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Painting authentication is an inherently complex task, often relying on a combination 
of connoisseurship and technical analysis. This study focuses on the authentication of 
a single painting attributed to Paolo Veronese, using a convolutional neural network 
approach tailored to severe data scarcity. To ensure that stylistic comparisons were 
based on artistic execution rather than iconographic differences, the dataset was 
restricted to paintings depicting the Holy Family, the same subject as the work 
under authentication. A custom shallow convolutional network was developed 
to process multichannel inputs (RGB, grayscale, and edge maps) extracted from 
overlapping patches via a sliding-window strategy. This patch-based design expanded 
the dataset from a small number of paintings to thousands of localized patches, 
enabling the model to learn microtextural and brushstroke features. Regularization 
techniques were employed to enhance generalization, while a painting-level 
cross-validation strategy was used to prevent data leakage. The model achieved 
high classification performance (accuracy of 94.51%, Area under the Curve 0.99) 
and generated probability heatmaps that revealed stylistic coherence in authentic 
Veronese works and fragmentation in non-Veronese paintings. The work under 
examination yielded an intermediate global mean Veronese probability (61%) with 
extensive high-probability regions over stylistically salient passages, suggesting 
partial stylistic affinity. The results support the use of patch-based models for 
stylistic analysis in art authentication, especially under domain-specific data 
constraints. While the network provides strong probabilistic evidence of stylistic 
affinity, definitive attribution requires further integration with historical, technical, 
and provenance-based analyses.
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1 Introduction

Art authentication remains a complex, multidisciplinary challenge that requires the 
integration of historical expertise, scientific analysis, and, increasingly, computational 
techniques (King, 2024). In recent years, deep learning has emerged as a powerful tool for 
image-based analysis, offering scalable, objective approaches that complement traditional 
expert judgment. Convolutional neural networks (CNNs) and other advanced architectures 
have demonstrated high levels of accuracy in art authentication by learning complex visual 
patterns directly from images.
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However, despite the diversity of architectures and methodologies 
employed in prior work (see Section 2), deep-learning approaches 
share a fundamental requirement: access to large, labeled datasets for 
model training. Previous studies rely on hundreds or thousands of 
high-resolution images of authenticated artworks to enable neural 
networks to learn meaningful stylistic and compositional patterns. 
This dependence on extensive training data remains a key limitation, 
particularly when authenticating a single artwork, where the training 
set of verified examples may consist of only a handful of paintings. 
This data-scarce scenario renders standard deep, pretrained models, 
which contain millions of parameters, highly prone to overfitting 
(Bejani and Ghatee, 2021). Moreover, transfer learning approaches 
often rely on features learned from natural images (e.g., ImageNet), 
which emphasize high-level semantic content over low-level 
microtextural nuances required to distinguish a master from a 
workshop. A significant gap therefore exists for tailored methodologies 
capable of operating effectively under these severe data constraints, 
with emphasis on execution technique rather than semantic 
composition.

To address this gap, an approach based on a custom, shallow CNN 
and sliding-window-based feature extraction is introduced and 
applied to the authentication of a single painting with a disputed 
attribution. This patch-based approach mitigates data scarcity by 
substantially expanding the training set, shifting the model’s focus 
from global composition to learning localized, microstylistic features 
such as brushwork and texture (Sabha et al., 2024). Furthermore, the 
proposed model integrates multichannel inputs (RGB, grayscale, and 
edge maps) providing complementary visual cues; this technique has 
been shown to enhance the capture of subtle stylistic features (Ugail 
et al., 2023). The artwork, a Holy Family (see Figure 1A), has been 
linked to Paolo Veronese, although its authorship remains uncertain, 

and may originate from the master, Veronese’s workshop, or his 
disciples (Blanc et al., 2023; López-Baldomero et al., 2023). Training 
on a restricted dataset of Holy Family paintings attributed to Veronese 
and his circle, is intended to identify stylistic features that may clarify 
the painting’s origin, offering a reproducible and data-driven 
complement to expert judgment.

The main contributions of this study are as follows:

	•	 A tailored deep-learning framework for severe data scarcity: a 
sliding-window patch-generation strategy combined with a 
custom, shallow CNN architecture that effectively mitigates 
overfitting, enabling robust training with a dataset of only six 
paintings.

	•	 Multichannel stylistic feature extraction: integrating RGB, 
grayscale, and edge maps enables the model to capture 
complementary stylistic cues, such as brushwork texture and 
structural contours, that are critical for distinguishing a master 
from a workshop or circle.

	•	 Painting-level validation: the implementation of a painting-level 
leave-one-out cross-validation strategy (rather than at the patch 
level) ensures unbiased performance estimation and prevents 
data leakage.

	•	 Quantitative evidence for a disputed attribution: a probabilistic 
assessment of the Holy Family painting under examination is 
provided, offering objective data that support the hypothesis of 
partial stylistic affinity.

The remainder of this paper is organized as follows: Section 2 
reviews related work; Section 3 describes the dataset and the proposed 
methodology; Section 4 presents the experimental results; and Section 
5 discusses the results and presents the conclusions.

FIGURE 1

Holy Family painting under examination: (A) Original artwork, reproduced by the authors from “Holy Family: The Virgin”; (B) reverse with inscription; 
(C) reverse with highlighted inscription; and (D) cropped, squared image prepared for CNN analysis.
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2 Related work

Deep learning has emerged as a powerful approach for image-
based analysis in the cultural-heritage domain. CNNs and advanced 
architectures, such as vision transformers, have demonstrated high 
levels of accuracy in art authentication by learning complex visual 
patterns directly from images (Elgammal et al., 2018; Dobbs et al., 
2023; Ugail et al., 2023; Chen et al., 2024; Schaerf et al., 2024).

Specifically, in Schaerf et al. (2024), the use of vision transformers 
for the authentication of Van Gogh paintings was explored, showing 
that deep-learning models can outperform handcrafted-feature 
approaches in both precision and interpretability. Similarly, Dobbs 
applied large-scale CNN-based classification framework to 
contemporary artworks, achieving more than 91% accuracy and 
highlighting deep learning’s potential for scalable authentication 
across diverse artistic styles (Dobbs et al., 2023).

