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In the context of smart manufacturing, improving the quality and efficiency of 
process planning, especially in the processing of complex parts, has become a key 
factor influencing the level of intelligence in manufacturing systems. However, 
most current process planning methods still heavily rely on manual expertise, 
leading to problems such as difficulty in knowledge reuse, low planning efficiency, 
and slow response times, which are inadequate to meet the diverse and changing 
needs of engineering applications. To address these issues, this paper proposes 
an algorithm for Assembly Process Reasoning and Decision-making based on 
Bidirectional Long Short-Term Memory with Attention (AP-BiLSTM-ATT), which 
aims to deeply explore the hidden relationships between the multi-dimensional 
features of parts and process plans, thereby achieving probabilistic modeling of 
process decisions. Specifically, the attributes, geometric features, and historical 
process plans of parts are first labeled and vectorized, transforming traditional 
process knowledge into structured data representations suitable for deep learning 
models. A BiLSTM network model, integrated with a multi-head attention mechanism, 
is then constructed to capture contextual dependencies and semantic weight 
distributions between features, enhancing the model’s ability to express complex 
process relationships. During training, the model learns the mapping distribution 
between features and processes from a large-scale historical process dataset, 
enabling intelligent reasoning and recommendation of process plans for new parts. 
The results show that this method outperforms traditional methods in terms of 
accuracy, response speed, and generalization ability in process planning, providing 
effective support for enhancing the intelligence of complex part process planning 
and laying a foundation for the structured expression and intelligent application 
of manufacturing process knowledge.
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1 Introduction

With the continuous advancement of intelligent manufacturing technology and the deep 
integration of advanced manufacturing and information technologies, manufacturing 
enterprises are achieving key breakthroughs in improving product quality, increasing 
production efficiency, and reducing production costs. Intelligent manufacturing has widely 
penetrated all stages of the product lifecycle, including product design, production 
manufacturing, and service maintenance. Research shows that as emerging manufacturing 
industries accelerate the deployment of intelligent technologies, the production efficiency of 
their manufacturing systems has increased by 17%–20%. However, as a critical link between 
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product design and production execution, manufacturing process 
planning still relies primarily on human-machine interaction, with its 
core decision-making process heavily dependent on engineers’ 
professional knowledge and experience.

In this context, the role of process planning in ensuring product 
quality, improving machining efficiency, and optimizing production 
costs becomes particularly significant. Especially in the manufacturing 
of complex structural parts, efficiently reasoning out the most 
appropriate process plan from the multi-dimensional features of parts 
has always been a core challenge of intelligent process planning. In 
contrast, traditional process planning often requires engineers to 
manually devise plans based on their experience, which is not only 
time-consuming and inefficient but also prone to subjective influences, 
making it difficult to meet the modern manufacturing industry’s 
demands for rapid response and precise decision-making. The 
conceptual flow of this planning task is depicted in Figure 1.

With the gradual popularization of modern Computer-Aided 
Process Planning (CAPP) systems, enterprises have accumulated a 
wealth of historical process data. How to effectively extract valuable 
knowledge from this large amount of historical data and utilize it 
through intelligent methods has become a core issue in process 
reasoning and decision support. For example, Agrawal et al. (2009) 
proposed a multi-agent distributed CAPP system composed of a 
global management agent, design agent, and optimization agent. 
Using a backward-chaining reasoning mechanism, the system realized 
intelligent decision-making for complex processes. Qian et al. (2023) 
built a process-oriented knowledge ontology library for assembly 
sequence planning and applied a Mixed-Integer Linear Programming 
(MILP) model to optimize assembly actions and part sequences with 
the objective of minimizing assembly time. Combined with a human-
computer collaboration visualization tool, they achieved rapid 
automatic generation of assembly plans. Mou and Gao (2020) 
proposed a fuzzy comprehensive evaluation method based on 
historical machining data for assessing process plan reliability, 
improving robustness in multi-objective and uncertain scenarios. 
Wang et al. (2015) modeled the process planning problem as a directed 
graph and used a two-stage ant colony algorithm for parallel optimal 
path search, significantly reducing production costs and improving 
algorithm efficiency. In addition, Rojek (2010) evaluated the 
performance of Multilayer Perceptrons (MLP) and Radial Basis 
Function (RBF) networks in intelligent CAPP systems, demonstrating 
that they outperform traditional rule-based methods in tool selection 
and operation sequencing. Deb et al. (2006) proposed a neural 
network-based method for selecting machining operations, 

automatically determining process parameters and tool configurations 
for rotationally symmetric parts.

