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Precision healthcare is increasingly oriented toward the development of therapeutic 
strategies that are as individualized as the patients receiving them. Central to this 
paradigm shift is artificial intelligence (AI)-enabled multi-modal data integration, 
which consolidates heterogeneous data streams—including genomic, transcriptomic, 
proteomic, imaging, environmental, and electronic health record (EHR) data into 
a unified analytical framework. This integrative approach enhances early disease 
detection, facilitates the discovery of clinically actionable biomarkers, and accelerates 
rational drug development, with particularly significant implications for oncology, 
neurology, and cardiovascular medicine. Advanced machine learning (ML) and deep 
learning (DL) algorithms are capable of extracting complex, non-linear associations 
across data modalities, thereby improving diagnostic precision, enabling robust risk 
stratification, and informing patient-specific therapeutic interventions. Furthermore, 
AI-driven applications in digital health, such as wearable biosensors and real-time 
physiological monitoring, allow for continuous, dynamic refinement of treatment 
plans. This review examines the transformative potential of multi-modal AI in 
precision medicine, with emphasis on its role in multi-omics data integration, 
predictive modeling, and clinical decision support. In parallel, it critically evaluates 
prevailing challenges, including data interoperability, algorithmic bias, and ethical 
considerations surrounding patient privacy. The synergistic convergence of AI 
and multi-modal data represents not merely a technological innovation but a 
fundamental redefinition of individualized healthcare delivery.
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Introduction

Personalized medicine, also known as precision medicine, is a revolutionary approach to 
healthcare that tailors medical treatment to the individual characteristics of each patient. 
Unlike traditional medical practices, which adopt a “one-size-fits-all” strategy, personalized 
medicine leverages genetic, environmental, and lifestyle factors to optimize disease prevention, 
diagnosis, and therapy. The advent of high-throughput sequencing, molecular diagnostics, and 
computational biology has significantly advanced the field, allowing for more precise 
interventions. Personalized medicine holds the potential to enhance treatment efficacy while 
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minimizing adverse effects, thereby improving patient outcomes and 
reducing healthcare costs (Khan et al., 2025; García, 2024). The 
growing accessibility of multi-omics data including genomics, 
transcriptomics, proteomics, and metabolomics has further propelled 
the development of personalized medicine. By integrating these 
diverse datasets, clinicians can better predict disease susceptibility, 
identify optimal treatment strategies, and monitor therapeutic 
responses. This paradigm shift in medicine underscores the necessity 
of advanced computational tools to manage and interpret complex 
biological data, paving the way for artificial intelligence (AI) to play a 
transformative role (Bahmani et al., 2025; Topol, 2018; Li et al., 2017; 
Hood and Friend, 2011). AI is redefining healthcare by enabling more 
precise, efficient, and predictive patient-specific treatments. Through 
machine learning (ML) algorithms, deep learning models, and natural 
language processing (NLP), AI can process vast amounts of biomedical 
data, uncover hidden patterns, and generate actionable insights for 
clinicians. AI-driven analytics assist in disease risk assessment, early 
diagnosis, drug discovery, and therapeutic optimization (He 
et al., 2025).

One of AI’s most profound impacts is in oncology, where it helps 
stratify patients based on genetic mutations and molecular markers, 
leading to more targeted therapies. AI-powered imaging techniques 
enhance early cancer detection, while predictive models refine 
treatment regimens by analyzing individual patient responses. 
Additionally, AI facilitates the identification of rare diseases by 
recognizing complex phenotypic and genotypic correlations that may 
elude conventional diagnostic methods (Bhattacharya et al., 2024; 
Ching et al., 2018). Beyond diagnostics and treatment, AI is 
instrumental in advancing pharmacogenomics—the study of how 
genetic variations influence drug responses. By integrating AI with 
pharmacogenomic data, clinicians can personalize drug prescriptions, 
mitigating adverse drug reactions and optimizing therapeutic efficacy. 
Furthermore, AI-driven robotic surgery and virtual health assistants 
improve patient engagement and accessibility to personalized medical 
advice, contributing to a more patient-centric healthcare system 
(Bajwa et al., 2021). The convergence of AI, big data, and 
bioinformatics is transforming healthcare into a highly data-driven 
domain. The exponential growth of healthcare data, including 
electronic health records (EHRs), medical imaging, wearable sensor 
data, and multi-omics profiles, necessitates robust computational 
frameworks to extract meaningful insights. AI, when integrated with 
big data analytics, facilitates real-time decision-making, predictive 
modeling, and precision diagnostics (Si et al., 2020; Obermeyer and 
Emanuel, 2016).

