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Precision healthcare is increasingly oriented toward the development of therapeutic
strategies that are as individualized as the patients receiving them. Central to this
paradigm shift is artificial intelligence (Al)-enabled multi-modal data integration,
which consolidates heterogeneous data streams—including genomic, transcriptomic,
proteomic, imaging, environmental, and electronic health record (EHR) data into
a unified analytical framework. This integrative approach enhances early disease
detection, facilitates the discovery of clinically actionable biomarkers, and accelerates
rational drug development, with particularly significant implications for oncology,
neurology, and cardiovascular medicine. Advanced machine learning (ML) and deep
learning (DL) algorithms are capable of extracting complex, non-linear associations
across data modalities, thereby improving diagnostic precision, enabling robust risk
stratification, and informing patient-specific therapeutic interventions. Furthermore,
Al-driven applications in digital health, such as wearable biosensors and real-time
physiological monitoring, allow for continuous, dynamic refinement of treatment
plans. This review examines the transformative potential of multi-modal Al in
precision medicine, with emphasis on its role in multi-omics data integration,
predictive modeling, and clinical decision support. In parallel, it critically evaluates
prevailing challenges, including data interoperability, algorithmic bias, and ethical
considerations surrounding patient privacy. The synergistic convergence of Al
and multi-modal data represents not merely a technological innovation but a
fundamental redefinition of individualized healthcare delivery.
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Introduction

Personalized medicine, also known as precision medicine, is a revolutionary approach to
healthcare that tailors medical treatment to the individual characteristics of each patient.
Unlike traditional medical practices, which adopt a “one-size-fits-all” strategy, personalized
medicine leverages genetic, environmental, and lifestyle factors to optimize disease prevention,
diagnosis, and therapy. The advent of high-throughput sequencing, molecular diagnostics, and
computational biology has significantly advanced the field, allowing for more precise
interventions. Personalized medicine holds the potential to enhance treatment efficacy while
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minimizing adverse effects, thereby improving patient outcomes and
reducing healthcare costs (Khan et al., 2025; Garcia, 2024). The
growing accessibility of multi-omics data including genomics,
transcriptomics, proteomics, and metabolomics has further propelled
the development of personalized medicine. By integrating these
diverse datasets, clinicians can better predict disease susceptibility,
identify optimal treatment strategies, and monitor therapeutic
responses. This paradigm shift in medicine underscores the necessity
of advanced computational tools to manage and interpret complex
biological data, paving the way for artificial intelligence (AI) to play a
transformative role (Bahmani et al., 2025; Topol, 2018; Li et al., 2017;
Hood and Friend, 2011). Al is redefining healthcare by enabling more
precise, efficient, and predictive patient-specific treatments. Through
machine learning (ML) algorithms, deep learning models, and natural
language processing (NLP), Al can process vast amounts of biomedical
data, uncover hidden patterns, and generate actionable insights for
clinicians. Al-driven analytics assist in disease risk assessment, early
diagnosis, drug discovery, and therapeutic optimization (He
etal., 2025).

One of AT's most profound impacts is in oncology, where it helps
stratify patients based on genetic mutations and molecular markers,
leading to more targeted therapies. AI-powered imaging techniques
enhance early cancer detection, while predictive models refine
treatment regimens by analyzing individual patient responses.
Additionally, AI facilitates the identification of rare diseases by
recognizing complex phenotypic and genotypic correlations that may
elude conventional diagnostic methods (Bhattacharya et al., 2024;
Ching et al, 2018). Beyond diagnostics and treatment, Al is
instrumental in advancing pharmacogenomics—the study of how
genetic variations influence drug responses. By integrating AI with
pharmacogenomic data, clinicians can personalize drug prescriptions,
mitigating adverse drug reactions and optimizing therapeutic efficacy.
Furthermore, Al-driven robotic surgery and virtual health assistants
improve patient engagement and accessibility to personalized medical
advice, contributing to a more patient-centric healthcare system
(Bajwa et al., 2021). The convergence of Al, big data, and
bioinformatics is transforming healthcare into a highly data-driven
domain. The exponential growth of healthcare data, including
electronic health records (EHRs), medical imaging, wearable sensor
data, and multi-omics profiles, necessitates robust computational
frameworks to extract meaningful insights. AI, when integrated with
big data analytics, facilitates real-time decision-making, predictive
modeling, and precision diagnostics (Si et al., 2020; Obermeyer and
Emanuel, 2016).