In Ugail et al. (2023), the effectiveness of transfer learning in 
attributing Renaissance paintings, specifically works by Raphael, using 
pretrained CNNs fine-tuned on curated datasets was demonstrated. 
Their approach provided valuable insights into stylistic attribution and 
supported expert judgment in complex cases. The study in Chen et al. 
(2024) further reinforced the utility of CNNs in fine-art recognition, 
emphasizing their role in extracting stylistic and compositional 
features for authentication tasks. Earlier work in Elgammal et al. 
(2018) introduced a deep-learning framework for analyzing stylistic 
evolution in art history, laying the groundwork for subsequent 
applications in authentication and attribution.

Beyond the cultural-heritage domain, the efficacy of shallow and 
custom-designed CNNs has been demonstrated in other fields 
requiring high levels of precision under specific constraints. Recent 
advances show that compact models, when properly optimized, can 
rival deeper architectures. For instance, Radojcic proposed a two-layer 
TinyML approach for plant disease classification (Radojcic et al., 
2026), highlighting the computational efficiency of shallow networks. 
Similarly, the studies in Zivkovic et al. (2025) and Basha et al. (2021) 
employed metaheuristic optimization strategies to enhance CNN 
design for ocular-disease diagnosis and general-purpose applications, 
respectively. These studies reinforce the premise that tailored, shallow 
architectures constitute a robust solution for specialized tasks where 
massive datasets for pretraining are unavailable or unsuitable.

3 Materials and methods

3.1 Materials

The original painting under examination is shown in Figure 1A, 
while the cropped image used for analysis appears in Figure 1D. The 
crop was performed primarily to fit the elliptical composition into a 
rectangular frame, without introducing artificial background pixels 
that could bias the analysis. The resulting image was processed into 
square patches, a common input format for CNN analysis.

The painting depicts the Holy Family: The Virgin holding the 
Baby Jesus while lifting a veil, observed from behind by a figure 
identified as St. Joseph. An inscription is preserved on the reverse. The 
original text appears in Figure 1B, and the highlighted version in 
Figure 1C. This inscription may indicate authorship by P. Veronese, a 
copy after Paolo Veronese, or production by his workshop or followers. 

The painting is currently located in Spain and is part of a private 
collection.

The painting was previously analyzed using several analytical 
techniques (Blanc et al., 2023; López-Baldomero et al., 2023): X-ray 
fluorescence spectroscopy to identify chemical elements in the paint, 
X-ray diffraction to determine crystalline components of the 
pigments, and spectral image analysis with endmember extraction to 
identify pigments. These studies concluded that the materials and 
artistic techniques are consistent with those of Italian Renaissance 
artists. However, the painting’s precise authorship was not 
established.

A set of Holy Family paintings (see Figure 2) was used to train the 
CNN. The training dataset was restricted to this subject to ensure 
thematic consistency with the work under examination. Maintaining 
thematic consistency, the CNN can focus on analyzing color palettes, 
visual patterns, and artistic techniques within a controlled, 
homogeneous context, thereby reducing variability unrelated to 
authorship and improving the reliability of stylistic analysis. The 
training dataset was also limited to works attributed to Paolo Veronese, 
his workshop, or followers. This restriction ensures stylistic coherence 
within the dataset, as including works by other Renaissance painters 
could introduce significant variability in composition, color schemes, 
and brushwork. Focusing exclusively on Veronese’s circle, the CNN 
can learn discriminative features specific to this artistic environment, 
thus reducing noise from unrelated stylistic traits and improving 
model’s ability to capture subtle patterns relevant to authorship 
attribution. Details for each painting are listed in Table 1. Four 
paintings (1–4) are confirmed works by Paolo Veronese (the Veronese 
class), and two paintings (5–6) are attributed to his disciples or 
followers (the non-Veronese class).

A major challenge in this study is the limited size of the training 
dataset, which comprises only six paintings. Such a small sample poses 
a significant risk of overfitting and constrains a CNN’s ability to 
generalize effectively. To mitigate this constraint, a sliding-window 
method was implemented and applied to three distinct input 
representations (RGB, grayscale, and edge maps) for each painting, as 
detailed below. This approach substantially increased the number of 
training samples by generating many overlapping patches from each 
image, enhancing data diversity and enabling the model to learn local 
stylistic and textural features while preserving the overall artistic 
context.

CNN performance was evaluated using two distinct test sets. First, 
a negative test set was defined (see Figure 3; Table 1), comprising four 
Holy Family paintings with known non-Veronese authorship 
(Paintings 7, 8, 9, and 10). Paintings 7, 8, and 9 are copies of the work 
under examination: painting 7 is a 17th-century work by a Caravaggisti 
school artist; painting 8 is a work by an anonymous 17th-century 
Italian artist; and painting 9 is a modern copy created by an art student 
as a controlled experiment for this study. Painting 10 is a modern 
replica of Veronese’s painting 4. Second, to evaluate classification 
performance on authentic Veronese works, a painting-level leave-
one-out cross-validation on Veronese paintings (Paintings 1–4) was 
conducted. Each Veronese painting (e.g., Painting 1) was held out as 
the test case, while training was performed on the remaining paintings 
(e.g., Paintings 2, 3, 4, 5, 6). This process was repeated, using each of 
paintings 1–4 as the test case in turn.

Images of all paintings by Veronese and his workshop, which are in 
the public domain, were downloaded from WikiArt - Visual Art 
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Encyclopedia.1 The image for test painting 9 originated from the 
authors’ laboratory, while the images of paintings 7, 8, and 10 were 
obtained from the sources listed in Table 1. All images were cropped to 
square regions to include the entire Holy Family in each painting. These 
crops were downsampled to 640 × 640 pixels. This resolution was 
selected as the smallest square size capable of accommodating all 
figures, thus avoiding supersampling. The images used in the dataset can 
be accessed at https://www.ugr.es/~demiras/PaintingAuthentication/.

