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Painting authentication is an inherently complex task, often relying on a combination
of connoisseurship and technical analysis. This study focuses on the authentication of
a single painting attributed to Paolo Veronese, using a convolutional neural network
approach tailored to severe data scarcity. To ensure that stylistic comparisons were
based on artistic execution rather than iconographic differences, the dataset was
restricted to paintings depicting the Holy Family, the same subject as the work
under authentication. A custom shallow convolutional network was developed
to process multichannel inputs (RGB, grayscale, and edge maps) extracted from
overlapping patches via a sliding-window strategy. This patch-based design expanded
the dataset from a small number of paintings to thousands of localized patches,
enabling the model to learn microtextural and brushstroke features. Regularization
techniques were employed to enhance generalization, while a painting-level
cross-validation strategy was used to prevent data leakage. The model achieved
high classification performance (accuracy of 94.51%, Area under the Curve 0.99)
and generated probability heatmaps that revealed stylistic coherence in authentic
Veronese works and fragmentation in non-Veronese paintings. The work under
examination yielded an intermediate global mean Veronese probability (61%) with
extensive high-probability regions over stylistically salient passages, suggesting
partial stylistic affinity. The results support the use of patch-based models for
stylistic analysis in art authentication, especially under domain-specific data
constraints. While the network provides strong probabilistic evidence of stylistic
affinity, definitive attribution requires further integration with historical, technical,
and provenance-based analyses.

KEYWORDS

authentication, convolutional neural networks, painting classification, Paolo
Veronese, sliding-window patch extraction

1 Introduction

Art authentication remains a complex, multidisciplinary challenge that requires the
integration of historical expertise, scientific analysis, and, increasingly, computational
techniques (King, 2024). In recent years, deep learning has emerged as a powerful tool for
image-based analysis, offering scalable, objective approaches that complement traditional
expert judgment. Convolutional neural networks (CNNs) and other advanced architectures
have demonstrated high levels of accuracy in art authentication by learning complex visual
patterns directly from images.
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However, despite the diversity of architectures and methodologies
employed in prior work (see Section 2), deep-learning approaches
share a fundamental requirement: access to large, labeled datasets for
model training. Previous studies rely on hundreds or thousands of
high-resolution images of authenticated artworks to enable neural
networks to learn meaningful stylistic and compositional patterns.
This dependence on extensive training data remains a key limitation,
particularly when authenticating a single artwork, where the training
set of verified examples may consist of only a handful of paintings.
This data-scarce scenario renders standard deep, pretrained models,
which contain millions of parameters, highly prone to overfitting
(Bejani and Ghatee, 2021). Moreover, transfer learning approaches
often rely on features learned from natural images (e.g., ImageNet),
which emphasize high-level semantic content over low-level
microtextural nuances required to distinguish a master from a
workshop. A significant gap therefore exists for tailored methodologies
capable of operating effectively under these severe data constraints,
with emphasis on execution technique rather than semantic
composition.

To address this gap, an approach based on a custom, shallow CNN
and sliding-window-based feature extraction is introduced and
applied to the authentication of a single painting with a disputed
attribution. This patch-based approach mitigates data scarcity by
substantially expanding the training set, shifting the model’s focus
from global composition to learning localized, microstylistic features
such as brushwork and texture (Sabha et al., 2024). Furthermore, the
proposed model integrates multichannel inputs (RGB, grayscale, and
edge maps) providing complementary visual cues; this technique has
been shown to enhance the capture of subtle stylistic features (Ugail
et al,, 2023). The artwork, a Holy Family (see Figure 1A), has been
linked to Paolo Veronese, although its authorship remains uncertain,

10.3389/frai.2025.1738444

and may originate from the master, Veronese’s workshop, or his
disciples (Blanc et al., 2023; Lopez-Baldomero et al., 2023). Training
on a restricted dataset of Holy Family paintings attributed to Veronese
and his circle, is intended to identify stylistic features that may clarify
the painting’s origin, offering a reproducible and data-driven
complement to expert judgment.

The main contributions of this study are as follows:

A tailored deep-learning framework for severe data scarcity: a
sliding-window patch-generation strategy combined with a
custom, shallow CNN architecture that effectively mitigates
overfitting, enabling robust training with a dataset of only six
paintings.

Multichannel stylistic feature extraction: integrating RGB,
grayscale, and edge maps enables the model to capture
complementary stylistic cues, such as brushwork texture and
structural contours, that are critical for distinguishing a master
from a workshop or circle.

Painting-level validation: the implementation of a painting-level
leave-one-out cross-validation strategy (rather than at the patch
level) ensures unbiased performance estimation and prevents
data leakage.

Quantitative evidence for a disputed attribution: a probabilistic
assessment of the Holy Family painting under examination is
provided, offering objective data that support the hypothesis of
partial stylistic affinity.

The remainder of this paper is organized as follows: Section 2
reviews related work; Section 3 describes the dataset and the proposed
methodology; Section 4 presents the experimental results; and Section
5 discusses the results and presents the conclusions.

FIGURE 1

Holy Family painting under examination: (A) Original artwork, reproduced by the authors from "Holy Family: The Virgin”; (B) reverse with inscription;
(C) reverse with highlighted inscription; and (D) cropped, squared image prepared for CNN analysis.
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2 Related work

Deep learning has emerged as a powerful approach for image-
based analysis in the cultural-heritage domain. CNNs and advanced
architectures, such as vision transformers, have demonstrated high
levels of accuracy in art authentication by learning complex visual
patterns directly from images (Elgammal et al., 2018; Dobbs et al.,
2023; Ugail et al., 2023; Chen et al., 2024; Schaerf et al., 2024).

