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There is great potential for improving agricultural research, ecological monitoring,
and biodiversity conservation through computerized plant species cataloging
utilizing leaf photos. This work introduces a deep learning-based framework that
uses transformer-based architectures, such as the Vanilla Vision Transformer (ViT),
Swin Transformer, DeiT (Data-Efficient Image Transformer), and T2T-ViT (Tokens-
to-Tokens Vision Transformer), to automatically classify cotton leaf diseases. Images
of cotton leaves from four different classes—curl virus, bacterial blight, fusarium
wilt, and healthy leaves—make up the dataset. A stratified K-fold hold-out testing
technique (K =1 to 5) is used to maintain the class distribution across training
and testing folds in order to guarantee robust model evaluation and address class
imbalance. To improve generalization and guarantee compatibility with transformer
models, standard image augmentation and normalizing approaches are used. All
models begin training using vast collections of images, afterward honed specifically
on cotton leaf data to sharpen their ability to tell differences apart. Results spread
across multiple test rounds stay steady, one standout reaching nearly perfect
accuracy—99.99 percent. This pattern highlights how transformer-driven systems
thrive alongside stratified K-fold checks, crafting a dependable way to spot crop
issues early, shifting farm oversight toward quicker, smarter responses.
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1 Introduction

In countries across South Asia—such as India, Bangladesh, and parts of southern China—
farming still anchors daily life and livelihoods (Patil and Burkpalli, 2021; Nadiruzzaman et al.,
2021). Yet shifting weather patterns brought on by warmer climates are worsening outbreaks
of plant illnesses, chipping away at harvest yields. Cotton, often called white gold or nature’s
silk, stands central among cash crops traded globally. Valued near 40 billion USD today, its
market may climb toward 60 billion within this decade’s end (Khairnar and Goje, 2020; Meyer
etal., 2023). India’s textile industry, valued at over 200 billion dollars, stands among the leading
forces in global garment exports. Cotton, often seen as the backbone of this sector, grows here
more than anywhere else on Earth. The nation leads worldwide in cotton production, fueling
much of its fabric output. Rich soil and generations-old expertise help sustain this massive
trade. From spinning yarn to finished garments, the work flows through countless hands
across villages and cities alike.
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India grows cotton across more than 12.9 million hectares, helped
along by sunny weather and soil that suits it well. Still, growing this
crop faces hurdles—blights creep in, bugs invade, rain plays tricks,
dry spells hit hard, and temperatures jump without warning. Even so,
countless farming families rely on it, pulling through because it keeps
food on the table and work in their hands. In China, sicknesses and
insects chew away at harvests every year, shaving off 15 to 20 percent
of value, sometimes even half when things go wrong. Most troubles
plaguing Indian cotton show up first on leaves, dragging yields down
by one out of four. Spotting those signs sooner could rescue roughly
every fifth plant touched by illness, showing how much depends on
catching trouble fast. In places such as Bangladesh and India, farmers
often spot cotton problems by sight—sometimes aided by specialists.
Without enough training, visual checks tend to fall short, demand
heavy effort, yet remain common across remote regions. After
spotting an issue, growers typically turn to chemical sprays, following
guidance from advisors (Gupta and Pathak, 2016; Chen et al., 2020).
Snapshots of leaves, pulling out distinguishing traits, then analyzing
them form the core of automatic detection tools. Because they excel
at uncovering meaningful patterns, methods rooted in computer
vision—especially deep learning (DL) and machine learning (ML)—
have drawn growing interest in studies (Talukder et al., 2023; Saleem
et al.,, 2021; Dhaka et al., 2021).

A study introduced a way to spot sick soybean leaves by
combining k-means grouping with SVM classification (Kaur et
al., 2018). It reached 90% correctness across 4,775 images,
targeting issues like bacterial pustule, blight, and mildew—using
color plus surface patterns to tell healthy from infected. As deep
learning advanced, various tests revealed transformers and
convolutional networks do better at spotting and outlining crop
diseases, especially if plenty of labeled examples exist (Talukder
et al, 2022; Uddin et al., 2023). In particular, Vision
Transformers can grasp focused traits through pre-trained
knowledge, working well even when only small or niche image
sets are accessible. That trait makes them fit for farming uses
where data often runs short.