Bioinformatics serves as the backbone of AI-driven personalized 
medicine by enabling the systematic analysis of complex biological 
datasets. AI-powered bioinformatics tools can annotate genomic 
sequences, predict protein structures, and analyze gene expression 
patterns to elucidate disease mechanisms. The integration of AI with 
network medicine further enhances our understanding of intricate 
biological interactions, fostering the development of novel therapeutic 
strategies (Abdelhalim et al., 2022; Greener et al., 2021). AI-driven 
population health management is another critical advancement, 
leveraging predictive analytics to identify at-risk populations, track 
disease outbreaks, and optimize public health interventions. AI also 
aids in clinical trials by accelerating patient recruitment, monitoring 
treatment responses, and identifying novel drug targets, thereby 
expediting the drug development process (Lu et al., 2024; Kaur and 

Butt, 2025). Despite its transformative potential, AI-driven 
personalized medicine faces challenges, including ethical 
considerations, data privacy concerns, and the need for regulatory 
frameworks to ensure algorithmic transparency and reliability. 
Addressing these challenges will be crucial in realizing the full 
potential of AI in revolutionizing healthcare (Morley et al., 2019; 
Rajkomar et al., 2018).

The evolution of personalized medicine

The transition from a one-size-fits-all approach to tailored 
treatments marks a significant milestone in the evolution of 
healthcare. Historically, medical treatments were designed based on 
broad population-level data, often neglecting the genetic and 
environmental variability among individuals (Collins and Varmus, 
2015). However, advancements in genomics and biotechnology have 
ushered in an era where therapies are customized to the molecular 
and genetic profiles of patients (Khan et al., 2025; García, 2024). Key 
breakthroughs in genomics, particularly the completion of the 
Human Genome Project in 2003, have provided a foundation for 
personalized medicine. This project enabled the identification of 
genetic variations associated with various diseases, paving the way 
for targeted therapies. The emergence of next-generation sequencing 
(NGS) has further accelerated the ability to decode individual 
genomes, allowing for precise disease risk assessment and tailored 
interventions (Denny and Collins, 2021; Green et al., 2020). 
Biotechnology has played a crucial role in the development of 
personalized medicine. The advent of CRISPR-based gene editing 
has opened new possibilities for correcting genetic mutations 
responsible for inherited disorders. Additionally, advancements in 
single-cell sequencing and proteomics have facilitated a deeper 
understanding of disease mechanisms, enhancing the potential for 
personalized therapeutic strategies (Jinek et al., 2012; Lu et al., 2024). 
The integration of AI into personalized medicine has been 
transformative, particularly in processing vast and complex 
biological datasets. AI-driven algorithms can analyze genomic, 
clinical, and imaging data to identify disease subtypes and predict 
patient responses to specific treatments. AI applications in drug 
discovery have also revolutionized the identification of novel 
therapeutic targets, significantly reducing the time and cost 
associated with drug development (Zhavoronkov, 2018; He et al., 
2025). Several case studies highlight the impact of AI on precision 
medicine. For instance, IBM Watson for Oncology has demonstrated 
success in analyzing patient records and recommending tailored 
cancer treatments based on vast biomedical literature. Similarly, 
AI-powered predictive models have been used in cardiovascular 
medicine to assess individual risk factors and recommend 
personalized interventions (Singh et al., 2024; Lüscher et al., 2024). 
In oncology, AI-driven molecular profiling has been instrumental in 
identifying targeted therapies for patients with specific genetic 
mutations. The use of AI in analyzing liquid biopsies has enabled 
non-invasive cancer detection, improving early diagnosis and 
treatment planning (Foser et al., 2024; Topol, 2018). The evolution 
of personalized medicine continues to accelerate, driven by the 
convergence of genomics, biotechnology, and AI. As these 
technologies advance, the potential for more precise, efficient, and 
patient-centric healthcare solutions becomes increasingly evident.
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Role of AI in personalized medicine

The integration of artificial intelligence (AI) in personalized 
medicine is revolutionizing the landscape of healthcare, offering 
unprecedented potential for the optimization of patient care. 
Personalized medicine tailors medical treatment to individual 
characteristics, such as genetic profiles, lifestyle, and environmental 
factors. AI, particularly machine learning (ML) and deep learning 
(DL), plays a pivotal role in advancing personalized medicine by 
enhancing early disease detection, improving drug development, and 
refining treatment plans for patients.

