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In the context of smart manufacturing, improving the quality and efficiency of
process planning, especially in the processing of complex parts, has become a key
factor influencing the level of intelligence in manufacturing systems. However,
most current process planning methods still heavily rely on manual expertise,
leading to problems such as difficulty in knowledge reuse, low planning efficiency,
and slow response times, which are inadequate to meet the diverse and changing
needs of engineering applications. To address these issues, this paper proposes
an algorithm for Assembly Process Reasoning and Decision-making based on
Bidirectional Long Short-Term Memory with Attention (AP-BiLSTM-ATT), which
aims to deeply explore the hidden relationships between the multi-dimensional
features of parts and process plans, thereby achieving probabilistic modeling of
process decisions. Specifically, the attributes, geometric features, and historical
process plans of parts are first labeled and vectorized, transforming traditional
process knowledge into structured data representations suitable for deep learning
models. A BiLSTM network model, integrated with a multi-head attention mechanism,
is then constructed to capture contextual dependencies and semantic weight
distributions between features, enhancing the model’s ability to express complex
process relationships. During training, the model learns the mapping distribution
between features and processes from a large-scale historical process dataset,
enabling intelligent reasoning and recommendation of process plans for new parts.
The results show that this method outperforms traditional methods in terms of
accuracy, response speed, and generalization ability in process planning, providing
effective support for enhancing the intelligence of complex part process planning
and laying a foundation for the structured expression and intelligent application
of manufacturing process knowledge.

KEYWORDS

AP-BIiLSTM-ATT, intelligent reasoning, knowledge representation, process planning,
smart manufacturing

1 Introduction

With the continuous advancement of intelligent manufacturing technology and the deep
integration of advanced manufacturing and information technologies, manufacturing
enterprises are achieving key breakthroughs in improving product quality, increasing
production efficiency, and reducing production costs. Intelligent manufacturing has widely
penetrated all stages of the product lifecycle, including product design, production
manufacturing, and service maintenance. Research shows that as emerging manufacturing
industries accelerate the deployment of intelligent technologies, the production efficiency of
their manufacturing systems has increased by 17%-20%. However, as a critical link between
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product design and production execution, manufacturing process
planning still relies primarily on human-machine interaction, with its
core decision-making process heavily dependent on engineers’
professional knowledge and experience.

In this context, the role of process planning in ensuring product
quality, improving machining efficiency, and optimizing production
costs becomes particularly significant. Especially in the manufacturing
of complex structural parts, efficiently reasoning out the most
appropriate process plan from the multi-dimensional features of parts
has always been a core challenge of intelligent process planning. In
contrast, traditional process planning often requires engineers to
manually devise plans based on their experience, which is not only
time-consuming and inefficient but also prone to subjective influences,
making it difficult to meet the modern manufacturing industry’s
demands for rapid response and precise decision-making. The
conceptual flow of this planning task is depicted in Figure 1.

With the gradual popularization of modern Computer-Aided
Process Planning (CAPP) systems, enterprises have accumulated a
wealth of historical process data. How to effectively extract valuable
knowledge from this large amount of historical data and utilize it
through intelligent methods has become a core issue in process
reasoning and decision support. For example, Agrawal et al. (2009)
proposed a multi-agent distributed CAPP system composed of a
global management agent, design agent, and optimization agent.
Using a backward-chaining reasoning mechanism, the system realized
intelligent decision-making for complex processes. Qian et al. (2023)
built a process-oriented knowledge ontology library for assembly
sequence planning and applied a Mixed-Integer Linear Programming
(MILP) model to optimize assembly actions and part sequences with
the objective of minimizing assembly time. Combined with a human-
computer collaboration visualization tool, they achieved rapid
automatic generation of assembly plans. Mou and Gao (2020)
proposed a fuzzy comprehensive evaluation method based on
historical machining data for assessing process plan reliability,
improving robustness in multi-objective and uncertain scenarios.
Wang et al. (2015) modeled the process planning problem as a directed
graph and used a two-stage ant colony algorithm for parallel optimal
path search, significantly reducing production costs and improving
algorithm efficiency. In addition, Rojek (2010) evaluated the
performance of Multilayer Perceptrons (MLP) and Radial Basis
Function (RBF) networks in intelligent CAPP systems, demonstrating
that they outperform traditional rule-based methods in tool selection
and operation sequencing. Deb et al. (2006) proposed a neural
network-based method for selecting machining operations,
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automatically determining process parameters and tool configurations
for rotationally symmetric parts.

