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Orchestrating segment anything
models to accelerate
segmentation annotation on
agricultural image datasets
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!nstitute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim,
Stuttgart, Germany, 2Institute of Agricultural Engineering, Department of Artificial Intelligence in
Agricultural Engineering, University of Hohenheim, Stuttgart, Germany

Increasingly many applications of machine vision and artificial intelligence (Al) can
be observed in agriculture. Yet, high-quality training data remains a bottleneck in the
development of many Al solutions, particularly for image segmentation. Therefore,
ARAMSAM (agricultural rapid annotation module based on segment anything models)
was developed, a user interface that orchestrates the pre-labelling capabilities of
both the segment anything models (SAM 1, SAM 2) and conventional annotation
tools. One in silico experiment on zero-shot performance of SAM 1 and SAM 2
on three unseen agricultural datasets and another experiment on hyperparameter
optimization of the automatic mask generators (AMG) were conducted. In a user
experiment, 14 agricultural experts applied ARAMSAM to quantify the reduction
of annotation times. SAM 2 benefited greatly from hyperparameter optimization
of its AMG. Based on ground-truth masks matched with predicted masks, the
F,-score of SAM 2 improved from 0.05 to 0.74, while that of SAM 1 was improved
from 0.87 to 0.93. The user interaction time could be reduced to 2.1 s/mask on
single images (SAM 1) and to 1.6 s/mask on image sequences (SAM 2) compared to
polygon drawing (9.7 s/mask). This study demonstrates the potential of segment
anything models as incorporated into ARAMSAM to significantly accelerate the
process of segmentation mask annotation in agriculture and other fields. ARAMSAM
will be released as open-source software (AGPL-3.0 license) at https://github.
com/DerOehmer/ARAMSAM.

KEYWORDS

agriculture, annotation, deep learning, phenotyping, segment anything model 2,
segmentation, UAV

1 Introduction

In recent years, the rapid development of machine vision based on artificial intelligence
(AI) has gained increasing attention in agriculture (Abbasi et al., 2022; Maraveas, 2024). This
becomes especially apparent in the field of plant phenotyping, where AI enables more precise
and efficient analysis of plant traits (Farooq et al., 2024; Sheikh et al., 2024; Visakh et al., 2024).
However, the application of AI often necessitates large quantities of labeled data, the
preparation of which demands substantial time and effort (Paton et al., 2024). Creating
accurate labels in agriculture often requires specialized knowledge, such as determining
whether a pixel belongs to a specific weed type, further increasing the cost of the annotation
process. Among annotation tasks, creating segmentation masks is particularly labor-intensive
compared to deep learning tasks like classification or object detection.
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As a subfield of image segmentation, every object instance of each
class is assigned to one mask in instance segmentation. Such instances
could be, e.g., single blood cells in a histological exam (Pal et al., 2024)
or single maize kernels in maize ear phenotyping (Oury et al., 2022).
Further applications of instance segmentation in plant phenotyping are
the segmentation of the grapevine inflorescence (Moreira et al., 2025),
or the counting of wheat ears (Dandrifosse et al., 2022). All these
studies have in common that the training and testing of the proposed
deep learning models rely heavily on high-quality ground-truth data.

Traditionally, annotation of segmentation masks involved pixel-
wise labeling or drawing polygons to create precise masks (Castrejon
et al., 2017). More recently, the adoption of Al-driven pre-labeling
tools has emerged as a promising approach to accelerate the annotation
process. Pre-labeling shifts the role of human annotators from manual
labeling to refining Al-generated labels, reducing the effort required
for data annotation (Shao et al., 2024). A suitable source for pre-labels
in segmentation is the recently released foundation models segment
anything model 1 (SAM 1) (Kirillov et al., 2023) and its successor, the
segment anything model 2 (SAM 2) (Ravi et al., 2024). Both models
were trained and successfully tested on various domains (Kirillov et al.,
2023; Ravi et al., 2024). While SAM 1 only predicts masks on individual
images (Kirillov et al., 2023), SAM 2 was designed to predict and track
masks along video frames (Ravi et al., 2024). Both models feature an
automatic mask generator (AMG), proposing masks without required
input, and the prediction of masks based on input prompts such as
bounding boxes or points (Kirillov et al., 2023; Ravi et al., 2024).
Instead of using SAM 1 for pre-labeling, its prompting capabilities were
often applied directly on different phenotyping tasks, such as the
segmentation of potato leaves (Williams et al., 2024) or for phenotypical
measurements on pumpkin, radish, and cucumber (Zhang et al., 2024).

In agriculture, images are typically collected from mobile platforms
such as unmanned aerial vehicles (UAV) (Oehme et al., 2022; Rejeb et
al., 2022), tractors (Boysen et al., 2023) or stationary plant phenotyping
systems (Daviet et al., 2022; Kirchgessner et al., 2024). Here, one or
more cameras move relative to one or more objects of interest, resulting
in image sequences having varying overlap between images. In
scenarios where such overlapping images need to be annotated, a
human may need to annotate the same object on multiple images.
Photogrammetry allows the orientation and merging of overlapping
images, which is often applied in UAV imagery, resulting in
orthomosaics (Rejeb et al., 2022). Annotators could, e.g., annotate
masks on one combined orthomosaic instead of multiple original
images. Yet orthomosaics can contain artifacts or distortions (Manzini
etal., 2024), leading to bad annotations that might affect machine vision
applications. In contrast, SAM 2’s mask propagation capabilities allow
transferring masks from one consecutive image to the next without
relying on photogrammetry. SAM 2’s design for video segmentation

Abbreviations: Al, artificial intelligence; AMG, automatic mask generator; ARAMSAM,
agricultural rapid annotation module based on segment anything models; BRIEF,
binary robust independent elementary features; FAST, features from the accelerated
segment test; GDS, generalized dice score; Hiera, hierarchical vision transformers;
loU, intersection over union; mloU, mean intersection over union; MED, maize
ear dataset; MUD, maize field UAV dataset; ORB, oriented FAST and rotated BRIEF;
PPDLS, plant phenotyping datasets leaf segmentation; SAM 1, SAM 2, segment
anything models; SOD, soil surface dataset; UAV, unmanned aerial vehicle; ViT,

vision transformer.
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indicates robustness even on complex scenes, whereas photogrammetry
assumes scenes do not move between captured images.