However, traditional methods still face several critical challenges: 
high costs for knowledge acquisition and maintenance, with rules, 
ontologies, and templates requiring frequent updates by experts; 
insufficient structuring of historical data, making it difficult to fully 
leverage heterogeneous and multi-source process instances; and 
limited real-time responsiveness to dynamic environments, hindering 
rapid adjustments to production changes.

To overcome these bottlenecks, researchers have recently 
introduced machine learning, deep learning, and reinforcement 
learning technologies into CAPP systems. Zhang et al. (2022) 
developed an intelligent decision-making system that maps assembly 
units and process features into a multidimensional vector space, 
optimizing assembly sequence planning via supervised learning 
models, thereby significantly enhancing the system’s generalization 
and automation capabilities. Jiang et al. (2024) proposed a fine-grained 
assembly sequence planning method based on knowledge graphs and 
deep reinforcement learning, where assembly operations are modeled 
as continuous and discrete processes, constructing a dynamic graph 
and applying an improved Deep Q-Network (DQN) to enable real-
time decision-making under complex constraints with hierarchical 
Seq2Seq neural reasoning. Zhu et al. (2024) designed a two-stage 
Seq2Seq neural network that captures both assembly sequences and 
contact point selections through hierarchical reasoning, providing 
highly flexible process planning for robotic assembly. Mortlock et al. 
(2021) integrated Graph Neural Networks (GNNs) within a cognitive 
digital twin framework to couple real-time shop floor data with 
process models, supporting dynamic re-planning and predictive 
maintenance.

Despite the significant progress made by current intelligent 
process reasoning methods in improving decision-making efficiency 
and accuracy, they still face several major challenges. First, deep 
learning methods heavily rely on large amounts of accurately labeled 
historical data, and acquiring high-quality labeled data is both time-
consuming and costly for manufacturing enterprises. Meanwhile, 
although knowledge graphs effectively integrate process knowledge, 
their construction and maintenance are complex and labor-intensive, 
becoming increasingly difficult as the system evolves.

To address these challenges, this paper proposes the following 
contributions:

A process reasoning model (AP-BiLSTM-ATT) based on part 
attributes, geometric features, and process plan labeling and 
vectorization is proposed. The model outputs a probability distribution 

FIGURE 1

Simulation results for the network.
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over candidate process plans via a final softmax layer, enabling 
uncertainty quantification and ranking of multiple feasible plans by 
their likelihood. This model effectively captures the multidimensional 
features of parts, reduces reliance on large-scale labeled datasets, and 
provides efficient process recommendations.

An attention mechanism (ATT) is introduced into the process 
reasoning framework, enabling the model to dynamically focus on key 
information in part features. This enhances the precision of process 
plan reasoning, reduces the dependency on complex ontology and 
knowledge graph construction, and improves model interpretability.

Experimental results show that the proposed method can quickly 
and accurately recommend optimal process plans for new parts 
without relying on complex graphs or massive labeled data. The results 
demonstrate that the method significantly outperforms traditional 
approaches in terms of accuracy, recommendation speed, and 
interpretability, effectively improving process planning efficiency.

2 Related work

Assembly Process Planning (APP), as a key stage within the smart 
manufacturing workflow, aims to generate efficient and rational 
assembly plans while satisfying assembly constraints and resource 
limitations. Among its components, Assembly Sequence Planning 
(ASP) constitutes the core of assembly, directly impacting the 
efficiency, quality, and production cost of product assembly. 
Consequently, how to efficiently and accurately achieve the automatic 
generation of assembly sequences has become a major focus of 
research both domestically and internationally.

2.1 Traditional rule-based and heuristic 
search methods

Early research primarily relied on traditional methods based on 
geometric features and assembly constraint rules. Torres et al. (2003) 
proposed an assembly relation model and solved the assembly 
sequence planning problem by leveraging the reverse logic of 
disassembly and assembly. Dini et al. (1999) developed a mathematical 
representation model of the assembly process based on the assembly 
interference matrix and contact matrix, achieving the quantitative 
evaluation and selection of assembly sequences. Although these 
methods offer good intuitiveness and interpretability, their modeling 
efficiency and degree of automation remain limited when applied to 
industrial scenarios characterized by increasingly complex assembly 
structures and a large number of components.