However, traditional methods still face several critical challenges:
high costs for knowledge acquisition and maintenance, with rules,
ontologies, and templates requiring frequent updates by experts;
insufficient structuring of historical data, making it difficult to fully
leverage heterogeneous and multi-source process instances; and
limited real-time responsiveness to dynamic environments, hindering
rapid adjustments to production changes.

To overcome these bottlenecks, researchers have recently
introduced machine learning, deep learning, and reinforcement
learning technologies into CAPP systems. Zhang et al. (2022)
developed an intelligent decision-making system that maps assembly
units and process features into a multidimensional vector space,
optimizing assembly sequence planning via supervised learning
models, thereby significantly enhancing the system’s generalization
and automation capabilities. Jiang et al. (2024) proposed a fine-grained
assembly sequence planning method based on knowledge graphs and
deep reinforcement learning, where assembly operations are modeled
as continuous and discrete processes, constructing a dynamic graph
and applying an improved Deep Q-Network (DQN) to enable real-
time decision-making under complex constraints with hierarchical
Seq2Seq neural reasoning. Zhu et al. (2024) designed a two-stage
Seq2Seq neural network that captures both assembly sequences and
contact point selections through hierarchical reasoning, providing
highly flexible process planning for robotic assembly. Mortlock et al.
(2021) integrated Graph Neural Networks (GNNs) within a cognitive
digital twin framework to couple real-time shop floor data with
process models, supporting dynamic re-planning and predictive
maintenance.

Despite the significant progress made by current intelligent
process reasoning methods in improving decision-making efficiency
and accuracy, they still face several major challenges. First, deep
learning methods heavily rely on large amounts of accurately labeled
historical data, and acquiring high-quality labeled data is both time-
consuming and costly for manufacturing enterprises. Meanwhile,
although knowledge graphs effectively integrate process knowledge,
their construction and maintenance are complex and labor-intensive,
becoming increasingly difficult as the system evolves.

To address these challenges, this paper proposes the following
contributions:

A process reasoning model (AP-BiLSTM-ATT) based on part
attributes, geometric features, and process plan labeling and
vectorization is proposed. The model outputs a probability distribution

FIGURE 1
Simulation results for the network.

AP-BiLSTM-ATT
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over candidate process plans via a final softmax layer, enabling
uncertainty quantification and ranking of multiple feasible plans by
their likelihood. This model effectively captures the multidimensional
features of parts, reduces reliance on large-scale labeled datasets, and
provides efficient process recommendations.

An attention mechanism (ATT) is introduced into the process
reasoning framework, enabling the model to dynamically focus on key
information in part features. This enhances the precision of process
plan reasoning, reduces the dependency on complex ontology and
knowledge graph construction, and improves model interpretability.

Experimental results show that the proposed method can quickly
and accurately recommend optimal process plans for new parts
without relying on complex graphs or massive labeled data. The results
demonstrate that the method significantly outperforms traditional
approaches in terms of accuracy, recommendation speed, and
interpretability, effectively improving process planning efficiency.

2 Related work

Assembly Process Planning (APP), as a key stage within the smart
manufacturing workflow, aims to generate efficient and rational
assembly plans while satisfying assembly constraints and resource
limitations. Among its components, Assembly Sequence Planning
(ASP) constitutes the core of assembly, directly impacting the
efficiency, quality, and production cost of product assembly.
Consequently, how to efficiently and accurately achieve the automatic
generation of assembly sequences has become a major focus of
research both domestically and internationally.

2.1 Traditional rule-based and heuristic
search methods

Early research primarily relied on traditional methods based on
geometric features and assembly constraint rules. Torres et al. (2003)
proposed an assembly relation model and solved the assembly
sequence planning problem by leveraging the reverse logic of
disassembly and assembly. Dini et al. (1999) developed a mathematical
representation model of the assembly process based on the assembly
interference matrix and contact matrix, achieving the quantitative
evaluation and selection of assembly sequences. Although these
methods offer good intuitiveness and interpretability, their modeling
efficiency and degree of automation remain limited when applied to
industrial scenarios characterized by increasingly complex assembly
structures and a large number of components.

