to new conditions would be expected, since SAM 1 and 
SAM 2 are foundation models that have been trained on large and 
diverse datasets (Ravi et al., 2024).

4.2 Parameter optimization of automatic 
mask generator (AMG)

To our knowledge, this is the first study doing a hyperparameter 
optimization on the automatic mask generator of both SAM 1 and 
SAM 2. In the user experiment the AMG was the most used tool for 
both image positions of the SAM 1 method and the most used tool of 
the SAM 2 method on first images (Figure 7). Although it should be 
noted that the here proposed structured experiment design fostered 
the usage of the AMG being used by the participants in first or second 
position, the capability of the AMG to cover more than 95.8% (SAM 
1) and 94.9% (SAM 2) of the valid maize kernels is remarkable. Of all 
tools, the AMG of both SAM 1 and SAM 2 showed the lowest 
annotation time on the first images, taking only taking 1.5 s/mask and 
1.7 s/mask, respectively (Figure 7). At the same time, the data shows 
a low standard deviation of 0.7 s/mask (SAM 1) and 0.6 s/mask (SAM 
2), manifesting the tools’ reliability. As demonstrated in Figure 4, the 
AMG of both SAM 1 and SAM 2 benefited greatly from the 
hyperparameter optimization. Especially the results of SAM 2, 
improving the F2 by more than 14 times, underline the importance of 
hyperparameter optimization when applying the AMG.

Conversely, the AMG could propose a large share of useless masks 
in scenarios where only a few objects of interest exist in one image. 

However, in crowded scenes where most objects represent object of 
interest like in the MED, the AMG can be especially useful. Therefore, 
exploiting the potential of this powerful tool by hyperparameter 
optimization is an important contribution to accelerating the 
annotation of segmentation datasets.

4.3 Time savings by ARAMSAM 
orchestrating SAM-based annotation tools

Applying annotation tools based on both SAM 1 and SAM 2 
clearly outperformed the polygon method representing a former state 
of the art method for annotation of segmentation masks. For single 
images, the annotation time per mask is accelerated by 4.6 times for 
SAM 1 and 3.7 times for SAM 2. When applying SAM 2 with mask 
propagation on image sequences, the acceleration increases by a factor 
of 6.1 compared to the polygon method. Yet, it should be noted that 
the panorama-based mask transfer of masks proposed by SAM 1 did 
slow down the annotations by factor 1.6 compared to applying SAM 
1 without any mask transfer. This highlights the difficulties of mask 
transfer even on highly overlapping images and indicates that this 
method was not suitable for mask transfer on the MED. Likely, the 
panorama-based mask transfer would have performed better on 
image sequences moving in a linear direction instead of the circular 
rotation presented by the MED. A more computation-intensive 
alternative could be a structure from motion (Schonberger and 
Frahm, 2016) based approach. Like the panorama algorithm, structure 
from motion matches multiple key points from overlapping images. 
In contrast to panorama stitching, the key points as well as the camera 
positions are oriented in 3D space, which would allow mask transfer 
even on irregularly shaped objects such as maize ears. However, 
structure from motion requires multiple images and sophisticated 
computation hardware to be applied in an edge scenario like image 
annotation (Schonberger and Frahm, 2016).

The SAM tools implemented in ARAMSAM can save a 
tremendous amount of labor on the MED dataset compared to 
polygon drawing. Since SAM 1 and SAM 2 were trained and 
successfully tested on various domains (Kirillov et al., 2023; Ravi et al., 
2024), ARAMSAM has the potential to further accelerate the 
annotation process in other domains than the MED. Yet, it should be 
noted that the maize kernels represent rather simple objects with 
regular, round shapes and clear edges. While demonstrating how SAM 
1 and SAM 2 orchestrated by ARAMSAM accelerate annotation 
speed, this study does not compare ARAMSAM to other public 
annotation software. Our findings suggest that other software 
incorporating SAM 1 and SAM 2 would benefit from similar gains in 
annotation speed.

Increasing the annotation efficiency can be especially relevant in 
fields where human expert knowledge is required. Besides plant 
phenotyping, one such field would be medicine, where, e.g., 
radiologists have to label malignant tumor tissue on CT scans (Zhu et 
al., 2024). Also, the example of maize kernels (MED) showed the 
challenges of qualified decision-making. Although all participants saw 
the same example masks of valid and invalid maize kernels during a 
tutorial, the decision on which of the top kernels shown on the left and 
center pair of maize ears in Figure 5 represent valid kernels was 
ambiguous. In a scenario where, e.g., the length of the infertile tip of 
a maize ear should be measured (Oury et al., 2022), inconsistent 
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decisions on which kernel to label as valid or fertile could have a 
crucial impact on the results. However, the agricultural experts that 
participated in this study were not specifically experts for maize ear 
phenotyping. Even for professionals in that field, borderline cases and 
human errors cannot be ruled out for any annotator.

