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Deep learning and machine
learning integration of radiomics
and transcriptomics predicts
response-adapted radiotherapy
outcome and radiosensitivity in
resectable locally advanced
laryngeal carcinoma
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Zakia Shinwari*, Ayodele A. Alaiya* and Syed S. Islam?3°*

!Department of Radiotherapy, Chattogram Maa O Shishu Hospital & Park View Hospital, Chittagong,
Bangladesh, ?2Department of Biochemistry and Molecular Biology, University of Chittagong,
Chittagong, Bangladesh, *Department of Molecular Oncology, King Faisal Specialist Hospital &
Research Centre, Riyadh, Saudi Arabia, “Therapeutics & Biomarker Discovery for Clinical Application,
King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia, °Institute of Medical Science,
Al-Faisal University, Riyadh, Saudi Arabia

Background: Radiotherapy (RT) remains a cornerstone treatment for head and
neck cancer squamous cell carcinoma. However, therapeutic responses vary
considerably among patients due to radiation resistance, which limits long-term
survival and contributes to recurrence and disease progression. Developing
robust deep learning (DL) and machine learning (ML)-based predictive models
is essential to improve response prediction, evaluate treatment outcomes, and
identify biomarkers linked to radiosensitization.

Methods: This single-center retrospective study applied DL and ML models
to analyze CT scans and RNA-seq gene expression data for prognostic and
biomarker discovery purposes. For image analyses, two independent datasets
were used. Dataset A includes 1,100 CT scans (pre- and post-treatment) from
476 patients with stage Ill and IV laryngeal carcinoma treated with response-
adapted RT. A convolutional neural network (CNNs) integrated with a recurrent
network (RNNs) was used for single-point tumor localization and response
prediction. Dataset B, comprising 500 scans from 169 patients treated with
radical RT, served as the additional validation cohort. Pre- and post-treatment
scans were used to train a DL model, which showed better prediction
performance for survival and disease-specific outcomes, including progression
and locoregional recurrence. For gene expression-based biomarker analysis,
TCGA data (n = 231) were examined using glmBoost, support vector machine
classifier (SVM), and random forest (RF) algorithms to construct and predict
genes associated with radiosensitivity, and the GSE20020 dataset was used to
validate the model performance. Proteins and mRNA were used to confirm the
signature biomarkers using gRT-PCR and LC—MS mass spectrometry.

Findings: For CT scan image analysis, the DL-model achieved AUCs of 0.792
(p =0.031) at 2-month and 0.832 (p <0.01) at 6-month follow-up. Risk
scores significantly correlated with overall survival (HR 1.59, 95% CI 1.34-3.22,
p = 0.063), progression-free survival (1.39, 95% CI 1.16-2.29, p = 0.103). The
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pathological response in dataset B was likewise significantly predicted by the
model. Among 39 differentially expressed genes, ML-model analysis identified
13 candidate genes associated with radiosensitivity on repeated cross-validation
with an AUROC of 0.91 in the training set. In the validation dataset, when the
models were optimized, the models consistently predicted seven core genes,
achieving AUCs ranging from 0.96 to 0.94 to predict the radiosensitivity.

Interpretation: These findings highlight the effectiveness of DL and ML
approaches in integrating imaging and transcriptomic data to predict response-
adapted RT response and patient outcomes. These automated, and interpretable
Al-driven biomarkers hold significant potential for clinical translation. Future
research should aim to expand datasets and validate the models in multicenter

cohorts for broader applicability.

KEYWORDS

deep learning, head and neck cancer, machine learning, radiomics, radiotherapy,

transcriptomics

Introduction

Cancer of the larynx represents one of the poorest prognoses
among head and neck squamous cell carcinoma (HNSCCs).
Treatment of this cancer is challenging, as it can profoundly affect
speech, swallowing, and breathing (Yamakuni et al., 2023). Given the
aggressive nature of this malignancy and the complex anatomy of
surrounding functional architecture, both organ preservation and
survival remain key treatment goals (Yamakuni et al, 2023;
Williamson and Bondje, 2023). Treatment strategies for laryngeal
cancer vary by disease stage. In early-stage disease, organ preservation
through radiotherapy (RT) or conservative surgery achieves favorable
outcomes. Despite the role of surgical resection in achieving maximal
local control, laryngeal cancer often carries poor survival, higher risk
of salvage surgery, and a long-term complication such as loss of
natural voice, tracheotomy dependence, social isolation, swallowing,
and breathing impairment (Lagha et al., 2013; Malik et al., 2023).