Although open-source annotation software, such as LabelMe, has
already integrated SAM 1 as a pre-labeling tool (Wada, 2025), the
effect of such tools on annotation time efficiency has not been studied
on agricultural datasets. Similarly, to this date, no systematic
optimization of AMG parameter selection has been conducted.

This study investigates the feasibility of using SAM 1 and SAM 2
as a pre-labeling tool to reduce instance segmentation annotation
efforts on agricultural datasets. The study serves as a pathway to
designing efficient annotation strategies, ranging from encoder
selection to AMG hyperparameter optimization to the selection of
suitable annotation tools. Therefore, the agricultural rapid annotation
module based on segment anything models (ARAMSAM) is
proposed, an open-source application built on top of SAM 1 and SAM
2. In this study, three key objectives are addressed:

i Evaluating the zero-shot performance of SAM 1 and SAM 2
encoders on previously unseen agricultural datasets;

ii Optimizing AMG hyperparameters via a systematic grid search
and analyzing its impact on annotation efforts;

iii Quantifying the reduction in user interaction time of
SAM-based methods as orchestrated by ARAMSAM and
comparing them to polygon drawing as the previous
standard method.

2 Materials and methods

2.1 Datasets

Three datasets of RGB images, representing a range of common
agricultural applications, were included in the experiments: (a) a
maize ear dataset (MED), (b) a maize field UAV dataset (MUD) and
() a soil surface dataset (SOD) (Figure 1).

Images of the MED, as shown in Figure la, were captured under
controlled lighting conditions using an Alvium 1800 C-2050 camera
(Allied Vision Technologies GmbH, Stadtroda, Germany) with a
resolution of up to 5,376 x 3,672 pixels. The sensor was attached to a
Kowa LM8FC24M lens (Kowa Company, Ltd., Nagoya, Japan) with an
8.5 mm focal length. Each ear was captured at 50 evenly distributed
horizontal positions around the ear, rotating it stepwise by an angle @
of 7.1° between each image using a motorized rotating platform. To
exclude the background area and to limit the annotation time per
maize ear, the images were cropped to include only the upper half of
the ear. Individual maize kernels represent the target object instances
during later experiments.

The MUD comprises images of juvenile maize plants cultivated in
two-row plots during a field trial (Figure 1b). These images were
acquired in June 2024 using an UAV DJI M350 (SZ DJI Technology
Co., Ltd., Shenzhen, China) operating at an altitude of 20 m above
ground at an experimental farm of the University of Hohenheim in
Stuttgart, Germany. The UAV was equipped with a DJI's Zenmuse P1
sensor (8,192 x 5,460 pixels) and a P1 50 mm lens resulting in a
ground sample distance of 3.1 mm/pixel. When conducting field
experiments, the phenotypic data are usually collected per plot. To
simulate the common postprocessing of experimental field data, the
images were cropped to show one plot per image. The target instances
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FIGURE 1

example, with the mask shown in pink.

Image datasets: (a) Maize ear dataset (MED), (b) maize UAV dataset (MUD), (c) soil dataset (SOD); blue boxes highlight one segmentation instance as

are individual maize plants, and occluded parts are also included in
the segmentation masks. Neither the MED nor the MUD has been
published previously.

The SOD, as shown in Figure 1c, was collected after sowing with
a power harrow sowing combination on ploughed fields around
Stuttgart, Germany, in October and November 2022. The camera was
mounted on the back of the machine and captured the images from a
birds eye view. The images were captured with the SceneScan
Pro-system of Nerian vision technologies (Allied Vision Technologies
GmbH, Stadtroda, Germany) and were cropped to a size of 512 x 512
pixels. The ground sampling distance of the images is 1 mm/pixel. The
dataset has been previously used to model the soil-machine interaction
during secondary tillage by utilizing a deep learning model in Boysen
et al. (2023). Individual soil clods represent the target instances for
segmentation. Neither of the three datasets has been included in the
training datasets of SAM 1 or SAM 2.

2.2 Encoder experiment

The architecture of SAM 1 (Kirillov et al., 2023) and its successor
SAM 2 (Ravi et al., 2024) heavily rely on their image encoders for
feature extraction. The encoder constitutes the largest part of the
models and has a large influence on the resulting inference speed and
segmentation quality. While SAM 1 employs the original vision
transformers (ViT) by Dosovitskiy et al. (2020) as encoders, SAM 2 is
based on less computationally complex hierarchical vision
transformers (Hiera) (Ravi et al., 2024). For encoder selection, the
performance of the three released encoders of SAM 1 (Kirillov et al.,
2023) (ViT-B, ViT-L, ViT-H) was evaluated. Additionally, the four
encoders of SAM 2 (Ravi et al., 2024) (Hiera-T, Hiera-S, Hiera-B+,
Hiera-L) were evaluated in both their initially released version (SAM

Frontiers in Artificial Intelligence

2.0) and their updated version (SAM 2.1). To assess segmentation
quality, the models were applied to all three datasets (MED, MUD,
SOD). Therefore, 10 images and 10 object instances per image were
randomly selected and annotated with the polygon feature of
ARAMSAM (see chapter 2.4). The geometric median of the respective
ground-truth masks, as defined by Vardi and Zhang (2000), was used
as a positive point prompt for the model. A positive point prompt
indicates to the model where to find a mask at the specific point in the
image. Multiple points may be prompted to SAM to generate a mask.
In contrast, negative points can be prompted to confine masks or
exclude regions from a mask (Kirillov et al., 2023). To quantify
segmentation accuracy while accommodating class imbalance
between relatively small object instances and the background, the
generalized dice score (GDS) (Sudre et al., 2017) implemented in
Monai (1.4) (Cardoso et al., 2022) was used as a metric to evaluate the
models’ performance. For this specific two-class case, the GDS can be
defined for N pixels as:

2212=1Wl Zilpi,l 8&il
lezlwlzlil(pi»l + gi,l)

Where g;; € {0,1} are the ground-truth labels and p; ; € {0,1} are
the predicted labels for the class [ at pixel position i. The weight per

GDS = (1)

class wy is defined as:

1

— )
(ZZly "’l)

wp=

Where y;; is the one-hot encoded ground-truth label at pixel
position i for class .
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2.3 Automatic mask generator (AMQ)
hyperparameter optimization

Both SAM 1 and SAM 2 feature an AMG, which proposes masks
without requiring a specific prompt input. Instead, a point grid is
prompted internally, and predicted masks are filtered based on different
tunable hyperparameters (Kirillov et al., 2023; Ravi et al., 2024). Both
the density of the point grid and the strictness of mask filtering can be
set via the hyperparameters. Definitions of the hyperparameters can be
found in the docstrings of the “AutomaticMaskGenerator” classes
within the SAM 1 and SAM 2 Python packages.