To overcome these bottlenecks, a significant body of research in
recent years has introduced heuristic and intelligent optimization
algorithms to enhance the efficiency of assembly sequence planning.
For instance, Chen and Liu (2001) proposed an adaptive genetic
algorithm (GA) to address the poor adaptability of traditional GA
operators. Abdullah et al. (2019) constructed multi-objective assembly
optimization models using the Artificial Bee Colony algorithm and
the Moth-Flame Optimization algorithm, respectively. Beyond these,
variants of Particle Swarm Optimization (PSO) have been explored.
Zhang (2023) developed an Improved PSO (IPSO) that redefines
particle update rules and incorporates GA-style mutation to accelerate
convergence and escape local optima. Wu et al. (2019) applied a
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PSO-based method leveraging assembly direction, interference, and
sequence-relation matrices to obtain optimal sequences under fixture
constraints. To generate diverse Pareto-optimal assembly plans, Wan
etal. (2024) introduced a Multiple Optimal Solutions GA (MOSGA),
balancing assembly time and resource consumption for large modular
assemblies MDPI. Hybrid swarm-behavior algorithms have also been
developed. Wu et al. (2019) proposed SOS-ACO, coupling Symbiotic
Organisms Search with Ant Colony Optimization to adaptively tune
pheromone parameters, achieving near-optimal sequences in fewer
iterations and Zhang et al. (2025) presented an SOS-PSO hybrid that
integrates immune-inspired selection with PSO, demonstrating
superior robustness and convergence in constrained multi-agent
assembly scenarios.

Although these methods have demonstrated promising potential
in improving assembly efficiency and reducing resource consumption,
they fundamentally remain heuristic search frameworks—sensitive to
initial parameter settings and prone to local optima in large-scale
combinatorial spaces, with limited capabilities for deep modeling of
assembly knowledge.

2.2 Machine learning and deep learning
methods

In order to further enhance the intelligence level of assembly
process planning, some studies have begun exploring the application
of machine learning methods. Research has been conducted to
develop an assembly prediction system based on artificial neural
networks. This system constructs an assembly evaluation function and
employs supervised learning to predict and optimize assembly steps.
Furthermore, a hybrid assembly sequence optimization model has
been proposed, which integrates multiple neural network structures
with K-means clustering. Although these approaches perform well in
specific experimental scenarios, their relatively shallow network
structures and limited capability to model temporal features restrict
their ability to fully capture the contextual dependencies and long-
term constraint information inherent in the assembly process. Guo et
al. (2024) proposed a DRL method with multiple starting-node
exploration was introduced to address dynamic changes in machining
resources. By augmenting the state-space exploration with varied
initial conditions, it achieved superior resource utilization and
planning robustness compared to standard RL baselines. Li et al.
(2024) has been modeled as a Markov Decision Process and solved via
a heterogeneous Graph Neural Network combined with Proximal
Policy Optimization. This end-to-end approach captured operation—
machine relationships and outperformed MILP-based methods in
both solution quality and computation time on large-scale instances.
In assembly sequence planning, Neves and Neto (2022) applied DRL
with parametric action spaces and dual reward signals—reflecting
user ergonomic preferences and cycle-time minimization—comparing
A2C, DQN, and Rainbow; Rainbow achieved near-optimal
performance after 10,000 episodes, surpassing tabular Q-Learning in
complex deterministic and stochastic scenarios. For additive
manufacturing, Mozaffar et al. (2020) developed a DRL-based
toolpath planning platform that learns deposition strategies under
dense reward structures, demonstrating high fidelity to expert-
designed toolpaths and adaptability to arbitrary geometries. Wang et
al. (2023) proposed a dual-attention DRL model was proposed for
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flexible job shop scheduling—a close relative of process planning—
where interconnected operation-message and machine-message
attention blocks guide priority decisions. This framework achieved
solution quality comparable to exact methods on benchmark tasks,
highlighting the promise of attention architectures in capturing
complex process-machine interactions.

It is worth noting that deep learning-based methods for assembly
sequence modeling are still in an exploratory stage, and related
research remains relatively scarce. In tackling complex assembly tasks
characterized by sequentiality and structural dependency, sequence
modeling capability becomes critical. The selection of BiLSTM with
attention is theoretically grounded in the sequential nature and long-
range dependencies inherent in process planning tasks. Process plans
typically involve ordered sequences of operations where previous
decisions influence subsequent steps, and critical dependencies may
span across multiple operations. BiLSTM effectively captures
bidirectional contextual dependencies in these process sequences,
while the attention mechanism dynamically weights important
features and operations, addressing both local patterns and long-range
dependencies that are characteristic of complex manufacturing
processes. Bidirectional Long Short-Term Memory (BiLSTM)
networks, known for their ability to capture both historical and future
information simultaneously, have been widely used in fields such as
semantic recognition and event prediction. When combined with the
attention mechanism, the network can dynamically allocate focus
weights, emphasizing key steps in the assembly process, thereby
enhancing the model’s ability to understand complex assembly logic.