Bioinformatics serves as the backbone of Al-driven personalized
medicine by enabling the systematic analysis of complex biological
datasets. Al-powered bioinformatics tools can annotate genomic
sequences, predict protein structures, and analyze gene expression
patterns to elucidate disease mechanisms. The integration of Al with
network medicine further enhances our understanding of intricate
biological interactions, fostering the development of novel therapeutic
strategies (Abdelhalim et al., 2022; Greener et al., 2021). Al-driven
population health management is another critical advancement,
leveraging predictive analytics to identify at-risk populations, track
disease outbreaks, and optimize public health interventions. Al also
aids in clinical trials by accelerating patient recruitment, monitoring
treatment responses, and identifying novel drug targets, thereby
expediting the drug development process (Lu et al., 2024; Kaur and
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Butt, 2025). Despite its transformative potential, Al-driven
ethical
considerations, data privacy concerns, and the need for regulatory

personalized medicine faces challenges, including
frameworks to ensure algorithmic transparency and reliability.
Addressing these challenges will be crucial in realizing the full
potential of Al in revolutionizing healthcare (Morley et al., 2019;

Rajkomar et al., 2018).

The evolution of personalized medicine

The transition from a one-size-fits-all approach to tailored
treatments marks a significant milestone in the evolution of
healthcare. Historically, medical treatments were designed based on
broad population-level data, often neglecting the genetic and
environmental variability among individuals (Collins and Varmus,
2015). However, advancements in genomics and biotechnology have
ushered in an era where therapies are customized to the molecular
and genetic profiles of patients (Khan et al., 2025; Garcia, 2024). Key
breakthroughs in genomics, particularly the completion of the
Human Genome Project in 2003, have provided a foundation for
personalized medicine. This project enabled the identification of
genetic variations associated with various diseases, paving the way
for targeted therapies. The emergence of next-generation sequencing
(NGS) has further accelerated the ability to decode individual
genomes, allowing for precise disease risk assessment and tailored
interventions (Denny and Collins, 2021; Green et al.,, 2020).
Biotechnology has played a crucial role in the development of
personalized medicine. The advent of CRISPR-based gene editing
has opened new possibilities for correcting genetic mutations
responsible for inherited disorders. Additionally, advancements in
single-cell sequencing and proteomics have facilitated a deeper
understanding of disease mechanisms, enhancing the potential for
personalized therapeutic strategies (Jinek et al., 2012; Lu et al., 2024).
The integration of AI into personalized medicine has been
transformative, particularly in processing vast and complex
biological datasets. Al-driven algorithms can analyze genomic,
clinical, and imaging data to identify disease subtypes and predict
patient responses to specific treatments. Al applications in drug
discovery have also revolutionized the identification of novel
therapeutic targets, significantly reducing the time and cost
associated with drug development (Zhavoronkov, 2018; He et al,,
2025). Several case studies highlight the impact of AI on precision
medicine. For instance, IBM Watson for Oncology has demonstrated
success in analyzing patient records and recommending tailored
cancer treatments based on vast biomedical literature. Similarly,
Al-powered predictive models have been used in cardiovascular
medicine to assess individual risk factors and recommend
personalized interventions (Singh et al., 2024; Liischer et al., 2024).
In oncology, Al-driven molecular profiling has been instrumental in
identifying targeted therapies for patients with specific genetic
mutations. The use of Al in analyzing liquid biopsies has enabled
non-invasive cancer detection, improving early diagnosis and
treatment planning (Foser et al., 2024; Topol, 2018). The evolution
of personalized medicine continues to accelerate, driven by the
convergence of genomics, biotechnology, and AI. As these
technologies advance, the potential for more precise, efficient, and
patient-centric healthcare solutions becomes increasingly evident.
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Role of Al in personalized medicine

The integration of artificial intelligence (AI) in personalized
medicine is revolutionizing the landscape of healthcare, offering
unprecedented potential for the optimization of patient care.
Personalized medicine tailors medical treatment to individual
characteristics, such as genetic profiles, lifestyle, and environmental
factors. Al particularly machine learning (ML) and deep learning
(DL), plays a pivotal role in advancing personalized medicine by
enhancing early disease detection, improving drug development, and
refining treatment plans for patients.