To overcome these bottlenecks, a significant body of research in 
recent years has introduced heuristic and intelligent optimization 
algorithms to enhance the efficiency of assembly sequence planning. 
For instance, Chen and Liu (2001) proposed an adaptive genetic 
algorithm (GA) to address the poor adaptability of traditional GA 
operators. Abdullah et al. (2019) constructed multi-objective assembly 
optimization models using the Artificial Bee Colony algorithm and 
the Moth-Flame Optimization algorithm, respectively. Beyond these, 
variants of Particle Swarm Optimization (PSO) have been explored. 
Zhang (2023) developed an Improved PSO (IPSO) that redefines 
particle update rules and incorporates GA-style mutation to accelerate 
convergence and escape local optima. Wu et al. (2019) applied a 

PSO-based method leveraging assembly direction, interference, and 
sequence-relation matrices to obtain optimal sequences under fixture 
constraints. To generate diverse Pareto-optimal assembly plans, Wan 
et al. (2024) introduced a Multiple Optimal Solutions GA (MOSGA), 
balancing assembly time and resource consumption for large modular 
assemblies MDPI. Hybrid swarm–behavior algorithms have also been 
developed. Wu et al. (2019) proposed SOS-ACO, coupling Symbiotic 
Organisms Search with Ant Colony Optimization to adaptively tune 
pheromone parameters, achieving near-optimal sequences in fewer 
iterations and Zhang et al. (2025) presented an SOS-PSO hybrid that 
integrates immune-inspired selection with PSO, demonstrating 
superior robustness and convergence in constrained multi-agent 
assembly scenarios.

Although these methods have demonstrated promising potential 
in improving assembly efficiency and reducing resource consumption, 
they fundamentally remain heuristic search frameworks—sensitive to 
initial parameter settings and prone to local optima in large-scale 
combinatorial spaces, with limited capabilities for deep modeling of 
assembly knowledge.

2.2 Machine learning and deep learning 
methods

In order to further enhance the intelligence level of assembly 
process planning, some studies have begun exploring the application 
of machine learning methods. Research has been conducted to 
develop an assembly prediction system based on artificial neural 
networks. This system constructs an assembly evaluation function and 
employs supervised learning to predict and optimize assembly steps. 
Furthermore, a hybrid assembly sequence optimization model has 
been proposed, which integrates multiple neural network structures 
with K-means clustering. Although these approaches perform well in 
specific experimental scenarios, their relatively shallow network 
structures and limited capability to model temporal features restrict 
their ability to fully capture the contextual dependencies and long-
term constraint information inherent in the assembly process. Guo et 
al. (2024) proposed a DRL method with multiple starting-node 
exploration was introduced to address dynamic changes in machining 
resources. By augmenting the state-space exploration with varied 
initial conditions, it achieved superior resource utilization and 
planning robustness compared to standard RL baselines. Li et al. 
(2024) has been modeled as a Markov Decision Process and solved via 
a heterogeneous Graph Neural Network combined with Proximal 
Policy Optimization. This end-to-end approach captured operation–
machine relationships and outperformed MILP-based methods in 
both solution quality and computation time on large-scale instances. 
In assembly sequence planning, Neves and Neto (2022) applied DRL 
with parametric action spaces and dual reward signals—reflecting 
user ergonomic preferences and cycle-time minimization—comparing 
A2C, DQN, and Rainbow; Rainbow achieved near-optimal 
performance after 10,000 episodes, surpassing tabular Q-Learning in 
complex deterministic and stochastic scenarios. For additive 
manufacturing, Mozaffar et al. (2020) developed a DRL-based 
toolpath planning platform that learns deposition strategies under 
dense reward structures, demonstrating high fidelity to expert-
designed toolpaths and adaptability to arbitrary geometries. Wang et 
al. (2023) proposed a dual-attention DRL model was proposed for 
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flexible job shop scheduling—a close relative of process planning—
where interconnected operation-message and machine-message 
attention blocks guide priority decisions. This framework achieved 
solution quality comparable to exact methods on benchmark tasks, 
highlighting the promise of attention architectures in capturing 
complex process-machine interactions.

It is worth noting that deep learning-based methods for assembly 
sequence modeling are still in an exploratory stage, and related 
research remains relatively scarce. In tackling complex assembly tasks 
characterized by sequentiality and structural dependency, sequence 
modeling capability becomes critical. The selection of BiLSTM with 
attention is theoretically grounded in the sequential nature and long-
range dependencies inherent in process planning tasks. Process plans 
typically involve ordered sequences of operations where previous 
decisions influence subsequent steps, and critical dependencies may 
span across multiple operations. BiLSTM effectively captures 
bidirectional contextual dependencies in these process sequences, 
while the attention mechanism dynamically weights important 
features and operations, addressing both local patterns and long-range 
dependencies that are characteristic of complex manufacturing 
processes. Bidirectional Long Short-Term Memory (BiLSTM) 
networks, known for their ability to capture both historical and future 
information simultaneously, have been widely used in fields such as 
semantic recognition and event prediction. When combined with the 
attention mechanism, the network can dynamically allocate focus 
weights, emphasizing key steps in the assembly process, thereby 
enhancing the model’s ability to understand complex assembly logic.