3.2 Methods

This section details the methodological pipeline: sliding-window 
based feature extraction (Section 3.2.1), the proposed CNN 
architecture (Section 3.2.2), and model validation and testing 
(Section 3.2.3).

3.2.1 Sliding-window-based feature extraction 
from images of paintings

CNN training typically requires large, diverse datasets to 
ensure robust generalization and to mitigate overfitting. However, 
in the highly specialized context of painting authentication, the 
availability of labeled data is often severely limited, especially for 
rare or historically significant works. The training dataset 
comprises only six paintings, which poses a substantial challenge 

1  https://www.wikiart.org/

for conventional deep-learning models. CNNs trained on such 
small datasets tend to memorize the training samples rather than 
learn generalizable features, resulting in poor performance on 
unseen test data. This limitation has been acknowledged in the 
literature with studies exploring various strategies to mitigate 
overfitting, such as data augmentation, transfer learning, and 
feature extraction techniques (Sabha et al., 2024; Safa aldin et al., 
2024). To address this issue, a sliding-window-based feature-
extraction method was implemented. This technique produces a 
substantially larger set of localized patches, increasing the number 
of training samples and enhancing the CNN’s capacity to learn 
discriminative features.

The sliding-window technique processes the input image by 
dividing it into fixed-size patches (windows) (see Figure 4, Step 1). The 
patches are obtained by moving the window across the image with a 
predefined step size, known as the stride. The stride can equal the 
patch dimensions or be smaller. When the stride is less than the patch 
size, the resulting patches exhibit a specified overlap, which is crucial 
for capturing continuous, fine-grained details and textures and 
generating a greater number of samples. Each patch inherits the 
source painting’s class label (“Veronese”/“Non-Veronese”; see Figure 4, 
Step 2).

This process is applied independently to three distinct input 
representations for each painting to maximize feature diversity (see 
Figure 4, Steps 1 and 2): (1) the original RGB image, (2) its grayscale 
version, and (3) a binary edge map. Use of the grayscale version 
enables the model to focus on structural and textural features without 
the influence of color, which can be particularly beneficial when color 
is not a reliable discriminative factor or under varying lighting 

FIGURE 2

Training dataset of Holy Family paintings: (1–4) attributed to Paolo Veronese; (5, 6) attributed to his workshop or followers.
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conditions (Johnson et al., 2008). The edge map is generated with the 
Canny edge-detection algorithm (Canny, 1986). The Canny algorithm 
is particularly suitable because it detects edges by identifying local 
maxima of the image gradient using a dual-threshold mechanism. 
This dual-threshold approach classifies edges as strong or weak, 
including weak edges only if connected to a strong edge. This property 
makes the Canny algorithm more robust to noise than many 
alternatives and better at detecting subtle edges, which are critical for 
characterizing artistic style. This final, large collection of localized 
patches constitutes the expanded training dataset for the CNN (see 
Figure 4, Step 3).

The sliding window process has two parameters: (1) the window 
size, which determines the dimensions of the square patches extracted 
from the image, and (2) the overlap percentage, which determines the 
stride, i.e., the pixel shift between consecutive windows. These 
parameters directly influence the granularity of feature extraction and 
the total number of patches produced for training and testing. In this 
study, the sliding window size was fixed at 64 × 64 pixels, 
corresponding to one-tenth of each original image dimension 
(640 × 640 pixels). This configuration strikes an effective balance 
between capturing local details, such as brushstroke patterns and 
texture, and maintaining sufficient contextual information within each 
patch. Smaller windows can lead to excessive fragmentation and loss 
of structural cues, while larger windows may dilute fine-grained 
features critical for authentication. The overlap percentage (65%) was 
chosen experimentally by testing multiple values between 0 and 95% 
and selecting the value that yielded the best validation performance 
for the CNN. This overlap not only increases the number of training 
patches but also reduces boundary inconsistencies, as reported in 
prior work on image tiling for CNN-based analysis (An et al., 2020; 
Cira et al., 2024). The process was implemented by stacking the three 
representations (color, grayscale, and edge maps) to create a single 
5-channel input: 3 channels for RGB, 1 channel for grayscale, and 1 
channel for the edge map. This yielded 729 patches per painting. 

Consequently, the training dataset expanded from six original 
paintings to a total of 4,374 patches (729 patches per painting × 6 
paintings), each with dimensions of 64 × 64 × 5 pixels.

For the test phase, patches were extracted from each painting 
using the same sliding-window procedure (see Figure 4, Steps 4 and 
5). The trained CNN then classified each patch individually, yielding 
class probabilities (“Veronese” or “Non-Veronese”) (see Figure 4, Step 
6). The final painting-level prediction was obtained by averaging the 
probabilities across all patches. Additionally, these patch probabilities 
were used to generate a Veronese probability heatmap, and overlaying 
this map onto the original painting yields a visual representation of 
the spatial probability distribution across the artwork (see Figure 4, 
Step 7). This approach ensures that the final decision is grounded in 
the painting’s global stylistic consistency and mitigates the influence 
of localized or anomalous regions.

3.2.2 CNN architecture and configuration
To classify the image patches as either “Veronese” or 

“Non-Veronese,” a custom CNN architecture was designed, tailored 
to accommodate the dataset constraints and the nature of the input 
data. The network input consists of 64 × 64-pixel patches with five 
channels. This multichannel input allows the model to leverage color, 
structural, and edge features simultaneously, enhancing its ability to 
capture stylistic nuances.