To optimize the AMG hyperparameters per encoder, a grid search
over the given sets of hyperparameter variations was conducted on 10
previously annotated maize ear images, which show, other than images
of the MED, only the maize ear center (Supplementary Figure S1). As
can be seen in Table 1. The hyperparameter search space covered three
different values for six hyperparameters, which covers 729 possible
configurations in total. Some combinations did not produce any masks
and even led to crashes of the SAM 2 package in 8 instances, which is
why only 721 combinations are reported in this study. The specific
faulty hyperparameter configurations can be seen in the ARAMSAM
repository under the “preprint_v0.1” tag.

The chosen search space aims to increase the number of proposed
masks compared to the default configuration. At the same time, it also
explores hyperparameter values close to the default configuration.
Hyperparameter settings that were considered less significant were not
tested but were kept at default values and are not listed in Table 1.

The Fj-score with = 2, weighing recall R four times as high as
precision P, was chosen as a metric. Thereby, the production of more
masks has been encouraged. The goal to increase the number of masks
proposed by the AMG was driven by the assumption that manually
discarding masks is less time-consuming than creating new masks
manually for a human annotator. For precision and recall calculations,
predicted and ground-truth masks were matched based on the
intersection over union (IoU).

The IoU is defined as:

_ Area of Intersection _ |A s B|

IoU = >
|AUB|

3)

Area of Union

Where the area of intersection is the overlapping region of two masks,
and the area of union is the area covered by both masks combined.

10.3389/frai.2025.1748468

Since predicted masks are not directly used for a downstream task
but instead are used as annotations, true positives (TP) are defined at
the ground-truth level. A ground-truth mask is counted as a TP if
there exists at least one predicted mask with an Intersection-over-
Union (IoU) greater than 0.8. This threshold was selected empirically
based on preliminary tests that demonstrated sufficient mask quality.
If a ground-truth mask is not matched with any predicted mask, it is
counted as FN. False positives (FP) are predicted masks that cannot
be associated with any ground-truth mask above the IoU threshold.
Consequently, these definitions do not follow conventional one-to-one
matching between predictions and ground truths. This is intentional
since the annotation pipeline, in theory, allows a single predicted mask
to be reused for multiple ground-truth instances, though this is very
rare. Such a scenario would be a ground-truth instance that is
occluded by another ground-truth instance. Here, the same predicted
mask could be suitable to represent both the occluded instance and
the instance on top. Thus, a single prediction could represent
multiple TP.

Precision P is defined as:

P= T_P, (4)
TP + FP
while recall R is defined as:
R= L (5)
TP+ FN
Thus, the F;_,-score is defined as:
F2=(1+22) PxR _g PxR (6)
2’P+R  4P+R

2.4 ARAMSAM software

ARAMSAM is a previously unpublished open-source image
annotation software, developed in this study for instance segmentation
and mask transfer from one overlapping image to the next. The
software uses Python (3.10) (Van Rossum and Drake, 2009) and is
based on publicly available packages of the Python universe. The
software’s front end runs on PyQt6 (6.7) (Riverbank Computing, 2025)

TABLE 1 Hyperparameter search space for automatic mask generators (AMG) of SAM 1 (ViT-H) and SAM 2.1 (Hiera-S).

Hyperparameter

SAM 1 (ViT-H) SAM 2.1 (Hiera-S)
points_per_side {32, 64, 128} {32, 64, 128}
points_per_batch {128} {128}

pred_iou_thresh

{0.72, 0.8, 0.88} {0.72,0.8,0.88}

stability_score_thresh

{0.92, 0.95, 0.98} {0.92, 0.95, 0.98}

stability_score_offset {0.7, 1.0, 1.3} {0.7, 1.0, 1.3}
crop_n_layers {0, 1,2} {0, 1,2}
crop_n_points_downscale_factor {1,2,4} {1,2,4}

Italic values mark default values. Bold values mark optimal values.
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FIGURE 2

red and the preview mask is shown in blue.

Overview of the ARAMSAM user interface. Top-left: Original RGB image. Top-right: Annotated masks overlaid on the original RGB image, with numbers
indicating the mask ID. The white mask represents the preview generated by SAM 1/SAM 2. Bottom-left: Point view showing annotation prompts. Red

points indicate negative prompts guiding SAM 1/SAM 2 to avoid these locations. White points indicate positive prompts guiding SAM 1/SAM 2 to include
these locations. The preview mask is shown in green. Bottom-right: Annotated masks on black background. Overlapping mask areas are highlighted in

while the back end uses OpenCV (4.10) (Bradski, 2000) for
conventional computer vision tasks, Pandas for data wrangling (2.2)
(McKinney, 2010), PyTorch (2.4) (Paszke et al., 2019) for Al utilities
and SAM 1 (Kirillov et al., 2023) and SAM 2 (Ravi et al., 2024) for
semiautomatic zero-shot segmentation tasks.

The user interface of ARAMSAM features a top bar with general
settings and buttons for annotation actions (Figure 2). Below the bar,
four freely selectable views of the image that is being annotated are
visible. To ensure a comparable annotation process during the
experiments, users were not allowed to change any settings themselves,
and the views were predefined. The top-left view showed the original
RGB image, and the top-right view showed the collection of previously
annotated masks on the original. The bottom-right view showed the
previously annotated masks in white, with overlapping mask parts
being highlighted in red to avoid unintended overlap. The bottom-left
view indicated points for both drawing polygons and interactively
prompting with SAM 1 or SAM 2.