3 Materials and methods

In this paper, we first extract critical assembly information from 
the three-dimensional (3D) CAD models of products, including the 
mating surfaces of each part, geometric attributes, and inter-surface 
constraints within the assembly. Based on the extracted information, 
we construct an assembly feature representation model oriented 
toward process planning, thereby establishing a training sample 

mapping between assembly features and typical process operations. 
This mapping captures implicit rules linking part assembly types, 
mating attributes, and corresponding assembly operations—such as 
insertion, press-fitting, welding, screwing, and positioning/
clamping—which serve as supervised labels for the subsequent deep 
learning model training. The overall architecture of the proposed 
AP-BiLSTM-ATT framework is illustrated in Figure 2.

3.1 Data preprocessing

The core objective of the AP-BiLSTM-ATT algorithm is to 
maximize the prediction probability of part process plans based on the 
key attributes and features of the parts during model training. To 
achieve this goal, it is essential to first prepare a training dataset that 
includes the mapping relationships between parts and their 
corresponding process plans. During the training phase, the system 
learns the nonlinear mapping between part features and process plans, 
thereby enabling efficient and accurate process recommendations.

The data preprocessing involves a detailed “Labeling and 
Vectorization” procedure to transform part attributes and process 
knowledge into a structured format. First, process plan labeling is 
performed: each unique sequence of machining operations (e.g., 
“Drilling → Rough Turning → Finish Turning”) is assigned a unique 
categorical label, which serves as the target for the model’s multi-class 
prediction task. Second, part feature vectorization is conducted: 
categorical features (e.g., material types) are encoded using one-hot 
encoding; numerical features (e.g., diameter, length) are normalized 
to a [0, 1] range; and machining operations are mapped to dense 
embedding vectors through a trainable embedding layer, enabling the 
model to learn semantic relationships between operations.

In the specific data preprocessing phase, the training set consists 
of A part samples and their corresponding B process plans, forming a 
large number of part–process plan pairs as training examples. Each 
training sample not only contains the basic coding information of the 
part (such as part ID and type) but also includes the code of the 
associated process plan and multi-dimensional feature information of 

FIGURE 2

The proposed algorithm: AP-BiLSTM-ATT.
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the part (such as dimensional parameters, surface requirements, 
material types, and structural complexity). These inputs are 
transformed into feature vectors that feed into the model to establish 
a deep mapping relationship between part features and process 
operations.

To enhance data quality and model performance, additional 
preprocessing steps are employed. Encoding and vectorization ensure 
all features are in neural-network-readable format, while data 
augmentation through slight feature value perturbation expands the 
effective sample size and improves model robustness to input 
variations. Collectively, these steps ensure the input data maintains its 
integrity while being optimally prepared for the AP-BiLSTM-ATT 
model, establishing a solid foundation for reliable process planning 
recommendations.

3.2 AP-BiLSTM-ATT

Specifically, this study incorporates Bidirectional Long Short-
Term Memory (BiLSTM) networks combined with Attention 
Mechanism to address the problem of process plan prediction. 
BiLSTM is a deep learning model capable of capturing both forward 
and backward dependencies within sequential data, making it 
particularly suitable for handling complex sequential data and long-
range dependencies. The detailed structure of the BiLSTM 
component is depicted in Figure 3. The architectural selection of 
BiLSTM with attention is strategically aligned with the fundamental 
characteristics of process planning tasks. In manufacturing 
environments, process sequences exhibit strong temporal 
dependencies where early-stage decisions (e.g., material selection and 
rough machining parameters) fundamentally constrain subsequent 
operations (e.g., finishing and quality control). The BiLSTM 
component excels at modeling these bidirectional process flows, 
while the attention mechanism, whose architecture is detailed in 
Figure 4, addresses the critical challenge of long-range dependencies 
in manufacturing processes. This synergistic combination allows the 
model to not only understand local sequential patterns but also 
recognize global process constraints that span multiple 
manufacturing stages. By leveraging its bidirectional structure, 
BiLSTM performs computations in both the forward and backward 
directions of a time sequence, enabling a more comprehensive 
understanding of the contextual information in the input data. This 

significantly enhances the model’s ability to extract and model 
features. At each time step t, the forward LSTM sequentially 
computes the current hidden state ( )

t
fh  and cell state ( )f

tc  using the 
following steps.