Specifically, in Schaerf et al. (2024), the use of vision transformers
for the authentication of Van Gogh paintings was explored, showing
that deep-learning models can outperform handcrafted-feature
approaches in both precision and interpretability. Similarly, Dobbs
CNN-based
contemporary artworks, achieving more than 91% accuracy and

applied large-scale classification framework to
highlighting deep learning’s potential for scalable authentication
across diverse artistic styles (Dobbs et al., 2023).

In Ugail et al. (2023), the effectiveness of transfer learning in
attributing Renaissance paintings, specifically works by Raphael, using
pretrained CNNs fine-tuned on curated datasets was demonstrated.
Their approach provided valuable insights into stylistic attribution and
supported expert judgment in complex cases. The study in Chen et al.
(2024) further reinforced the utility of CNNs in fine-art recognition,
emphasizing their role in extracting stylistic and compositional
features for authentication tasks. Earlier work in Elgammal et al.
(2018) introduced a deep-learning framework for analyzing stylistic
evolution in art history, laying the groundwork for subsequent
applications in authentication and attribution.

Beyond the cultural-heritage domain, the efficacy of shallow and
custom-designed CNNs has been demonstrated in other fields
requiring high levels of precision under specific constraints. Recent
advances show that compact models, when properly optimized, can
rival deeper architectures. For instance, Radojcic proposed a two-layer
TinyML approach for plant disease classification (Radojcic et al.,
2026), highlighting the computational efficiency of shallow networks.
Similarly, the studies in Zivkovic et al. (2025) and Basha et al. (2021)
employed metaheuristic optimization strategies to enhance CNN
design for ocular-disease diagnosis and general-purpose applications,
respectively. These studies reinforce the premise that tailored, shallow
architectures constitute a robust solution for specialized tasks where
massive datasets for pretraining are unavailable or unsuitable.

3 Materials and methods

3.1 Materials

The original painting under examination is shown in Figure 1A,
while the cropped image used for analysis appears in Figure 1D. The
crop was performed primarily to fit the elliptical composition into a
rectangular frame, without introducing artificial background pixels
that could bias the analysis. The resulting image was processed into
square patches, a common input format for CNN analysis.

The painting depicts the Holy Family: The Virgin holding the
Baby Jesus while lifting a veil, observed from behind by a figure
identified as St. Joseph. An inscription is preserved on the reverse. The
original text appears in Figure 1B, and the highlighted version in
Figure 1C. This inscription may indicate authorship by P. Veronese, a
copy after Paolo Veronese, or production by his workshop or followers.

Frontiers in Artificial Intelligence

10.3389/frai.2025.1738444

The painting is currently located in Spain and is part of a private
collection.

The painting was previously analyzed using several analytical
techniques (Blanc et al., 2023; Lopez-Baldomero et al., 2023): X-ray
fluorescence spectroscopy to identify chemical elements in the paint,
X-ray diffraction to determine crystalline components of the
pigments, and spectral image analysis with endmember extraction to
identify pigments. These studies concluded that the materials and
artistic techniques are consistent with those of Italian Renaissance
artists. However, the painting’s precise authorship was not
established.

A set of Holy Family paintings (see Figure 2) was used to train the
CNN. The training dataset was restricted to this subject to ensure
thematic consistency with the work under examination. Maintaining
thematic consistency, the CNN can focus on analyzing color palettes,
visual patterns, and artistic techniques within a controlled,
homogeneous context, thereby reducing variability unrelated to
authorship and improving the reliability of stylistic analysis. The
training dataset was also limited to works attributed to Paolo Veronese,
his workshop, or followers. This restriction ensures stylistic coherence
within the dataset, as including works by other Renaissance painters
could introduce significant variability in composition, color schemes,
and brushwork. Focusing exclusively on Veronese’s circle, the CNN
can learn discriminative features specific to this artistic environment,
thus reducing noise from unrelated stylistic traits and improving
model’s ability to capture subtle patterns relevant to authorship
attribution. Details for each painting are listed in Table 1. Four
paintings (1-4) are confirmed works by Paolo Veronese (the Veronese
class), and two paintings (5-6) are attributed to his disciples or
followers (the non-Veronese class).

A major challenge in this study is the limited size of the training
dataset, which comprises only six paintings. Such a small sample poses
a significant risk of overfitting and constrains a CNN’s ability to
generalize effectively. To mitigate this constraint, a sliding-window
method was implemented and applied to three distinct input
representations (RGB, grayscale, and edge maps) for each painting, as
detailed below. This approach substantially increased the number of
training samples by generating many overlapping patches from each
image, enhancing data diversity and enabling the model to learn local
stylistic and textural features while preserving the overall artistic
context.

CNN performance was evaluated using two distinct test sets. First,
a negative test set was defined (see Figure 3; Table 1), comprising four
Holy Family paintings with known non-Veronese authorship
(Paintings 7, 8, 9, and 10). Paintings 7, 8, and 9 are copies of the work
under examination: painting 7 is a 17th-century work by a Caravaggisti
school artist; painting 8 is a work by an anonymous 17"-century
Italian artist; and painting 9 is a modern copy created by an art student
as a controlled experiment for this study. Painting 10 is a modern
replica of Veronese’s painting 4. Second, to evaluate classification
performance on authentic Veronese works, a painting-level leave-
one-out cross-validation on Veronese paintings (Paintings 1-4) was
conducted. Each Veronese painting (e.g., Painting 1) was held out as
the test case, while training was performed on the remaining paintings
(e.g., Paintings 2, 3, 4, 5, 6). This process was repeated, using each of
paintings 1-4 as the test case in turn.

Images of all paintings by Veronese and his workshop, which are in
the public domain, were downloaded from WikiArt - Visual Art

frontiersin.org


https://doi.org/10.3389/frai.2025.1738444
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ruiz de Miras et al.