ARAMSAM enables creating segmentation masks with a set of
tools to meet different demands for specific applications. The most
common approach is to draw polygons around the object of interest.
Another tool is the interactive prompting based on SAM 1 or SAM 2.
Here, the user hovers the mouse over the image for real-time mask
proposals (Figure 2). The image is embedded by the encoder
beforehand. Multiple positive and negative points can be added to
refine the proposed mask. Additionally, ARAMSAM employs AMG
as a supplementary tool within SAM 1 and SAM 2. Thereby, masks are
proposed sequentially, and the user’s task is to choose whether each
mask represents an object of interest or should be discarded instead.

Furthermore, ARAMSAM includes functionalities to transfer
masks from one image to another if the dataset contains
consecutive, overlapping images. Since SAM 1 does not inherently
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feature mask propagation, a panorama-based algorithm is used to
transfer masks. Here, image key points are detected by the ORB
(oriented FAST and rotated BRIEF) feature detector (Rublee et al.,
2011), which is based on FAST (features from accelerated segment
test) (Rosten and Drummond, 2006) and BRIEF (binary robust
independent elementary features) (Calonder et al., 2010). The key
points are matched as shown by Brown and Lowe (2007). The
resulting image orientation can be exploited to project bounding
boxes of objects annotated on the first image to the following
image. The projected bounding boxes are then prompted to SAM
1 with the second image. When using SAM 2 in ARAMSAM,
masks are propagated by means of the mask propagation
functionalities, which were originally designed for video object
segmentation (Ravi et al., 2024). To load image sequences instead
of video frames into the memory bank of SAM 2, a custom
function was added to the original Python package.

2.5 User experiment

Fourteen experts in the field of agriculture were asked to
annotate images of three randomly selected maize ears from MED
in the ARAMSAM user interface. To familiarize participants with
the software, each individual completed a tutorial demonstrating
how to identify valid kernel masks and how to use all relevant tools
for the experiment. During the experiment, every participant
applied three different annotation methods to the same three
initially selected maize ears. To mitigate potential learning effects
over time, the order of these nine method-ear combinations was
randomized for each user. An overview of the annotation methods
is provided in Table 2.

frontiersin.org
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TABLE 2 Overview of annotation methods in the user experiment.

Annotation method Tools Number of ears

Polygon annotation of
Polygon highlighted maize

kernels

1. Select AMG masks
(image 1)

N

Interactive

SAM 1 prompting (image 1)

W

. Polygon drawing
(image 1)
4. Mask transfer and

manual control
(from image 1 to 2)

. Select AMG masks

5

SAM 2 (image 2)

o

Interactive

prompting (image 2)

~

. Polygon drawing

(image 2)

10.3389/frai.2025.1748468

Instance limit Images per ear Mask transfer

Panorama matching

Mask propagation

The users had to apply the three different annotation methods in separate steps of the experiment. SAM 1 and SAM 2 represent annotation methods consisting of multiple sequentially applied
tools based on SAM 1 (Vit-H) and SAM 2.1 (Hiera-S), respectively. AMG: Automatic mask generator.

When participants were asked to use the polygon method, they
were only required to annotate three maize kernels to avoid excessive
effort. Before the experiment, three kernels per image were randomly
selected and highlighted by bounding boxes, ensuring that all users
annotated the same kernels.

For the annotation methods based on SAM 1 and SAM 2, users
were given a fixed structure, as listed in the tool’s column of Table 2.
These annotation methods with a fixed structure had to be applied
to three image pairs that contain two consecutive images. The three
image pairs were the same for SAM 1 and SAM 2, and the first
image of each of the image pairs is used during the polygon method.
The fixed structure is ordered from tasks requiring less interaction
(e.g., selecting AMG masks) to tasks requiring more interaction
(e.g., polygon drawing). If, e.g., all valid maize kernels of one image
had been assigned a good mask created by the AMG, there was no
need to apply interactive prompting or polygon drawing. After
transferring masks from the first image to the second (either by the
panorama approach or the SAM 2 propagation), the users were
asked to check whether all masks had been transferred correctly
and to remove invalid masks by clicking on them. The criteria for a
mask being transferred correctly are assessed only by the quality of
the mask on the second image. Individual maize kernels are not
tracked back to the preceding image.

To evaluate whether annotation methods based on SAM 1 and
SAM 2 can accelerate the annotation process of instance
segmentation masks over previous standard methods, the drawing
of polygons was used as a baseline. Since the annotation of the
second image of an ear is influenced by the mask transfer
capabilities of both the SAM 1 and the SAM 2 method, only the first
image of an ear was taken for comparison across the polygon and
both SAM methods. When the users were applying annotation
methods based on SAM 1 and SAM 2, the users had to
independently decide which object represented a valid maize
kernel. To study the consistency of annotation decisions across
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different users, the annotation frequency per image pixel f, . was
defined as:

N, assigned
f apx = > (7)
Nrounds

Where N,igneq is the number of times a pixel has been assigned to
a mask; N is the number of annotation rounds per image. With 14
users, each employing two annotation methods based on SAM 1 and
SAM 2, the total number of annotation rounds per image was
Niounas = 28.

All experiments have been conducted on systems using a single
RTX 3090 (NVIDIA Corporation, Santa Clara, USA) as a GPU.

2.6 Statistical analysis and data
visualization

All statistical analyses were performed using R (4.3.2) (Team,
2025). Data wrangling and manipulation were carried out with
Dplyr (1.1), Tidyr (1.3), and Tibble (3.2) from the Tidyverse
universe (Wickham et al., 2019). Statistical tests and post hoc
analyses were conducted using Rstatix (0.7) (Kassambara, 2019).
Normalized metric result data [p € (0,1)] was pre-processed with a
logit transformation before applying statistical tests. Thereby,
boundary constraints close to 0 or 1 and variance heterogeneity
were tackled as shown in Zou et al. (2004). Repeated measures
ANOVA results have been corrected by the Greenhouse-Geisser
approach to mitigate sphericity of within-subject factors. Two-sided
pairwise t-tests with Bonferroni correction have been conducted as
post-hoc tests. Both the repeated measures ANOVA and the
post-hoc tests rejected the Hy-Hypothesis with a significance level
of a =0.05.
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Python (3.10) (Van Rossum and Drake, 2009) and the Pandas
package (2.2) (McKinney, 2010) were used for data preparation,
followed by data visualization based on Matplotlib (3.10) (Hunter,
2007) and Seaborn (0.13) (Waskom et al., 2021). In all boxplots
displayed in this study, the central box spans from the first quartile to
the third quartile with a line inside marking the median. The whiskers
extend to the smallest and largest data points within 1.5 times the
interquartile range from the quartiles. Data points falling outside these
limits are plotted individually as outliers.