First, the Input Gate determines the influence of the current input 
tx  on the cell state. The output ti  of the input gate is calculated as 

shown in Equation 1:

	
( )σ −

 = + + 
 1

f
t i t i iti W x U h b

	
(1)

where iW  is the input weight matrix, iU  is the hidden state weight 
matrix, ib  is the bias term, and σ  is the sigmoid activation function. 
( )
−1
f

th  is the hidden state from the previous time step.
Next, the Forget Gate controls the proportion of information from 

the previous time step’s cell state ( )
−1
f

tc  to be retained in the current cell 
state ( )f

tc . The output tf  of the forget gate is computed as shown in 
Equation 2:

	
( )σ −

 = + + 
 1

f
t f t f ftf W x U h b

	
(2)

where fW  and fU  are the forget gate weight matrices, and fb  is the 
bias term.

Then, the Output Gate determines the current hidden state ( )f
th . 

The output to  of the output gate is calculated as shown in Equation 3:

	
( )σ −

 = + + 
 1

f
t o t o oto W x U h b

	
(3)

where oW  and oU  are the output gate weight matrices, and ob  is the 
bias term.

Next, the Cell State is computed by combining the previous time 
step’s cell state and the contributions from the input and forget gates. 
The update equation for the cell state is as shown in Equation 4:

	
( ) ( ) ( )

− −
 = + + + 
 1 1· ·tanhf f f

t t c t c ct t tc f c i W x U h b
	

(4)

where cW  and cU  are the memory update weight matrices, and cb  
is the bias term. The tanh is the hyperbolic tangent activation function. 
This equation combines the influence of the forget gate, which retains 

FIGURE 3

BiLSTM architecture diagram.
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the previous memory information, and the input gate, which 
introduces new information from the current time step to form the 
updated cell state ( )f

tc .
Finally, the hidden state is computed as the non-linear 

combination of the output gate and the current cell state, as shown in 
Equation 5:

	
( ) ( ) =  

 
·tanhf f

tt th o c
	

(5)

Through these steps, the forward LSTM effectively captures the 
long-term dependencies in the input sequence. At each time step, the 
forward LSTM updates its hidden state ( )f

th  and cell state ( )f
tc , which 

are then passed on to the next time step.
Similarly, the backward LSTM processes the input features 

starting from the end of the sequence. It computes the hidden state 
and cell state in the reverse order. The forward and backward LSTM 
hidden states are then concatenated to form the final output of the 
bidirectional LSTM, which fully utilizes both past and future 
information from the input sequence.

After obtaining the concatenated bidirectional hidden representations 
from the BiLSTM network, an attention mechanism is introduced to 
further enhance the model’s ability to capture critical information. While 
BiLSTM can effectively model long-range dependencies and contextual 
relationships in the input sequence, its output treats all time steps equally. 
This uniform treatment may dilute the influence of key time-step features 
on the final representation. The attention mechanism addresses this 
limitation by allowing the model to learn the relative importance of each 
time step in the sequence, enabling it to focus on features most relevant 
to process plan prediction.

Formally, let the hidden state sequence output by BiLSTM be 
{ }= …1 2, , , TH h h h , where ∈ d

th   denotes the hidden state at time 
step t. The attention mechanism first computes a relevance score te  for 
each hidden state, as shown in Equation 6:

	 ( )= +tanht a t ae v W h b
	 (6)

where ×∈ ad d
aW   is a learnable weight matrix, ∈ adv   is a weight 

vector, and ∈ ad
ab  is a bias term. These scores are then normalized 

by a softmax function to obtain the attention weights αt , as shown in 
Equation 7:

	

( )

( )
α

=

=

∑
1

exp

exp

t
t T

i
i

e

e
	

(7)

The context vector c, which serves as a weighted representation of 
the sequence, is computed as shown in Equation 8:

	
α

=
=∑

1

T

t t
t

c h
	

(8)

This context vector integrates information from all time steps, with 
higher weights assigned to more informative steps, thereby enhancing the 
model’s representation of critical process-related features.

The multi-head attention mechanism extends the standard 
attention by employing multiple attention heads (h = 8) in parallel. 
Each head learns distinct feature representations from different 
subspaces, enabling the model to capture diverse aspects of process 
planning semantics. Formally, for head i, the attention output is 
computed as shown in Equation 9:

	
( )= , ,Q K V

i i iihead Attention W W WH H H
	

(9)

where × ×∈ ∈,k kQ d d K d d
iiW R W R , and ×∈ vV d d

iW R  are learnable 
projection matrices for queries, keys, and values respectively, with 

= = =/ 12k vd d d h . The outputs of all heads are concatenated and then 
linearly transformed, as shown in Equation 10:

	 ( ) ( )= 1h ,,..,,h O
hMultiHead Concat ead ead WH 	 (10)

FIGURE 4

Attention mechanism architecture diagram.
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where ×∈ h· vO d dW R  is the output projection matrix. This 
architectural design allows the model to jointly attend to information 
from different representation subspaces, effectively capturing 
various feature interactions in process planning, such as the 
relationships between geometric features, material properties, 
and process parameters.