3 Materials and methods

In this paper, we first extract critical assembly information from
the three-dimensional (3D) CAD models of products, including the
mating surfaces of each part, geometric attributes, and inter-surface
constraints within the assembly. Based on the extracted information,
we construct an assembly feature representation model oriented
toward process planning, thereby establishing a training sample

10.3389/frai.2025.1745372

mapping between assembly features and typical process operations.
This mapping captures implicit rules linking part assembly types,
mating attributes, and corresponding assembly operations—such as
insertion, press-fitting, welding, screwing, and positioning/
clamping—which serve as supervised labels for the subsequent deep
learning model training. The overall architecture of the proposed
AP-BiLSTM-ATT framework is illustrated in Figure 2.

3.1 Data preprocessing

The core objective of the AP-BILSTM-ATT algorithm is to
maximize the prediction probability of part process plans based on the
key attributes and features of the parts during model training. To
achieve this goal, it is essential to first prepare a training dataset that
includes the mapping relationships between parts and their
corresponding process plans. During the training phase, the system
learns the nonlinear mapping between part features and process plans,
thereby enabling efficient and accurate process recommendations.

The data preprocessing involves a detailed “Labeling and
Vectorization” procedure to transform part attributes and process
knowledge into a structured format. First, process plan labeling is
performed: each unique sequence of machining operations (e.g.,
“Drilling — Rough Turning — Finish Turning”) is assigned a unique
categorical label, which serves as the target for the model’s multi-class
prediction task. Second, part feature vectorization is conducted:
categorical features (e.g., material types) are encoded using one-hot
encoding; numerical features (e.g., diameter, length) are normalized
to a [0, 1] range; and machining operations are mapped to dense
embedding vectors through a trainable embedding layer, enabling the
model to learn semantic relationships between operations.

In the specific data preprocessing phase, the training set consists
of A part samples and their corresponding B process plans, forming a
large number of part-process plan pairs as training examples. Each
training sample not only contains the basic coding information of the
part (such as part ID and type) but also includes the code of the
associated process plan and multi-dimensional feature information of
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BiLSTM architecture diagram.

the part (such as dimensional parameters, surface requirements,
material types, and structural complexity). These inputs are
transformed into feature vectors that feed into the model to establish
a deep mapping relationship between part features and process
operations.

To enhance data quality and model performance, additional
preprocessing steps are employed. Encoding and vectorization ensure
all features are in neural-network-readable format, while data
augmentation through slight feature value perturbation expands the
effective sample size and improves model robustness to input
variations. Collectively, these steps ensure the input data maintains its
integrity while being optimally prepared for the AP-BiLSTM-ATT
model, establishing a solid foundation for reliable process planning
recommendations.

3.2 AP-BiLSTM-ATT

Specifically, this study incorporates Bidirectional Long Short-
Term Memory (BiLSTM) networks combined with Attention
Mechanism to address the problem of process plan prediction.
BiLSTM is a deep learning model capable of capturing both forward
and backward dependencies within sequential data, making it
particularly suitable for handling complex sequential data and long-
range dependencies. The detailed structure of the BiLSTM
component is depicted in Figure 3. The architectural selection of
BiLSTM with attention is strategically aligned with the fundamental
characteristics of process planning tasks. In manufacturing
exhibit
dependencies where early-stage decisions (e.g., material selection and

environments, process sequences strong temporal
rough machining parameters) fundamentally constrain subsequent
operations (e.g., finishing and quality control). The BiLSTM
component excels at modeling these bidirectional process flows,
while the attention mechanism, whose architecture is detailed in
Figure 4, addresses the critical challenge of long-range dependencies
in manufacturing processes. This synergistic combination allows the
model to not only understand local sequential patterns but also
that

manufacturing stages. By leveraging its bidirectional structure,

recognize global process constraints span multiple
BiLSTM performs computations in both the forward and backward
directions of a time sequence, enabling a more comprehensive

understanding of the contextual information in the input data. This
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significantly enhances the model’s ability to extract and model
features. At each time step f, the forward LSTM sequentially
computes the current hidden state h; /) and cell state ¢;”’ using the
following steps.

First, the Input Gate determines the influence of the current input
x; on the cell state. The output i, of the input gate is calculated as

shown in Equation 1:

i :O'(V\/,-xt+U,-ht(fl)+bij (1)

where W; is the input weight matrix, U; is the hidden state weight
matrix, b; is the bias term, and o is the sigmoid activation function.
h;”{ is the hidden state from the previous time step.

Next, the Forget Gate controls the proportion of information from
the previous time step’s cell state ¢;” | to be retained in the current cell
state ¢;” 7. The output f; of the forget gate is computed as shown in

Equation 2:
ﬁ:a(wfx,+Ufh§f1)+bfj @)

where Wy and U s are the forget gate weight matrices, and b is the

(f)

Then, the Output Gate determines the current hidden state ;" .

bias term.

