
Frontiers in Artificial Intelligence 01 frontiersin.org

Precision cotton disease 
detection via transformer models 
applied to leaf imagery
Nikhil Inamdar 1*, Manjunath Managuli 1, Ramesh Koti 1, 
Jagadish Jakati 2, Sharanappa P. H. 3 and Prasan Kulkarni 4

1Department of Electronics and Communication Engineering, KLS Gogte Institute of Technology 
Belagavi and Affiliated to Visvesvaraya Technological University Belagavi Karnataka,  Belagavi, India, 
2School of Computer Science Engineering & Applications Engineering, D. Y. Patil International 
University Pune, Pune, Maharashtra, India, 3Department of Electronics and Communication 
Engineering, Basaveshwara Engineering College, Bagalkot, Karnataka, India, 4Department of 
Electronics and Communication Engineering, Anuvartik Mirji Bharatesh Institute of Technology, 
Belagavi, Karnataka, India

There is great potential for improving agricultural research, ecological monitoring, 
and biodiversity conservation through computerized plant species cataloging 
utilizing leaf photos. This work introduces a deep learning-based framework that 
uses transformer-based architectures, such as the Vanilla Vision Transformer (ViT), 
Swin Transformer, DeiT (Data-Efficient Image Transformer), and T2T-ViT (Tokens-
to-Tokens Vision Transformer), to automatically classify cotton leaf diseases. Images 
of cotton leaves from four different classes—curl virus, bacterial blight, fusarium 
wilt, and healthy leaves—make up the dataset. A stratified K-fold hold-out testing 
technique (K = 1 to 5) is used to maintain the class distribution across training 
and testing folds in order to guarantee robust model evaluation and address class 
imbalance. To improve generalization and guarantee compatibility with transformer 
models, standard image augmentation and normalizing approaches are used. All 
models begin training using vast collections of images, afterward honed specifically 
on cotton leaf data to sharpen their ability to tell differences apart. Results spread 
across multiple test rounds stay steady, one standout reaching nearly perfect 
accuracy—99.99 percent. This pattern highlights how transformer-driven systems 
thrive alongside stratified K-fold checks, crafting a dependable way to spot crop 
issues early, shifting farm oversight toward quicker, smarter responses.
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1 Introduction

In countries across South Asia—such as India, Bangladesh, and parts of southern China—
farming still anchors daily life and livelihoods (Patil and Burkpalli, 2021; Nadiruzzaman et al., 
2021). Yet shifting weather patterns brought on by warmer climates are worsening outbreaks 
of plant illnesses, chipping away at harvest yields. Cotton, often called white gold or nature’s 
silk, stands central among cash crops traded globally. Valued near 40 billion USD today, its 
market may climb toward 60 billion within this decade’s end (Khairnar and Goje, 2020; Meyer 
et al., 2023). India’s textile industry, valued at over 200 billion dollars, stands among the leading 
forces in global garment exports. Cotton, often seen as the backbone of this sector, grows here 
more than anywhere else on Earth. The nation leads worldwide in cotton production, fueling 
much of its fabric output. Rich soil and generations-old expertise help sustain this massive 
trade. From spinning yarn to finished garments, the work flows through countless hands 
across villages and cities alike.
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India grows cotton across more than 12.9 million hectares, helped 
along by sunny weather and soil that suits it well. Still, growing this 
crop faces hurdles—blights creep in, bugs invade, rain plays tricks, 
dry spells hit hard, and temperatures jump without warning. Even so, 
countless farming families rely on it, pulling through because it keeps 
food on the table and work in their hands. In China, sicknesses and 
insects chew away at harvests every year, shaving off 15 to 20 percent 
of value, sometimes even half when things go wrong. Most troubles 
plaguing Indian cotton show up first on leaves, dragging yields down 
by one out of four. Spotting those signs sooner could rescue roughly 
every fifth plant touched by illness, showing how much depends on 
catching trouble fast. In places such as Bangladesh and India, farmers 
often spot cotton problems by sight—sometimes aided by specialists. 
Without enough training, visual checks tend to fall short, demand 
heavy effort, yet remain common across remote regions. After 
spotting an issue, growers typically turn to chemical sprays, following 
guidance from advisors (Gupta and Pathak, 2016; Chen et al., 2020). 
Snapshots of leaves, pulling out distinguishing traits, then analyzing 
them form the core of automatic detection tools. Because they excel 
at uncovering meaningful patterns, methods rooted in computer 
vision—especially deep learning (DL) and machine learning (ML)—
have drawn growing interest in studies (Talukder et al., 2023; Saleem 
et al., 2021; Dhaka et al., 2021).