A key innovation of our framework is its probabilistic output, 
which transforms the model from a deterministic classifier into a 
decision-support tool. Subsequently, the context vector c is passed 
through a fully connected layer followed by a softmax classifier to 
generate the predicted probability distribution over the candidate 
process plan labels, as shown in Equation 11:

	 ( )= +ˆ s sSoftmaxy W c b 	 (11)

Here, ×∈ K d
sW   and ∈ K

sb   are the weights and bias of the 
classification layer, and K is the number of process plan categories. ŷ  
represents a probability distribution where each element denotes 
the likelihood of a corresponding process plan being the optimal 
choice. This output allows for: (1) Quantifying the uncertainty of 
the top recommendation, and (2) Ranking and presenting 
multiple feasible alternative plans to the process planner, thereby 
enabling more informed and flexible decision-making in a smart 
manufacturing context.

The entire model is trained with a cross-entropy loss function. This 
function quantifies the discrepancy between the predicted probabilities 
ŷ  and the ground truth labels y, as presented in Equation 12:

	
( )

=
= −∑

1
l g ˆo

K

i i
i

y y
	

(12)

where { }∈ 0,1 Ky  is a one-hot encoded vector representing the true 
label, and ˆiy  denotes the predicted probability for class i. This loss is 
minimized during training using backpropagation to update all model 
parameters. The complete training procedure outlined above is 
summarized in Algorithm 1.

4 Experiments

4.1 Dataset

The custom dataset employed in this study consists of 1,000 
instances of machining process data for various parts. This dataset 
was synthetically constructed to support research in data-driven 
process planning, comprising typical precision components such as 
shafts, plates, and housings to ensure diversity in part geometry and 
function. The historical process plans were generated based on 
domain expertise and standard manufacturing guidelines, with each 
plan representing a feasible sequence of operations (e.g., 
“Drilling → Rough Turning → Finish Turning”). These sequences 
were subsequently validated through simulation to ensure logical 
consistency and adherence to machining principles. Each instance 
includes a part description—encompassing material type (e.g., 
copper, 304 stainless steel, 45 steel, aluminum), geometric attributes 
(end face type, diameter, length), and technical specifications (flatness 
tolerance, surface roughness, hardness)—and its corresponding 
machining process plan, which records the sequential operations 
from rough to finish machining. This dataset provides a foundation 
for developing and validating intelligent process recommendation 
systems. Each instance is composed of two key components: part 
description and machining process plan. The part description 

ALGORITHM 1

Framework of AP-BiLSTM-ATT for process planning.
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includes information such as material type (e.g., copper, 304 stainless 
steel, 45 steel, aluminum), end face type, flatness tolerance, part 
diameter, part length, hole requirements, coating requirements, 
surface roughness, and hardness grade. The machining process plan 
records the sequence of operations performed on each part, 
encompassing various stages from rough to finish machining, such 
as drilling, rough turning, finish turning, boring, coating, tapping, 
cutting, and surface treatment. This dataset reflects the diversity of 
materials and machining processes, providing valuable support for 
machine learning-based machining process recommendation 
systems. It aims to facilitate automated prediction and optimization, 
improving production efficiency while reducing manual intervention.

4.2 Experimental setup

The experiments in this study were conducted on an Intel(R) 
Core(TM) i7-8550 U CPU and an NVIDIA GeForce RTX 3080 Ti 
GPU with 8GB of RAM. The experimental model is implemented 
using the TensorFlow framework and employs a Bidirectional Long 
Short-Term Memory (Bi-LSTM) network coupled with an Attention 
Mechanism. Specifically, the Bi-LSTM consists of forward and 
backward LSTM units, each containing 100 hidden neurons and 
utilizing the ReLU activation function. Dropout regularization is 
applied, with a dropout keep probability of 0.7 for both the embedding 
and RNN layers. The Attention Mechanism weights the outputs of the 
LSTM layers to enhance the model’s focus on critical information. 
Other hyperparameters, including embedding layer dimensions and 
L2 regularization, are detailed in Table 1. During training, the batch 
size is set to 160, the learning rate is initialized to 0.001, and the Adam 
optimizer with a learning rate decay strategy is employed. The dataset 
is divided into a 90 training set and a 10 validation set, with cross-
validation used to ensure the robustness of the experiment.

To thoroughly evaluate the performance of the proposed 
AP-BiLSTM-ATT model (denoted as Ours), we compare it against 
several carefully designed baseline and ablation models to isolate the 
contribution of key components.