2.7 Declaration of generative Al and
Al-assisted technologies in the writing
process

During the preparation of this study, the authors used ChatGPT
4-0 (OpenAlL Inc., San Francisco, USA) to improve the writing. After
using this tool/service, the authors reviewed and edited the content as
needed and take full responsibility for the published article.

3 Results

3.1 Zero-shot performance of different
SAM 1 and SAM 2 encoders

To evaluate mask quality as predicted by SAM 1 and SAM 2, all
encoders have been applied on the agricultural datasets (MED, MUD,

10.3389/frai.2025.1748468

SOD), with a single point (the geometric median) for each of the 100
ground-truth masks—a comparison between the predicted mask and
the ground-truth mask results in the GDS. In Figure 3, the resulting
GDS of the encoder experiments are displayed for the MED, MUD
and SOD dataset (from top to bottom). The scores range from 0 to 1
and are displayed as a boxplot indicating the distribution of the
quartiles. All encoders achieve relatively high mean GDS for both the
MED (0.87) and the SOD (0.94) compared to the MUD (0.50). These
results were expected as the ground-truth masks of both the MED and
SOD resemble compact round objects, whereas the plant objects in the
MUD are complex and partially overlap with neighboring plants.

To compare the results of all individual encoders, a repeated
measures ANOVA was conducted per dataset. Significant effects
across encoders were revealed for all datasets, with the test results
being F(2.96, 292.92) = 165.48, p < 0.001, for the MED, F(6.23,
616.59) = 17.60, p < 0.001, for the MUD, and F(4.44, 439.61) = 7.71,
P <0.001, for the SOD. A pairwise t-test was used as a post-hoc test
(a <0.05) with significant differences shown in Figure 3. Two
encoders not sharing a letter achieved significantly different
performance on the respective dataset. The alphabetical order of the
letters indicates the performance ranking from “@” the best to “g” the
worst performing group.

The Hiera-T encoder of SAM 2.0, as well as both versions (SAM
2.0 and SAM2.1) of the Hiera-L encoder, had to be excluded from
statistical tests of the MED since normality of the data could not be
assumed. This is indicated by the absence of a letter. Since these three
encoders apparently do not show good performance, they are
irrelevant for further experiments and thus can be excluded from
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Segmentation quality of SAM 1 and SAM 2 across different encoder versions tested on the maize ear dataset (MED), maize UAV dataset (MUD), and soil
dataset (SOD). The x-axis indicates the encoder versions, and the y-axis shows the generalized dice score (GDS) per mask. Significant differences are
denoted by letters arranged from the highest mean GDS to the lowest (a < 0.05).
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statistical tests. This performance test of the encoders was conducted
to identify the best encoders for later experiments.

Notably, at least one encoder of SAM 1 belongs to the significant
letter “a” for all three datasets. Moreover, all encoders of SAM 1 show
significantly higher GDS per mask than any encoder of SAM 2 when
tested on MED, indicating stronger or equal performance of SAM 1
on all datasets when compared to SAM 2.

The compared encoders vary regarding their network
architecture and the number of parameters (Kirillov et al., 2023;
Ravi et al., 2024). Thus, the largest ViT-H (SAM 1) and Hiera-L
(SAM 2) encoders are less computation-efficient than their smaller
counterparts. Figure 3 indicates that the smallest encoder types of
both SAM 1 (ViT-B) and SAM 2 (Hiera-T) show significantly lower
GDS than the larger encoders. However, the largest encoder types
(ViT-H, Hiera-L) do not perform significantly better than the
medium-sized encoders. Interestingly, the updated encoders of
SAM 2.1 only show a significantly higher GDS than their
predecessors for the Hiera-S encoder at MED and for the Hiera-L
encoder at the SOD. In contrast, the old SAM 2.0 encoders achieved
a significantly higher GDS for the Hiera-B+ encoder at MED and
the Hiera-S encoder at the SOD. These results indicate no
improvement of the updated SAM 2.1 encoders over the initially
released ones on the proposed agricultural use cases.

3.2 Automatic mask generator (AMQ)
hyperparameter optimization

The following experiments focused on images of the MED because
maize ears are complex, round objects that were captured from
different angles. Thus, object tracking was expected to be a more
challenging task than with images of the MUD and SOD where all
image planes are parallel to another and to the soil surface. Moreover,
only the best performing encoders of SAM 1 (ViT-H) and SAM 2.1
(Hiera-S) according to GDS, as achieved on the MED, were selected
for optimizing hyperparameters of the AMG. The best performing
hyperparameters according to the mean F, over all images have been
identified on a new subset of the MED, where ground-truth masks for
all kernels have been annotated manually (Table 1).

Within the optimal settings of SAM 1 (ViT-H), the identified
values for the hyperparameters points_per_side and pred_iou_thresh
are increasing the number of proposed masks compared to the default
values but in contrast, the setting of stability_score_thresh is applying
a stronger filter to the proposed masks than the default value.
However, the settings of hyperparameters for SAM 2.1 (Hiera-S)
increases the number of masks by a reduced value of pred_iou_thresh,
by an increased number of crop_n_layers and with reduced stability_
score_thresh as well as reduced stability_score_offset. Notably, the
optimal hyperparameters of SAM 2.1 (Hiera-S) include no deviation
from the default settings that would reduce the number of masks.
These different optimal settings highlight the models’ network
architectural differences as revealed on the MED.

Figure 4 shows the F,-score of the selected SAM 1 encoder
(ViT-H) and SAM 2.1 encoder (Hiera-S) per test image. A significant
effect of the encoders and hyperparameters was revealed by repeated
measures ANOVA (F(1.04, 9.4) = 31.27, p < 0.001). The AMG of both
SAM benefits significantly from the hyperparameter optimization
compared to the default configuration. While SAM 1 (ViT-H)
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FIGURE 4
Mask quality predicted by automatic mask generators (AMG) before
(default) and after hyperparameter optimization (best). The models
were evaluated per image using F2 calculated from the number of
predicted masks that matched ground-truth masks. Significant
differences (pairwise t-test, a < 0.05) are indicated by different letters.

improved from a mean F,-score of 0.87-0.93, SAM 2.1 (Hiera-S)
improved from 0.05 to 0.74.