The CNN architecture comprises two convolutional blocks followed 
by a fully connected layer and a softmax output layer (see Table 2 for 
details). Each convolutional block includes a convolutional layer with a 
3 × 3 kernel, batch normalization (Ioffe and Szegedy, 2015), and a ReLU 
activation (Nair and Hinton, 2010). Max-pooling layers with a stride of 2 
are applied to progressively reduce spatial dimensions while retaining the 
most salient features (Krizhevsky et al., 2017). A dropout layer with a rate 
of 0.5 is applied after the second convolutional block to mitigate overfitting, 
particularly given the high redundancy introduced by overlapping patches 
(Srivastava et al., 2014). The final fully connected layer maps the extracted 

TABLE 1  Details for the paintings in the training dataset (1–6) and the test dataset (7–10).

Painting Title Author Date Additional Information

1
The Mystic Marriage of Saint Catherine 

of Alexandria
P. Veronese 1,547–50 https://artgallery.yale.edu/collections/objects/63825

2
Holy Family with Sts. Anthony Abbot, 

Catherine and the Infant John the Baptist
P. Veronese 1,551

https://www.wikiart.org/en/paolo-veronese/holy-family-with-sts-

anthony-abbot-catherine-and-the-infant-john-the-baptist-1551

3 The Mystical Marriage of Saint Catherine P. Veronese 1,557–65
https://www.museefabre.fr/recherche/musee%3AMUS_

BIEN%3A3408?is_search_page=1&search=veronese&currentPage=1

4
Holy Family with Young St. John and St. 

Catherine
P. Veronese 1,565 https://www.uffizi.it/en/artworks/veronese-holy-family

5
The Holy Family with the Infant St. John 

the Baptist

Workshop of P. 

Veronese
1,550–75 https://id.rijksmuseum.nl/20026863

6
The Mystic Marriage of St. Catherine of 

Alexandria
Benedetto Caliari 1,562–9

https://www.rct.uk/collection/407216/the-mystic-marriage-of-st-

catherine-of-alexandria

7 The Holy Family Caravaggisti School 17th century
https://www.mutualart.com/Artwork/The-Holy-Family/

AA108F3F26B11479DB06718BC7A2EB24

8 The Holy Family Italian anonymous 17th century http://fpjuliovisconti.com/anonimo-italiano-sagrada-familia-s-xvii/

9 – Art student 21th century –

10 Holy Family with Barbara Reprodart.com 21th century
https://www.reprodart.com/a/veronese-paolo-eigentl-pa/

pveroneseholyfamilywithba.html
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features to the two output classes, and the softmax layer yields class 
probabilities.

The CNN was trained with the Adam optimizer (Kingma and 
Ba, 2014), which combines adaptive learning-rates updates with 
momentum to accelerate convergence and improve training stability 
(Qian, 1999). Training ran for up to 100 epochs, with a mini-batch 
size of 128 to balance computational efficiency and gradient 
estimation accuracy. To improve generalization, the training data 
were shuffled before each epoch, reducing the risk of learning 
spurious correlations. To mitigate overfitting caused by the high 
degree of patch overlap, L2 regularization (Krogh and Hertz, 1991) 
with a factor of 0.0005 was applied to the network weights. This 
penalizes large weights, encouraging simpler models that generalize 
better. CNN’s performance was assessed on a separate validation set 
at the end of each epoch. Early stopping (patience = 8 epochs) halted 
training if the validation loss failed to improve for 8 consecutive 
epochs (Prechelt, 2012). Finally, the checkpoint that achieved the 
best validation performance was retained as the final model.

3.2.3 CNN validation and testing
To ensure a rigorous evaluation of the CNN, a 6-fold cross-validation 

strategy was implemented at the painting level (leave-one-painting-out), 
rather than at the patch level, to avoid bias and data leakage caused by high 
patch overlap. In each fold, the patches of five paintings were used for 
training, and the remaining painting for validation. The model achieving 
the highest validation performance in each fold was retained as the fold’s 
final model. After completing all folds, the results were aggregated, and 
performance metrics, including precision, sensitivity (recall), specificity, and 
F1 score, were computed from the aggregated confusion matrix. In addition 
to these standard metrics, the area under the ROC curve (AUC), the 
geometric mean (G-mean), which balances sensitivity and specificity and is 
particularly relevant for imbalanced datasets (Kuncheva et al., 2019), and 
Cohen’s kappa which accounts for agreement beyond chance and provides 
a more robust assessment of classification reliability (Warrens, 2014) were 
also computed to assess the model’s discriminative ability and reliability.

To evaluate the model’s performance beyond cross-validation, 
a two-part test procedure was performed. First, the final CNN was 

FIGURE 3

Test dataset of Holy Family paintings (paintings 7–10). Image 7 reproduced from “The Holy Family”, https://www.mutualart.com/Artwork/The-Holy-
Family/AA108F3F26B11479DB06718; Image 8 reproduced from the Fundación Pintor Julio Visconti, “Anónimo Italiano Sagrada Familia, s. XVII”, http://
fpjuliovisconti.com/anonimo-italiano-sagrada-familia-s-xvii/; Image 9 adapted by the authors from “The Holy Family”, https://www.mutualart.com/
Artwork/The-Holy-Family/AA108F3F26B11479DB06718BC7A2EB24l; Image 10 reproduced from “Holy Family with St Barbara and the Infant St John” 
[c.1570] by Paolo Veronese, Holy Family with St Barbara and the Infant St John, c.1570 - Paolo Veronese - WikiArt.org, licensed under CC0.
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trained with all patches from the six paintings in the training 
dataset, reserving 5% of these patches as a hold-out validation set 
to apply early stopping with the same criteria applied during cross-
validation (patience = 8 epochs). This model was then tested on the 
test dataset (see Figure 3) composed exclusively of non-Veronese 
paintings, allowing assessment of its ability to correctly reject 

non-authentic works. The second part of the procedure evaluated 
the model’s capacity to recognize authentic Veronese paintings: 
each of the four Veronese paintings in the training dataset (see 
Figure 2) was used as a test case in turn, while the CNN was 
retrained after excluding the corresponding painting from the 
training set. The CNN produced class probabilities for each patch, 
and the final painting-level classification was obtained by averaging 
the probabilities across all the patches. These patch probabilities 
were used to generate Veronese probability heatmaps for visual 
analysis.