10.3389/frai.2025.1738444

Veronese Paintings

g

FIGURE 2

Training dataset of Holy Family paintings: (1-4) attributed to Paolo Veronese;

(5, 6) attributed to his workshop or followers.

Encyclopedia.! The image for test painting 9 originated from the
authors’ laboratory, while the images of paintings 7, 8, and 10 were
obtained from the sources listed in Table 1. All images were cropped to
square regions to include the entire Holy Family in each painting. These
crops were downsampled to 640 x 640 pixels. This resolution was
selected as the smallest square size capable of accommodating all
figures, thus avoiding supersampling. The images used in the dataset can
be accessed at https://www.ugr.es/~demiras/PaintingAuthentication/.

3.2 Methods

This section details the methodological pipeline: sliding-window
based feature extraction (Section 3.2.1), the proposed CNN
architecture (Section 3.2.2), and model validation and testing
(Section 3.2.3).

3.2.1 Sliding-window-based feature extraction
from images of paintings

CNN training typically requires large, diverse datasets to
ensure robust generalization and to mitigate overfitting. However,
in the highly specialized context of painting authentication, the
availability of labeled data is often severely limited, especially for
rare or historically significant works. The training dataset
comprises only six paintings, which poses a substantial challenge

1 https://www.wikiart.org/
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for conventional deep-learning models. CNNs trained on such
small datasets tend to memorize the training samples rather than
learn generalizable features, resulting in poor performance on
unseen test data. This limitation has been acknowledged in the
literature with studies exploring various strategies to mitigate
overfitting, such as data augmentation, transfer learning, and
feature extraction techniques (Sabha et al., 2024; Safa aldin et al.,
2024). To address this issue, a sliding-window-based feature-
extraction method was implemented. This technique produces a
substantially larger set of localized patches, increasing the number
of training samples and enhancing the CNN’s capacity to learn
discriminative features.

The sliding-window technique processes the input image by
dividing it into fixed-size patches (windows) (see Figure 4, Step 1). The
patches are obtained by moving the window across the image with a
predefined step size, known as the stride. The stride can equal the
patch dimensions or be smaller. When the stride is less than the patch
size, the resulting patches exhibit a specified overlap, which is crucial
for capturing continuous, fine-grained details and textures and
generating a greater number of samples. Each patch inherits the
source painting’s class label (“Veronese”/“Non-Veronese”; see Figure 4,
Step 2).

This process is applied independently to three distinct input
representations for each painting to maximize feature diversity (see
Figure 4, Steps 1 and 2): (1) the original RGB image, (2) its grayscale
version, and (3) a binary edge map. Use of the grayscale version
enables the model to focus on structural and textural features without
the influence of color, which can be particularly beneficial when color
is not a reliable discriminative factor or under varying lighting

frontiersin.org
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TABLE 1 Details for the paintings in the training dataset (1-6) and the test dataset (7-10).

Painting | Title Author Additional Information
The Mystic Marriage of Saint Catherine
1 P. Veronese 1,547-50 https://artgallery.yale.edu/collections/objects/63825
of Alexandria
Holy Family with Sts. Anthony Abbot, https://www.wikiart.org/en/paolo-veronese/holy-family-with-sts-
2 P. Veronese 1,551
Catherine and the Infant John the Baptist anthony-abbot-catherine-and-the-infant-john-the-baptist-1551
https://www.museefabre.fr/recherche/musee%3AMUS_
3 The Mystical Marriage of Saint Catherine =~ P. Veronese 1,557-65
BIEN%3A3408?is_search_page=1&search=veronese&currentPage=1
Holy Family with Young St. John and St.
4 P. Veronese 1,565 https://www.uffizi.it/en/artworks/veronese-holy-family
Catherine
The Holy Family with the Infant St. John ~~ Workshop of P.
5 1,550-75 https://id.rijksmuseum.nl/20026863
the Baptist Veronese
The Mystic Marriage of St. Catherine of https://www.rct.uk/collection/407216/the-mystic-marriage-of-st-
6 Benedetto Caliari 1,562-9
Alexandria catherine-of-alexandria
https://www.mutualart.com/Artwork/The-Holy-Family/
7 The Holy Family Caravaggisti School 17th century
AA108F3F26B11479DB06718BC7A2EB24
8 The Holy Family Italian anonymous 17th century | http:/fpjuliovisconti.com/anonimo-italiano-sagrada-familia-s-xvii/
9 - Art student 21th century | -
https://www.reprodart.com/a/veronese-paolo-eigentl-pa/
10 Holy Family with Barbara Reprodart.com 21th century
pveroneseholyfamilywithba.html

conditions (Johnson et al., 2008). The edge map is generated with the
Canny edge-detection algorithm (Canny, 1986). The Canny algorithm
is particularly suitable because it detects edges by identifying local
maxima of the image gradient using a dual-threshold mechanism.
This dual-threshold approach classifies edges as strong or weak,
including weak edges only if connected to a strong edge. This property
makes the Canny algorithm more robust to noise than many
alternatives and better at detecting subtle edges, which are critical for
characterizing artistic style. This final, large collection of localized
patches constitutes the expanded training dataset for the CNN (see
Figure 4, Step 3).

The sliding window process has two parameters: (1) the window
size, which determines the dimensions of the square patches extracted
from the image, and (2) the overlap percentage, which determines the
stride, i.e., the pixel shift between consecutive windows. These
parameters directly influence the granularity of feature extraction and
the total number of patches produced for training and testing. In this
study, the sliding window size was fixed at 64 x 64 pixels,
corresponding to one-tenth of each original image dimension
(640 x 640 pixels). This configuration strikes an effective balance
between capturing local details, such as brushstroke patterns and
texture, and maintaining sufficient contextual information within each
patch. Smaller windows can lead to excessive fragmentation and loss
of structural cues, while larger windows may dilute fine-grained
features critical for authentication. The overlap percentage (65%) was
chosen experimentally by testing multiple values between 0 and 95%
and selecting the value that yielded the best validation performance
for the CNN. This overlap not only increases the number of training
patches but also reduces boundary inconsistencies, as reported in
prior work on image tiling for CNN-based analysis (An et al., 2020;
Cira et al., 2024). The process was implemented by stacking the three
representations (color, grayscale, and edge maps) to create a single
5-channel input: 3 channels for RGB, 1 channel for grayscale, and 1
channel for the edge map. This yielded 729 patches per painting.
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Consequently, the training dataset expanded from six original
paintings to a total of 4,374 patches (729 patches per painting x 6
paintings), each with dimensions of 64 x 64 x 5 pixels.