The output o; of the output gate is calculated as shown in Equation 3:

o :O'(Woxt +up) +b0j 3)

where W, and U, are the output gate weight matrices, and b, is the
bias term.

Next, the Cell State is computed by combining the previous time
step’s cell state and the contributions from the input and forget gates.
The update equation for the cell state is as shown in Equation 4:

Mg )y it-tanh(WCxt rua)+ hcj @)

where W, and U, are the memory update weight matrices, and b,
is the bias term. The tan A is the hyperbolic tangent activation function.
This equation combines the influence of the forget gate, which retains

frontiersin.org
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the previous memory information, and the input gate, which where W, € R%*4 is a learnable weight matrix, v € R%isa weight

introduces new information from the current time step to form the
updated cell state th

Finally, the hidden state is computed as the non-linear
combination of the output gate and the current cell state, as shown in
Equation 5:

hgf) =ot-tanh(c$f)j (5)

Through these steps, the forward LSTM effectively captures the
long-term dependencies in the input sequence. At each time step, the
forward LSTM updates its hidden state htf , which
are then passed on to the next time step.

and cell state ¢;

Similarly, the backward LSTM processes the input features
starting from the end of the sequence. It computes the hidden state
and cell state in the reverse order. The forward and backward LSTM
hidden states are then concatenated to form the final output of the
bidirectional LSTM, which fully utilizes both past and future
information from the input sequence.

After obtaining the concatenated bidirectional hidden representations
from the BiLSTM network, an attention mechanism is introduced to
further enhance the model’s ability to capture critical information. While
BiLSTM can effectively model long-range dependencies and contextual
relationships in the input sequence, its output treats all time steps equally.
This uniform treatment may dilute the influence of key time-step features
on the final representation. The attention mechanism addresses this
limitation by allowing the model to learn the relative importance of each
time step in the sequence, enabling it to focus on features most relevant
to process plan prediction.

Formally, let the hidden state sequence output by BiLSTM be
H= {hl’hz)- ohr } , where h; € R? denotes the hidden state at time
step t. The attention mechanism first computes a relevance score e; for
each hidden state, as shown in Equation 6:

er=v ' tanh(W,h, +b,) (6)
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vector, and b, € R% s a bias term. These scores are then normalized
by a softmax function to obtain the attention weights ¢, as shown in
Equation 7:

exp(e[ ) @

oy =

éexp(e,-)

The context vector ¢, which serves as a weighted representation of
the sequence, is computed as shown in Equation 8:

T
c=ahy ®)
=1

This context vector integrates information from all time steps, with
higher weights assigned to more informative steps, thereby enhancing the
model’s representation of critical process-related features.

The multi-head attention mechanism extends the standard
attention by employing multiple attention heads (h = 8) in parallel.
Each head learns distinct feature representations from different
subspaces, enabling the model to capture diverse aspects of process
planning semantics. Formally, for head i, the attention output is
computed as shown in Equation 9:

head; = Attention(HWiQ,HWl-K JH Wl-V ) )

where WiQ e R ,W,-K e RV ,and W,-V e R™4 are learnable
projection matrices for queries, keys, and values respectively, with
dy =d, =d/h=12.The outputs of all heads are concatenated and then
linearly transformed, as shown in Equation 10:

MultiHead (H) =Concat (head1 »esheady, )WO (10)
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where WO e R4 s the output projection matrix. This
architectural design allows the model to jointly attend to information
from different representation subspaces, effectively capturing
various feature interactions in process planning, such as the
relationships between geometric features, material properties,
and process parameters.

A key innovation of our framework is its probabilistic output,
which transforms the model from a deterministic classifier into a
decision-support tool. Subsequently, the context vector ¢ is passed
through a fully connected layer followed by a softmax classifier to
generate the predicted probability distribution over the candidate
process plan labels, as shown in Equation 11:

§7=Softmax(WSc+bs) (11)

Here, Wi € R and b, e RX are the weights and bias of the
classification layer, and K is the number of process plan categories. y
represents a probability distribution where each element denotes
the likelihood of a corresponding process plan being the optimal
choice. This output allows for: (1) Quantifying the uncertainty of
the top recommendation, and (2) Ranking and presenting
multiple feasible alternative plans to the process planner, thereby
enabling more informed and flexible decision-making in a smart
manufacturing context.

The entire model is trained with a cross-entropy loss function. This
function quantifies the discrepancy between the predicted probabilities
v and the ground truth labels y, as presented in Equation 12:

(12)

K
L==>"yilog(7:)
i=1

10.3389/frai.2025.1745372

wherey € {O,I}K is a one-hot encoded vector representing the true
label, and y; denotes the predicted probability for class i. This loss is
minimized during training using backpropagation to update all model
parameters. The complete training procedure outlined above is
summarized in Algorithm 1.