Machine learning for disease prediction and 
diagnosis

One of the most promising applications of AI in personalized 
medicine is in the early detection and diagnosis of diseases. Machine 
learning algorithms have proven to be highly effective in recognizing 
patterns within complex datasets, allowing for earlier diagnosis of 
conditions such as cancer, diabetes, and cardiovascular diseases, often 
before clinical symptoms manifest. For example, AI models have been 
developed to analyze medical imaging, such as mammograms and CT 
scans, for signs of malignancies with high accuracy (Esteva et al., 
2017). These models use vast datasets of labeled images to “learn” the 
features indicative of early-stage cancers, aiding radiologists in 
identifying potential issues faster than traditional methods. AI’s ability 
to analyze genomic and clinical data also extends to predictive 
analytics in assessing patient risk for various diseases. By integrating 
patient history, lifestyle data, and genetic information, AI algorithms 
can forecast the likelihood of a disease developing, enabling proactive 
intervention. For instance, AI models in cardiology can predict the 
risk of heart attacks by analyzing historical patient data, including 
blood pressure, cholesterol levels, and genetic markers, facilitating 
early intervention to reduce mortality rates (Rajkomar et al., 2018). In 
diabetes management, ML models can predict the onset of 
complications such as retinopathy or nephropathy, based on patterns 
in longitudinal patient data, allowing clinicians to tailor preventative 
measures for high-risk individuals (Khokhar et al., 2025).

AI-driven drug development and 
pharmacogenomics

AI’s role in drug development and pharmacogenomics has 
garnered significant attention, particularly for its ability to expedite 
the discovery of novel therapeutics and optimize drug use based on 
individual genetic profiles. Traditional drug development processes 
are often slow and costly, with many candidates failing in clinical 
trials due to unforeseen adverse effects or lack of efficacy. However, 
AI has the potential to streamline this process by predicting the 
interaction of compounds with target proteins and identifying 
viable drug candidates more efficiently. For example, deep learning 
techniques have been employed to predict the binding affinity 
between small molecules and proteins, facilitating virtual screening 
of chemical libraries (Gawehn et al., 2015). This AI-driven approach 
not only accelerates drug discovery but also enables drug 
repurposing, identifying existing drugs that may be effective against 
new or underexplored diseases (Askr et al., 2022). In the realm of 
pharmacogenomics, AI models are increasingly being used to 
understand how genetic variations influence individual drug 
responses. By analyzing genetic data from large patient cohorts, AI 

algorithms can identify biomarkers that predict how patients will 
respond to specific drugs, thereby enabling more targeted therapies. 
For instance, AI has been applied to pharmacogenomic databases 
to uncover genetic variants associated with adverse drug reactions, 
which could lead to safer, more personalized prescriptions (He et 
al., 2025). This data-driven approach also holds promise for 
optimizing the dosage of medications to avoid toxicity or insufficient 
therapeutic effects, particularly for drugs with a narrow 
therapeutic index.

Personalized treatment planning with AI
AI’s contribution to personalized treatment planning is perhaps 

one of the most transformative aspects of its integration into medicine. 
By leveraging patient-specific data, including genetic information, 
lifestyle factors, and clinical history, AI-powered systems can assist 
clinicians in formulating individualized treatment plans. Deep 
learning algorithms, for example, can analyze complex patient datasets 
to provide personalized predictions regarding the best course of 
treatment, taking into account factors such as treatment efficacy, 
potential side effects, and the patient’s overall health status. In 
oncology, AI has been utilized to guide treatment decisions by 
analyzing genomic alterations in tumors and suggesting targeted 
therapies that have the highest likelihood of success based on 
molecular profiling (Luchini et al., 2021; Lotter et al., 2024). 
AI-assisted decision-making tools are also enhancing clinical 
workflows by providing evidence-based recommendations for drug 
combinations or interventions tailored to individual patients. These 
systems reduce the cognitive load on healthcare providers, allowing 
for quicker and more accurate decision-making, especially in fast-
paced environments like emergency departments. Moreover, 
AI-driven decision support systems can incorporate real-time data 
from wearable health devices, allowing for continuous monitoring of 
a patient’s condition and dynamic adjustment of treatment plans as 
new data becomes available. The application of deep learning in 
medical imaging is another significant advancement in personalized 
treatment planning. AI models are now routinely used to analyze 
medical images with high precision, enabling earlier detection of 
abnormalities and aiding in the assessment of disease progression. For 
instance, AI algorithms trained on large datasets of radiological 
images can detect subtle signs of disease that might be missed by the 
human eye, improving diagnostic accuracy. In conditions such as 
brain tumors, AI can also predict patient prognosis based on the 
imaging characteristics of the tumor, helping clinicians to tailor 
treatment plans more effectively (Li et al., 2023a).