For the test phase, patches were extracted from each painting
using the same sliding-window procedure (see Figure 4, Steps 4 and
5). The trained CNN then classified each patch individually, yielding
class probabilities (“Veronese” or “Non-Veronese”) (see Figure 4, Step
6). The final painting-level prediction was obtained by averaging the
probabilities across all patches. Additionally, these patch probabilities
were used to generate a Veronese probability heatmap, and overlaying
this map onto the original painting yields a visual representation of
the spatial probability distribution across the artwork (see Figure 4,
Step 7). This approach ensures that the final decision is grounded in
the painting’s global stylistic consistency and mitigates the influence
of localized or anomalous regions.

3.2.2 CNN architecture and configuration

To classify the image patches as either “Veronese” or
“Non-Veronese,” a custom CNN architecture was designed, tailored
to accommodate the dataset constraints and the nature of the input
data. The network input consists of 64 x 64-pixel patches with five
channels. This multichannel input allows the model to leverage color,
structural, and edge features simultaneously, enhancing its ability to
capture stylistic nuances.

The CNN architecture comprises two convolutional blocks followed
by a fully connected layer and a softmax output layer (see Table 2 for
details). Each convolutional block includes a convolutional layer with a
3 x 3 kernel, batch normalization (Ioffe and Szegedy, 2015), and a ReLU
activation (Nair and Hinton, 2010). Max-pooling layers with a stride of 2
are applied to progressively reduce spatial dimensions while retaining the
most salient features (Krizhevsky et al,, 2017). A dropout layer with a rate
of 0.5 is applied after the second convolutional block to mitigate overfitting,
particularly given the high redundancy introduced by overlapping patches
(Srivastava et al., 2014). The final fully connected layer maps the extracted
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FIGURE 3

Test dataset of Holy Family paintings (paintings 7—10). Image 7 reproduced from “The Holy Family”, https://www.mutualart.com/Artwork/The-Holy-
Family/AA108F3F26B11479DB06718; Image 8 reproduced from the Fundacion Pintor Julio Visconti, "Anénimo Italiano Sagrada Familia, s. XVII", http://
fpjuliovisconti.com/anonimo-italiano-sagrada-familia-s-xvii/; Image 9 adapted by the authors from “The Holy Family”, https://www.mutualart.com/
Artwork/The-Holy-Family/AA108F3F26B11479DB06718BC7A2EB24!; Image 10 reproduced from “Holy Family with St Barbara and the Infant St John”
[c.1570] by Paolo Veronese, Holy Family with St Barbara and the Infant St John, c.1570 - Paolo Veronese - WikiArt.org, licensed under CCO.

10

features to the two output classes, and the softmax layer yields class
probabilities.

The CNN was trained with the Adam optimizer (Kingma and
Ba, 2014), which combines adaptive learning-rates updates with
momentum to accelerate convergence and improve training stability
(Qian, 1999). Training ran for up to 100 epochs, with a mini-batch
size of 128 to balance computational efficiency and gradient
estimation accuracy. To improve generalization, the training data
were shuffled before each epoch, reducing the risk of learning
spurious correlations. To mitigate overfitting caused by the high
degree of patch overlap, L2 regularization (Krogh and Hertz, 1991)
with a factor of 0.0005 was applied to the network weights. This
penalizes large weights, encouraging simpler models that generalize
better. CNN’s performance was assessed on a separate validation set
at the end of each epoch. Early stopping (patience = 8 epochs) halted
training if the validation loss failed to improve for 8 consecutive
epochs (Prechelt, 2012). Finally, the checkpoint that achieved the
best validation performance was retained as the final model.

Frontiers in Artificial Intelligence

3.2.3 CNN validation and testing

To ensure a rigorous evaluation of the CNN, a 6-fold cross-validation
strategy was implemented at the painting level (leave-one-painting-out),
rather than at the patch level, to avoid bias and data leakage caused by high
patch overlap. In each fold, the patches of five paintings were used for
training, and the remaining painting for validation. The model achieving
the highest validation performance in each fold was retained as the fold’s
final model. After completing all folds, the results were aggregated, and
performance metrics, including precision, sensitivity (recall), specificity, and
F1 score, were computed from the aggregated confusion matrix. In addition
to these standard metrics, the area under the ROC curve (AUC), the
geometric mean (G-mean), which balances sensitivity and specificity and is
particularly relevant for imbalanced datasets (Kuncheva et al., 2019), and
Cohen’s kappa which accounts for agreement beyond chance and provides
a more robust assessment of classification reliability (Warrens, 2014) were
also computed to assess the models discriminative ability and reliability.

To evaluate the model’s performance beyond cross-validation,
a two-part test procedure was performed. First, the final CNN was
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Proposed authentication methodology: (1) Original training dataset with application of the sliding-window technique; (2) Extraction of image patches
via the sliding-window process to create an expanded training dataset; (3) CNN training on the expanded dataset; (4) Test image under authentication;
(5) Extraction of image patches from the test image via the same sliding-window process; (6) CNN-based classification of all test patches; and (7)
Generation of localized Veronese-probability maps (heatmap and overlay) and aggregation of patch-level classifications to estimate the painting’s

TABLE 2 CNN architecture and configuration: layers, their types,
parameters, and output sizes.