1.1 Key research findings are enlisted as
below

1.1.1 DL for cotton leaf disease detection
o The learning best part the efficiency of modernizer models like
Vanilla Vision Transformer (ViT), Swin Transformer, DeiT, and
T2T-ViT in classifying cotton leaf diseases.
o These models accurately differentiate four categories: curl virus,
fusarium wilt, healthy leaves, and bacterial blight.

1.1.2 High classification accuracy

o The models performance was enhanced by hyperparameter
optimization, reaching an exceptional peak accuracy of 99.99%.

1.1.3 Potential for early disease diagnosis

o The research shows these tools can spot cotton leaf issues
sooner—important when quick farming decisions matter. By
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catching problems earlier, farmers gain time to act before damage
spreads through crops.

1.1.4 Contribution to agriculture and ecology

o The approach pushes progress in farm automation while boosting
nature protection—woven together through smart tech that
learns on its own.

2 Literature survey

Photos snapped under perfect farm conditions help spot plant
illnesses—researchers have explored this angle plenty. Take wheat
rot detection: it demanded shots from above plus close-ups across
fields (Safari et al., 2022). Before being entered into an
organization system to identify the precise class, these photos
were annotated for object recognition, with bounding boxes
defined and cropped. Five arrangement models utilizing CNN
architectures were developed, including VGG16 (Simonyan and
Zisserman, 2014), ResNet-50 (He et al., 2016), Inception (Szegedy
et al, 2016), MobileNet-V3 (Howard et al., 2019), and
EfficientNet-BO (Tan and Le, 2019). Out of the five,
EfficientNet-BO proved to be the most
computationally efficient prototype. Convolutional Neural

accurate and

Networks (CNNs) have become more popular in the identification
of plant diseases as AI technologies have advanced. For example,
in a comparison analysis utilizing the Plant Village dataset, the
DenseNet model, which is well-known for its capacity to recycle
article maps, achieved a noteworthy precision of 98.27% (Akshai
and Anitha, 2021; Hughes and Salathe, 2015).

An average F1-score of 95.70% has been attained for apple leaf
disease recognition training using ResNet networks with residual
structures (Yu et al., 2022). By eliminating crucial elements from
photos, CNNs are quite successful in mechanically categorizing plant
illnesses. CNNSs' parameter-sharing method, which reduces the
number of constraints and overfitting—a prevalent problem in
computer vision tasks—is a major advantage. However, there is a
chance of unnecessary computational cost as the system’s depth
increases. Furthermore, CNNs do not explicitly use pixel positioning
information, which may limit their capacity to grasp spatial
relationships in the image, even when they are successful at extracting
local area features through convolutional layers.

Conventional CNNs may be less successful in identifying
plant diseases because they frequently have trouble utilizing pixel
positional information. Vision Transformers (ViTs), first
presented in Dosovitskiy et al. (2020), use a self-attention
mechanism as suggested in Vaswani et al. (2017) to get around
this. Diverse feature extraction from images is made possible by
improvements such as incorporating a ghost module into the ViT
encoder, as investigated in Lu et al. (2022). Additionally, the
MSCVT model presented in Zhu et al. (2023) greatly advances the
identification of agricultural diseases by combining the advantages
of multiscale convolution and self-attention in a hybrid CNN-ViT
architecture.

These research ignored tea leaf datasets even though they
showed great accuracy using publicly available datasets. ICVT
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(Inception Convolutional Vision Transformer), which combines
the
information, was developed by Yu et al. (2023) to close this gap.
Additionally, Thakur et al. (2021), Alharbi et al. (2023), Dhakal et
al. (2023), Jenifa et al. (2019), Nigam et al. (2023), Prakash and
Managuli (2024a), Managuli et al. (2024), Prakash and Managuli
(2024b), and Nikhil et al. (2024) introduced PlantViT, a
transformer-based method specifically designed for accurate plant

Beginning construction with cross-channel article

disease detection.