Finally, the painting under examination was evaluated with the 
final CNN model trained on all six paintings in the training dataset. 
The model classified its patches individually. The final painting-level 
score was obtained by averaging the Veronese probabilities across all 
patches, reflecting the likelihood that the work is an authentic 
Veronese. As with the test paintings, these patch probabilities were 
used to generate a Veronese probability heatmap for detailed visual 
inspection.

The complete MATLAB R2025b source code, which implements 
the end-to-end proposed methodology for CNN training and testing, 
along with the full training and test datasets, is publicly available at 
https://www.ugr.es/~demiras/PaintingAuthentication/.

4 Results

This section presents the experimental results, first detailing the 
CNN’s cross-validation performance (Section 4.1), then the 
authentication results for the test paintings and the painting under 
investigation (Section 4.2), and finally the comparison with the 
baseline model MobileNetV2 (Section 4.3).

TABLE 2  CNN architecture and configuration: layers, their types, 
parameters, and output sizes.

Layer Type Parameters Output size

1 Image Input 64 × 64 × 5, Normalization: 

None

64 × 64 × 5

2 Convolution 2D 3 × 3 kernel, 16 filters, 

Padding: same

64 × 64 × 16

3 Batch 

Normalization

– 64 × 64 × 16

4 ReLU – 64 × 64 × 16

5 Max Pooling 2D 2 × 2, Stride: 2 32 × 32 × 16

6 Convolution 2D 3 × 3 kernel, 32 filters, 

Padding: same

32 × 32 × 32

7 Batch 

Normalization

– 32 × 32 × 32

8 ReLU – 32 × 32 × 32

9 Max Pooling 2 × 2, Stride: 2 16 × 16 × 32

10 Dropout Rate: 0.5 16 × 16 × 32

11 Fully Connected 2 neurons 2

12 Softmax – 2

FIGURE 4

Proposed authentication methodology: (1) Original training dataset with application of the sliding-window technique; (2) Extraction of image patches 
via the sliding-window process to create an expanded training dataset; (3) CNN training on the expanded dataset; (4) Test image under authentication; 
(5) Extraction of image patches from the test image via the same sliding-window process; (6) CNN-based classification of all test patches; and (7) 
Generation of localized Veronese-probability maps (heatmap and overlay) and aggregation of patch-level classifications to estimate the painting’s 
global Veronese probability.
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4.1 CNN validation results

The experimental setup described above is summarized as follows: 
the training dataset consisted of six paintings (four by Veronese and 
two from his workshop, see Figure 2), each cropped and resized to 
640 × 640 pixels. From each painting, patches were extracted using a 
sliding window procedure (64 × 64 pixels, 65% overlap) applied to a 
5-channel input stack created by combining the three representations: 
RGB (3 channels), grayscale (1 channel), and edge map (1 channel). 
This process generated 4,374 patches (729 per painting), with each 
patch having dimensions of 64 × 64 × 5. Finally, the CNN was evaluated 
with 6-fold, painting-level cross-validation (leave-one-painting-out) to 
prevent data leakage and ensure a robust assessment of generalization.

Table 3 reports the confusion matrix aggregated across all six 
painting-level folds. The key performance metrics derived from this 
matrix are summarized in Table 4. Finally, Figure 5 depicts the 
corresponding ROC curve and the resulting AUC.

As detailed in Tables 3, 4, the CNN demonstrates high accuracy 
and strong agreement beyond chance. The slightly lower specificity 
indicates that classifying non-Veronese patches is more challenging. 
The model’s overall discriminative power is exceptional, as evidenced 
by an AUC of 0.99 (see Figure 5).

4.2 CNN testing and authentication results

The CNN was tested on the test dataset (see Figure 3) composed 
exclusively of non-Veronese paintings. Additionally, to evaluate its 
capacity to recognize authentic Veronese paintings, a leave-one-out 
approach was used: each of the four Veronese paintings in the training 
dataset (see Figure 2) was used as a test case in turn, while the CNN was 
retrained after excluding that painting from the training set. Because the 
goal is to authenticate a painting, the test phase prioretized analysis of the 
probability distribution of the Veronese class across each painting rather 
than computing standard performance metrics. For each test painting, 
the CNN produced a class probability for every patch. These scores were 
then aggregated by averaging to obtain a painting-level authenticity score 
for the entire painting. This approach also enabled a spatial visualization 
of the model’s predictions in the form of probability heatmaps.

Figure 6 shows the results for the test dataset of non-Veronese 
paintings, displaying both the patch-level Veronese probability heatmap 
and its overlay on the original image. The heatmap was overlaid on the 
original painting using alpha blending, with transparency set directly 
proportional to the Veronese probability. As expected, these works 
exhibit low Veronese probabilities, with painting-level average Veronese 
probabilities ranging from 11.9 to 36.7%. This low score is particularly 
noteworthy for Painting 10, which is a direct copy of authentic Painting 

4 (which was included in the training set). Despite sharing an identical 
composition, the model correctly assigned the copy the lowest Veronese 
probability (11.9%), demonstrating its ability to distinguish the master’s 
original technique from a reproduction. Analysis of patch-level 
variance showed that the 95% confidence-interval upper bounds for all 
non-Veronese copies consistently remained below 40% (specifically, the 
highest upper bound was 39.93% for Painting 9), indicating a 
statistically significant separation from the authenticated painting (see 
results below). The Veronese probability heatmaps display sparse, 
fragmented regions of high probability concentrated around localized 
details, reflecting limited stylistic alignment.

Figure 7 reports the results for the four authentic Veronese 
paintings. All authentic paintings achieved high painting-level average 
probabilities (ranging from 80.3 to 99.9%), demonstrating the model’s 
ability to generalize to unseen authentic paintings. Even accounting 
for patch-level variance, 95% confidence-interval lower bounds for all 
authentic paintings exceeded 77% (the lowest being 77.45% for 
Painting 2), maintaining a clear margin above the upper bounds for 
non-Veronese paintings. The Veronese probability heatmaps 
corroborate this finding, showing extensive high Veronese probability 
regions across all key compositional areas.