Machine learning for disease prediction and
diagnosis

One of the most promising applications of Al in personalized
medicine is in the early detection and diagnosis of diseases. Machine
learning algorithms have proven to be highly effective in recognizing
patterns within complex datasets, allowing for earlier diagnosis of
conditions such as cancer, diabetes, and cardiovascular diseases, often
before clinical symptoms manifest. For example, Al models have been
developed to analyze medical imaging, such as mammograms and CT
scans, for signs of malignancies with high accuracy (Esteva et al,,
2017). These models use vast datasets of labeled images to “learn” the
features indicative of early-stage cancers, aiding radiologists in
identifying potential issues faster than traditional methods. AT’s ability
to analyze genomic and clinical data also extends to predictive
analytics in assessing patient risk for various diseases. By integrating
patient history, lifestyle data, and genetic information, AI algorithms
can forecast the likelihood of a disease developing, enabling proactive
intervention. For instance, AI models in cardiology can predict the
risk of heart attacks by analyzing historical patient data, including
blood pressure, cholesterol levels, and genetic markers, facilitating
early intervention to reduce mortality rates (Rajkomar et al., 2018). In
diabetes management, ML models can predict the onset of
complications such as retinopathy or nephropathy, based on patterns
in longitudinal patient data, allowing clinicians to tailor preventative
measures for high-risk individuals (Khokhar et al., 2025).

Al-driven drug development and
pharmacogenomics

AT’ role in drug development and pharmacogenomics has
garnered significant attention, particularly for its ability to expedite
the discovery of novel therapeutics and optimize drug use based on
individual genetic profiles. Traditional drug development processes
are often slow and costly, with many candidates failing in clinical
trials due to unforeseen adverse effects or lack of efficacy. However,
AT has the potential to streamline this process by predicting the
interaction of compounds with target proteins and identifying
viable drug candidates more efficiently. For example, deep learning
techniques have been employed to predict the binding affinity
between small molecules and proteins, facilitating virtual screening
of chemical libraries (Gawehn et al., 2015). This AI-driven approach
not only accelerates drug discovery but also enables drug
repurposing, identifying existing drugs that may be effective against
new or underexplored diseases (Askr et al., 2022). In the realm of
pharmacogenomics, AI models are increasingly being used to
understand how genetic variations influence individual drug
responses. By analyzing genetic data from large patient cohorts, Al
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algorithms can identify biomarkers that predict how patients will
respond to specific drugs, thereby enabling more targeted therapies.
For instance, Al has been applied to pharmacogenomic databases
to uncover genetic variants associated with adverse drug reactions,
which could lead to safer, more personalized prescriptions (He et
al.,, 2025). This data-driven approach also holds promise for
optimizing the dosage of medications to avoid toxicity or insufficient
therapeutic effects, particularly for drugs with a narrow
therapeutic index.

Personalized treatment planning with Al

AT’s contribution to personalized treatment planning is perhaps
one of the most transformative aspects of its integration into medicine.
By leveraging patient-specific data, including genetic information,
lifestyle factors, and clinical history, AI-powered systems can assist
clinicians in formulating individualized treatment plans. Deep
learning algorithms, for example, can analyze complex patient datasets
to provide personalized predictions regarding the best course of
treatment, taking into account factors such as treatment efficacy,
potential side effects, and the patients overall health status. In
oncology, Al has been utilized to guide treatment decisions by
analyzing genomic alterations in tumors and suggesting targeted
therapies that have the highest likelihood of success based on
molecular profiling (Luchini et al., 2021; Lotter et al., 2024).
Al-assisted decision-making tools are also enhancing clinical
workflows by providing evidence-based recommendations for drug
combinations or interventions tailored to individual patients. These
systems reduce the cognitive load on healthcare providers, allowing
for quicker and more accurate decision-making, especially in fast-
paced environments like emergency departments. Moreover,
Al-driven decision support systems can incorporate real-time data
from wearable health devices, allowing for continuous monitoring of
a patient’s condition and dynamic adjustment of treatment plans as
new data becomes available. The application of deep learning in
medical imaging is another significant advancement in personalized
treatment planning. AI models are now routinely used to analyze
medical images with high precision, enabling earlier detection of
abnormalities and aiding in the assessment of disease progression. For
instance, Al algorithms trained on large datasets of radiological
images can detect subtle signs of disease that might be missed by the
human eye, improving diagnostic accuracy. In conditions such as
brain tumors, Al can also predict patient prognosis based on the
imaging characteristics of the tumor, helping clinicians to tailor
treatment plans more effectively (Li et al., 2023a).