A study introduced a way to spot sick soybean leaves by 
combining k-means grouping with SVM classification (Kaur et 
al., 2018). It reached 90% correctness across 4,775 images, 
targeting issues like bacterial pustule, blight, and mildew—using 
color plus surface patterns to tell healthy from infected. As deep 
learning advanced, various tests revealed transformers and 
convolutional networks do better at spotting and outlining crop 
diseases, especially if plenty of labeled examples exist (Talukder 
et al., 2022; Uddin et al., 2023). In particular, Vision 
Transformers can grasp focused traits through pre-trained 
knowledge, working well even when only small or niche image 
sets are accessible. That trait makes them fit for farming uses 
where data often runs short.

1.1 Key research findings are enlisted as 
below

1.1.1 DL for cotton leaf disease detection

	•	 The learning best part the efficiency of modernizer models like 
Vanilla Vision Transformer (ViT), Swin Transformer, DeiT, and 
T2T-ViT in classifying cotton leaf diseases.

	•	 These models accurately differentiate four categories: curl virus, 
fusarium wilt, healthy leaves, and bacterial blight.

1.1.2 High classification accuracy

	•	 The model’s performance was enhanced by hyperparameter 
optimization, reaching an exceptional peak accuracy of 99.99%.

1.1.3 Potential for early disease diagnosis

	•	 The research shows these tools can spot cotton leaf issues 
sooner—important when quick farming decisions matter. By 

catching problems earlier, farmers gain time to act before damage 
spreads through crops.

1.1.4 Contribution to agriculture and ecology

	•	 The approach pushes progress in farm automation while boosting 
nature protection—woven together through smart tech that 
learns on its own.

2 Literature survey

Photos snapped under perfect farm conditions help spot plant 
illnesses—researchers have explored this angle plenty. Take wheat 
rot detection: it demanded shots from above plus close-ups across 
fields (Safari et al., 2022). Before being entered into an 
organization system to identify the precise class, these photos 
were annotated for object recognition, with bounding boxes 
defined and cropped. Five arrangement models utilizing CNN 
architectures were developed, including VGG16 (Simonyan and 
Zisserman, 2014), ResNet-50 (He et al., 2016), Inception (Szegedy 
et al., 2016), MobileNet-V3 (Howard et al., 2019), and 
EfficientNet-B0 (Tan and Le, 2019). Out of the five, 
EfficientNet-B0 proved to be the most accurate and 
computationally efficient prototype. Convolutional Neural 
Networks (CNNs) have become more popular in the identification 
of plant diseases as AI technologies have advanced. For example, 
in a comparison analysis utilizing the Plant Village dataset, the 
DenseNet model, which is well-known for its capacity to recycle 
article maps, achieved a noteworthy precision of 98.27% (Akshai 
and Anitha, 2021; Hughes and Salathe, 2015).

An average F1-score of 95.70% has been attained for apple leaf 
disease recognition training using ResNet networks with residual 
structures (Yu et al., 2022). By eliminating crucial elements from 
photos, CNNs are quite successful in mechanically categorizing plant 
illnesses. CNNs’ parameter-sharing method, which reduces the 
number of constraints and overfitting—a prevalent problem in 
computer vision tasks—is a major advantage. However, there is a 
chance of unnecessary computational cost as the system’s depth 
increases. Furthermore, CNNs do not explicitly use pixel positioning 
information, which may limit their capacity to grasp spatial 
relationships in the image, even when they are successful at extracting 
local area features through convolutional layers.