4 Experiments

4.1 Dataset

The custom dataset employed in this study consists of 1,000
instances of machining process data for various parts. This dataset
was synthetically constructed to support research in data-driven
process planning, comprising typical precision components such as
shafts, plates, and housings to ensure diversity in part geometry and
function. The historical process plans were generated based on
domain expertise and standard manufacturing guidelines, with each
plan representing a feasible sequence of operations (e.g.,
“Drilling — Rough Turning — Finish Turning”). These sequences
were subsequently validated through simulation to ensure logical
consistency and adherence to machining principles. Each instance
includes a part description—encompassing material type (e.g.,
copper, 304 stainless steel, 45 steel, aluminum), geometric attributes
(end face type, diameter, length), and technical specifications (flatness
tolerance, surface roughness, hardness)—and its corresponding
machining process plan, which records the sequential operations
from rough to finish machining. This dataset provides a foundation
for developing and validating intelligent process recommendation
systems. Each instance is composed of two key components: part
description and machining process plan. The part description

Learning rate 1, Batch size B, Epochs E

for epoche=1to E do
Shuffle training set (x;,y;) from i=1 to M
for batch b = 1 to ceil(M/B) do
Sample mini-batch (x;,y;) from j=1 to B

Compute logits z=Wc+b,

Compute cross-entropy loss:

Update parameters: 0«—6—7V oL
end for
Validate on test set
end for
ALGORITHM 1

Framework of AP-BILSTM-ATT for process planning.

Input: Part feature set X, Process plan labels Y, BILSTM hidden size d, Attention dimension d,,,

Output: Trained AP-BiLSTM-ATT model with parameters 0
Initialize BILSTM parameters 65,7573/, Attention parameters 6, Classifier parameters 6,

Compute hidden states H=h;,h,,...,hy via:
h=BiLSTM(x,)h;~1;0pi sTm)
Compute attention scores e,~v'tanh(W,h,+b,)
Compute attention weights a,=exp(e;)/sum(exp(e;)) from i=1 to T
Compute context vector c=sum(a;h,) from t=1 to T

Compute predicted probability distribution § = Softmax(z)

L==1/B sum(sum(y;,k log(§;,k))) from j=1 to B, k=1 to K
Compute gradients V gL via backpropagation
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includes information such as material type (e.g., copper, 304 stainless
steel, 45 steel, aluminum), end face type, flatness tolerance, part
diameter, part length, hole requirements, coating requirements,
surface roughness, and hardness grade. The machining process plan
records the sequence of operations performed on each part,
encompassing various stages from rough to finish machining, such
as drilling, rough turning, finish turning, boring, coating, tapping,
cutting, and surface treatment. This dataset reflects the diversity of
materials and machining processes, providing valuable support for
machine learning-based machining process recommendation
systems. It aims to facilitate automated prediction and optimization,
improving production efficiency while reducing manual intervention.

4.2 Experimental setup

The experiments in this study were conducted on an Intel(R)
Core(TM) i7-8550 U CPU and an NVIDIA GeForce RTX 3080 Ti
GPU with 8GB of RAM. The experimental model is implemented
using the TensorFlow framework and employs a Bidirectional Long
Short-Term Memory (Bi-LSTM) network coupled with an Attention
Mechanism. Specifically, the Bi-LSTM consists of forward and
backward LSTM units, each containing 100 hidden neurons and
utilizing the ReLU activation function. Dropout regularization is
applied, with a dropout keep probability of 0.7 for both the embedding
and RNN layers. The Attention Mechanism weights the outputs of the
LSTM layers to enhance the model’s focus on critical information.
Other hyperparameters, including embedding layer dimensions and
L2 regularization, are detailed in Table 1. During training, the batch
size is set to 160, the learning rate is initialized to 0.001, and the Adam
optimizer with a learning rate decay strategy is employed. The dataset
is divided into a 90 training set and a 10 validation set, with cross-
validation used to ensure the robustness of the experiment.

TABLE 1 The description of experimental parameters.

Parameter ‘ Configuration
System Windows
GPU GeForce RTX 3080 Ti
Coding environment Python3.7
Tensorflow v2.3.0
Numpy v1.19.5
Rnn-dropout-keep-prob 0.7
Dropout-keep-prob 0.5
Emb-dropout-keep-prob 0.7
Embedding-dim 100
L2-reg-lambda le-5
Batch-size 10
Num-epochs 100
Evaluate-every 100
Learning rate 0.001
Decay-rate 0.9
Hidden-size 100
Dev-sample-percentage 0.1
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To thoroughly evaluate the performance of the proposed
AP-BiLSTM-ATT model (denoted as Ours), we compare it against
several carefully designed baseline and ablation models to isolate the
contribution of key components.