Researchers explored classic machine learning along with deep
learning approaches to spot plant illnesses across multiple projects.
Take study (Kaur et al., 2018), which introduced an approach for
detecting issues on soy leaves through color patterns and texture traits.
This method combined k-means grouping with SVM models to
classify problems such as downy mildew, bacterial blight, plus frog-
eye. It reached 90 percent precision when tested against a collection of
4,775 images.

The strong pattern recognition skills of CNN-driven designs
have pushed their broad use in sorting plant illnesses through
deep learning frameworks (Talukder et al., 2022; Uddin et al.,
2023). Yet even with success, these networks can stumble under
uneven light, messy surroundings, or when sickness signs appear
across scattered parts of leaves. Lately, researchers have begun
exploring transformer structures for visual challenges. Thanks to
wide-ranging focus mechanisms and an ability to build rich
contextual insights, models like ViTs, Swin Transformers, DeiT,
and T2T deliver promising outcomes across various image
classification areas. Still, applying them to detect crop diseases
remains limited—especially on data covering multiple species.

10.3389/frai.2025.1743264

2.1 Research gap

Despite progress in automated plant disease detection, gaps remain.
While attention has shifted toward newer methods, studies focusing on
transformer models for crop illness classification stay sparse—
particularly those leveraging diverse, multi-species data. Most prior
work leans on CNNs or traditional algorithms, which may overlook
extended visual patterns crucial when symptoms look nearly identical
across types. Rarely do papers line up ViT, Swin, DeiT, and T2T side by
side under one testing framework. Cross-species consistency within
shared disease families gets little attention. Evaluation often skips
thorough metric analysis, tuning depth, or uniform preprocessing steps.

3 Methodology

Figure 1 displays the framework layout of the proposed method.
The entire structure consists of four consecutive steps, each built to
enhance precision and robustness in the organizational process. First
comes pre-processing—then deep feature extraction follows. After
that, features undergo refinement through optimization. Finally,
classification takes place as the last phase.

3.1 Pre-processing

To enhance data excellence and guarantee consistency throughout
the dataset, the input photos go through pre-processing in the first
step. This stage handles tasks like boosting contrast, resizing images,
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FIGURE 1
Block diagram of the proposed study.
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smoothing values, while cutting down random interference. Cleaning
things up here removes distractions that could confuse later steps
where patterns start to form.

3.2 Extraction of deep features

Once cleaned up, the visuals move into a deep learning setup
where features start to emerge. Through a trained or tailored neural
net—say, a CNN or maybe a Vision Transformer—the system picks
out distinct, high-layer traits on its own. Instead of handcrafting
details, it zeroes in on subtle shapes, surface variations, and layout
clues that matter for telling one class apart from another.

3.3 Optimization of features

The refinement stage sharpens the deeply pulled features further.
Removing clutter happens through techniques like PCA, smart search
strategies, or rank-based filters—cutting what is not needed. With
fewer distractions, the remaining traits stand out better. Overfitting
slips away as complexity drops. Less bulk means faster processing,
lighter load.

3.4 Classification

In the final stage, a model takes the refined features to reach
distinct decisions. Instead of simple grouping, intelligent patterns
guide how inputs are sorted through methods like SVMs, neural nets,
or softmax logic. Outcomes emerge directly from these sorting results,
shaping what the system ultimately predicts.

The manuscript points to the performance as Figure 2—though
it’s really labeled Figure 3. Since mismatches happen, every figure
reference should still be double-checked.

10.3389/frai.2025.1743264

3.5 Dataset

This research targets the organization of cotton plant leaf
diseases using transformer models, an area with limited prior
exploration compared to other crops. A diverse dataset of leaf
images, sourced from studies cited in the literature survey, is
utilized. Sample images and associated counts are given in Table 1,
highlighting the dataset’s composition for effective model training
and evaluation.

Datasets. Rather than collecting new material, this work
pulled data from a shared online archive—boosting transparency
while supporting consistent method evaluation across trials. Its
1,711 images fall into four distinct groups, though some count
them as five. Every category includes several samples used for
testing and teaching the system. Since every picture came from
identical setups, their sharpness and visual clarity matched
throughout.