Conventional CNNs may be less successful in identifying 
plant diseases because they frequently have trouble utilizing pixel 
positional information. Vision Transformers (ViTs), first 
presented in Dosovitskiy et al. (2020), use a self-attention 
mechanism as suggested in Vaswani et al. (2017) to get around 
this. Diverse feature extraction from images is made possible by 
improvements such as incorporating a ghost module into the ViT 
encoder, as investigated in Lu et al. (2022). Additionally, the 
MSCVT model presented in Zhu et al. (2023) greatly advances the 
identification of agricultural diseases by combining the advantages 
of multiscale convolution and self-attention in a hybrid CNN-ViT 
architecture.

These research ignored tea leaf datasets even though they 
showed great accuracy using publicly available datasets. ICVT 
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(Inception Convolutional Vision Transformer), which combines 
the Beginning construction with cross-channel article 
information, was developed by Yu et al. (2023) to close this gap. 
Additionally, Thakur et al. (2021), Alharbi et al. (2023), Dhakal et 
al. (2023), Jenifa et al. (2019), Nigam et al. (2023), Prakash and 
Managuli (2024a), Managuli et al. (2024), Prakash and Managuli 
(2024b), and Nikhil et al. (2024) introduced PlantViT, a 
transformer-based method specifically designed for accurate plant 
disease detection.

Researchers explored classic machine learning along with deep 
learning approaches to spot plant illnesses across multiple projects. 
Take study (Kaur et al., 2018), which introduced an approach for 
detecting issues on soy leaves through color patterns and texture traits. 
This method combined k-means grouping with SVM models to 
classify problems such as downy mildew, bacterial blight, plus frog-
eye. It reached 90 percent precision when tested against a collection of 
4,775 images.

The strong pattern recognition skills of CNN-driven designs 
have pushed their broad use in sorting plant illnesses through 
deep learning frameworks (Talukder et al., 2022; Uddin et al., 
2023). Yet even with success, these networks can stumble under 
uneven light, messy surroundings, or when sickness signs appear 
across scattered parts of leaves. Lately, researchers have begun 
exploring transformer structures for visual challenges. Thanks to 
wide-ranging focus mechanisms and an ability to build rich 
contextual insights, models like ViTs, Swin Transformers, DeiT, 
and T2T deliver promising outcomes across various image 
classification areas. Still, applying them to detect crop diseases 
remains limited—especially on data covering multiple species.

2.1 Research gap

Despite progress in automated plant disease detection, gaps remain. 
While attention has shifted toward newer methods, studies focusing on 
transformer models for crop illness classification stay sparse—
particularly those leveraging diverse, multi-species data. Most prior 
work leans on CNNs or traditional algorithms, which may overlook 
extended visual patterns crucial when symptoms look nearly identical 
across types. Rarely do papers line up ViT, Swin, DeiT, and T2T side by 
side under one testing framework. Cross-species consistency within 
shared disease families gets little attention. Evaluation often skips 
thorough metric analysis, tuning depth, or uniform preprocessing steps.

3 Methodology

Figure 1 displays the framework layout of the proposed method. 
The entire structure consists of four consecutive steps, each built to 
enhance precision and robustness in the organizational process. First 
comes pre-processing—then deep feature extraction follows. After 
that, features undergo refinement through optimization. Finally, 
classification takes place as the last phase.

3.1 Pre-processing

To enhance data excellence and guarantee consistency throughout 
the dataset, the input photos go through pre-processing in the first 
step. This stage handles tasks like boosting contrast, resizing images, 

FIGURE 1

Block diagram of the proposed study.
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smoothing values, while cutting down random interference. Cleaning 
things up here removes distractions that could confuse later steps 
where patterns start to form.