Finally, Figure 8 reports the results for the painting under 
authentication. Regions of high Veronese likelihood concentrate 
primarily in areas containing anatomical details and drapery folds. The 
painting-level average Veronese probability was 61.0%. The standard 
deviation across the patches was 0.41, resulting in a 95% confidence 
interval (CI) for the mean of [58.00, 63.96%]. This interval falls within 
a distinct intermediate range, separated from the upper bound of the 
non-Veronese copies (< 40%) and the lower bound of the authentic 
works (> 77%). This intermediate value suggests a moderate stylistic 
alignment with authentic Veronese’s paintings, indicating that 
although the painting shares relevant stylistic features with authentic 
Veronese works, the evidence remains insufficient for full attribution.

4.3 Comparison with baseline model 
(MobileNetV2)

To benchmark the proposed shallow architecture against a state-
of-the-art model, a comparative evaluation was conducted using 
MobileNetV2 (Sandler et al., 2018) via transfer learning. Since the 
pretrained architecture of MobileNetV2 expects 224 × 224-pixel RGB 
(3 channels) inputs, the experimental setup was adapted accordingly: 
patches were upsampled from 64 × 64 to 224 × 224 using bicubic 
interpolation, and the grayscale and edge channels were discarded. 
Table 5 summarizes comparative performance.

In 6-fold cross-validation, MobileNetV2 demonstrated strong 
performance, achieving an accuracy of 97.23%, precision of 98.61%, 
F1 score of 97.91%, sensitivity of 97.22%, specificity of 97.26%, 
G-mean of 97.24%, and a Kappa coefficient of 0.94. The AUC-ROC 
was 0.99. These results slightly surpassed those of the proposed 
shallow CNN during cross-validation.

However, despite strong cross-validation metrics, the model 
exhibited poor generalization on the test dataset. MobileNetV2 failed 
to establish a decision boundary between non-Veronese paintings and 
authentic Veronese works: (1) it assigned high Veronese probabilities 
to non-Veronese samples, such as 72.7% (Painting 8) and 71.7% 
(Painting 10), resulting in substantial false positives compared to the 

TABLE 3  Confusion matrix of the CNN model’s performance across the 
validation folds.

Actual / 
Predicted

Predicted 
Veronese

Predicted non-
Veronese

Actual 
total

Actual Veronese 2,833 (TP) 157 (FN) 2,990

Actual non-Veronese 83 (FP) 1,301 (TN) 1,384

Predicted total 2,916 1,458 4,374

Values represent the total count of patches aggregated across all six cross-validation folds. TP, 
True positive; FN, False negative; FP, False positive; TN, True negative.
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proposed model (< 37%); and (2) conversely, probabilities for 
authentic Veronese paintings were lower than expected with 
MobileNetV2 (62.8–73.0%), indicating reduced sensitivity relative to 
the proposed model (> 80%). For the painting under authentication, 
MobileNetV2 yielded a Veronese probability of 63.6%.

5 Discussion and conclusions

This study addressed the challenge of authenticating paintings 
under conditions of data scarcity by developing a patch-based CNN 
pipeline tailored to stylistic analysis. The methodology combined 
sliding window feature extraction with multichannel inputs (RGB, 
grayscale, and edge maps) to capture complementary visual cues and 
implemented painting-level cross-validation to prevent data leakage. 
By expanding the dataset with localized patches and integrating 
regularization strategies, the approach aimed to enhance 
generalization while preserving stylistic fidelity. The CNN trained 
with these patches distinguished authentic Veronese works from 
non-Veronese paintings at both painting- and patch-levels. Authentic 
Veronese paintings show high painting-level probabilities (ranging 
from 80.3 to 99.9%) and Veronese probability heatmaps with broad, 
contiguous high-probability regions (see Figure 7), whereas 
non-Veronese paintings exhibit lower painting-level scores (ranging 
from 11.9 to 36.7%) and fragmented, localized regions of high 
probability (see Figure 6). The painting under authentication yields an 
intermediate painting-level score (61.0%) with extensive high-
probability zones over stylistically salient passages, interspersed with 
some lower-probability areas (see Figure 8).

The sliding window design (64 × 64 patches, 65% overlap) 
expanded the training data from a small number of paintings to 
thousands of localized samples, encouraging the CNN to learn 
microtextural and brushwork signatures while controlling overfitting 
via dropout, L2 regularization (weight decay), batch normalization, 
the Adam optimizer, and early stopping. The high overlap mitigates 
boundary artifacts and stabilizes local predictions, an effect analogous 
to the overlap-tile inference widely used in biomedical image analysis 
(Ronneberger et al., 2015). The multichannel design (RGB, grayscale, 
and edge map) leveraged complementary cues: chromatic information, 
luminance-texture structure, and gradient-defined contours. The 
Canny edge detector is well-suited here due to its double-threshold 
mechanism and robustness to noise, which supports capturing subtle, 
style-relevant edge patterns (Canny, 1986).

The 6-fold painting-level cross-validation was essential to prevent 
data leakage from overlapping patches, an issue known to inflate 
performance in tile-based pipelines and subject-repeated imaging 
datasets (Bussola et al., 2019; Rumala, 2023). Cross-validation 
confirmed strong overall performance (see Table 4; Figure 5): accuracy 
94.51%; precision 94.75%; F1 score 95.94%; sensitivity 97.15%; 
specificity 89.23%; G-mean 93.11%; Cohen’s kappa 0.87; and 
AUC-ROC 0.99. This set of metrics provides a balanced view: 
AUC-ROC summarizes rank discrimination (Fawcett, 2006); G-mean 
emphasizes balanced sensitivity and specificity under class imbalance 
(Kuncheva et al., 2019); and Cohen’s kappa quantifies agreement 
beyond chance (Warrens, 2014). The validation metrics confirmed the 
CNN model’s high accuracy and exceptional discriminative power. 
The model was particularly effective at identifying authentic Veronese 
paintings (sensitivity = 97.15%), with slightly lower performance for 
non-Veronese paintings (specificity = 89.23%).