Response-adaptive approaches have emerged for individualized
therapy. Patients demonstrating more than 80% regression after RT or
CCRT typically continue non-surgical management, whereas those
with <80% regression undergo surgery. This adaptive strategy has
improved local control, survival, and organ preservation with an
acceptable toxicity profile compared with ICT alone (Lefebvre et al.,
2012; Yietal,, 2017). Given these clinical challenges, there is a pressing
need to evaluate a response-adapted strategy for laryngeal cancer. The
application of artificial intelligence (AI) could be revolutionary in
identifying biomarkers linked to radiation response and predicting
early tumor responses.

Medical imaging plays a pivotal role in the diagnosis, treatment
planning, monitoring progression, and treatment response. Among
imaging modalities, computed tomography (CT) remains the most
widely used and provides an enormous amount of fine-tuned

Abbreviations: RT, radiation therapy; CT, computed tomography; CNN,
convolutional neural network; RNN, recurrent neural network; DL, deep learning;
ML, machine learning; CCRT, chemoradiation therapy; ICT, induction
chemotherapy; SFL, survival of functional larynx; AUC, area under the curve; ACC,
accuracy; SFN, sensitivity; SPE, specificity; RCS, restricted cubic splines; RART,

response-adapted radiation therapy.
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information acquired by the scanner. Manual interpretation captures
only a fraction of this data; therefore, validated computational
algorithms are required to extract complex imaging features that may
predict therapeutic outcomes. Tracking longitudinal radiographic
changes through follow-up scans can offer valuable insights into the
dynamics of tumors response dynamics.

Recent advances in Al have transformed cancer imaging and
molecular analysis, enabling precise prediction of prognosis, treatment
response, and molecular subtypes using CT, histopathology, and
transcriptomic data (Cheng et al., 2021; Lan et al., 2024). Deep
learning (DL) and machine learning (ML) algorithms have been
successfully applied to tumor segmentation, grading, biomarker
discovery, and treatment response (Xu et al., 2019). Most DL and ML
have been developed to interpret complex spatial patterns of histologic
images and features (gene) selection to predict survival and genomic
alteration (Rakaee et al., 2025). However, few studies have integrated
DL- and ML-based approaches combining radiologic and gene
expression data to predict outcomes following response-adapted RT.

In this study, we sought to use Al-driven DL and ML models,
specifically convolutional neural networks (CNNs), recurrent neural
networks (RNNs), glmBoost, support vector machine (SVM), and
random forest (RF) to predict survival and other clinical endpoints of
patients with resectable, locally advanced laryngeal carcinoma. We
analyzed pre- and post-treatment CT images from patients receiving
response-adapted treatment and follow-up CT images following RT
alongside RNA-seq data from radiotherapy-resistant and sensitive
patient cohorts. Two independent imaging datasets (A and B) with
similar diagnoses of stage IIT and IV laryngeal cancer but treated with
different therapy regimens were used for DL model development and
validation, while transcriptomic data from TCGA and GSE20020 were
used to train and validate ML models predicting radiosensitivity in
laryngeal cancer.

Materials and methods
Ethics approval and consent to participate

Patient samples were collected from Chattogram Maa O Shishu
Hospital, and ParkView Hospital, Chittagong, Bangladesh. The ethics
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committees at each of the institutes gave their approval to this study.
The declaration of Helsinki has been followed in research presented
here, and each participant has given their written informed consent to
take part in the study.