Layer ‘ Type ‘ Parameters ‘ Output size
1 Image Input 64 x 64 x 5, Normalization: 64 X 64 x5
None
2 Convolution 2D 3 x 3 kernel, 16 filters, 64 x 64 x 16
Padding: same
3 Batch - 64 x 64 x 16
Normalization
4 ReLU - 64 x 64 x 16
5 Max Pooling 2D 2 x 2, Stride: 2 32x32x16
6 Convolution 2D 3 x 3 kernel, 32 filters, 32x32x32
Padding: same
7 Batch - 32 x32x32
Normalization
8 ReLU - 32 x32x32
9 Max Pooling 2 x 2, Stride: 2 16 x 16 x 32
10 Dropout Rate: 0.5 16 x 16 x 32
11 Fully Connected 2 neurons 2
12 Softmax - 2

trained with all patches from the six paintings in the training
dataset, reserving 5% of these patches as a hold-out validation set
to apply early stopping with the same criteria applied during cross-
validation (patience = 8 epochs). This model was then tested on the
test dataset (see Figure 3) composed exclusively of non-Veronese
paintings, allowing assessment of its ability to correctly reject
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non-authentic works. The second part of the procedure evaluated
the model’s capacity to recognize authentic Veronese paintings:
each of the four Veronese paintings in the training dataset (see
Figure 2) was used as a test case in turn, while the CNN was
retrained after excluding the corresponding painting from the
training set. The CNN produced class probabilities for each patch,
and the final painting-level classification was obtained by averaging
the probabilities across all the patches. These patch probabilities
were used to generate Veronese probability heatmaps for visual
analysis.

Finally, the painting under examination was evaluated with the
final CNN model trained on all six paintings in the training dataset.
The model classified its patches individually. The final painting-level
score was obtained by averaging the Veronese probabilities across all
patches, reflecting the likelihood that the work is an authentic
Veronese. As with the test paintings, these patch probabilities were
used to generate a Veronese probability heatmap for detailed visual
inspection.

The complete MATLAB R2025b source code, which implements
the end-to-end proposed methodology for CNN training and testing,
along with the full training and test datasets, is publicly available at
https://www.ugr.es/~demiras/PaintingAuthentication/.

4 Results

This section presents the experimental results, first detailing the
then the
authentication results for the test paintings and the painting under

CNN’s cross-validation performance (Section 4.1),

investigation (Section 4.2), and finally the comparison with the
baseline model MobileNetV2 (Section 4.3).
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4.1 CNN validation results

The experimental setup described above is summarized as follows:
the training dataset consisted of six paintings (four by Veronese and
two from his workshop, see Figure 2), each cropped and resized to
640 x 640 pixels. From each painting, patches were extracted using a
sliding window procedure (64 x 64 pixels, 65% overlap) applied to a
5-channel input stack created by combining the three representations:
RGB (3 channels), grayscale (1 channel), and edge map (1 channel).
This process generated 4,374 patches (729 per painting), with each
patch having dimensions of 64 x 64 x 5. Finally, the CNN was evaluated
with 6-fold, painting-level cross-validation (leave-one-painting-out) to
prevent data leakage and ensure a robust assessment of generalization.

Table 3 reports the confusion matrix aggregated across all six
painting-level folds. The key performance metrics derived from this
matrix are summarized in Table 4. Finally, Figure 5 depicts the
corresponding ROC curve and the resulting AUC.

As detailed in Tables 3, 4, the CNN demonstrates high accuracy
and strong agreement beyond chance. The slightly lower specificity
indicates that classifying non-Veronese patches is more challenging.
The model’s overall discriminative power is exceptional, as evidenced
by an AUC of 0.99 (see Figure 5).

4.2 CNN testing and authentication results

The CNN was tested on the test dataset (see Figure 3) composed
exclusively of non-Veronese paintings. Additionally, to evaluate its
capacity to recognize authentic Veronese paintings, a leave-one-out
approach was used: each of the four Veronese paintings in the training
dataset (see Figure 2) was used as a test case in turn, while the CNN was
retrained after excluding that painting from the training set. Because the
goal is to authenticate a painting, the test phase prioretized analysis of the
probability distribution of the Veronese class across each painting rather
than computing standard performance metrics. For each test painting,
the CNN produced a class probability for every patch. These scores were
then aggregated by averaging to obtain a painting-level authenticity score
for the entire painting. This approach also enabled a spatial visualization
of the model’s predictions in the form of probability heatmaps.

Figure 6 shows the results for the test dataset of non-Veronese
paintings, displaying both the patch-level Veronese probability heatmap
and its overlay on the original image. The heatmap was overlaid on the
original painting using alpha blending, with transparency set directly
proportional to the Veronese probability. As expected, these works
exhibit low Veronese probabilities, with painting-level average Veronese
probabilities ranging from 11.9 to 36.7%. This low score is particularly
noteworthy for Painting 10, which is a direct copy of authentic Painting

TABLE 3 Confusion matrix of the CNN model's performance across the
validation folds.

Actual / Predicted Predicted non- = Actual
Predicted Veronese Veronese total
Actual Veronese 2,833 (TP) 157 (FN) 2,990
Actual non-Veronese 83 (FP) 1,301 (TN) 1,384
Predicted total 2,916 1,458 4,374

Values represent the total count of patches aggregated across all six cross-validation folds. TP,
True positive; FN, False negative; FP, False positive; TN, True negative.
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4 (which was included in the training set). Despite sharing an identical
composition, the model correctly assigned the copy the lowest Veronese
probability (11.9%), demonstrating its ability to distinguish the master’s
original technique from a reproduction. Analysis of patch-level
variance showed that the 95% confidence-interval upper bounds for all
non-Veronese copies consistently remained below 40% (specifically, the
highest upper bound was 39.93% for Painting 9), indicating a
statistically significant separation from the authenticated painting (see
results below). The Veronese probability heatmaps display sparse,
fragmented regions of high probability concentrated around localized
details, reflecting limited stylistic alignment.