Again, the encoder representing SAM 1 (ViT-H) performs
significantly better than SAM 2.1 (Hiera-S). Moreover, the SAM 2.1
(Hiera-S) encoder achieved an especially low F, on one image,
depicted as an outlier in Figure 4. Conversely, the selected SAM 1
(ViT-H) encoder does not show any outliers, indicating more stable
performance on the MED.

3.3 User experiment

After identifying the best-performing encoders and the optimal
AMG hyperparameters for SAM 1 (ViT-H) and SAM 2 (SAM 2.1
Hiera-S), respectively, a user experiment based on ARAMSAM was
conducted with these configurations. All users had to apply annotation
methods based on SAM 1, SAM 2, and the drawing of polygons. Thus,
each image has been annotated by each user in multiple rounds.
While, the objects of interest were highlighted during the polygon
method, when using the other methods, the participants had to decide
on their own which objects represent valid kernels according to the
instructions they were given in the tutorial. The annotation decisions
for all three image pairs are shown in Figure 5. As shown in the
bottom row of Figure 5, the number of annotated instances (maize
kernels) varied little across different users. The highest standard
deviation of annotated instances per image (3.9 kernels) is observed
for the first image of the left image pair. Consistent annotations across
users are also confirmed by the top row of Figure 5, where most
kernels have been annotated at annotation frequency f; ,. close to 1.0.
Nevertheless, lower f, ,. can be observed for kernels in the area of the
infertile tip, as shown in the left and the center image pairs. An
enlarged view of the leftmost image is displayed in the supplementary
data (Supplementary Figure S2). The rare occurrence of pink color on
some kernel edges indicates that overlapping masks were assigned to
neighboring kernels, which

represents under-segmentation.
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Annotation decisions of 14 users for three maize image pairs. Top: Relative frequency a pixel has been assigned to a mask (f, ,,) for the total number of
annotation rounds for the first (w = 0°) and second rotated image (w = 7.1°) of a maize ear. Only pixels assigned to a mask more than once are
included. Bottom: Number of kernel instances annotated per image over all applied methods. The polygon method is excluded from the figure.

Conversely, the light-blue color on kernel edges indicates that the
assigned kernel masks were too small and did not cover the entire
kernel. This over-segmentation can be observed on all ear images 20.0 - b a B a A
(Figure 5). Yet, both under-segmentation and over-segmentation 9
usually cover a few pixels, which should have a minor influence on 17.5 4
applications such as phenotyping. .
In Figure 6, the annotation time per mask is displayed for the g 1501
SAM 1 and SAM 2 approaches for both the first and the second of the £
consecutive images, as well as for the polygon method for the first of g 1251 N
the consecutive images. Each boxplot contains 42 data points (14 users g 10.0 -
times 3 images). A significant effect of the annotation method on the §
annotation time per mask was revealed by a repeated measures 5 75 4
ANOVA (F(1.11, 14.43) = 64.70, p < 0.001). The subsequent post-hoc
test shows significant differences between the polygon method and 5.0 1
both SAM methods (indicated by different letters). Accordingly, a Image position
significant difference in annotation time was observed with 9.7 s/mask 2.5 [ First
for the polygon method. The approaches based on SAM 1 and SAM 2 00 BN Second
took 2.1 and 2.6 s/mask, respectively. However, no significant ’ P oly gon S AM 1 S AM 5
differences between SAM 1 and SAM 2 were observed in the -
first images. Annotation time per mask across different methods (X-axis).
In the next step, masks from the first images were transferred to Significant differences are indicated by lowercase letters across first
the second images either by the panorama—based algorithm (SAM 1) images and by capital letters across second images (pairwise t-test,
or mask propagation (SAM 2). On the second images a significant @s00

difference between SAM 1 and SAM 2 could be shown by both the
ANOVA (F(1, 13) = 24.177, p < 0.001) and the post-hoc test. The latter

indicated a significantly lower annotation time of SAM 2 when Figure 7 depicts the number of masks generated and the annotation

compared to SAM 1 (Figure 6). Strikingly, the mean of SAM 1 on the
second image (3.3 s/mask) is higher than that on the first image
(2.1 s/mask).
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time (s/mask) for each tool. The AMG was the most applied tool of the
SAM 1 method on the second image (56.0%) (Figure 7), suggesting that
the majority of masks were not transferred correctly from the first to the
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Applied tools within annotation methods. Data points represent one annotation round per user. Time (s/mask) is based on the mean temporal distance
between individual masks when more than one mask was annotated per tool. AMG: Automatic Mask Generator.

second image. Likewise, the AMG of SAM 1 and the AMG of SAM 2
were also the predominant tools on the first images, where users could
not benefit from transferred masks. Here, AMG was the origin of 95.8%
(SAM 1) and 94.9% (SAM 2) of the selected masks (Figure 7). Thus, the
users’ annotation behavior when transferring a mask from panorama
matching (SAM 1) was similar to starting from a new image. This shows
that SAM 1 did not benefit from the previous annotations and the
panorama-inspired method for mask transfer of SAM 1 appears to not
be suitable for the MED.

However, the SAM 2 method on the second image represents the
fastest method over both image positions by requiring 1.6 s/mask on
average. This is also supported by mask transfer being the predominant
origin of masks created by the SAM 2 method on the second image
(94.0%) (Figure 7). To determine whether the SAM 2 method,
benefiting from masks propagated from the previous image, allows
significantly faster annotation time than applying SAM 1 directly on
the first image, a one-sided pairwise ¢-test was conducted. Here, the
time per mask has been averaged over the images. The test results
show significantly faster annotation times of SAM 2 (¢(13) = 2.03,
p = 0.032), suggesting that applying SAM 2 with mask propagation on
image sequences of the MED is the fastest of the proposed methods.