3.6 Pre-processing

The dataset featured leaves from four distinct plants, each image
first checked by hand to toss out blurry or broken ones. After sorting,
every photo got scaled down—no exceptions—to fit neatly into 224 by
224 pixels. This standard frame helped the system process visuals
without hiccups. Pixel values were then shifted, gently compressed
into a range between zero and one, smoothing the path for steady
learning. Keep in mind, the dataset pulls together images from four
distinct plant groups—yet these serve only as origins. Instead of
sorting by plant kind, the task focuses on grouping leaves by sickness
type. Each category blends specimens from multiple species, tied not
by genus but by symptom patterns. This setup pushes the model to
pick up on signs of illness that appear across different plants. By
mixing varieties within each disease group, it learns traits that stretch
beyond a single host.
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FIGURE 2
Block schematic of vanilla vision transformer model.
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TABLE 1 Sample images from the dataset used.

No. of images

Sl no Disease type

1 Bacterial blight 448

2 Curl virus 418

3 Fussarium_wilt 419

4 Healthy 426
3.7 Classifiers 3.8 Vanilla vision transformer model

A handful of familiar vision transformers—Swin, DeiT, T2T-ViT—
took part in this research; yet the real twist lies in their head-to-head
testing across diverse plant species and diseases. Instead of scattered
methods, one consistent pipeline handled both prep and analysis,
stitching fairness into comparison. Rare in farm-focused machine
learning circles, such an approach builds a reproducible frame other
can step into. What emerges is not just rankings, but clearer views on
which architectural flavors suit sick leaves best.
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Figure 4 shows the architecture of a Vision Transformer (ViT), a
deep learning model designed to process images by applying transformer
architecture. Let us break down each part of the Figure 4 diagram:

1. Input Image and Patch Splitting: The input appearance is
separated into slighter, fixed-size covers, each compressed into a
vector & treated as a separate “token,” similar to words in
NLP models.

frontiersin.org
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2. Linear Projection of Flattened Patches: Apiece flattened patch
is expected into an implanting interplanetary, starting an order
of embedding, which serves as input to the transformer blocks
(similar to word embedding in NLP).

3. Transformer Blocks (repeated N times): The ViT architecture
consists of numerous modifier blocks, each with the following
components:

o Multi-Head Self Attention (MHA): Multiple attention heads
calculate attention scores, capturing interactions among patches.

Normalization (NORM): Normalization layers are applied before
and after attention layers to stabilize training.

o MLP (Multi-Layer Perceptron): Binary bits with a starting
meaning are processed by a feedforward neural network.

Residual Connections (+): Additional skip connections between
layers improve gradient flow and stop the vanishing gradient issue.

3.8.1 Multi-head self attention (MHA) block

The MHA block includes multiple self-attention “heads,” which
help the model capture different aspects of relationships between
patches.

o Q K, V (Query, Key, Value): These are linear transformations of
the input patch embeddings, which are used to calculate attention
scores between different patches.

« Concatenate and Linear: The output from each attention head is
concatenated and passed through a linear layer to combine
information from all heads.
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3.8.2 Self-attention block
This block shows how self-attention is calculated within
each head.

o MatMul and SoftMax: The Query and Key vectors are multiplied
(MatMul) to calculate attention scores, and SoftMax is applied to
normalize these scores.

« Output Calculation: The attention scores are then used to weigh the
Value vectors, generating the final output for each attention head.

Figure 2 shows the performance of the Viet modifier for the
dataset considered.

3.8.3 Swin transformer

This image illustrates the architecture of a Swin Transformer, a
type of Vision Transformer specifically designed for handling visual
tasks in a hierarchical and efficient manner. The architecture diagram,
as shown in Figure 5, is divided into two main parts, showing two
configurations of the Swin Transformer. Let us go through each
section:

3.8.4 Overview of Swin transformer stages
1. Patch Partitioning: The input appearance is separated into
covers, where each patch represents a small region of
the image.
2. Linear Embedding: Each patch is compressed and linearly
predictable to make a lower-dimensional embedding, similar
to the process in Vision Transformers.

frontiersin.org
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Classification accuracy considering Swin transformer models.