3.2 Extraction of deep features

Once cleaned up, the visuals move into a deep learning setup 
where features start to emerge. Through a trained or tailored neural 
net—say, a CNN or maybe a Vision Transformer—the system picks 
out distinct, high-layer traits on its own. Instead of handcrafting 
details, it zeroes in on subtle shapes, surface variations, and layout 
clues that matter for telling one class apart from another.

3.3 Optimization of features

The refinement stage sharpens the deeply pulled features further. 
Removing clutter happens through techniques like PCA, smart search 
strategies, or rank-based filters—cutting what is not needed. With 
fewer distractions, the remaining traits stand out better. Overfitting 
slips away as complexity drops. Less bulk means faster processing, 
lighter load.

3.4 Classification

In the final stage, a model takes the refined features to reach 
distinct decisions. Instead of simple grouping, intelligent patterns 
guide how inputs are sorted through methods like SVMs, neural nets, 
or softmax logic. Outcomes emerge directly from these sorting results, 
shaping what the system ultimately predicts.

The manuscript points to the performance as Figure 2—though 
it’s really labeled Figure 3. Since mismatches happen, every figure 
reference should still be double-checked.

3.5 Dataset

This research targets the organization of cotton plant leaf 
diseases using transformer models, an area with limited prior 
exploration compared to other crops. A diverse dataset of leaf 
images, sourced from studies cited in the literature survey, is 
utilized. Sample images and associated counts are given in Table 1, 
highlighting the dataset’s composition for effective model training 
and evaluation.

Datasets. Rather than collecting new material, this work 
pulled data from a shared online archive—boosting transparency 
while supporting consistent method evaluation across trials. Its 
1,711 images fall into four distinct groups, though some count 
them as five. Every category includes several samples used for 
testing and teaching the system. Since every picture came from 
identical setups, their sharpness and visual clarity matched 
throughout.

3.6 Pre-processing

The dataset featured leaves from four distinct plants, each image 
first checked by hand to toss out blurry or broken ones. After sorting, 
every photo got scaled down—no exceptions—to fit neatly into 224 by 
224 pixels. This standard frame helped the system process visuals 
without hiccups. Pixel values were then shifted, gently compressed 
into a range between zero and one, smoothing the path for steady 
learning. Keep in mind, the dataset pulls together images from four 
distinct plant groups—yet these serve only as origins. Instead of 
sorting by plant kind, the task focuses on grouping leaves by sickness 
type. Each category blends specimens from multiple species, tied not 
by genus but by symptom patterns. This setup pushes the model to 
pick up on signs of illness that appear across different plants. By 
mixing varieties within each disease group, it learns traits that stretch 
beyond a single host.

FIGURE 2

Block schematic of vanilla vision transformer model.
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3.7 Classifiers

A handful of familiar vision transformers—Swin, DeiT, T2T-ViT—
took part in this research; yet the real twist lies in their head-to-head 
testing across diverse plant species and diseases. Instead of scattered 
methods, one consistent pipeline handled both prep and analysis, 
stitching fairness into comparison. Rare in farm-focused machine 
learning circles, such an approach builds a reproducible frame other 
can step into. What emerges is not just rankings, but clearer views on 
which architectural flavors suit sick leaves best.

3.8 Vanilla vision transformer model

Figure 4 shows the architecture of a Vision Transformer (ViT), a 
deep learning model designed to process images by applying transformer 
architecture. Let us break down each part of the Figure 4 diagram:

	 1.	 Input Image and Patch Splitting: The input appearance is 
separated into slighter, fixed-size covers, each compressed into a 
vector & treated as a separate “token,” similar to words in 
NLP models.

FIGURE 3

Classification accuracy considering ViT transformer models.

TABLE 1  Sample images from the dataset used.

Sl no Disease type Image No. of images

1 Bacterial blight 448

2 Curl virus 418

3 Fussarium_wilt 419

4 Healthy 426
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	 2.	 Linear Projection of Flattened Patches: Apiece flattened patch 
is expected into an implanting interplanetary, starting an order 
of embedding, which serves as input to the transformer blocks 
(similar to word embedding in NLP).