Data sources and AI models in personalized 
medicine

The integration of artificial intelligence (AI) with diverse 
biomedical data sources is a cornerstone of modern personalized 
medicine. AI-driven approaches leverage vast and complex datasets 
to generate predictive insights, enhance diagnostics, and tailor 
individualized therapeutic strategies. The efficacy of AI models in 
personalized medicine relies on their ability to process and analyze 
data from multiple sources, including genomic and multi-omics 
datasets, electronic health records (EHRs), and real-time patient 
monitoring systems. A schematic representation showing how AI 
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integrates multi-omics data, electronic health records (EHRs), and 
medical imaging to provide personalized treatment (Figure 1).

Genomic and multi-omics data integration
The advent of high-throughput sequencing technologies has 

revolutionized biomedical research by generating vast amounts of 
genomic and multi-omics data, including transcriptomics, proteomics, 
epigenomics, and metabolomics (Hasin et al., 2017). AI models, 
particularly deep learning, play a pivotal role in integrating and 
analyzing these multi-dimensional datasets to uncover molecular 
mechanisms underlying disease susceptibility and drug responses 
(Angermueller et al., 2016). Genomic data alone provides valuable 
insights into genetic predispositions and disease risk, but multi-omics 
integration enhances predictive accuracy by considering post-
translational modifications, gene–environment interactions, and 
dynamic regulatory networks (Molla and Bitew, 2024). AI algorithms 
can identify biomarkers and therapeutic targets with high precision, 
facilitating the development of personalized treatment plans. For 
example, convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) have been used to predict the impact of genetic 
variants on protein function and drug metabolism, leading to 
improved pharmacogenomic interventions (Chang et al., 2025).

Electronic health records (EHRs) and AI-driven 
insights

EHRs serve as a rich source of patient data, encompassing 
demographics, clinical histories, laboratory results, imaging data, 
and physician notes. AI-driven analytics transform EHRs into 
powerful tools for precision medicine by identifying disease 
patterns, optimizing treatment plans, and predicting patient 
outcomes (Rajkomar et al., 2018). Machine learning algorithms, 

including gradient boosting and random forests, have been 
employed to predict disease progression by analyzing structured and 
unstructured EHR data. One of the key challenges in leveraging 
EHRs is data heterogeneity and missing information. AI models 
employing imputation techniques, such as generative adversarial 
networks (GANs), can address these limitations by reconstructing 
incomplete datasets with high fidelity (Nogues et al., 2024). 
Additionally, NLP has been instrumental in extracting valuable 
insights from unstructured clinical notes, enhancing disease 
classification and enabling personalized risk assessment (Scharp et 
al., 2023).

AI techniques: deep learning, reinforcement 
learning, and NLP

The implementation of AI in personalized medicine relies on 
several advanced techniques, including deep learning, reinforcement 
learning, and NLP. Deep learning, particularly CNNs and long short-
term memory (LSTM) networks, has demonstrated remarkable 
success in analyzing complex biomedical data. CNNs have been 
widely applied in medical imaging to detect early-stage diseases, while 
LSTMs are used in genomic sequence analysis and predictive 
modeling of disease trajectories (Litjens et al., 2017). Whereas 
reinforcement Learning approach enables AI models to optimize 
treatment strategies dynamically based on patient responses. In 
oncology, reinforcement learning algorithms have been employed to 
personalize chemotherapy regimens, balancing efficacy and toxicity 
(Frommeyer et al., 2025). In natural Language Processing (NLP) 
techniques, such as Bidirectional Encoder Representations from 
Transformers (BERT) and GPT-based models, enhance clinical 
decision-making by processing and interpreting unstructured medical 
texts, pathology reports, and scientific literature (Lee et al., 2019). 

FIGURE 1

A schematic representation showing how AI integrates multi-omics data, electronic health records (EHRs), and medical imaging to provide 
personalized treatment.
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These models facilitate automated disease classification and patient 
stratification, further advancing precision medicine.

AI applications in key areas of personalized 
medicine

The advent of artificial intelligence (AI) in personalized medicine 
has revolutionized patient-specific diagnostics, prognostics, and 
therapeutic decision-making. AI models integrate vast and complex 
biomedical datasets including multi-omics profiles, electronic health 
records (EHRs), and medical imaging data to uncover disease 
signatures and optimize patient management strategies. AI’s 
transformative role is particularly evident in oncology, neurology, 
cardiovascular medicine, and the diagnosis of rare genetic disorders, 
where precision and early intervention are crucial.