Despite the tutorial covering all functionalities of ARAMSAM, 
human errors could be observed at the user experiment depicted as 
outliers in Figures 6, 7. A few participants appeared to be stuck in 
certain steps of the experiment, leading them to spend exceptionally 
long in some annotation tools. Since these outliers indicate a certain 
complexity of the experiment and do not represent measurement 
errors, they were included in the statistical analysis. However, the rare 
occurrence of these outliers shows that only few users encountered 
these difficulties and most of them were able to learn ARAMSAM 
quickly.

The integration of the AMG, interactive prompting and mask 
transfer options for both SAM 1 and SAM 2 as well as polygon 
drawing as a baseline demonstrates the versatility of ARAMSAM in 
annotating segmentation datasets. Since the source code of the 
software will be published along with this paper and since ARAMSAM 
is completely written in Python, it will be relatively easy to adapt to 
specific demands. Besides the here conducted annotation experiments 
ARAMSAM, can be directly used for annotating single images and 
image sequences for the purpose of training a specific AI model. Such 
image sequences could include videos, overlapping neighboring 
images or slices of 3D-data such as CT-Scans or polygon meshes. Also 
using ARAMSAM directly for measurements of objects in images 
would be feasible, if intrinsic as well as extrinsic camera parameters 
and the distance to the object of interest are known.

The development of novel AI-based phenotyping solutions 
could benefit greatly from accelerated mask annotation based on 
ARAMSAM. Although Ravi et al. (2024) state that mask 
propagation would suffer from crowded scenes with many object 
instances, the findings of this study on the MED suggest successful 
mask propagation in most cases. On average, 94.0% of the masks 
annotated on the second images originated from mask propagation 
(Figure 7). It should be noted that the maize ears are rotated by 
only 7.1°, leaving a substantial overlap between images to be 
exploited by SAM 2. Yet, this overlap might be smaller than that of 
consecutive video frames, for which the SAM 2 mask propagation 
was designed for (Ravi et al., 2024). How far this overlap can be 
reduced remains an open research question. For both annotation 
tasks and zero-shot applications, a falsely propagated mask can 
have a negative impact. However, an overlap of around 80% is, e.g., 
common in UAV missions for creating digital surface models based 
on photogrammetry (Oehme et al., 2022). This substantial overlap 
suggests potential for mask propagation with SAM 2 on field image 
data captured by UAV.

5 Conclusion

In this study, the potential of both SAM 1 and SAM 2 to accelerate 
the annotation of segmentation masks as orchestrated by ARAMSAM 
was evaluated. The annotation time was accelerated by up to 4.6 times 
(to 2.1 s/mask) with SAM 1 on single images and up to 6.1 times (to 
1.6 s/mask) with SAM 2 on image sequences when compared to 
polygon drawing, representing remarkable time savings. Moreover, 

the results on zero-shot performance and from user experiments 
applying SAM 2 on single images suggest, in accordance with the 
literature, that SAM 2 represents no improvement on agricultural 
datasets over SAM 1. In future research on annotation methods in the 
agricultural domain, finetuning SAM 2 could further accelerate the 
annotation process.

Furthermore, the importance of hyperparameter optimization 
of the AMG of both SAM 1 and SAM 2 was demonstrated. The 
F2-score of predicted masks by SAM 2 when matched to ground-
truth masks has been improved by more than 14 times (from 0.05 
to 0.74) via grid search for optimal hyperparameters. Moreover, 
efficient optimization techniques covering larger search spaces 
such as evolutionary algorithms could be applied in future studies 
using the AMG.

ARAMSAM, which was developed in this study, is a flexible 
framework that provides user-friendly access to tools based on SAM 
1 and SAM 2. However, the annotation acceleration of SAM 1 and 
SAM 2 should be further quantified on more diverse and challenging 
agricultural datasets than those presented in this study. Furthermore, 
the annotation capabilities of ARAMSAM remain to be compared 
to other public annotation software in a future study. Nevertheless, 
built on a Python foundation, ARAMSAM is easily extendable with 
custom code, allowing researchers to tailor its functionalities to 
specific needs. Future implementations may include the ability to 
assign classes to segmentation masks, enriching the software’s 
annotation capabilities. Moreover, ARAMSAM could be integrated 
with active learning approaches by incorporating pretrained models, 
which would facilitate the iterative refinement of model 
performance.

Overall, ARAMSAM, as being published along with this study, is 
a powerful software solution that integrates the ground-breaking 
functionalities of both SAM 1 and SAM 2, while also possessing the 
potential to evolve and make a significant impact on machine vision 
in agriculture and beyond.
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SUPPLEMENTARY FIGURE S1

Example of maize ear images used for hyperparameter optimization of 
automatic mask generators (AMG). (a) Original RGB image. (b) Previously 
annotated maize kernel instances highlighted by random colors.

SUPPLEMENTARY FIGURE S2

Annotation decisions on selected image crop from the leftmost ear in Figure 5. 
The colormap on the left side depicts the frequency a pixel has been assigned 
to a mask relative to the number of annotation rounds (fa, px) Only pixels 
assigned to a mask more than once are included. The right side shows the 
original RGB image.
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