DL models for CT scans

Study design and data cohort selection

Two independent datasets were used: Dataset A (development
cohort) and Dataset B (validation cohort), comprising 645 newly
diagnosed patients with resectable stage III and IV laryngeal
carcinoma.

Dataset A

Dataset A included 476 patients treated with a response-adapted
RT strategy using standard-fractionated RT (1.8-2.2 Gy/day, 5 days/
week). Initial doses: 70 Gy to gross tumor volume, 60 Gy to tumor-bed
area and high-risk clinical target volumes, 50 Gy to prophylactic
regions. Then the response-adapted treatment strategy was
determined based on the primary tumor response and was evaluated
at a dose of 50 Gy. Patients with >80% regression received radical RT
or CCRT; others underwent surgery. Partial responders were
considered responsive; the rest were nonresponsive. These patients
had at least one follow-up CT scan. A total of 1,100 CT scans with an
average of 2.31 per patient. In some cases, it was not possible to
achieve follow-up scans for some patients. Patients with prior surgery
were excluded. The Patients’ cohort was randomly split into a 2:1 ratio,
comprising training and development (n = 318) for the deep learning
model and the other for the test (n=158) cohort, evaluating its
performance. The primary endpoint: OS and PFS; secondary:
locoregional recurrence and progression with response-adapted RT
treatment.

Dataset B

Dataset B consisted of 169 patients with similar pathological
stages as dataset A, treated with radical RT or CCRT. A total of 500 CT
scans were acquired pre- and post-RT. Patients were excluded from
this cohort if patients were diagnosed with distant metastasis. The
analysis of dataset B was included for further validation with a range
of standard care treatment protocols. The primary outcome was
pathological response (complete response vs residual disease) and
locoregional recurrence.

CT image acquisition and image
preprocessing

All CT scans were acquired using Siemens (Germany) according to
institutional protocols. Images were obtained pre-contrast and follow-up
with varying axial spacing. Slice thickness was 1.0 mm at 120 kVp, with
soft tissue reconstruction. Axial, coronal, and sagittal images were
obtained 1 min after intravenous administration of 80 mL Omnipaque
350. Image resolution ranged from 0.5 to 0.6 mm with dimensions of
450 x 450 pixels. For both the pre-treatment and the first and second
follow-up CT scans following the therapy, the input of the tumor
imaging region is defined at the center of the determined seed point. In
3D Slicer 4.8.1, the seed points were manually defined (Xu et al., 2019).
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The imaging data has to be interpolated to homogeneous resolution in
order to provide a steady input for the suggested architectures. This was
done since maximum slice thickness was 5 mm and 2D input images
were obtained at a non-interpolate slice that was no more than 2 mm
distant. Axial slices of 50 x 50 mm?, centered on, 5 mm proximal to, and
5 mm distal to the tumor, were input to the model. The model used a
ResNet network pretrained on a general image dataset (ImageNet) and
the fine-tuned it for CT images (Xu et al., 2019). Three axial slices per
time point were used to balance feature representation and
computational efficiency. Data augmentation, including flipping,
translation, rotation, and small deformation, was applied to all images
to reduce overfitting (Krizhevsky et al., 2017). The same augmentation
was performed on the pre- and follow-up treatment images, such that
the network generates a mapping for the entire input series of images.