Data sources and Al models in personalized
medicine

The integration of artificial intelligence (AI) with diverse
biomedical data sources is a cornerstone of modern personalized
medicine. Al-driven approaches leverage vast and complex datasets
to generate predictive insights, enhance diagnostics, and tailor
individualized therapeutic strategies. The efficacy of Al models in
personalized medicine relies on their ability to process and analyze
data from multiple sources, including genomic and multi-omics
datasets, electronic health records (EHRs), and real-time patient
monitoring systems. A schematic representation showing how Al
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integrates multi-omics data, electronic health records (EHRs), and  including gradient boosting and random forests, have been
medical imaging to provide personalized treatment (Figure 1). employed to predict disease progression by analyzing structured and
unstructured EHR data. One of the key challenges in leveraging
Genomic and multi-omics data integration EHRs is data heterogeneity and missing information. AI models
The advent of high-throughput sequencing technologies has  employing imputation techniques, such as generative adversarial
revolutionized biomedical research by generating vast amounts of  networks (GANs), can address these limitations by reconstructing
genomic and multi-omics data, including transcriptomics, proteomics, ~ incomplete datasets with high fidelity (Nogues et al., 2024).
epigenomics, and metabolomics (Hasin et al., 2017). AI models,  Additionally, NLP has been instrumental in extracting valuable
particularly deep learning, play a pivotal role in integrating and  insights from unstructured clinical notes, enhancing disease
analyzing these multi-dimensional datasets to uncover molecular  classification and enabling personalized risk assessment (Scharp et
mechanisms underlying disease susceptibility and drug responses  al., 2023).
(Angermueller et al., 2016). Genomic data alone provides valuable
insights into genetic predispositions and disease risk, but multi-omics Al techniques: deep learning, reinforcement
integration enhances predictive accuracy by considering post-  learning, and NLP
translational modifications, gene-environment interactions, and The implementation of Al in personalized medicine relies on
dynamic regulatory networks (Molla and Bitew, 2024). Al algorithms  several advanced techniques, including deep learning, reinforcement
can identify biomarkers and therapeutic targets with high precision,  learning, and NLP. Deep learning, particularly CNNs and long short-
facilitating the development of personalized treatment plans. For ~ term memory (LSTM) networks, has demonstrated remarkable
example, convolutional neural networks (CNNs) and recurrent neural ~ success in analyzing complex biomedical data. CNNs have been
networks (RNNs) have been used to predict the impact of genetic ~ widely applied in medical imaging to detect early-stage diseases, while
variants on protein function and drug metabolism, leading to  LSTMs are used in genomic sequence analysis and predictive

improved pharmacogenomic interventions (Chang et al., 2025). modeling of disease trajectories (Litjens et al., 2017). Whereas

reinforcement Learning approach enables AI models to optimize
Electronic health records (EHRs) and Al-driven treatment strategies dynamically based on patient responses. In
insights oncology, reinforcement learning algorithms have been employed to

EHRs serve as a rich source of patient data, encompassing  personalize chemotherapy regimens, balancing efficacy and toxicity
demographics, clinical histories, laboratory results, imaging data, ~ (Frommeyer et al., 2025). In natural Language Processing (NLP)
and physician notes. Al-driven analytics transform EHRs into  techniques, such as Bidirectional Encoder Representations from
powerful tools for precision medicine by identifying disease  Transformers (BERT) and GPT-based models, enhance clinical
patterns, optimizing treatment plans, and predicting patient  decision-making by processing and interpreting unstructured medical
outcomes (Rajkomar et al., 2018). Machine learning algorithms,  texts, pathology reports, and scientific literature (Lee et al., 2019).
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FIGURE 1
A schematic representation showing how Al integrates multi-omics data, electronic health records (EHRs), and medical imaging to provide
personalized treatment.
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These models facilitate automated disease classification and patient
stratification, further advancing precision medicine.

Al applications in key areas of personalized
medicine

The advent of artificial intelligence (AI) in personalized medicine
has revolutionized patient-specific diagnostics, prognostics, and
therapeutic decision-making. AI models integrate vast and complex
biomedical datasets including multi-omics profiles, electronic health
records (EHRs), and medical imaging data to uncover disease
signatures and optimize patient management strategies. Al’s
transformative role is particularly evident in oncology, neurology,
cardiovascular medicine, and the diagnosis of rare genetic disorders,
where precision and early intervention are crucial.