	 3.	 Transformer Blocks (repeated N times): The ViT architecture 
consists of numerous modifier blocks, each with the following 
components:

	•	 Multi-Head Self Attention (MHA): Multiple attention heads 
calculate attention scores, capturing interactions among patches.

	•	 Normalization (NORM): Normalization layers are applied before 
and after attention layers to stabilize training.

	•	 MLP (Multi-Layer Perceptron): Binary bits with a starting 
meaning are processed by a feedforward neural network.

	•	 Residual Connections (+): Additional skip connections between 
layers improve gradient flow and stop the vanishing gradient issue.

3.8.1 Multi-head self attention (MHA) block
The MHA block includes multiple self-attention “heads,” which 

help the model capture different aspects of relationships between 
patches.

	•	 Q, K, V (Query, Key, Value): These are linear transformations of 
the input patch embeddings, which are used to calculate attention 
scores between different patches.

	•	 Concatenate and Linear: The output from each attention head is 
concatenated and passed through a linear layer to combine 
information from all heads.

3.8.2 Self-attention block
This block shows how self-attention is calculated within 

each head.

	•	 MatMul and SoftMax: The Query and Key vectors are multiplied 
(MatMul) to calculate attention scores, and SoftMax is applied to 
normalize these scores.

	•	 Output Calculation: The attention scores are then used to weigh the 
Value vectors, generating the final output for each attention head.

Figure 2 shows the performance of the Viet modifier for the 
dataset considered.

3.8.3 Swin transformer
This image illustrates the architecture of a Swin Transformer, a 

type of Vision Transformer specifically designed for handling visual 
tasks in a hierarchical and efficient manner. The architecture diagram, 
as shown in Figure 5, is divided into two main parts, showing two 
configurations of the Swin Transformer. Let us go through each 
section:

3.8.4 Overview of Swin transformer stages
	 1.	 Patch Partitioning: The input appearance is separated into 

covers, where each patch represents a small region of 
the image.

	 2.	 Linear Embedding: Each patch is compressed and linearly 
predictable to make a lower-dimensional embedding, similar 
to the process in Vision Transformers.

FIGURE 4

Block schematic of swin transformer model.
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	 3.	 Stage Processing with Swin Transformer Blocks: The 
architecture is organized into four stages, each with a different 
number of Swin Transformer blocks:

	-	 Swin Transformer Block: Each block processes the input 
embedding using window-based self-attention, where attention 
is computed within local windows instead of the entire image.

	-	 Patch Merging: After each stage, patch merging reduces the 
number of patches by combining neighboring patches, 
increasing the receptive field as the network deepens. The 
number of Swin Transformer blocks increases in each stage, 
allowing for more complex representations.

	 4.	 MLP Layer: After the fourth stage, the mined topographies are 
approved through an MLP skull, consisting of completely linked 
layers, beginning functions, and dropout for classification tasks.

Figure 3 shows the performance of the swin converter for the 
dataset considered.

3.8.5 DeiT (data-efficient image transformer)
The DeiT is a variation of the ViT designed to recover the replica’s 

competence and accuracy, especially when training on smaller datasets 
Created in 2021 by Facebook AI, DeiT rolled out methods that ease 
reliance on huge data loads typical of standard transformers—suddenly, 
large-scale pre-training wasn’t a strict requirement. Instead of leaning 
on vast datasets, it leaned into smarter training tricks. These opened 
doors for wider adoption, especially where computing power or data 
access is limited. Efficiency became its quiet strength.

3.8.6 Distillation token

	•	 The DeiT setup adds a distillation token along with the usual CLS 
marker—two tokens moving through layers together, each 
playing distinct roles during training. One guides label-based 
learning, while the other absorbs knowledge from a teacher 
network, shaping how features evolve across blocks.