4 Discussion

4.1 Comparing zero-shot performance of
SAM1 and SAM2

Throughout this study, SAM 1 and SAM 2 were compared
according to mask quality per prompt on three datasets (MED,
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MUD, SOD), mask coverage of the respective AMG on one dataset
(MED), and temporal annotation effort for users on one dataset
(MED). SAM 2 did not outperform its predecessor in any of these
disciplines when applied to single images. Architecture-specific
problems became apparent during the encoder experiment, where
both Hiera-L encoders and the initial Hiera-T (2.0
SAM 2 are predicting the entire ear as a single mask instead of

) encoder of

individual kernels in multiple instances (Figure 3). These problems
specific to a certain encoder size highlight the need for proper
model selection depending on the data.

While this study covered only agricultural use cases with RGB
data, Sengupta et al. (2025), compared SAM 1 and SAM 2 on medical
datasets covering both RGB and grayscale data. The authors showed
that SAM 2 does not consistently perform better than SAM 1, which
appears to be independent of image data type. However, SAM 2
achieved higher mask accuracy metrics in segmenting solar panels on
remote sensing data (Rafaeli et al., 2024), in contrast to this study
especially SAM 2.1 (Hiera-L) outperformed SAM 1 (ViT-L). Ravi et
al. (2024) showed an improvement of SAM 2 for zero-shot
performance (single images) on the most of 37 datasets from multiple
domains. However, the 37 datasets barely focus on agriculture, besides
the PPDLS (plant phenotyping datasets leaf segmentation) (Minervini
etal., 2016), containing plant phenotyping data. Here, the performance
of SAM 2 showed a delta of —4.8 mIoU (mean intersection over
union) compared to the performance of SAM 1 (Ravi et al., 2024),
indicating a setback in the performance of SAM 2 over its predecessor.
The findings from Ravi et al. (2024) on the PPDLS, together with the
results presented here, suggest that SAM 2 does not represent an
improvement over its predecessor regarding zero-shot performance
on single images of agricultural datasets.
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Yet, Ravi et al. (2024) and Rafaeli et al. (2024) showed better
performance of SAM 2 compared to SAM 1 in most domains. This is
especially noteworthy because of SAM 2 enormous time savings in
computation. Due to the smaller hierarchical image encoders, SAM 2
is six times faster than SAM 1 (Ravi et al., 2024). The architectural
differences could be considered as a reason why the optimal
parameters of the selected encoders of SAM 1 and SAM 2 differ
greatly. Another benefit of SAM 2 is its ability to propagate masks
from one image frame to the next. Incorporated in ARAMSAM, this
feature accelerated the annotation time from 2.1 s/mask to 1.6 s/mask,
by about 23% (Figure 6). Despite SAM 2 not showing improved mask
quality compared to SAM 1, the mask propagation capability, as well
as the more efficient model architecture, can lead to SAM 2
accelerating annotation times and saving human labor. Especially on
image sequences, SAM 2 is considered the most suited method for
annotation with ARAMSAM on the MED.

The positive results of our experiments are valid for the controlled
environments represented by the datasets that all originated from the
same geographical region. Transferring the results to less controlled
conditions would expose the models to challenging properties like the
tempo-spatial variations of environments, e.g., through weather effects
or seasonal growth. These include background disturbances, partial
or full occlusion of relevant object features or complete objects,
different object sizes, rotations, or deformed objects, e.g., through
wind and illumination changes due to varying daylight conditions
(Song et al., 2025). Furthermore, the process of image acquisition
(sensor type, motion blur, processing algorithms) also affects the
image quality, which is important for successful use with deep learning
methods (Dodge and Karam, 2016). Despite the limited variability of
datasets in the experiments of this study, a certain robustness of
ARAMSAM to new conditions would be expected, since SAM 1 and
SAM 2 are foundation models that have been trained on large and
diverse datasets (Ravi et al., 2024).

4.2 Parameter optimization of automatic
mask generator (AMG)

To our knowledge, this is the first study doing a hyperparameter
optimization on the automatic mask generator of both SAM 1 and
SAM 2. In the user experiment the AMG was the most used tool for
both image positions of the SAM 1 method and the most used tool of
the SAM 2 method on first images (Figure 7). Although it should be
noted that the here proposed structured experiment design fostered
the usage of the AMG being used by the participants in first or second
position, the capability of the AMG to cover more than 95.8% (SAM
1) and 94.9% (SAM 2) of the valid maize kernels is remarkable. Of all
tools, the AMG of both SAM 1 and SAM 2 showed the lowest
annotation time on the first images, taking only taking 1.5 s/mask and
1.7 s/mask, respectively (Figure 7). At the same time, the data shows
alow standard deviation of 0.7 s/mask (SAM 1) and 0.6 s/mask (SAM
2), manifesting the tools’ reliability. As demonstrated in Figure 4, the
AMG of both SAM 1 and SAM 2 benefited greatly from the
hyperparameter optimization. Especially the results of SAM 2,
improving the F, by more than 14 times, underline the importance of
hyperparameter optimization when applying the AMG.

Conversely, the AMG could propose a large share of useless masks
in scenarios where only a few objects of interest exist in one image.
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However, in crowded scenes where most objects represent object of
interest like in the MED, the AMG can be especially useful. Therefore,
exploiting the potential of this powerful tool by hyperparameter
optimization is an important contribution to accelerating the
annotation of segmentation datasets.

4.3 Time savings by ARAMSAM
orchestrating SAM-based annotation tools

Applying annotation tools based on both SAM 1 and SAM 2
clearly outperformed the polygon method representing a former state
of the art method for annotation of segmentation masks. For single
images, the annotation time per mask is accelerated by 4.6 times for
SAM 1 and 3.7 times for SAM 2. When applying SAM 2 with mask
propagation on image sequences, the acceleration increases by a factor
of 6.1 compared to the polygon method. Yet, it should be noted that
the panorama-based mask transfer of masks proposed by SAM 1 did
slow down the annotations by factor 1.6 compared to applying SAM
1 without any mask transfer. This highlights the difficulties of mask
transfer even on highly overlapping images and indicates that this
method was not suitable for mask transfer on the MED. Likely, the
panorama-based mask transfer would have performed better on
image sequences moving in a linear direction instead of the circular
rotation presented by the MED. A more computation-intensive
alternative could be a structure from motion (Schonberger and
Frahm, 2016) based approach. Like the panorama algorithm, structure
from motion matches multiple key points from overlapping images.
In contrast to panorama stitching, the key points as well as the camera
positions are oriented in 3D space, which would allow mask transfer
even on irregularly shaped objects such as maize ears. However,
structure from motion requires multiple images and sophisticated
computation hardware to be applied in an edge scenario like image
annotation (Schonberger and Frahm, 2016).