Oncology: AI-guided cancer treatment and 
immunotherapy

AI is reshaping cancer treatment paradigms through the 
integration of machine learning (ML) and deep learning (DL) 
models with genomic and imaging datasets (Li et al., 2023b). 
Convolutional neural networks (CNNs) and transformer-based 
architectures such as Vision Transformers (ViTs) have demonstrated 
superior accuracy in analyzing radiological and histopathological 
images to detect malignant lesions at early stages (Ardila et al., 
2019). AI-enhanced liquid biopsy analysis enables the detection of 
circulating tumor DNA (ctDNA) and tumor-derived exosomes, 
facilitating non-invasive early cancer screening (Hussain et al., 
2025). AI-driven multi-omics integration allows for the precise 
identification of molecular subtypes in aggressive cancers such as 
triple-negative breast cancer (TNBC) and glioblastoma (Ballard et 

al., 2024). Furthermore, deep reinforcement learning (DRL) 
algorithms optimize treatment regimens by continuously adapting 
therapeutic strategies based on real-time tumor response data (Yang 
et al., 2022). In immunotherapy, AI models leverage transcriptomic 
and single-cell sequencing data to predict patient responsiveness to 
immune checkpoint inhibitors (ICIs) by identifying tumor 
microenvironment immune signatures (Li et al., 2023b). Hence, 
AI-assisted cancer management is aiding the risk stratification and 
early detection, through diagnosis, treatment planning, and real-
time monitoring, to survivorship and end-of-life care—enabling 
precision interventions, personalized prognoses, and improved 
quality of life (Figure 2).

Neurology: AI in Alzheimer’s and Parkinson’s 
disease management

AI has significantly advanced early diagnosis and progression 
modeling of neurodegenerative diseases such as Alzheimer’s disease 
(AD) and Parkinson’s disease (PD). Graph-based deep learning 
architectures have been applied to neuroimaging modalities, including 
amyloid PET and functional MRI, to detect subtle structural and 
functional alterations indicative of preclinical AD (Bazarbekov et al., 
2024). Recurrent neural networks (RNNs) trained on longitudinal 
EHRs predict cognitive decline trajectories, enabling early therapeutic 
interventions (Jasodanand et al., 2025). In PD, AI-powered wearable 
biosensors capture gait, tremor, and speech abnormalities, offering 
real-time, objective disease monitoring (Sakar et al., 2018). Generative 
adversarial networks (GANs) reconstruct high-resolution imaging 
data from low-quality scans, enhancing the accuracy of PD-related 
dopamine transporter imaging (Twala et al., 2025). Moreover, 
integrative AI models analyzing genomic, proteomic, and gut 
microbiome data have identified novel PD biomarkers, paving the way 
for personalized neuroprotective therapies.

FIGURE 2

AI-assisted cancer management and its role in different phases of disease.
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Cardiovascular health: AI for heart disease risk 
prediction

AI-driven predictive analytics play a crucial role in cardiovascular 
medicine, enabling early detection and personalized management of 
heart disease (He et al., 2018). Transformer-based architectures, such 
as bidirectional encoder representations from transformers (BERT), 
analyze vast clinical datasets to predict the onset of heart failure and 
atrial fibrillation with high accuracy (Biondi-Zoccai et al., 2025). Deep 
learning-assisted echocardiographic analysis automates left ventricular 
ejection fraction (LVEF) quantification, improving heart failure 
diagnosis (Asch et al., 2019). Genomic risk prediction models powered 
by AI facilitate stratification of individuals based on polygenic risk 
scores (PRS) for coronary artery disease (CAD) and myocardial 
infarction (Xie et al., 2023). AI-assisted computational modeling of 
cardiac electrophysiology supports patient-specific treatment 
planning, guiding optimal antiarrhythmic therapy and catheter 
ablation strategies (Attia et al., 2019).

Rare diseases: AI-enabled genetic analysis for 
better diagnosis

Rare genetic diseases often present diagnostic challenges due to 
heterogeneous phenotypic expressions and limited available patient 
data. AI models trained on large-scale genomic databases enable rapid 
prioritization of pathogenic variants in whole-genome and whole-
exome sequencing (Kafkas et al., 2025). AI-driven knowledge graphs 
integrate multi-omics and phenotypic data, facilitating automated 
disease classification and novel disease-gene association discovery 
(Chandak et al., 2023). Deep learning-based facial recognition 
technology aids in the diagnosis of syndromic genetic disorders by 
analyzing craniofacial phenotypes from patient images (Gurovich et 
al., 2018). Additionally, natural language processing (NLP) algorithms 
extract disease-specific information from unstructured clinical notes, 
accelerating differential diagnosis and clinical decision-making for 
rare condition.