Figure 7 reports the results for the four authentic Veronese
paintings. All authentic paintings achieved high painting-level average
probabilities (ranging from 80.3 to 99.9%), demonstrating the model’s
ability to generalize to unseen authentic paintings. Even accounting
for patch-level variance, 95% confidence-interval lower bounds for all
authentic paintings exceeded 77% (the lowest being 77.45% for
Painting 2), maintaining a clear margin above the upper bounds for
non-Veronese paintings. The Veronese probability heatmaps
corroborate this finding, showing extensive high Veronese probability
regions across all key compositional areas.

Finally, Figure 8 reports the results for the painting under
authentication. Regions of high Veronese likelihood concentrate
primarily in areas containing anatomical details and drapery folds. The
painting-level average Veronese probability was 61.0%. The standard
deviation across the patches was 0.41, resulting in a 95% confidence
interval (CI) for the mean of [58.00, 63.96%]. This interval falls within
a distinct intermediate range, separated from the upper bound of the
non-Veronese copies (< 40%) and the lower bound of the authentic
works (> 77%). This intermediate value suggests a moderate stylistic
alignment with authentic Veronese’s paintings, indicating that
although the painting shares relevant stylistic features with authentic
Veronese works, the evidence remains insufficient for full attribution.

4.3 Comparison with baseline model
(MobileNetV2)

To benchmark the proposed shallow architecture against a state-
of-the-art model, a comparative evaluation was conducted using
MobileNetV2 (Sandler et al., 2018) via transfer learning. Since the
pretrained architecture of MobileNetV2 expects 224 x 224-pixel RGB
(3 channels) inputs, the experimental setup was adapted accordingly:
patches were upsampled from 64 x 64 to 224 x 224 using bicubic
interpolation, and the grayscale and edge channels were discarded.
Table 5 summarizes comparative performance.

In 6-fold cross-validation, MobileNetV2 demonstrated strong
performance, achieving an accuracy of 97.23%, precision of 98.61%,
F1 score of 97.91%, sensitivity of 97.22%, specificity of 97.26%,
G-mean of 97.24%, and a Kappa coefficient of 0.94. The AUC-ROC
was 0.99. These results slightly surpassed those of the proposed
shallow CNN during cross-validation.

However, despite strong cross-validation metrics, the model
exhibited poor generalization on the test dataset. MobileNetV2 failed
to establish a decision boundary between non-Veronese paintings and
authentic Veronese works: (1) it assigned high Veronese probabilities
to non-Veronese samples, such as 72.7% (Painting 8) and 71.7%
(Painting 10), resulting in substantial false positives compared to the
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TABLE 4 CNN performance metrics aggregated across all six-painting level validation folds.

Sensitivity

Specificity

97.15%

89.23% 93.11% 0.87

Accuracy Precision Fl-score
94.51% 94.75% 95.94%
4 ROC Curve (AUC = 0.99)
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FIGURE 5
ROC curve and AUC for the CNN from the 6-fold, painting-level
cross-validation.

proposed model (< 37%); and (2) conversely, probabilities for
authentic Veronese paintings were lower than expected with
MobileNetV2 (62.8-73.0%), indicating reduced sensitivity relative to
the proposed model (> 80%). For the painting under authentication,
MobileNetV2 yielded a Veronese probability of 63.6%.

5 Discussion and conclusions

This study addressed the challenge of authenticating paintings
under conditions of data scarcity by developing a patch-based CNN
pipeline tailored to stylistic analysis. The methodology combined
sliding window feature extraction with multichannel inputs (RGB,
grayscale, and edge maps) to capture complementary visual cues and
implemented painting-level cross-validation to prevent data leakage.
By expanding the dataset with localized patches and integrating
regularization strategies, the approach aimed to enhance
generalization while preserving stylistic fidelity. The CNN trained
with these patches distinguished authentic Veronese works from
non-Veronese paintings at both painting- and patch-levels. Authentic
Veronese paintings show high painting-level probabilities (ranging
from 80.3 to 99.9%) and Veronese probability heatmaps with broad,
contiguous high-probability regions (see Figure 7), whereas
non-Veronese paintings exhibit lower painting-level scores (ranging
from 11.9 to 36.7%) and fragmented, localized regions of high
probability (see Figure 6). The painting under authentication yields an
intermediate painting-level score (61.0%) with extensive high-
probability zones over stylistically salient passages, interspersed with
some lower-probability areas (see Figure 8).
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The sliding window design (64 x 64 patches, 65% overlap)
expanded the training data from a small number of paintings to
thousands of localized samples, encouraging the CNN to learn
microtextural and brushwork signatures while controlling overfitting
via dropout, L2 regularization (weight decay), batch normalization,
the Adam optimizer, and early stopping. The high overlap mitigates
boundary artifacts and stabilizes local predictions, an effect analogous
to the overlap-tile inference widely used in biomedical image analysis
(Ronneberger et al., 2015). The multichannel design (RGB, grayscale,
and edge map) leveraged complementary cues: chromatic information,
luminance-texture structure, and gradient-defined contours. The
Canny edge detector is well-suited here due to its double-threshold
mechanism and robustness to noise, which supports capturing subtle,
style-relevant edge patterns (Canny, 1986).