AP-BiLSTM: This is an ablation model that removes the attention 
mechanism from our full model. It retains the same BiLSTM layers 
but uses the last hidden state for classification instead of the attention-
weighted context vector. The comparison between Ours and 
AP-BiLSTM is designed to directly quantify the performance gain 
attributable to the attention mechanism.

Ours(g) & Ours(w): These two model variants were designed to 
evaluate the impact of different word embedding initialization 
strategies on performance. Specifically, “Ours(g)” initializes the 
embedding layer using pre-trained GloVe vectors, while “Ours(w)” 
initializes it with vectors generated by the Word2Vec method. Our 
final model (Ours) employs an end-to-end trained embedding layer 
with random initialization. Their inclusion aims to demonstrate that 
our final choice of an end-to-end training strategy outperforms 
approaches reliant on external pre-trained models, thereby 
highlighting the simplicity and effectiveness of our final architecture.

4.3 Experimental evaluation metrics

This work uses five key metrics to evaluate the performance of the 
process plan prediction model: HR@n, MRR@n, Process Plan Prediction 
Accuracy (Seq-Acc), Computation Time (CT), and Loss. HR@n (Hit Rate 
at Top n) measures whether the predicted process plan is ranked within 
the top n positions in the candidate list. If the predicted result is within 
the top n, the value is 1; otherwise, it is 0. MRR@n (Mean Reciprocal Rank 
at Top n) calculates the average reciprocal rank of the first correct 
prediction in the candidate list, where the value at the k-th position is 1/k, 
and if the prediction is not in the candidate list, the value is 0. Process Plan 
Prediction Accuracy (Seq-Acc) evaluates whether the model successfully 
predicts the correctness of the entire process plan, indicating the model’s 
ability to match the process plan. Computation Time (CT) measures the 
time required for the model to make the process plan prediction, 
reflecting the model’s efficiency, which is especially significant in practical 
applications. Loss represents the difference between the model’s output 
and the true labels; a lower loss indicates better model performance. By 
utilizing these metrics, the accuracy, efficiency, and optimization of the 
model can be comprehensively assessed.

4.4 Experimental result analysis

The experiment focuses on analyzing the model’s performance on 
both the training and validation sets, with particular attention to the 
changes in accuracy and loss.

	(1)	 Accuracy: First, Figure 5 illustrates the variation in accuracy 
on the training set. As the training progresses, the model’s 
accuracy on the training set gradually increases, indicating 
that the model successfully learns the features of the data and 
optimizing its internal parameters to enhance prediction 
capability. Although there may be some fluctuations in the 
early stages, the overall accuracy stabilizes and steadily rises, 

TABLE 1  The description of experimental parameters.

Parameter Configuration

System Windows

GPU GeForce RTX 3080 Ti

Coding environment Python3.7

Tensorflow v2.3.0

Numpy v1.19.5

Rnn-dropout-keep-prob 0.7

Dropout-keep-prob 0.5

Emb-dropout-keep-prob 0.7

Embedding-dim 100

L2-reg-lambda 1e-5

Batch-size 10

Num-epochs 100

Evaluate-every 100

Learning rate 0.001

Decay-rate 0.9

Hidden-size 100

Dev-sample-percentage 0.1
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reflecting the continuous improvement of the training 
process.

Figure 6 illustrates the accuracy trends on the validation set. It can 
be observed that the proposed method achieves a higher initial 
accuracy compared to other algorithms during the validation process, 
indicating that the model possesses strong feature extraction 
capabilities at an early stage. As training progresses, the proposed 
method consistently maintains its advantage in accuracy and 
ultimately converges to a higher accuracy level than the competing 
algorithms. These results demonstrate that the proposed model not 
only exhibits strong learning ability in the early training phase but also 
shows greater stability and convergence performance throughout the 

training process, thereby confirming its superiority in terms of 
generalization capability and predictive effectiveness.

	(2)	 Loss: Figure 7 illustrates the variation in Loss on the training 
set. As training progresses, the Loss gradually decreases, 
indicating that the model is reducing prediction errors during 
the optimization process. Although some fluctuations may 
occur in the early stages, the Loss stabilizes and converges to a 
lower level as training continues, suggesting that the model 
progressively improves its fit to the training data.

Figure 8 illustrates the variation in Loss on the validation set. It is 
evident that the proposed method consistently achieves lower Loss 
values throughout the validation process compared to other 
algorithms. This indicates that the model is more effective in 
minimizing prediction errors on unseen data, demonstrating superior 
generalization capability. Moreover, the lower validation Loss suggests 
that the model maintains a good fit without overfitting, thereby 
exhibiting enhanced robustness and stability.