Oncology: Al-guided cancer treatment and
immunotherapy

AT is reshaping cancer treatment paradigms through the
integration of machine learning (ML) and deep learning (DL)
models with genomic and imaging datasets (Li et al., 2023b).
Convolutional neural networks (CNNs) and transformer-based
architectures such as Vision Transformers (ViTs) have demonstrated
superior accuracy in analyzing radiological and histopathological
images to detect malignant lesions at early stages (Ardila et al,
2019). Al-enhanced liquid biopsy analysis enables the detection of
circulating tumor DNA (ctDNA) and tumor-derived exosomes,
facilitating non-invasive early cancer screening (Hussain et al.,
2025). Al-driven multi-omics integration allows for the precise
identification of molecular subtypes in aggressive cancers such as
triple-negative breast cancer (TNBC) and glioblastoma (Ballard et

10.3389/frai.2025.1743921

al.,, 2024). Furthermore, deep reinforcement learning (DRL)
algorithms optimize treatment regimens by continuously adapting
therapeutic strategies based on real-time tumor response data (Yang
etal., 2022). In immunotherapy, AI models leverage transcriptomic
and single-cell sequencing data to predict patient responsiveness to
immune checkpoint inhibitors (ICIs) by identifying tumor
microenvironment immune signatures (Li et al., 2023b). Hence,
Al-assisted cancer management is aiding the risk stratification and
early detection, through diagnosis, treatment planning, and real-
time monitoring, to survivorship and end-of-life care—enabling
precision interventions, personalized prognoses, and improved
quality of life (Figure 2).

Neurology: Al in Alzheimer's and Parkinson'’s
disease management

Al has significantly advanced early diagnosis and progression
modeling of neurodegenerative diseases such as Alzheimer’s disease
(AD) and Parkinson’s disease (PD). Graph-based deep learning
architectures have been applied to neuroimaging modalities, including
amyloid PET and functional MRI, to detect subtle structural and
functional alterations indicative of preclinical AD (Bazarbekov et al.,
2024). Recurrent neural networks (RNNs) trained on longitudinal
EHRs predict cognitive decline trajectories, enabling early therapeutic
interventions (Jasodanand et al., 2025). In PD, AI-powered wearable
biosensors capture gait, tremor, and speech abnormalities, offering
real-time, objective disease monitoring (Sakar et al., 2018). Generative
adversarial networks (GANS) reconstruct high-resolution imaging
data from low-quality scans, enhancing the accuracy of PD-related
dopamine transporter imaging (Twala et al, 2025). Moreover,
integrative Al models analyzing genomic, proteomic, and gut
microbiome data have identified novel PD biomarkers, paving the way
for personalized neuroprotective therapies.
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Al-assisted cancer management and its role in different phases of disease.
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Cardiovascular health: Al for heart disease risk
prediction

Al-driven predictive analytics play a crucial role in cardiovascular
medicine, enabling early detection and personalized management of
heart disease (He et al., 2018). Transformer-based architectures, such
as bidirectional encoder representations from transformers (BERT),
analyze vast clinical datasets to predict the onset of heart failure and
atrial fibrillation with high accuracy (Biondi-Zoccai et al., 2025). Deep
learning-assisted echocardiographic analysis automates left ventricular
ejection fraction (LVEF) quantification, improving heart failure
diagnosis (Asch et al., 2019). Genomic risk prediction models powered
by Al facilitate stratification of individuals based on polygenic risk
scores (PRS) for coronary artery disease (CAD) and myocardial
infarction (Xie et al., 2023). Al-assisted computational modeling of
cardiac electrophysiology supports patient-specific treatment
planning, guiding optimal antiarrhythmic therapy and catheter
ablation strategies (Attia et al., 2019).

Rare diseases: Al-enabled genetic analysis for
better diagnosis

Rare genetic diseases often present diagnostic challenges due to
heterogeneous phenotypic expressions and limited available patient
data. AI models trained on large-scale genomic databases enable rapid
prioritization of pathogenic variants in whole-genome and whole-
exome sequencing (Kafkas et al., 2025). Al-driven knowledge graphs
integrate multi-omics and phenotypic data, facilitating automated
disease classification and novel disease-gene association discovery
(Chandak et al., 2023). Deep learning-based facial recognition
technology aids in the diagnosis of syndromic genetic disorders by
analyzing craniofacial phenotypes from patient images (Gurovich et
al,, 2018). Additionally, natural language processing (NLP) algorithms
extract disease-specific information from unstructured clinical notes,
accelerating differential diagnosis and clinical decision-making for
rare condition.