	•	 A teacher model, often a CNN or large pretrained transformer, 
guides the student during training through the distillation token, 

shaping its progress more effectively while streamlining 
knowledge transfer.

	•	 Through smooth knowledge sharing, the teacher model offers 
fuzzy guesses for each category—helping DeiT adapt better when 
data is limited.

	 1.	 Training on Smaller Datasets:

	•	 DeiT works better when data is limited, whereas the first ViT 
relies on massive sets—JFT-300 M or ImageNet-21 k—to learn 
effectively beforehand

	•	 A single million-image dataset like ImageNet-1 k can still push DeiT 
forward—especially once the distillation token steps in, trimming 
reliance on massive data loads while holding its own in results.

	 2.	 Multi-Head Self-Attention and Feedforward Layers:

	•	 Similar to ViT, DeiT maintains the basic transformer structure 
with multi-head self-attention and feedforward layers.

	•	 Its typical architecture uses positional encodings, fixed-size 
picture patches, and a number of transformer encoder layers.

	 3.	 Efficient Training Techniques:

	•	 To lessen overfitting, DeiT uses a number of training improvements, 
including data augmentation, regularization, and stochastic depth, 
which randomly removes pathways from the model during training.

	 4.	 Loss Function:

	•	 DeiT combines the standard cross-entropy loss with a distillation 
loss. The cross-entropy loss is computed for the organization 
token, while the distillation loss is computed for the distillation 
token, based on the teacher’s predictions.

	•	 This dual-loss approach encourages the model to balance both 
the actual label predictions and the soft label guidance from the 
teacher.

FIGURE 5

Classification accuracy considering Swin transformer models.
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FIGURE 7

Block schematic of T2T transformer model.

Figure 6 shows the performance of the swin modifier for the 
dataset considered.

3.8.7 Token to token transformer
Figure 7 depicts the architecture of the T2T-ViT (Tokens-to-

Tokens Vision Transformer), which is designed to enhance the Vision 
Transformer (ViT) by capturing better local structure information 
within the input images.

Here’s a breakdown of the architecture as shown in the 
diagram:

	 1.	 Input Image (224 × 224 pixels):

	•	 The T2T-ViT model begins with an input image of size 224 × 
224 pixels.

	•	 To capture additional spatial information in each location, this 
image is then segmented into overlapping patches rather than 
normal non-overlapping patches.

	 2.	 Tokens-to-Tokens (T2T) Module:

	•	 The input image is converted by the T2T module into tokens, 
which are the basic units supplied to the transformer.

	•	 It operates in multiple stages to progressively merge tokens, 
thereby creating a hierarchy of tokens that better represents the 
image’s local information.

	 3.	 Transformer Backbone:

	•	 After processing in the T2T module, the tokens are passed to the 
main Transformer backbone.

	•	 This backbone consists of various transformer layers, each with 
multi-head self-attention mechanisms and feed-forward 
networks.

	•	 Each layer processes the tokens, allowing the typical to 
imprisonment worldwide situation and relations across different 
image regions.

FIGURE 6

Classification accuracy considering DieT transformer models.
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	•	 Positional Encoding (PE): To maintain spatial information, 
positional encodings are added to the tokens since 
transformers alone do not inherently understand spatial 
positioning.

	 4.	 MLP Head:

	•	 After passing through the transformer layers, the tokens are 
directed to the MLP Head for organization.

	•	 The output from the MLP head classifies the image into one of 
the target categories in a classification task.

Figures 8, 9 show the performance of the T2T transformer for the 
dataset considered.

4 Results and discussion

Instead of depending only on a single train-test split, the typical 
approach was further validated to guarantee a more trustworthy 
and objective performance evaluation. Because the model is tested 
across several data partitions, this method offers a more thorough 
assessment of model stability and generalization. The average 
performance over all folds is represented by the final reported 
results.