	(3)	 HR@k and MRR@k: Based on the evaluation metrics presented 
in Table 2, we can observe the model’s performance in 
recommendation accuracy at various positions.

HR@1 and MRR@1: At rank 1, the proposed method (ours) 
achieves both HR and MRR values of 0.70, significantly outperforming 
the other methods. This indicates that $70\%$ of the test samples 
correctly identify the target item at the top of the recommendation list, 
with an average reciprocal rank of 1.0. These results demonstrate the 
superior predictive accuracy of the proposed model at the top 
recommendation position and its effectiveness in identifying the most 
relevant content for users.

HR@3 and MRR@3: At rank 3, the proposed method achieves an 
HR of 1.0000 and an MRR of 0.8433, indicating a $100\%$ hit rate 
within the top three recommendations and a notably higher average 
reciprocal rank compared to baseline methods. This further confirms 
the model’s strong recall ability and effective ranking performance 
within the top three positions.

FIGURE 5

Training accuracy over epochs.

FIGURE 6

Validation accuracy over epochs.
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HR@5 and MRR@5: At rank 5, the proposed method continues to 
maintain an HR of 1.0000 and an MRR of 0.8433, demonstrating high 
stability. Although other methods also achieve relatively high HR values 
at this rank, their MRR scores remain lower than the proposed method. 
This indicates that our model not only achieves perfect recall within the 
top five recommendations but also ensures superior ranking quality, 
reflecting robust and accurate recommendation performance.

Time Efficiency: Regarding time consumption, the proposed 
method (ours) demonstrates relatively good efficiency, requiring 
191 units of time as shown in Table 3, which is slightly lower than the 
compared methods. This suggests that the model can achieve a 
relatively faster training or inference speed while maintaining 
comparable performance, indicating its practical potential.

F1 Score Performance: In terms of F1 score, the proposed method 
achieves a respectable value of 0.5830 (see Table 3), marginally higher 
than the other methods. This result indicates that the model attains a 

TABLE 2  HR@k and MRR@k evaluation metrics.

Method HR MRR

@1 @3 @5 @1 @3 @5

AP-BiLSTM 0.5973 0.9360 0.9688 0.5973 0.7535 0.7613

Ours(g) 0.5978 0.9311 0.9674 0.5978 0.7509 0.7594

Ours(w) 0.5953 0.9292 0.9655 0.5953 0.7491 0.7575

ours 0.7000 1.0000 1.0000 0.7000 0.8433 0.8433

TABLE 3  Prediction speed and feature importance (FI) scores in process 
planning.

Method AP-
BiLSTM

Ours(g) Ours(w) Ours

Time 198 196 206 191

F1 score 0.5791 0.5768 0.5720 0.5830

FIGURE 7

Training loss over epochs.

FIGURE 8

Validation loss over epochs.
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reasonable balance between precision and recall, showing stable 
predictive capability. Taken together with the time metric, the model 
demonstrates some improvement in both efficiency and effectiveness, 
reflecting promising potential for further optimization.

5 Discussion

This paper proposes an Assembly Process Reasoning and 
Decision-making algorithm based on Bidirectional Long Short-
Term Memory (BiLSTM) and attention mechanisms 
(AP-BiLSTM-ATT), aiming to alleviate, to some extent, common 
challenges in traditional process planning such as difficulties in 
knowledge reuse, low efficiency, and slow response times. The 
approach transforms part attributes, geometric features, and 
historical process plans into structured data representations, and 
integrates a BiLSTM network with a multi-head attention 
mechanism to explore the potential relationships between part 
features and process plans, thereby better capturing contextual 
dependencies and semantic weight information. During training, 
the model learns mappings between features and processes from 
a large-scale historical process dataset, enabling a basic reasoning 
and recommendation for new part process plans. We analyzed the 
attention distribution during model prediction and found it 
effectively focuses on key features consistent with domain 
knowledge. For instance, the model assigns higher weights to 
“surface_roughness” when recommending finishing operations, 
while paying more attention to “material_hardness” for rough 
machining decisions. Experimental results indicate that, 
compared to some traditional approaches, the proposed method 
demonstrates measurable improvements in terms of accuracy, 
response speed, and generalization ability, suggesting its potential 
in complex part process planning tasks. However, this study has 
limitations that warrant attention. The primary constraint lies in 
the use of a custom-generated dataset, which may affect 
generalizability to diverse real-world scenarios. Furthermore, 
practical deployment challenges such as integration with existing 
PLM/CAM systems and meeting real-time requirements need 
addressing. Future work will focus on validation with larger 
industrial datasets and developing prototype systems for practical 
implementation.
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