The 6-fold painting-level cross-validation was essential to prevent
data leakage from overlapping patches, an issue known to inflate
performance in tile-based pipelines and subject-repeated imaging
datasets (Bussola et al., 2019; Rumala, 2023). Cross-validation
confirmed strong overall performance (see Table 4; Figure 5): accuracy
94.51%; precision 94.75%; F1 score 95.94%; sensitivity 97.15%;
specificity 89.23%; G-mean 93.11%; Cohen’s kappa 0.87; and
AUC-ROC 0.99. This set of metrics provides a balanced view:
AUC-ROC summarizes rank discrimination (Fawcett, 2006); G-mean
emphasizes balanced sensitivity and specificity under class imbalance
(Kuncheva et al., 2019); and Cohen’s kappa quantifies agreement
beyond chance (Warrens, 2014). The validation metrics confirmed the
CNN model’s high accuracy and exceptional discriminative power.
The model was particularly effective at identifying authentic Veronese
paintings (sensitivity = 97.15%), with slightly lower performance for
non-Veronese paintings (specificity = 89.23%).

The heatmap visualization of Veronese probability provides
critical insight into CNN’s decision-making process. In the painting
under authentication (see Figure 8), high-probability regions cluster
around stylistically salient elements such as anatomical contours and
tonal transitions, whereas low-probability regions dominate less
textured or peripheral areas. This uneven distribution suggests that
the model detects Veronese-like features selectively rather than
uniformly across the composition, helping to explain the intermediate
global score of 61%. From a methodological perspective, this outcome
reflects the patch-based classification strategy: aggregate probabilities
capture local stylistic heterogeneity rather than enforce global
uniformity. From an interpretive standpoint, the observed pattern
may indicate (1) an authentic work with workshop participation; (2)
an authentic work with later interventions or restoration that may alter
original textures; or (3) a high-quality workshop production under
close supervision. Consequently, while the CNN identifies meaningful
stylistic affinities, the evidence remains insufficient to support
definitive attribution.

The comparison between the painting under authentication and
the non-Veronese replicas of the composition (paintings 7, 8, and 9)
highlights the CNN’s capacity to assess stylistic consistency at a global
level while acknowledging local similarities. Although the
non-Veronese paintings exhibit localized high-probability regions (see
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Localized Veronese probabilities for patches in the test dataset of non-Veronese paintings. The columns display: Veronese probability maps (left),
probability map overlays with global average probabilities (middle), and the original paintings (right).
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Figure 6), primarily around anatomical details and drapery folds, their
overall scores remain low (ranging from 32 to 37%), indicating limited
stylistic coherence. In contrast, the painting under authentication
shows broader regions of high Veronese probability and a substantially
higher global score (61%), suggesting a more pervasive presence of
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Veronese-like features. This pattern supports the hypothesis of partial
authenticity or strong stylistic influence for the painting under
authentication and confirms that the CNN does not rely solely on
compositional similarity but captures nuanced textural and structural
cues. The residual probabilities in non-Veronese paintings may arise
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from shared iconographic elements, underscoring the importance of ~ corner consistently yields very low probabilities, whereas in the
interpreting probability heatmaps in conjunction with global metrics  painting under authentication the corresponding region exhibits high
rather than in isolation. A key detail is that in all non-Veronese  probabilities (see Figure 8). This contrast indicates that the CNN
paintings, the area corresponding to St. Joseph in the upper-right  captures subtle stylistic cues in localized passages that are absent or
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global average probability (middle), and original painting (right).
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Original painting

Localized Veronese probabilities for patches in the painting under authentication: Veronese probability map (left), overlay of probability map with

TABLE 5 Performance comparison of the proposed shallow CNN and
MobileNetV2.

Proposed MobileNetV2
shallow (transfer
CNN learning)

Input 64 x 64 x5 224 x224 %3
Parameters 21,800 2,200,000
Cross-validation
Accuracy 94.51% 97.23%
Precision 94.75% 98.61%
F1-score 95.94% 97.91%
Sensitivity 97.15% 97.22%
Specificity 89.23% 97.26%
G-mean 93.11% 97.24%
Kappa 0.87 0.94
AUC-ROC 0.99 0.99

Test (% Veronese probability)

Painting 1 (Veronese) 99.9 (99.7-100.0) 72.8 (72.6-73.0)

Painting 2 (Veronese) 80.3 (77.5-83.1) 73.0 (72.9-73.1)

Painting 3 (Veronese) 86.8 (84.9-88.8) 62.8 (61.6-64.0)

Painting 4 (Veronese) 89.2 (87.2-91.2) 69.0 (68.4-69.7)

Painting 7 (non-Veronese) 32.6 (29.6-35.6) 56.1 (54.7-57.4)

Painting 8 (non-Veronese) 34.2 (31.2-37.2) 72.7 (72.5-72.9)

Painting 9 (non-Veronese) 36.7 (33.6-39.9) 34.3(33.2-35.3)

Painting 10 (non-Veronese) 11.9 (10.0-13.8) 71.7 (71.3-72.1)

Painting under authentication 61.0 (58.0-64.0) 63.6 (62.4-64.8)

Veronese probabilities are reported as mean (95% confidence interval).

less pronounced in non-Veronese paintings despite compositional
similarity.

The probability heatmaps for authentic Veronese paintings (see
Figure 7) reveal broad, continuous regions of high probability. This
spatially cohesive distribution contrasts sharply with the fragmented
patterns observed in non-Veronese works and supports the CNN’s
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capacity to capture stylistic coherence that extends beyond isolated
details. The consistently high painting-level scores for Veronese
paintings (ranging from 80.3 to 99.9%) indicate that the model
generalizes effectively to unseen authentic works. These findings
support the patch-based approach as a robust strategy for identifying
nuanced textural and structural cues characteristic of Veronese’s
technique.