Ethical, legal, and social challenges

AI-driven healthcare systems rely heavily on large datasets 
containing sensitive patient information, raising significant ethical 
and legal concerns (Bouderhem, 2024). Ensuring data privacy while 
maintaining accessibility for research and clinical use remains a major 
challenge. Regulatory frameworks such as the General Data Protection 
Regulation (GDPR) in Europe, the Health Insurance Portability and 
Accountability Act (HIPAA) in the United States, and the Personal 
Information Protection and Electronic Documents Act (PIPEDA) in 
Canada provide guidelines on data handling, patient consent, and 
security protocols (Shabani et al., 2021). A critical concern is informed 
consent, as AI models require continuous data collection, often from 
unsuspecting individuals (Chau et al., 2025). Implementing clear and 
understandable consent mechanisms is essential. Additionally, while 
data anonymization techniques help protect patient privacy, the risk 
of re-identification remains, particularly when datasets are cross-
referenced (Shojaei et al., 2025). Cyber threats further complicate the 
landscape, necessitating compliance with stringent security standards 
such as encryption and secure cloud storage (Bertl et al., 2024). 
Furthermore, regulatory adaptability is crucial, as existing policies 
often lag behind rapid AI advancements, requiring flexible 

mechanisms that evolve alongside new developments (Mennella et 
al., 2024).

Bias in AI models presents another ethical challenge, particularly 
in healthcare, where biased predictions can exacerbate health 
disparities (Obermeyer et al., 2019). Biases often arise from training 
data limitations, algorithmic biases, and implicit biases in model 
deployment (Chen et al., 2023; Mehrabi et al., 2021). AI models 
trained on non-representative datasets may fail to generalize across 
diverse populations, leading to misdiagnosis or suboptimal treatment 
recommendations (Hasanzadeh et al., 2025). Some risk assessment 
tools systematically underrepresent marginalized populations, 
reinforcing existing social and racial disparities (Obermeyer et al., 
2019). Historical biases embedded in healthcare records can also be 
perpetuated by AI systems, underscoring the need for proactive bias 
mitigation strategies (Hasanzadeh et al., 2025). One approach to 
mitigating bias is ensuring diverse data representation by expanding 
datasets to include underrepresented groups (Hasanzadeh et al., 
2025). Algorithmic transparency through open-source AI models and 
explainable AI (XAI) techniques can help identify and correct biases 
(Maniatis, 2025). Regulatory oversight, including standardizing AI 
fairness assessments and incorporating equity audits, is essential for 
mitigating systemic biases and ensuring equitable healthcare delivery 
(Rajkomar et al., 2018). Balancing AI automation with human 
expertise is essential to maintaining ethical and safe healthcare 
practices (Mosqueira-Rey et al., 2022). While AI can automate 
diagnostics, streamline administrative tasks, and improve patient 
outcomes, over-reliance on AI poses risks (Khosravi et al., 2024). 
Excessive trust in AI predictions may lead clinicians to overlook 
contextual patient factors. AI should complement rather than replace 
human judgment, particularly in high-risk scenarios where 
accountability is crucial (Weiner et al., 2025). Many AI models 
function as “black boxes,” making it difficult for clinicians to 
understand their decision-making process, underscoring the 
importance of explainable AI methods (Pfeifer et al., 2025). A 
collaborative approach, incorporating human-in-the-loop systems, 
ensures that AI remains an assistive tool rather than a replacement for 
healthcare professionals (Mosqueira-Rey et al., 2022). Training 
clinicians in AI ethics and interpretability equips them to make 
informed decisions (Topol, 2018). Additionally, continuous AI audits 
are necessary to assess performance in real-world clinical settings, 
identify risks, and adjust deployment strategies accordingly (Hassan 
et al., 2024).

Future prospects and innovations

Artificial intelligence (AI) is at the forefront of revolutionizing 
personalized healthcare, offering transformative capabilities in 
diagnostics, treatment optimization, and drug discovery. Emerging 
technologies, including quantum computing and AI-driven digital 
twins, are poised to further accelerate advancements in precision 
medicine. Additionally, industry-academia collaborations are essential 
to translating AI innovations into clinically viable solutions, ensuring 
scalability and regulatory compliance.

AI in personalized healthcare
AI-driven tools leverage machine learning (ML), deep learning 

(DL), and natural language processing (NLP) to analyze multi-modal 
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data, including genomic sequences, electronic health records (EHRs), 
and medical imaging. This enables early disease detection, risk 
stratification, and optimized therapeutic interventions. Machine 
learning models trained on omics data have significantly improved 
disease prediction and early diagnosis, particularly in oncology, 
neurology, and cardiology. Deep convolutional neural networks 
(CNNs) are enhancing radiology and pathology assessments, allowing 
precise identification of malignant lesions. AI-powered predictive 
analytics integrating genetic predisposition and lifestyle factors further 
refine risk assessments and preventive strategies. AI has also 
transformed drug discovery by accelerating target identification and 
optimizing compound screening. Deep generative models, including 
variational autoencoders (VAEs) and reinforcement learning, have 
successfully identified novel therapeutics. Moreover, AI-driven drug 
repurposing approaches have uncovered promising candidates for 
treating rare and emerging diseases. Additionally, personalized 
treatment regimens tailored to an individual’s genetic, metabolic, and 
microbiome profiles are being developed using AI-powered decision 
support systems (Figure 3; Table 1).