The SAM tools implemented in ARAMSAM can save a
tremendous amount of labor on the MED dataset compared to
polygon drawing. Since SAM 1 and SAM 2 were trained and
successfully tested on various domains (Kirillov et al., 2023; Ravi et al.,
2024), ARAMSAM has the potential to further accelerate the
annotation process in other domains than the MED. Yet, it should be
noted that the maize kernels represent rather simple objects with
regular, round shapes and clear edges. While demonstrating how SAM
1 and SAM 2 orchestrated by ARAMSAM accelerate annotation
speed, this study does not compare ARAMSAM to other public
annotation software. Our findings suggest that other software
incorporating SAM 1 and SAM 2 would benefit from similar gains in
annotation speed.

Increasing the annotation efficiency can be especially relevant in
fields where human expert knowledge is required. Besides plant
phenotyping, one such field would be medicine, where, e.g.,
radiologists have to label malignant tumor tissue on CT scans (Zhu et
al., 2024). Also, the example of maize kernels (MED) showed the
challenges of qualified decision-making. Although all participants saw
the same example masks of valid and invalid maize kernels during a
tutorial, the decision on which of the top kernels shown on the left and
center pair of maize ears in Figure 5 represent valid kernels was
ambiguous. In a scenario where, e.g., the length of the infertile tip of
a maize ear should be measured (Oury et al., 2022), inconsistent
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decisions on which kernel to label as valid or fertile could have a
crucial impact on the results. However, the agricultural experts that
participated in this study were not specifically experts for maize ear
phenotyping. Even for professionals in that field, borderline cases and
human errors cannot be ruled out for any annotator.

Despite the tutorial covering all functionalities of ARAMSAM,
human errors could be observed at the user experiment depicted as
outliers in Figures 6, 7. A few participants appeared to be stuck in
certain steps of the experiment, leading them to spend exceptionally
long in some annotation tools. Since these outliers indicate a certain
complexity of the experiment and do not represent measurement
errors, they were included in the statistical analysis. However, the rare
occurrence of these outliers shows that only few users encountered
these difficulties and most of them were able to learn ARAMSAM
quickly.

The integration of the AMG, interactive prompting and mask
transfer options for both SAM 1 and SAM 2 as well as polygon
drawing as a baseline demonstrates the versatility of ARAMSAM in
annotating segmentation datasets. Since the source code of the
software will be published along with this paper and since ARAMSAM
is completely written in Python, it will be relatively easy to adapt to
specific demands. Besides the here conducted annotation experiments
ARAMSAM, can be directly used for annotating single images and
image sequences for the purpose of training a specific Al model. Such
image sequences could include videos, overlapping neighboring
images or slices of 3D-data such as CT-Scans or polygon meshes. Also
using ARAMSAM directly for measurements of objects in images
would be feasible, if intrinsic as well as extrinsic camera parameters
and the distance to the object of interest are known.

The development of novel Al-based phenotyping solutions
could benefit greatly from accelerated mask annotation based on
ARAMSAM. Although Ravi et al. (2024) state that mask
propagation would suffer from crowded scenes with many object
instances, the findings of this study on the MED suggest successful
mask propagation in most cases. On average, 94.0% of the masks
annotated on the second images originated from mask propagation
(Figure 7). It should be noted that the maize ears are rotated by
only 7.1°, leaving a substantial overlap between images to be
exploited by SAM 2. Yet, this overlap might be smaller than that of
consecutive video frames, for which the SAM 2 mask propagation
was designed for (Ravi et al., 2024). How far this overlap can be
reduced remains an open research question. For both annotation
tasks and zero-shot applications, a falsely propagated mask can
have a negative impact. However, an overlap of around 80% is, e.g.,
common in UAV missions for creating digital surface models based
on photogrammetry (Oehme et al., 2022). This substantial overlap
suggests potential for mask propagation with SAM 2 on field image
data captured by UAV.

5 Conclusion

In this study, the potential of both SAM 1 and SAM 2 to accelerate
the annotation of segmentation masks as orchestrated by ARAMSAM
was evaluated. The annotation time was accelerated by up to 4.6 times
(to 2.1 s/mask) with SAM 1 on single images and up to 6.1 times (to
1.6 s/mask) with SAM 2 on image sequences when compared to
polygon drawing, representing remarkable time savings. Moreover,
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the results on zero-shot performance and from user experiments
applying SAM 2 on single images suggest, in accordance with the
literature, that SAM 2 represents no improvement on agricultural
datasets over SAM 1. In future research on annotation methods in the
agricultural domain, finetuning SAM 2 could further accelerate the
annotation process.

Furthermore, the importance of hyperparameter optimization
of the AMG of both SAM 1 and SAM 2 was demonstrated. The
F,-score of predicted masks by SAM 2 when matched to ground-
truth masks has been improved by more than 14 times (from 0.05
to 0.74) via grid search for optimal hyperparameters. Moreover,
efficient optimization techniques covering larger search spaces
such as evolutionary algorithms could be applied in future studies
using the AMG.

ARAMSAM, which was developed in this study, is a flexible
framework that provides user-friendly access to tools based on SAM
1 and SAM 2. However, the annotation acceleration of SAM 1 and
SAM 2 should be further quantified on more diverse and challenging
agricultural datasets than those presented in this study. Furthermore,
the annotation capabilities of ARAMSAM remain to be compared
to other public annotation software in a future study. Nevertheless,
built on a Python foundation, ARAMSAM is easily extendable with
custom code, allowing researchers to tailor its functionalities to
specific needs. Future implementations may include the ability to
assign classes to segmentation masks, enriching the software’s
annotation capabilities. Moreover, ARAMSAM could be integrated
with active learning approaches by incorporating pretrained models,
which would facilitate the
performance.

Overall, ARAMSAM, as being published along with this study, is
a powerful software solution that integrates the ground-breaking
functionalities of both SAM 1 and SAM 2, while also possessing the
potential to evolve and make a significant impact on machine vision

iterative refinement of model

in agriculture and beyond.
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