AP-BiLSTM: This is an ablation model that removes the attention
mechanism from our full model. It retains the same BiLSTM layers
but uses the last hidden state for classification instead of the attention-
weighted context vector. The comparison between Ours and
AP-BiLSTM is designed to directly quantify the performance gain
attributable to the attention mechanism.

Ours(g) & Ours(w): These two model variants were designed to
evaluate the impact of different word embedding initialization
strategies on performance. Specifically, “Ours(g)” initializes the
embedding layer using pre-trained GloVe vectors, while “Ours(w)”
initializes it with vectors generated by the Word2Vec method. Our
final model (Ours) employs an end-to-end trained embedding layer
with random initialization. Their inclusion aims to demonstrate that
our final choice of an end-to-end training strategy outperforms
approaches reliant on external pre-trained models, thereby
highlighting the simplicity and effectiveness of our final architecture.

4.3 Experimental evaluation metrics

This work uses five key metrics to evaluate the performance of the
process plan prediction model: HR@n, MRR@n, Process Plan Prediction
Accuracy (Seq-Acc), Computation Time (CT), and Loss. HR@n (Hit Rate
at Top n) measures whether the predicted process plan is ranked within
the top n positions in the candidate list. If the predicted result is within
the top n, the value is 1; otherwise, it is 0. MRR@n (Mean Reciprocal Rank
at Top n) calculates the average reciprocal rank of the first correct
prediction in the candidate list, where the value at the k-th position is 1/k,
and if the prediction is not in the candidate list, the value is 0. Process Plan
Prediction Accuracy (Seq-Acc) evaluates whether the model successfully
predicts the correctness of the entire process plan, indicating the model’s
ability to match the process plan. Computation Time (CT) measures the
time required for the model to make the process plan prediction,
reflecting the models efficiency, which is especially significant in practical
applications. Loss represents the difference between the models output
and the true labels; a lower loss indicates better model performance. By
utilizing these metrics, the accuracy; efficiency, and optimization of the
model can be comprehensively assessed.

4.4 Experimental result analysis

The experiment focuses on analyzing the model’s performance on
both the training and validation sets, with particular attention to the
changes in accuracy and loss.

(1) Accuracy: First, Figure 5 illustrates the variation in accuracy
on the training set. As the training progresses, the model’s
accuracy on the training set gradually increases, indicating
that the model successfully learns the features of the data and
optimizing its internal parameters to enhance prediction
capability. Although there may be some fluctuations in the
early stages, the overall accuracy stabilizes and steadily rises,
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FIGURE 5

Training accuracy over epochs.

FIGURE 6
Validation accuracy over epochs.

reflecting the continuous improvement of the training
process.

Figure 6 illustrates the accuracy trends on the validation set. It can
be observed that the proposed method achieves a higher initial
accuracy compared to other algorithms during the validation process,
indicating that the model possesses strong feature extraction
capabilities at an early stage. As training progresses, the proposed
method consistently maintains its advantage in accuracy and
ultimately converges to a higher accuracy level than the competing
algorithms. These results demonstrate that the proposed model not
only exhibits strong learning ability in the early training phase but also
shows greater stability and convergence performance throughout the

Frontiers in Artificial Intelligence

training process, thereby confirming its superiority in terms of
generalization capability and predictive effectiveness.

(2) Loss: Figure 7 illustrates the variation in Loss on the training
set. As training progresses, the Loss gradually decreases,
indicating that the model is reducing prediction errors during
the optimization process. Although some fluctuations may
occur in the early stages, the Loss stabilizes and converges to a
lower level as training continues, suggesting that the model
progressively improves its fit to the training data.

Figure 8 illustrates the variation in Loss on the validation set. It is
evident that the proposed method consistently achieves lower Loss
values throughout the validation process compared to other
algorithms. This indicates that the model is more effective in
minimizing prediction errors on unseen data, demonstrating superior
generalization capability. Moreover, the lower validation Loss suggests
that the model maintains a good fit without overfitting, thereby
exhibiting enhanced robustness and stability.

(3) HR@k and MRR@k: Based on the evaluation metrics presented
in Table 2, we can observe the models performance in
recommendation accuracy at various positions.