Quantum computing in precision medicine
Quantum computing holds immense potential in overcoming 

computational challenges in precision medicine. Unlike classical 
computers, quantum systems leverage superposition and 
entanglement to execute high-dimensional analyses at unprecedented 
speeds. Quantum-assisted drug discovery is expected to revolutionize 
molecular simulations, improving the identification of optimal drug 
candidates (Danishuddin et al., 2025). Algorithms such as the 
Variational Quantum Eigensolver (VQE) enhance molecular 
interaction predictions, streamlining structure-based drug design. 

Additionally, quantum machine learning (QML) techniques are being 
applied to genomic analysis, improving biomarker identification and 
patient stratification. Quantum-enhanced deep learning models also 
hold promise in accelerating AI model training, leading to faster and 
more accurate clinical decision-making.

AI-driven industry-academia collaborations
Synergistic collaborations between academia and industry are 

critical for translating AI-driven healthcare innovations into practical 
applications. These partnerships facilitate translational research, 
ensuring the development of clinically validated and regulatory-
compliant AI models. AI is increasingly being integrated into clinical 
trial design, optimizing patient recruitment and predictive modeling. 
AI-powered adaptive trials, leveraging Bayesian optimization 
techniques, enhance efficiency and reduce costs. Additionally, 
federated learning is enabling decentralized AI training, ensuring data 
privacy and regulatory compliance while facilitating multi-
institutional collaborations. AI-powered digital twins virtual patient 
models simulating disease progression and treatment response are 
revolutionizing personalized medicine. These models are instrumental 
in optimizing therapeutic interventions, particularly in complex 
diseases such as cancer and rare genetic disorders. Industry-academia 
partnerships are driving the adoption of digital twin technology, 
further advancing precision medicine.

Conclusion

This article has delineated the pivotal role of artificial 
intelligence (AI) in the evolution of personalized medicine, 

FIGURE 3

AI-driven workflow for precision medicine: from feature collection to prediction model.
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TABLE 1  Comprehensive list of AI tools in healthcare.

Category AI tool Purpose Year of launch

Diagnosis and imaging BM Watson for Oncology Assists oncologists in treatment recommendations based on clinical evidence. 2013

Google DeepMind Health (now Google Health AI) AI for disease detection, especially in radiology and ophthalmology. 2016

Zebra Medical Vision AI-powered medical imaging analysis (X-rays, CT scans, MRIs). 2014

Qure.ai AI-based interpretation of chest X-rays and brain CT scans. 2016

Viz.ai AI-driven stroke detection via brain imaging. 2018

PathAI AI-assisted pathology for cancer diagnosis. 2017

Arterys AI for cardiac imaging and radiology interpretation. 2016

Aidoc AI triage system for radiology scans to detect critical conditions. 2016

Lunit INSIGHT AI for cancer detection in chest X-rays, mammography. 2019

RapidAI AI stroke and neurovascular imaging workflow solution. 2020

Samsung AI-CT Portfolio (CereTom Elite, OmniTom Elite PCD, BodyTom) Mobile CT scanners with AI-enabled imaging for ICU, ER, OR use. 2025

IntelliCardiac Deep learning platform for 4D cardiac image segmentation and disease classification 2025

Drug discovery and research Atomwise AI-driven drug discovery using deep learning. 2012

BenevolentAI AI-powered drug development and biomedical research. 2013

Insilico Medicine AI for identifying new drug candidates and aging research. 2014

Exscientia AI-based drug design and precision medicine. 2012

BioXcel Therapeutics AI for repurposing existing drugs for new diseases. 2017

Recursion Pharmaceuticals AI + automation for phenomics-driven drug discovery. 2013

Valo Health End-to-end AI-driven drug development platform. 2019

OpenEvidence DeepConsult AI agent synthesizing research studies to guide drug discovery and clinical decisions. 2025

Personalized medicine and 

treatment planning

Tempus AI-driven precision oncology platform analyzing clinical and genomic data. 2015