Ethical, legal, and social challenges

Al-driven healthcare systems rely heavily on large datasets
containing sensitive patient information, raising significant ethical
and legal concerns (Bouderhem, 2024). Ensuring data privacy while
maintaining accessibility for research and clinical use remains a major
challenge. Regulatory frameworks such as the General Data Protection
Regulation (GDPR) in Europe, the Health Insurance Portability and
Accountability Act (HIPAA) in the United States, and the Personal
Information Protection and Electronic Documents Act (PIPEDA) in
Canada provide guidelines on data handling, patient consent, and
security protocols (Shabani et al., 2021). A critical concern is informed
consent, as Al models require continuous data collection, often from
unsuspecting individuals (Chau et al., 2025). Implementing clear and
understandable consent mechanisms is essential. Additionally, while
data anonymization techniques help protect patient privacy, the risk
of re-identification remains, particularly when datasets are cross-
referenced (Shojaei et al., 2025). Cyber threats further complicate the
landscape, necessitating compliance with stringent security standards
such as encryption and secure cloud storage (Bertl et al., 2024).
Furthermore, regulatory adaptability is crucial, as existing policies
often lag behind rapid AI advancements, requiring flexible
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mechanisms that evolve alongside new developments (Mennella et
al,, 2024).

Bias in AI models presents another ethical challenge, particularly
in healthcare, where biased predictions can exacerbate health
disparities (Obermeyer et al., 2019). Biases often arise from training
data limitations, algorithmic biases, and implicit biases in model
deployment (Chen et al., 2023; Mehrabi et al., 2021). AI models
trained on non-representative datasets may fail to generalize across
diverse populations, leading to misdiagnosis or suboptimal treatment
recommendations (Hasanzadeh et al., 2025). Some risk assessment
tools systematically underrepresent marginalized populations,
reinforcing existing social and racial disparities (Obermeyer et al.,
2019). Historical biases embedded in healthcare records can also be
perpetuated by Al systems, underscoring the need for proactive bias
mitigation strategies (Hasanzadeh et al., 2025). One approach to
mitigating bias is ensuring diverse data representation by expanding
datasets to include underrepresented groups (Hasanzadeh et al.,
2025). Algorithmic transparency through open-source AI models and
explainable AI (XAI) techniques can help identify and correct biases
(Maniatis, 2025). Regulatory oversight, including standardizing AI
fairness assessments and incorporating equity audits, is essential for
mitigating systemic biases and ensuring equitable healthcare delivery
(Rajkomar et al., 2018). Balancing Al automation with human
expertise is essential to maintaining ethical and safe healthcare
practices (Mosqueira-Rey et al., 2022). While AI can automate
diagnostics, streamline administrative tasks, and improve patient
outcomes, over-reliance on Al poses risks (Khosravi et al., 2024).
Excessive trust in Al predictions may lead clinicians to overlook
contextual patient factors. Al should complement rather than replace
human judgment, particularly in high-risk scenarios where
accountability is crucial (Weiner et al., 2025). Many AI models
function as “black boxes,” making it difficult for clinicians to
understand their decision-making process, underscoring the
importance of explainable AI methods (Pfeifer et al., 2025). A
collaborative approach, incorporating human-in-the-loop systems,
ensures that Al remains an assistive tool rather than a replacement for
healthcare professionals (Mosqueira-Rey et al., 2022). Training
clinicians in AI ethics and interpretability equips them to make
informed decisions (Topol, 2018). Additionally, continuous Al audits
are necessary to assess performance in real-world clinical settings,
identify risks, and adjust deployment strategies accordingly (Hassan
etal., 2024).

Future prospects and innovations

Artificial intelligence (AI) is at the forefront of revolutionizing
personalized healthcare, offering transformative capabilities in
diagnostics, treatment optimization, and drug discovery. Emerging
technologies, including quantum computing and AI-driven digital
twins, are poised to further accelerate advancements in precision
medicine. Additionally, industry-academia collaborations are essential
to translating Al innovations into clinically viable solutions, ensuring
scalability and regulatory compliance.

Al in personalized healthcare

Al-driven tools leverage machine learning (ML), deep learning
(DL), and natural language processing (NLP) to analyze multi-modal
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data, including genomic sequences, electronic health records (EHRs),
and medical imaging. This enables early disease detection, risk
stratification, and optimized therapeutic interventions. Machine
learning models trained on omics data have significantly improved
disease prediction and early diagnosis, particularly in oncology,
neurology, and cardiology. Deep convolutional neural networks
(CNNs) are enhancing radiology and pathology assessments, allowing
precise identification of malignant lesions. Al-powered predictive
analytics integrating genetic predisposition and lifestyle factors further
refine risk assessments and preventive strategies. Al has also
transformed drug discovery by accelerating target identification and
optimizing compound screening. Deep generative models, including
variational autoencoders (VAEs) and reinforcement learning, have
successfully identified novel therapeutics. Moreover, Al-driven drug
repurposing approaches have uncovered promising candidates for
treating rare and emerging diseases. Additionally, personalized
treatment regimens tailored to an individual’s genetic, metabolic, and
microbiome profiles are being developed using AI-powered decision
support systems (Figure 3; Table 1).