The heatmap visualization of Veronese probability provides 
critical insight into CNN’s decision-making process. In the painting 
under authentication (see Figure 8), high-probability regions cluster 
around stylistically salient elements such as anatomical contours and 
tonal transitions, whereas low-probability regions dominate less 
textured or peripheral areas. This uneven distribution suggests that 
the model detects Veronese-like features selectively rather than 
uniformly across the composition, helping to explain the intermediate 
global score of 61%. From a methodological perspective, this outcome 
reflects the patch-based classification strategy: aggregate probabilities 
capture local stylistic heterogeneity rather than enforce global 
uniformity. From an interpretive standpoint, the observed pattern 
may indicate (1) an authentic work with workshop participation; (2) 
an authentic work with later interventions or restoration that may alter 
original textures; or (3) a high-quality workshop production under 
close supervision. Consequently, while the CNN identifies meaningful 
stylistic affinities, the evidence remains insufficient to support 
definitive attribution.

The comparison between the painting under authentication and 
the non-Veronese replicas of the composition (paintings 7, 8, and 9) 
highlights the CNN’s capacity to assess stylistic consistency at a global 
level while acknowledging local similarities. Although the 
non-Veronese paintings exhibit localized high-probability regions (see 

TABLE 4  CNN performance metrics aggregated across all six-painting level validation folds.

Accuracy Precision F1-score Sensitivity Specificity G-mean Kappa

94.51% 94.75% 95.94% 97.15% 89.23% 93.11% 0.87

FIGURE 5

ROC curve and AUC for the CNN from the 6-fold, painting-level 
cross-validation.
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Figure 6), primarily around anatomical details and drapery folds, their 
overall scores remain low (ranging from 32 to 37%), indicating limited 
stylistic coherence. In contrast, the painting under authentication 
shows broader regions of high Veronese probability and a substantially 
higher global score (61%), suggesting a more pervasive presence of 

Veronese-like features. This pattern supports the hypothesis of partial 
authenticity or strong stylistic influence for the painting under 
authentication and confirms that the CNN does not rely solely on 
compositional similarity but captures nuanced textural and structural 
cues. The residual probabilities in non-Veronese paintings may arise 

FIGURE 6

Localized Veronese probabilities for patches in the test dataset of non-Veronese paintings. The columns display: Veronese probability maps (left), 
probability map overlays with global average probabilities (middle), and the original paintings (right).
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from shared iconographic elements, underscoring the importance of 
interpreting probability heatmaps in conjunction with global metrics 
rather than in isolation. A key detail is that in all non-Veronese 
paintings, the area corresponding to St. Joseph in the upper-right 

corner consistently yields very low probabilities, whereas in the 
painting under authentication the corresponding region exhibits high 
probabilities (see Figure 8). This contrast indicates that the CNN 
captures subtle stylistic cues in localized passages that are absent or 

FIGURE 7

Localized Veronese probabilities for patches in authentic Veronese paintings. The columns show: Veronese probability maps (left), probability map 
overlays with global average probabilities (middle), and the original paintings (right).
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less pronounced in non-Veronese paintings despite compositional 
similarity.

The probability heatmaps for authentic Veronese paintings (see 
Figure 7) reveal broad, continuous regions of high probability. This 
spatially cohesive distribution contrasts sharply with the fragmented 
patterns observed in non-Veronese works and supports the CNN’s 

capacity to capture stylistic coherence that extends beyond isolated 
details. The consistently high painting-level scores for Veronese 
paintings (ranging from 80.3 to 99.9%) indicate that the model 
generalizes effectively to unseen authentic works. These findings 
support the patch-based approach as a robust strategy for identifying 
nuanced textural and structural cues characteristic of Veronese’s 
technique.

The comparison between paintings 4 (authentic Veronese) and 10 
(copy) is particularly noteworthy. Despite compositional similarity, 
the authentic work yields a high painting-level probability (89.2%) and 
extensive high-probability regions (Figure 7). In contrast, the copy 
yields a low painting-level probability (11.9%) with sparse and 
fragmented high-probability regions (Figure 6). This supports the 
CNN’s capacity to differentiate stylistic coherence from superficial 
compositional similarity.

Notably, one authentic Veronese painting (see painting 2 in 
Figure 7) exhibits a sharply defined low-probability region confined 
to a rectangular area in the upper-left corner. Two nonexclusive 
explanations are plausible: (1) the model may struggle to classify 
uniform, low-texture passages that provide weak class-specific signals; 
(2) such areas may indicate workshop participation in secondary 
passages, an documented practice in 16th-century Venice in which 
masters concentrated on principal figures while assistants executed 
peripheral and ornamental elements (Gisolfi, 2017).

To comprehensively benchmark the proposed architecture, a 
comparative experiment with MobileNetV2 (Sandler et al., 2018) via 
transfer learning using a 224 × 224 × 3 input was conducted. The 
results indicated critical limitations in applying standard deep learning 
models to this particular domain. Although MobileNetV2 achieved 
high metrics during cross-validation (accuracy: 97.23%), it failed to 
establish a discriminative boundary in the test dataset, yielding 
overlapping probability ranges to Veronese works (62.8–73.0%) and 
non-Veronese paintings (up to 72.7%). Two technical factors account 
for this generalization failure when compared with the proposed 
architecture. First, the loss of resolution: the required upsampling 
from 64 × 64 to 224 × 224 pixels effectively acts as a low-pass filter, 
smoothing out high-frequency microtextures essential for 
distinguishing Veronese brushwork. Consequently, the pretrained 
model likely overfitted to macroscopic features, such as color palettes 

FIGURE 8

Localized Veronese probabilities for patches in the painting under authentication: Veronese probability map (left), overlay of probability map with 
global average probability (middle), and original painting (right).