Such automated disease detection systems can possibly enable 
large-scale crop health monitoring and contribute to broader 
agricultural sustainability efforts, even if the main focus of this 
education is the categorization of cotton leaf diseases using 
transformer-based models. However, ecological monitoring and 

FIGURE 8

Classification accuracy considering T2T transformer models.

FIGURE 9

T2T matrices.
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biodiversity conservation are only listed as potential uses for further 
research; they are not directly evaluated.

Preprocessing steps, including image augmentation and 
normalization, ensure consistency and quality for model input. 
Transformer models such Vanilla Vision Transformer (ViT), Swin 
Transformer, DeiT, and T2T-ViT are used; hyper-parameter tuning is 
used to determine which model performs the best. To demonstrate the 
superiority of the suggested method, performance is assessed using 
common classification criteria, and findings are contrasted with those 
of current research. To examine model behavior and effectiveness in 
cotton leaf disease detection, extensive trials are carried out, backed by 
confusion matrices and comprehensive classification reports.

The hyperparameters that led to perfect classification on this 
particular dataset appear in Table 2. Despite their earlier mention in 
the methodology, results for the token-to-token transformer were left 
out of Table 3—accuracy fell short of the full mark.

The confusion matrix breaks down the prototype’s performance, 
sorting outcomes into true negatives, true positives, along with 
misjudged cases—false negatives and false positives. These 
categories spotlight where errors tend to cluster. Meanwhile, the 
ROC curve shows how sensitivity shifts against false alarms as 
thresholds change. Greater AUC points toward clearer separation 
between classes. The AUC reflects how well a model performs 
across thresholds. As shown in Table 4, Figure 10 together with 
Figure 11 displays confusion matrices alongside ROC plots for 
multiple transformer setups paired with specific classifiers—
revealing uneven results in classification tasks.

Although accuracy offers a general indicator of accurate 
predictions, it might not adequately represent how the model behaves 
in other classes. Thus, we assessed the model using precision, recall, 
F1-score, confusion matrix, and ROC-AUC in addition to accuracy. 
The F1-score balances both metrics, the confusion matrix offers 
comprehensive insights into misclassification patterns, and precision 
and recall aid in evaluating class-wise performance. These extra 
criteria guarantee a more thorough and dependable evaluation of the 
model’s performance in Figures 12, 13.

There are a number of reasons why the transformer-based 
versions perform better. First, self-attention methods used by 
transformer architectures like ViT, Swin Transformer, DeiT, and 
T2T enable the model to extract global contextual information 
and long-range dependencies from leaf images. Because disease 
indicators, including discoloration, texture changes, and uneven 

patterns, are frequently dispersed among several leaf sections, this 
ability is especially helpful for disease diagnosis Figure 14.

Second, transformers dynamically learn associations between all 
picture patches, allowing for better feature representation and enhanced 
disease class discrimination, in contrast to typical CNNs that rely on fixed-
size convolutional kernels. Higher resilience results from this, particularly 
in datasets where different plant species may exhibit comparable illnesses.

TABLE 2  Classification report.

Name Precision Recall F1-
Score

Support

Curl Virus 0.84 0.81 0.83 315

Bacterial 

Blight

0.85 0.83 0.84 335

Fusarium 

wilt

0.92 0.93 0.93 325

Healthy 0.82 0.86 0.84 320

Accuracy 0.86 1,295

Macro avg 0.86 0.86 0.86 1,295

Weigted avg 0.86 0.86 0.86 1,295

TABLE 3  Hyper parameters selected for optimal performance.

Name ViT Swin DeiT

Learning rate 1.00E-05 1.00E-05 1.00E-05

Batch size 16 8 16

Optimizer SGD SGD SGD

No of epochs 20 20 5

Training testing 

ratio 70:30 71:30 72:30

TABLE 4  Classification report of Deit.