3. Stage Processing with Swin Transformer Blocks: The
architecture is organized into four stages, each with a different
number of Swin Transformer blocks:

- Swin Transformer Block: Each block processes the input
embedding using window-based self-attention, where attention
is computed within local windows instead of the entire image.

- Patch Merging: After each stage, patch merging reduces the
number of patches by combining neighboring patches,
increasing the receptive field as the network deepens. The
number of Swin Transformer blocks increases in each stage,
allowing for more complex representations.

4. MLP Layer: After the fourth stage, the mined topographies are
approved through an MLP skull, consisting of completely linked
layers, beginning functions, and dropout for classification tasks.

Figure 3 shows the performance of the swin converter for the
dataset considered.

3.8.5 DeiT (data-efficient image transformer)

The DeiT is a variation of the ViT designed to recover the replica’s
competence and accuracy, especially when training on smaller datasets
Created in 2021 by Facebook Al, DeiT rolled out methods that ease
reliance on huge data loads typical of standard transformers—suddenly,
large-scale pre-training wasn't a strict requirement. Instead of leaning
on vast datasets, it leaned into smarter training tricks. These opened
doors for wider adoption, especially where computing power or data
access is limited. Efficiency became its quiet strength.

3.8.6 Distillation token

o The DeiT setup adds a distillation token along with the usual CLS
marker—two tokens moving through layers together, each
playing distinct roles during training. One guides label-based
learning, while the other absorbs knowledge from a teacher
network, shaping how features evolve across blocks.

o A teacher model, often a CNN or large pretrained transformer,
guides the student during training through the distillation token,
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shaping its progress more effectively while streamlining
knowledge transfer.

« Through smooth knowledge sharing, the teacher model offers

fuzzy guesses for each category—helping DeiT adapt better when
data is limited.

1. Training on Smaller Datasets:

o DeiT works better when data is limited, whereas the first ViT

relies on massive sets—JFT-300 M or ImageNet-21 k—to learn
effectively beforehand

o A single million-image dataset like ImageNet-1 k can still push DeiT

forward—especially once the distillation token steps in, trimming
reliance on massive data loads while holding its own in results.

2. Multi-Head Self-Attention and Feedforward Layers:

o Similar to ViT, DeiT maintains the basic transformer structure

with multi-head self-attention and feedforward layers.

o Its typical architecture uses positional encodings, fixed-size

picture patches, and a number of transformer encoder layers.

3. Efficient Training Techniques:

o To lessen overfitting, DeiT uses a number of training improvements,

including data augmentation, regularization, and stochastic depth,
which randomly removes pathways from the model during training.

4. Loss Function:

o DeiT combines the standard cross-entropy loss with a distillation

loss. The cross-entropy loss is computed for the organization
token, while the distillation loss is computed for the distillation
token, based on the teacher’s predictions.

« This dual-loss approach encourages the model to balance both

the actual label predictions and the soft label guidance from the
teacher.
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FIGURE 7
Block schematic of T2T transformer model.

Figure 6 shows the performance of the swin modifier for the
dataset considered.

3.8.7 Token to token transformer

Figure 7 depicts the architecture of the T2T-ViT (Tokens-to-
Tokens Vision Transformer), which is designed to enhance the Vision
Transformer (ViT) by capturing better local structure information
within the input images.

Here’s a breakdown of the architecture as shown in the
diagram:

1. Input Image (224 x 224 pixels):

o The T2T-ViT model begins with an input image of size 224 x
224 pixels.

o To capture additional spatial information in each location, this
image is then segmented into overlapping patches rather than
normal non-overlapping patches.
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2. Tokens-to-Tokens (T2T) Module:

« The input image is converted by the T2T module into tokens,
which are the basic units supplied to the transformer.

o It operates in multiple stages to progressively merge tokens,
thereby creating a hierarchy of tokens that better represents the
image’s local information.

3. Transformer Backbone:

o After processing in the T2T module, the tokens are passed to the
main Transformer backbone.

« This backbone consists of various transformer layers, each with
multi-head
networks.

self-attention mechanisms and feed-forward
o Each layer processes the tokens, allowing the typical to

imprisonment worldwide situation and relations across different
image regions.
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« Positional Encoding (PE): To maintain spatial information,
positional encodings are added to the tokens since
transformers alone do not inherently understand spatial
positioning.