HR@1 and MRR@1: At rank 1, the proposed method (ours)
achieves both HR and MRR values of 0.70, significantly outperforming
the other methods. This indicates that $70\%$ of the test samples
correctly identify the target item at the top of the reccommendation list,
with an average reciprocal rank of 1.0. These results demonstrate the
superior predictive accuracy of the proposed model at the top
recommendation position and its effectiveness in identifying the most
relevant content for users.

HR@3 and MRR@3: At rank 3, the proposed method achieves an
HR of 1.0000 and an MRR of 0.8433, indicating a $100\%$ hit rate
within the top three recommendations and a notably higher average
reciprocal rank compared to baseline methods. This further confirms
the model’s strong recall ability and effective ranking performance
within the top three positions.

09 frontiersin.org


https://doi.org/10.3389/frai.2025.1745372
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Yang et al. 10.3389/frai.2025.1745372
Loss C of Four
30 — our(w)
—our
our(g)
AP-Bilstm
25
20
H
15
10 s R A
Y P Y T B e T
\,Y{:fl M?MW{ AR '\u\ AT
V o
0 2000 4000 6000 800
Step
FIGURE 7

Training loss over epochs.

Prediction Loss Comparison of Four Algorithms(dev)

20 A

vaiue

— our

—— our(w)
our(g)
AP-Bilstm

038 1 &_P___,_/—‘%_

FIGURE 8
Validation loss over epochs.

6000 8000

TABLE 2 HR@k and MRR@k evaluation metrics.

AP-BiLSTM 0.5973 0.9360 0.9688 0.5973 0.7535 0.7613
Ours(g) 0.5978 0.9311 0.9674 0.5978 0.7509 0.7594
Ours(w) 0.5953 0.9292 0.9655 0.5953 0.7491 0.7575
ours 0.7000 1.0000 1.0000 0.7000 0.8433 0.8433

HR@5 and MRR@5: At rank 5, the proposed method continues to
maintain an HR of 1.0000 and an MRR of 0.8433, demonstrating high
stability. Although other methods also achieve relatively high HR values
at this rank, their MRR scores remain lower than the proposed method.
This indicates that our model not only achieves perfect recall within the
top five recommendations but also ensures superior ranking quality,
reflecting robust and accurate recommendation performance.

Frontiers in Artificial Intelligence

TABLE 3 Prediction speed and feature importance (Fl) scores in process
planning.

Method AP- Ours(g) Ours(w) Ours
BiLSTM

Time 198 196 206 191

F1 score 0.5791 0.5768 05720 0.5830

Time Efficiency: Regarding time consumption, the proposed
method (ours) demonstrates relatively good efficiency, requiring
191 units of time as shown in Table 3, which is slightly lower than the
compared methods. This suggests that the model can achieve a
relatively faster training or inference speed while maintaining
comparable performance, indicating its practical potential.

F1 Score Performance: In terms of F1 score, the proposed method
achieves a respectable value of 0.5830 (see Table 3), marginally higher
than the other methods. This result indicates that the model attains a
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reasonable balance between precision and recall, showing stable
predictive capability. Taken together with the time metric, the model
demonstrates some improvement in both efficiency and effectiveness,
reflecting promising potential for further optimization.

5 Discussion

This paper proposes an Assembly Process Reasoning and
Decision-making algorithm based on Bidirectional Long Short-
(BiLSTM)
(AP-BIiLSTM-ATT), aiming to alleviate, to some extent, common

Term Memory and attention mechanisms
challenges in traditional process planning such as difficulties in
knowledge reuse, low efficiency, and slow response times. The
approach transforms part attributes, geometric features, and
historical process plans into structured data representations, and
integrates a BiLSTM network with a multi-head attention
mechanism to explore the potential relationships between part
features and process plans, thereby better capturing contextual
dependencies and semantic weight information. During training,
the model learns mappings between features and processes from
a large-scale historical process dataset, enabling a basic reasoning
and recommendation for new part process plans. We analyzed the
attention distribution during model prediction and found it
effectively focuses on key features consistent with domain
knowledge. For instance, the model assigns higher weights to
“surface_roughness” when recommending finishing operations,
while paying more attention to “material_hardness” for rough
machining decisions. Experimental results indicate that,
compared to some traditional approaches, the proposed method
demonstrates measurable improvements in terms of accuracy,
response speed, and generalization ability, suggesting its potential
in complex part process planning tasks. However, this study has
limitations that warrant attention. The primary constraint lies in
the use of a custom-generated dataset, which may affect
generalizability to diverse real-world scenarios. Furthermore,
practical deployment challenges such as integration with existing
PLM/CAM systems and meeting real-time requirements need
addressing. Future work will focus on validation with larger
industrial datasets and developing prototype systems for practical
implementation.
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