Name Precision Recall F1-
Score

Support

Curl Virus 0.99 0.98 0.98 335

Bacterial 

Blight

0.96 0.96 0.96 315

Fusarium 

wilt

0.96 1.0 0.98 325

Healthy 0.97 0.96 0.96 320

Accuracy 0.97 1,295

Macro avg 0.97 0.97 0.97 1,295

Weigted avg 0.97 0.97 0.97 1,295

FIGURE 10

The classification report’s confusion matrix.
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Third, the remarkably high accuracy attained in our tests is a 
result of the enhanced pre-processing procedures and hyper 

parameter tuning, which further improve model generalization. 
Additionally, patch embedding and multi-head attention give 

FIGURE 11

Confusion matrix and RUC curve of transformer models.

FIGURE 12

Per class metrics-Deit.
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transformer models strong regularization capabilities that assist 
in minimize overfitting even when working with a complex 
dataset that includes 4 different leaf types in Figures 15, 16.

4.1 Discussion of the proposed model

The dataset utilized in this study comprises 1,711 images 
categorized into four classes of cotton plant leaf diseases. 
Convolutional neural networks (CNNs) and other traditional 
machine learning and deep learning techniques have been widely 
investigated for automated plant disease identification using leaf 
imagery. Although CNN-based models have shown encouraging 
results, their dependence on limited receptive fields frequently 
restricts their capacity to grasp global contextual information and 
long-range dependencies found in intricate leaf disease patterns. 
Hybrid approaches and ensemble learning have been used in recent 

studies to try to overcome these restrictions, however they often 
increase computer complexity and rely on manually created feature 
engineering. The suggested study, on the other hand, makes use of 
transformer-based architectures, such as ViT, Swin Transformer, 
DeiT, and T2T-ViT, which simulate global interactions over the entire 
image by using self-attention mechanisms. This capability shines 
when sorting cotton leaf issues, since texture shifts, warped veins, or 
odd colors often appear scattered across the surface. Earlier efforts 
usually tested one model setup—here, several transformers are 
measured side by side under identical conditions. What also sets this 
work apart lies in how it checks results. A lot of newer studies rely on 
just one training and testing division, which can give a shaky sense 
of reliability, especially if there aren’t many samples to begin with. To 
get around that issue—and keep class proportions steady while 
sharpening accuracy—the approach uses repeated stratified splits, 
cycling through five separate validation rounds. This validation 
strengthens credibility while broadening real-world relevance. Rather 
than pitting findings against unrelated data pools, the approach 
sidesteps shaky number-crunching, focusing instead on how methods 
shape outcomes. Context emerges through emphasis—on structural 
advantages, scrutiny in testing, and actual field utility—not just raw 
scores. Taken together, the transformer framework shows strong 
potential for spotting cotton leaf issues with consistency, supporting 
timely responses in farming systems. Multiple transformer variants 
were weighed with care, adding meaningful detail to ongoing 
exploration of visual models in smart crop monitoring.

5 Conclusion

This research introduced a transformer-driven system capable of 
automatically detecting cotton leaf illnesses through farm-related image 
data. Instead of traditional methods, it relied on Vision 

FIGURE 13

Confusion matrix Deit.

FIGURE 14

Confusion matrix of ViT.

FIGURE 15

Confusion matrix of Swin.
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Transformers—paired with a thorough preparation process—to capture 
signs of disease in foliage images. For fair testing and even representation 
across categories, performance checks used stratified k-fold splits 
(ranging from k = 1 up to k = 5), alongside a separate reserve dataset. 
Results held strong throughout each fold, hitting a near-perfect 99.99% 
accuracy rate—not just once, but every time. This steady performance 
reveals the model’s toughness, proving it works where farming happens. 
Transformer-driven setups handle nearby and wide-ranging influences 
just right—key for telling plant illnesses apart accurately. All together, the 
study backs using high-level neural methods in smart farming, 
suggesting they might sharpen early warnings, guide choices, support 
healthier crops without waste. Coming work could pull in transparent 
AI tools, test smaller transformers on live data streams, adapt the setup 
to broader, richer collections of field records to make outputs clearer, 
earn grower confidence.
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Per class metrics-Swin.
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