Quantum computing in precision medicine
Quantum computing holds immense potential in overcoming
computational challenges in precision medicine. Unlike classical
computers, quantum systems leverage superposition and
entanglement to execute high-dimensional analyses at unprecedented
speeds. Quantum-assisted drug discovery is expected to revolutionize
molecular simulations, improving the identification of optimal drug
candidates (Danishuddin et al., 2025). Algorithms such as the
Variational Quantum Eigensolver (VQE) enhance molecular

interaction predictions, streamlining structure-based drug design.

10.3389/frai.2025.1743921

Additionally, quantum machine learning (QML) techniques are being
applied to genomic analysis, improving biomarker identification and
patient stratification. Quantum-enhanced deep learning models also
hold promise in accelerating AI model training, leading to faster and
more accurate clinical decision-making.

Al-driven industry-academia collaborations

Synergistic collaborations between academia and industry are
critical for translating AI-driven healthcare innovations into practical
applications. These partnerships facilitate translational research,
ensuring the development of clinically validated and regulatory-
compliant Al models. Al is increasingly being integrated into clinical
trial design, optimizing patient recruitment and predictive modeling.
Al-powered adaptive trials, leveraging Bayesian optimization
techniques, enhance efficiency and reduce costs. Additionally,
federated learning is enabling decentralized Al training, ensuring data
privacy and regulatory compliance while facilitating multi-
institutional collaborations. AI-powered digital twins virtual patient
models simulating disease progression and treatment response are
revolutionizing personalized medicine. These models are instrumental
in optimizing therapeutic interventions, particularly in complex
diseases such as cancer and rare genetic disorders. Industry-academia
partnerships are driving the adoption of digital twin technology,
further advancing precision medicine.

Conclusion

This article has delineated the pivotal role of artificial
intelligence (AI) in the evolution of personalized medicine,
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Al-driven workflow for precision medicine: from feature collection to prediction model.
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TABLE 1 Comprehensive list of Al tools in healthcare.

Category Al tool Purpose Year of launch
Diagnosis and imaging BM Watson for Oncology Assists oncologists in treatment recommendations based on clinical evidence. 2013
Google DeepMind Health (now Google Health AI) AT for disease detection, especially in radiology and ophthalmology. 2016
Zebra Medical Vision Al-powered medical imaging analysis (X-rays, CT scans, MRIs). 2014
Qure.ai Al-based interpretation of chest X-rays and brain CT scans. 2016
Viz.ai Al-driven stroke detection via brain imaging. 2018
PathAI Al-assisted pathology for cancer diagnosis. 2017
Arterys AT for cardiac imaging and radiology interpretation. 2016
Aidoc Al triage system for radiology scans to detect critical conditions. 2016
Lunit INSIGHT Al for cancer detection in chest X-rays, mammography. 2019
RapidAlI AT stroke and neurovascular imaging workflow solution. 2020
Samsung AI-CT Portfolio (CereTom Elite, OmniTom Elite PCD, BodyTom) Mobile CT scanners with Al-enabled imaging for ICU, ER, OR use. 2025
IntelliCardiac Deep learning platform for 4D cardiac image segmentation and disease classification 2025
Drug discovery and research Atomwise Al-driven drug discovery using deep learning. 2012
BenevolentAl Al-powered drug development and biomedical research. 2013
Insilico Medicine AT for identifying new drug candidates and aging research. 2014
Exscientia Al-based drug design and precision medicine. 2012
BioXcel Therapeutics Al for repurposing existing drugs for new diseases. 2017
Recursion Pharmaceuticals AT + automation for phenomics-driven drug discovery. 2013
Valo Health End-to-end Al-driven drug development platform. 2019
OpenEvidence DeepConsult Al agent synthesizing research studies to guide drug discovery and clinical decisions. 2025
Personalized medicine and Tempus Al-driven precision oncology platform analyzing clinical and genomic data. 2015
treatment planning Flatiron Health Al-powered oncology data platform for treatment planning. 2012
Paige. AL Al for cancer diagnosis and pathology image analysis. 2018
Freenome Al-based early cancer detection using blood-based biomarkers. 2014
Owkin Al federated learning for oncology research and biomarker discovery. 2016
GRAIL Al-powered liquid biopsy for multi-cancer early detection. 2016
MedOrch Multi-tool Al reasoning framework for diagnosis across multiple disease domains. 2025
CareYaya MedaCareLLM + Smart Glasses Personalized dementia care with facial/object recognition and reminders. 2024
(Continued)
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TABLE 1 (Continued)