Neural network structure

The model was implemented in Python, using Keras with a
TensorFlow backend (Python 3.0, Keras 2.0.8, TensorFlow 1.3.0). The
proposed network structure has a base ResNet convolutional neural
network (CNN) trained on the database containing over 14 million
neural images. One CNN was defined for each time point input, such
that an input with scans at three time points would involve input into
three CNNs. The output of the pretrained network model was then
input into recurrent layers with a gated recurrent unit (GRU), which
takes the time domain into account. The output of the pretrained
network was masked to skip the time points. Averaging the fully
connected layers is then applied after GRU with batch normalization
and dropout after each fully connected layer to prevent overfitting (Toffe
and Szegedy, 2015; Srivastava et al., 2014). The final softmax layer allows
for a binary classification output (Figure 1A). To test the model without
the input of follow-up scans, the pre-treatment images alone were input
into the proposed model, with the recurrent and average pooling layers
replaced by fully connected layers, as there was only one input time
point. For model training and transfer learning procedures, dataset A
was divided into training and testing subsets using 2:1 ratio. Model
training was conducted using Monte Carlo cross-validation, employing
five randomized stratidfied splits across a cohort of 318 patients. Each
split was trained for up to 200 epochs with class-weight balancing to
account for outcome imbalance. Model performance was evaluated
using an independent cohort comprising 158 patients who were not
included in any part of training or hyperparameter tuning. This
validation set served as to assess models” generalizability and robustness
to previously unseen data. For all experiments, pre-treatment images
were used as input to the proposed model. Within the transfer-learning
network, the original recurrent and average-pooling components of the
architecture were replaced with a fully connected layers to better
capture high-level imaging features relevant to the classification task.

Machine learning (ML) model and
transcriptome data

Training data set: TCGA RNA-seq expression data,

prediction, and patients’ prognosis evaluation
TCGA (The Cancer Genome Atlas) RNA-seq head and neck

cancer count data (downloaded on May 2025) were retrieved via the
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A: Workflow for CT scan Image analysis for
predictive model of Radiation therapy outcome
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FIGURE 1

Deep learning analysis model and architecture. (A) The model depicts the deep learning model of two datasets. Dataset A consists of 476 patients
treated with a response-adapted RT treatment strategy. Dataset A was used for training and fine-tuning the convolutional neural network combined
with the recurrent neural network (RNN) for the prediction of survival. The test data set from dataset A was used to assess the performance and
compared with the performance of radiographic and clinical features. Dataset B included patients treated with radical radiotherapy. This cohort was
used as an additional set to predict pathological response, and the model predictions were compared to changes in tumor volume. The neural

(Continued)
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FIGURE 1 (Continued)

radiotherapy outcome.

architecture includes a convolutional neural network (CNN) merged with a recurrent neural network (RNN) and was trained on baseline and follow-up
scans. The input axial slices were 30 X 30 mm? centered on 5 mm proximal to and 5 mm distal to the selected input point. Deep learning networks are
trained on natural RGB images and thus require three slices per input. The outputs of each CNN model are input into the RNN, with a gated recurrent
unit (GRU) for time-varying inputs. Masking was performed on certain inputs of the CNN scans that the recurrent network takes into account missed
scans. The final softmax layer provides the prediction. (B) Machine learning framework to identify signature genes from differentially expressed genes
dataset obtained from TCGA. Three feature selection algorithms glmBoost, supporting vector machine (SVM), and random forest (RF) were used to
identify signature genes. Subsequently, feature elimination methods and tested model performance using GSE20020 dataset to predict patients’

TCGAbiolinks package in R. After preprocessing, 447 patients had
complete clinical data; among these, 235 had laryngeal primary
tumors. Genes with counts <5 were excluded, and the remaining data
were normalized using the Limma (v3.64.3) R package. Differential
expression (DE) analysis between radiation-sensitive and -resistant
groups was performed using DESeq2.

Gene set enrichment analysis (GSEA) and
enrichment analysis

GO and KEGG enrichment analyses were conducted using
Python’s GSEApy package, GO Biological Process (GO-BP-2025), and
KEGG-Human-2025 databases were used, with significance defined
as adjusted p < le-3.

Application of machine learning

Machine learning model construction

In our training data set, gene expression raw data were obtained
from TCGA, and differential analysis was performed, and the
differentially expressed genes (DGEs) to develop a binary classification
model using machine learning (ML) to predict radiotherapy outcomes
in head and neck cancer patients. The entire ML analysis pipeline is
summarized in Figure 1B. Due to the asymmetrical nature of the gene
expression data in the training dataset, we applied a 5-fold stratified
cross-validation process (Atreya et al., 2024; Banerjee et al., 2021),
randomly partitioning the training dataset into five subsets. We
termed this step as 5-fold cross-validation. Then, a feature selection
method was applied to genes identified by DEGs to reduce the genes
and applied non-linear approaches to identify an optimal set of highly
discriminative genes. Our main goal for recursive feature elimination
criterion was to discover a limited subset of features to remove
redundancy and avoid overfitting. This strategy removes redundant
features from the pooled feature set by removing them iteratively and
developing a model of the remaining features. To implement the final
feature selection method, we employed the feature selection models’
REFCV function. The REFCV function was invoked for each
constructed classifier using a 3-fold cross-validation splitting
technique and a “ROC-AUC” scoring method using a function
parameter.