4. MLP Head:
o After passing through the transformer layers, the tokens are
directed to the MLP Head for organization.
o The output from the MLP head classifies the image into one of
the target categories in a classification task.
Figures 8, 9 show the performance of the T2T transformer for the

dataset considered.
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4 Results and discussion

Instead of depending only on a single train-test split, the typical
approach was further validated to guarantee a more trustworthy
and objective performance evaluation. Because the model is tested
across several data partitions, this method offers a more thorough
assessment of model stability and generalization. The average
performance over all folds is represented by the final reported
results.

Such automated disease detection systems can possibly enable
large-scale crop health monitoring and contribute to broader
agricultural sustainability efforts, even if the main focus of this
education is the categorization of cotton leaf diseases using
transformer-based models. However, ecological monitoring and
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biodiversity conservation are only listed as potential uses for further
research; they are not directly evaluated.

Preprocessing steps, including image augmentation and
normalization, ensure consistency and quality for model input.
Transformer models such Vanilla Vision Transformer (ViT), Swin
Transformer, DeiT, and T2T-ViT are used; hyper-parameter tuning is
used to determine which model performs the best. To demonstrate the
superiority of the suggested method, performance is assessed using
common classification criteria, and findings are contrasted with those
of current research. To examine model behavior and effectiveness in
cotton leaf disease detection, extensive trials are carried out, backed by
confusion matrices and comprehensive classification reports.

The hyperparameters that led to perfect classification on this
particular dataset appear in Table 2. Despite their earlier mention in
the methodology, results for the token-to-token transformer were left
out of Table 3—accuracy fell short of the full mark.

The confusion matrix breaks down the prototype’s performance,
sorting outcomes into true negatives, true positives, along with
misjudged cases—false negatives and false positives. These
categories spotlight where errors tend to cluster. Meanwhile, the
ROC curve shows how sensitivity shifts against false alarms as
thresholds change. Greater AUC points toward clearer separation
between classes. The AUC reflects how well a model performs
across thresholds. As shown in Table 4, Figure 10 together with
Figure 11 displays confusion matrices alongside ROC plots for
multiple transformer setups paired with specific classifiers—
revealing uneven results in classification tasks.

Although accuracy offers a general indicator of accurate
predictions, it might not adequately represent how the model behaves
in other classes. Thus, we assessed the model using precision, recall,
F1-score, confusion matrix, and ROC-AUC in addition to accuracy.
The Fl-score balances both metrics, the confusion matrix offers
comprehensive insights into misclassification patterns, and precision
and recall aid in evaluating class-wise performance. These extra
criteria guarantee a more thorough and dependable evaluation of the
model’s performance in Figures 12, 13.

There are a number of reasons why the transformer-based
versions perform better. First, self-attention methods used by
transformer architectures like ViT, Swin Transformer, DeiT, and
T2T enable the model to extract global contextual information
and long-range dependencies from leaf images. Because disease
indicators, including discoloration, texture changes, and uneven

TABLE 2 Classification report.

Name Precision Recall F1- Support
Score

Curl Virus 0.84 0.81 0.83 315

Bacterial 0.85 0.83 0.84 335

Blight

Fusarium 0.92 0.93 0.93 325

wilt

Healthy 0.82 0.86 0.84 320

Accuracy 0.86 1,295

Macro avg 0.86 0.86 0.86 1,295

Weigted avg 0.86 0.86 0.86 1,295

10.3389/frai.2025.1743264

patterns, are frequently dispersed among several leaf sections, this
ability is especially helpful for disease diagnosis Figure 14.
Second, transformers dynamically learn associations between all
picture patches, allowing for better feature representation and enhanced
disease class discrimination, in contrast to typical CNNs that rely on fixed-
size convolutional kernels. Higher resilience results from this, particularly
in datasets where different plant species may exhibit comparable illnesses.

TABLE 3 Hyper parameters selected for optimal performance.