Category Al tool Purpose Year of launch
Patient management Babylon Health Al chatbot for symptom checking and telemedicine. 2013
Ada Health Al-powered symptom checker and diagnosis assistant. 2016
Buoy Health Al-based triage system for guiding patients on next medical steps. 2017
Woebot Al chatbot for mental health support. 2017
K Health Al-powered primary care and symptom triage platform 2016
CarePredict Al wearable for monitoring elderly health and predicting falls. 2013
Heidi Health Al scribe generating structured documentation, summaries, and EHR integration. 2024-2025
Eko AI-powered Stethoscope Al diagnosis of heart failure, valve disease, arrhythmias within 15 s. 2025
Hospital workflow and Olive AI (operations scaled back 2023) Al-driven automation of hospital administrative tasks. 2017
administration Nuance DAX (Dragon Ambient eXperience) Al-powered medical transcription and clinical documentation. 2020
Moxi AT robotic assistant for hospital logistics and patient support. 2018
Microsoft Dragon Copilot Al assistant for note generation, summaries, referrals (EHR-integrated). 2025
Wearable and remote Apple Health AI Al-based health tracking (ECG, heart rate monitoring). 2018
monitoring Fitbit AI Al-driven health tracking and early disease detection. 2019
Eko AI Al-powered heart sound analysis for detecting cardiovascular diseases. 2015
Biofourmis AT for real-time remote patient monitoring and predictive analytics. 2015
Withings Health Solutions Al-based remote monitoring for hypertension, sleep apnea. 2021
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underscoring its capacity to significantly enhance diagnostic
precision, optimize therapeutic strategies, and predict patient
outcomes with remarkable accuracy. Key insights from our
discussion highlight AD’s transformative potential in the realm of
healthcare, particularly through advanced machine learning (ML)
algorithms, deep learning frameworks, and the integration of vast,
multidimensional datasets. Al facilitates the identification of
complex biomarkers, the development of predictive models, and the
refinement of treatment protocols, thus enabling precision medicine
that is tailored to the individual patient’s unique genetic,
environmental, and clinical characteristics. AI's integration into
precision medicine is poised to revolutionize several domains,
including genomics, drug discovery, and imaging. In genomics,
Al-driven tools can parse large-scale genomic data to identify novel
genetic variants, predict disease risk, and guide the design of
targeted therapies. In drug discovery, AI accelerates the
identification of new therapeutic compounds by simulating
molecular interactions and predicting their efficacy. Moreover, in
clinical imaging, AI models are already enhancing diagnostic
accuracy by automating image analysis, detecting anomalies with
greater sensitivity than traditional methods. Despite these advances,
substantial challenges persist in the full-scale implementation of AI
in clinical practice. These include data heterogeneity, the need for
robust validation frameworks, regulatory considerations, and
ensuring patient data privacy. Furthermore, the clinical integration
of AI must account for the broader healthcare ecosystem, where
scalability and cost-effectiveness remain significant barriers.
Addressing these challenges will require multidisciplinary efforts to
develop standardized methodologies for AI deployment, ensure
transparency in Al-driven decision-making, and foster collaboration
between Al researchers and healthcare providers to ensure these
technologies are clinically relevant and accessible. Future research
should focus on optimizing the accuracy and interpretability of AI
algorithms, particularly in terms of their ability to generalize across
diverse populations and clinical conditions. Advancements in
explainable AT (XAI) will be crucial for clinicians to understand the
rationale behind AI-driven recommendations, fostering trust and
enhancing clinical decision-making. Furthermore, efforts to
data
interoperability between AI systems and existing healthcare

harmonize across disparate platforms and ensure
infrastructures will be vital to achieving seamless integration. In
summary, Al represents a paradigm shift in personalized medicine,
with the potential to redefine healthcare delivery by offering highly
individualized, data-driven treatments. As the field matures, it will
be essential to navigate both the technological and ethical challenges
that accompany AI adoption. With sustained research and
collaboration, the future of personalized medicine is set to evolve
into an era characterized by more precise, effective, and equitable

healthcare for all.
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