Flatiron Health AI-powered oncology data platform for treatment planning. 2012

Paige. AI AI for cancer diagnosis and pathology image analysis. 2018

Freenome AI-based early cancer detection using blood-based biomarkers. 2014

Owkin AI federated learning for oncology research and biomarker discovery. 2016

GRAIL AI-powered liquid biopsy for multi-cancer early detection. 2016

MedOrch Multi-tool AI reasoning framework for diagnosis across multiple disease domains. 2025

CareYaya MedaCareLLM + Smart Glasses Personalized dementia care with facial/object recognition and reminders. 2024

(Continued)
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TABLE 1  (Continued)

Category AI tool Purpose Year of launch

Patient management Babylon Health AI chatbot for symptom checking and telemedicine. 2013

Ada Health AI-powered symptom checker and diagnosis assistant. 2016

Buoy Health AI-based triage system for guiding patients on next medical steps. 2017

Woebot AI chatbot for mental health support. 2017

K Health AI-powered primary care and symptom triage platform 2016

CarePredict AI wearable for monitoring elderly health and predicting falls. 2013

Heidi Health AI scribe generating structured documentation, summaries, and EHR integration. 2024–2025

Eko AI-powered Stethoscope AI diagnosis of heart failure, valve disease, arrhythmias within 15 s. 2025

Hospital workflow and 

administration

Olive AI (operations scaled back 2023) AI-driven automation of hospital administrative tasks. 2017

Nuance DAX (Dragon Ambient eXperience) AI-powered medical transcription and clinical documentation. 2020

Moxi AI robotic assistant for hospital logistics and patient support. 2018

Microsoft Dragon Copilot AI assistant for note generation, summaries, referrals (EHR-integrated). 2025

Wearable and remote 

monitoring

Apple Health AI AI-based health tracking (ECG, heart rate monitoring). 2018

Fitbit AI AI-driven health tracking and early disease detection. 2019

Eko AI AI-powered heart sound analysis for detecting cardiovascular diseases. 2015

Biofourmis AI for real-time remote patient monitoring and predictive analytics. 2015

Withings Health Solutions AI-based remote monitoring for hypertension, sleep apnea. 2021
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underscoring its capacity to significantly enhance diagnostic 
precision, optimize therapeutic strategies, and predict patient 
outcomes with remarkable accuracy. Key insights from our 
discussion highlight AI’s transformative potential in the realm of 
healthcare, particularly through advanced machine learning (ML) 
algorithms, deep learning frameworks, and the integration of vast, 
multidimensional datasets. AI facilitates the identification of 
complex biomarkers, the development of predictive models, and the 
refinement of treatment protocols, thus enabling precision medicine 
that is tailored to the individual patient’s unique genetic, 
environmental, and clinical characteristics. AI’s integration into 
precision medicine is poised to revolutionize several domains, 
including genomics, drug discovery, and imaging. In genomics, 
AI-driven tools can parse large-scale genomic data to identify novel 
genetic variants, predict disease risk, and guide the design of 
targeted therapies. In drug discovery, AI accelerates the 
identification of new therapeutic compounds by simulating 
molecular interactions and predicting their efficacy. Moreover, in 
clinical imaging, AI models are already enhancing diagnostic 
accuracy by automating image analysis, detecting anomalies with 
greater sensitivity than traditional methods. Despite these advances, 
substantial challenges persist in the full-scale implementation of AI 
in clinical practice. These include data heterogeneity, the need for 
robust validation frameworks, regulatory considerations, and 
ensuring patient data privacy. Furthermore, the clinical integration 
of AI must account for the broader healthcare ecosystem, where 
scalability and cost-effectiveness remain significant barriers. 
Addressing these challenges will require multidisciplinary efforts to 
develop standardized methodologies for AI deployment, ensure 
transparency in AI-driven decision-making, and foster collaboration 
between AI researchers and healthcare providers to ensure these 
technologies are clinically relevant and accessible. Future research 
should focus on optimizing the accuracy and interpretability of AI 
algorithms, particularly in terms of their ability to generalize across 
diverse populations and clinical conditions. Advancements in 
explainable AI (XAI) will be crucial for clinicians to understand the 
rationale behind AI-driven recommendations, fostering trust and 
enhancing clinical decision-making. Furthermore, efforts to 
harmonize data across disparate platforms and ensure 
interoperability between AI systems and existing healthcare 
infrastructures will be vital to achieving seamless integration. In 
summary, AI represents a paradigm shift in personalized medicine, 
with the potential to redefine healthcare delivery by offering highly 
individualized, data-driven treatments. As the field matures, it will 
be essential to navigate both the technological and ethical challenges 
that accompany AI adoption. With sustained research and 
collaboration, the future of personalized medicine is set to evolve 
into an era characterized by more precise, effective, and equitable 
healthcare for all.
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