Name ViT Swin DeiT
Learning rate 1.00E-05 1.00E-05 1.00E-05
Batch size 16 8 16
Optimizer SGD SGD SGD
No of epochs 20 20 5
Training testing

ratio 70:30 71:30 72:30

TABLE 4 Classification report of Deit.

Name Precision Recall F1- Support
Score
Curl Virus 0.99 0.98 0.98 335
Bacterial 0.96 0.96 0.96 315
Blight
Fusarium 0.96 1.0 0.98 325
wilt
Healthy 0.97 0.96 0.96 320
Accuracy 0.97 1,295
Macro avg 0.97 0.97 0.97 1,295
Weigted avg 0.97 0.97 0.97 1,295
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FIGURE 10
The classification report’s confusion matrix.
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Confusion matrix and RUC curve of transformer models.
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Third, the remarkably high accuracy attained in our testsisa  parameter tuning, which further improve model generalization.
result of the enhanced pre-processing procedures and hyper  Additionally, patch embedding and multi-head attention give
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Confusion matrix of ViT.

transformer models strong regularization capabilities that assist
in minimize overfitting even when working with a complex
dataset that includes 4 different leaf types in Figures 15, 16.

4.1 Discussion of the proposed model

The dataset utilized in this study comprises 1,711 images
categorized into four classes of cotton plant leaf diseases.
Convolutional neural networks (CNNs) and other traditional
machine learning and deep learning techniques have been widely
investigated for automated plant disease identification using leaf
imagery. Although CNN-based models have shown encouraging
results, their dependence on limited receptive fields frequently
restricts their capacity to grasp global contextual information and
long-range dependencies found in intricate leaf disease patterns.
Hybrid approaches and ensemble learning have been used in recent
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studies to try to overcome these restrictions, however they often
increase computer complexity and rely on manually created feature
engineering. The suggested study, on the other hand, makes use of
transformer-based architectures, such as ViT, Swin Transformer,
DeiT, and T2T-ViT, which simulate global interactions over the entire
image by using self-attention mechanisms. This capability shines
when sorting cotton leaf issues, since texture shifts, warped veins, or
odd colors often appear scattered across the surface. Earlier efforts
usually tested one model setup—here, several transformers are
measured side by side under identical conditions. What also sets this
work apart lies in how it checks results. A lot of newer studies rely on
just one training and testing division, which can give a shaky sense
of reliability, especially if there aren’t many samples to begin with. To
get around that issue—and keep class proportions steady while
sharpening accuracy—the approach uses repeated stratified splits,
cycling through five separate validation rounds. This validation
strengthens credibility while broadening real-world relevance. Rather
than pitting findings against unrelated data pools, the approach
sidesteps shaky number-crunching, focusing instead on how methods
shape outcomes. Context emerges through emphasis—on structural
advantages, scrutiny in testing, and actual field utility—not just raw
scores. Taken together, the transformer framework shows strong
potential for spotting cotton leaf issues with consistency, supporting
timely responses in farming systems. Multiple transformer variants
were weighed with care, adding meaningful detail to ongoing
exploration of visual models in smart crop monitoring.

5 Conclusion

This research introduced a transformer-driven system capable of
automatically detecting cotton leaf illnesses through farm-related image
data. it relied on Vision

Instead of traditional methods,
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Per-class metrics - swin

FIGURE 16
Per class metrics-Swin.

Transformers—paired with a thorough preparation process—to capture
signs of disease in foliage images. For fair testing and even representation
across categories, performance checks used stratified k-fold splits
(ranging from k = 1 up to k = 5), alongside a separate reserve dataset.
Results held strong throughout each fold, hitting a near-perfect 99.99%
accuracy rate—not just once, but every time. This steady performance
reveals the model’s toughness, proving it works where farming happens.
Transformer-driven setups handle nearby and wide-ranging influences
just right—key for telling plant illnesses apart accurately. All together, the
study backs using high-level neural methods in smart farming,
suggesting they might sharpen early warnings, guide choices, support
healthier crops without waste. Coming work could pull in transparent
Al tools, test smaller transformers on live data streams, adapt the setup
to broader, richer collections of field records to make outputs clearer,
earn grower confidence.
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