The comparison between paintings 4 (authentic Veronese) and 10
(copy) is particularly noteworthy. Despite compositional similarity,
the authentic work yields a high painting-level probability (89.2%) and
extensive high-probability regions (Figure 7). In contrast, the copy
yields a low painting-level probability (11.9%) with sparse and
fragmented high-probability regions (Figure 6). This supports the
CNN’s capacity to differentiate stylistic coherence from superficial
compositional similarity.

Notably, one authentic Veronese painting (see painting 2 in
Figure 7) exhibits a sharply defined low-probability region confined
to a rectangular area in the upper-left corner. Two nonexclusive
explanations are plausible: (1) the model may struggle to classify
uniform, low-texture passages that provide weak class-specific signals;
(2) such areas may indicate workshop participation in secondary
passages, an documented practice in 16th-century Venice in which
masters concentrated on principal figures while assistants executed
peripheral and ornamental elements (Gisolfi, 2017).

To comprehensively benchmark the proposed architecture, a
comparative experiment with MobileNetV2 (Sandler et al., 2018) via
transfer learning using a 224 x 224 x 3 input was conducted. The
results indicated critical limitations in applying standard deep learning
models to this particular domain. Although MobileNetV2 achieved
high metrics during cross-validation (accuracy: 97.23%), it failed to
establish a discriminative boundary in the test dataset, yielding
overlapping probability ranges to Veronese works (62.8-73.0%) and
non-Veronese paintings (up to 72.7%). Two technical factors account
for this generalization failure when compared with the proposed
architecture. First, the loss of resolution: the required upsampling
from 64 x 64 to 224 x 224 pixels effectively acts as a low-pass filter,
smoothing out high-frequency microtextures essential for
distinguishing Veronese brushwork. Consequently, the pretrained
model likely overfitted to macroscopic features, such as color palettes
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and semantic content and composition, shared by both originals and
workshop productions. Second, input rigidity: by restricting the input
to RGB channels, MobileNetV2 excluded the explicit grayscale
intensity and edge maps used in the proposed pipeline, thereby losing
critical topological information about brushstroke dynamics that
proved decisive in the shallow CNN.

Notably, for the Holy Family painting under authentication,
MobileNetV2 predicted a Veronese probability of 63.6%, closely
matching the 61.0% obtained by the proposed shallow CNN. This
convergence suggests that the classification of the artwork as an
intermediate or workshop production is a robust signal, persisting
across different model architectures. Although MobileNetV2 lacks
sufficient specificity to reject clearly non-Veronese works, its
agreement with the proposed specialized shallow CNN for the
disputed artwork supports the reliability of the assessment: the
painting exhibits a hybrid visual structure that is neither accepted as
a fully authentic Veronese work nor rejected as a mere Veronese-style
replica.

5.1 Limitations

While the CNN pipeline developed in this study demonstrates
strong performance in distinguishing authentic Veronese paintings
be
acknowledged, particularly for the authentication of a single,

from non-Veronese works, several limitations must
stylistically ambiguous painting. (1) The dataset is narrowly focused
on a specific iconographic theme, representations of the Holy
Family. While this restriction was deliberate to minimize semantic
noise and encourage the model to focus on painterly execution
rather than composition, it also limits the generalizability of the
learned features. The model may have become particularly sensitive
to iconography-specific details, such as poses, color schemes, or
thematic composition common to religious scenes, rather than
capturing a general Veronese style applicable across other genres
like portraiture and mythological scenes. Consequently, this
constraint indicates that the model is designed for a specific
authentication task rather than for general classification across
Veronese’s broader body of work. (2) The patch-based approach,
while effective for capturing localized stylistic features, inherently
limits learning on higher-order stylistic structures such as overall
composition, figure-scale relationships, and macro-level color
organization. As a result, the authentication lacks the holistic
structural analysis typically undertaken by art historians.
Conversely, this constraint enables the model to detect execution
differences in compositionally identical copies (e.g., Painting 10).
(3) The binary classification framework (Veronese versus
non-Veronese) reflects limited availability of comparable works and
does not account for intermediate cases such as workshop
productions or restorations. Future research should extend this
framework by incorporating distinct classes such as “Workshop of

»

Veronese,” “In the style of;” and “Later additions,” contingent on
sufficient training data becoming available. A multiclass approach
would better reflect the complex reality of Renaissance artistic
production, enabling the model to distinguish between the master’s
autograph execution and collaborative production typical of his
workshop. (4) Although the CNN offers interpretable probability

heatmaps, these visualizations are primarily qualitative and can be
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affected by patch overlap and boundary artifacts. (5) Finally, while
the model identifies stylistic affinities with high sensitivity, its output
should be interpreted as probabilistic evidence rather than as
definitive attribution.

5.2 Conclusion

This study demonstrates that the challenge of extreme data
scarcity in art authentication can be effectively addressed with
tailored computational strategies. By reducing the network
complexity to align with the limited historical record, the proposed,
shallow, custom architecture achieved robust generalization
(accuracy: 94.51%, AUC-ROC: 0.99) and higher specificity than
standard solutions. The comparative experiment showed that large-
scale pretrained models like MobileNetV2, while performing well
during cross-validation, fail to reliably distinguish non-Veronese
paintings from originals. These results support the premise that for
specific heritage tasks, a tailored, texture-focused model is not only
more resource-efficient but also diagnostically more reliable than
general-purpose large-scale models.

For the Holy Family painting under examination, the proposed
model provides strong quantitative evidence against a binary
The
probability of 61.0%, supported by a tight confidence interval (58.0-

authentic-versus-inauthentic ~ classification. painting-level
64.0%), places the artwork in a statistically distinct category, separated
from the non-Veronese paintings (< 40%) and authentic Veronese
works (> 77%). These results support the hypothesis of either high-
quality workshop production or partial authorship, providing a level
of nuance that subjective visual inspection alone cannot quantify.
Therefore, conclusive authentication will require further integration
of technical, historical, and provenance

analyses beyond

computational inference alone.
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