TABLE 5  Performance comparison of the proposed shallow CNN and 
MobileNetV2.

Data Proposed 
shallow 

CNN

MobileNetV2 
(transfer 
learning)

Input 64 × 64 × 5 224 × 224 × 3

Parameters 21,800 2,200,000

Cross-validation

Accuracy 94.51% 97.23%

Precision 94.75% 98.61%

F1-score 95.94% 97.91%

Sensitivity 97.15% 97.22%

Specificity 89.23% 97.26%

G-mean 93.11% 97.24%

Kappa 0.87 0.94

AUC-ROC 0.99 0.99

Test (% Veronese probability)

Painting 1 (Veronese) 99.9 (99.7–100.0) 72.8 (72.6–73.0)

Painting 2 (Veronese) 80.3 (77.5–83.1) 73.0 (72.9–73.1)

Painting 3 (Veronese) 86.8 (84.9–88.8) 62.8 (61.6–64.0)

Painting 4 (Veronese) 89.2 (87.2–91.2) 69.0 (68.4–69.7)

Painting 7 (non-Veronese) 32.6 (29.6–35.6) 56.1 (54.7–57.4)

Painting 8 (non-Veronese) 34.2 (31.2–37.2) 72.7 (72.5–72.9)

Painting 9 (non-Veronese) 36.7 (33.6–39.9) 34.3 (33.2–35.3)

Painting 10 (non-Veronese) 11.9 (10.0–13.8) 71.7 (71.3–72.1)

Painting under authentication 61.0 (58.0–64.0) 63.6 (62.4–64.8)

Veronese probabilities are reported as mean (95% confidence interval).
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and semantic content and composition, shared by both originals and 
workshop productions. Second, input rigidity: by restricting the input 
to RGB channels, MobileNetV2 excluded the explicit grayscale 
intensity and edge maps used in the proposed pipeline, thereby losing 
critical topological information about brushstroke dynamics that 
proved decisive in the shallow CNN.

Notably, for the Holy Family painting under authentication, 
MobileNetV2 predicted a Veronese probability of 63.6%, closely 
matching the 61.0% obtained by the proposed shallow CNN. This 
convergence suggests that the classification of the artwork as an 
intermediate or workshop production is a robust signal, persisting 
across different model architectures. Although MobileNetV2 lacks 
sufficient specificity to reject clearly non-Veronese works, its 
agreement with the proposed specialized shallow CNN for the 
disputed artwork supports the reliability of the assessment: the 
painting exhibits a hybrid visual structure that is neither accepted as 
a fully authentic Veronese work nor rejected as a mere Veronese-style 
replica.

5.1 Limitations

While the CNN pipeline developed in this study demonstrates 
strong performance in distinguishing authentic Veronese paintings 
from non-Veronese works, several limitations must be 
acknowledged, particularly for the authentication of a single, 
stylistically ambiguous painting. (1) The dataset is narrowly focused 
on a specific iconographic theme, representations of the Holy 
Family. While this restriction was deliberate to minimize semantic 
noise and encourage the model to focus on painterly execution 
rather than composition, it also limits the generalizability of the 
learned features. The model may have become particularly sensitive 
to iconography-specific details, such as poses, color schemes, or 
thematic composition common to religious scenes, rather than 
capturing a general Veronese style applicable across other genres 
like portraiture and mythological scenes. Consequently, this 
constraint indicates that the model is designed for a specific 
authentication task rather than for general classification across 
Veronese’s broader body of work. (2) The patch-based approach, 
while effective for capturing localized stylistic features, inherently 
limits learning on higher-order stylistic structures such as overall 
composition, figure-scale relationships, and macro-level color 
organization. As a result, the authentication lacks the holistic 
structural analysis typically undertaken by art historians. 
Conversely, this constraint enables the model to detect execution 
differences in compositionally identical copies (e.g., Painting 10). 
(3) The binary classification framework (Veronese versus 
non-Veronese) reflects limited availability of comparable works and 
does not account for intermediate cases such as workshop 
productions or restorations. Future research should extend this 
framework by incorporating distinct classes such as “Workshop of 
Veronese,” “In the style of,” and “Later additions,” contingent on 
sufficient training data becoming available. A multiclass approach 
would better reflect the complex reality of Renaissance artistic 
production, enabling the model to distinguish between the master’s 
autograph execution and collaborative production typical of his 
workshop. (4) Although the CNN offers interpretable probability 
heatmaps, these visualizations are primarily qualitative and can be 

affected by patch overlap and boundary artifacts. (5) Finally, while 
the model identifies stylistic affinities with high sensitivity, its output 
should be interpreted as probabilistic evidence rather than as 
definitive attribution.

5.2 Conclusion

This study demonstrates that the challenge of extreme data 
scarcity in art authentication can be effectively addressed with 
tailored computational strategies. By reducing the network 
complexity to align with the limited historical record, the proposed, 
shallow, custom architecture achieved robust generalization 
(accuracy: 94.51%, AUC-ROC: 0.99) and higher specificity than 
standard solutions. The comparative experiment showed that large-
scale pretrained models like MobileNetV2, while performing well 
during cross-validation, fail to reliably distinguish non-Veronese 
paintings from originals. These results support the premise that for 
specific heritage tasks, a tailored, texture-focused model is not only 
more resource-efficient but also diagnostically more reliable than 
general-purpose large-scale models.

For the Holy Family painting under examination, the proposed 
model provides strong quantitative evidence against a binary 
authentic-versus-inauthentic classification. The painting-level 
probability of 61.0%, supported by a tight confidence interval (58.0–
64.0%), places the artwork in a statistically distinct category, separated 
from the non-Veronese paintings (< 40%) and authentic Veronese 
works (> 77%). These results support the hypothesis of either high-
quality workshop production or partial authorship, providing a level 
of nuance that subjective visual inspection alone cannot quantify. 
Therefore, conclusive authentication will require further integration 
of technical, historical, and provenance analyses beyond 
computational inference alone.
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