Preferred models

Considering the nature of the training data set and sample
size, we choose three popular variable selection models:
“glmBoost,” “random forest (RF),” and “support vector machine
classifier (SVM)” Both glmBoost and RF are classified as soft
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classifiers, while SVM is a hard classifier. The gene features selected
by each of the models were aggregated into a single input feature
set, and the list of DGEs obtained from the training data set was
added to this list. We employed a recursive feature elimination
process to reduce the genes through feature selection methods. All
the models were carried out using a Python-based library,
scikit-learn.

Evaluation metrics

As the number of resistant and sensitive cases in the training
cohort varies significantly (resistant cases 132, and sensitive cases
344), metrics for model evaluation were reported metrics as:
accuracy (ratio of all observations correctly predicted by the
model), precision (positive predictive values), recall (sensitivity),
and F1-score (harmonic mean of precision and recall). In addition,
we computed and presented the area under the ROC (receiver
operating characteristics) curve (AUC) in evaluating how
efficiently the models are separating resistant and sensitive
patients.

Experimental set-up

To minimize the errors from imbalance treatment outcome in
the training dataset, each model was trained with different
hyperparameters for tuning via a grid search technique on a subset
of training data. We used cross-validation (CV) on the training
cohort to select the best hyperparameters from each model. In CV,
the data set was split into K-folds, with one-fold being left out for
model evaluation and the rest used for training. The process is
repeated K-times, using a different left-out fold each time. Hence,
the final evaluation metric for a given model and a set of
hyperparameters was computed as the average of the accuracies
obtained on the left-out folds at each iteration. The fraction of times
a particular gene was chosen out of each iteration was used to rank
the genes in descending order for association strength. Genes
associated with the outcome of interest in repeated cross-validation
analyses were retained and tested for model optimization on the
validation cohort.

Validation dataset

For validation of our training results, we used the GSE20020
ArrayExpress dataset published by Thibodeau et al. (2015) consisted
of 19 head and neck cancer patients. This dataset contains 12 samples
of complete response (sensitive) and seven samples had radiation
treatment failure (resistant). In this dataset, we trained multiple
feature sets of the top genes identified through the training dataset to
tune the optimal number of features, sampling methods, and classifier
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combinations, and optimal probability threshold in the validation
dataset.

In-solution protein digestion and mass
spectrometry

Crude serum samples from two subject groups of sensitive and
resistant patients were analysed using quantitative proteomics. For
each group, 100 pg of protein was subjected to in-solution tryptic
digestion before LC-MS/MS analysis, as previously described
(Alaiya et al., 2021). Samples were heat-denatured at 80 °C for
15 min, and reduction was achieved with 10 mM DTT at 60 °C for
30 min. Samples were alkylated using 50 mM iodoacetamide (IAA)
for 30 min at room temperature in the dark. Proteins were digested
overnight at 37 °C with sequencing-grade trypsin (Promega, USA)
at a 50:1 protein-to-trypsin ratio. After digestion, peptides were
diluted with 0.1% formic acid to a final concentration of 1 pug/pL,
and 3 pL of each sample was injected for LC-MS/MS analysis. To
enable absolute quantification, all samples were spiked with yeast
alcohol dehydrogenase (ADH; UniProt ID: P00330) as an internal
standard.

Mass spectrometry platform

The peptide mixture was analysed using nanoAcquity UPLC
coupled to a Synapt G2 HDMS instrument with a Trizaic Nano-Flow
source (Water, Manchester, UK). Data acquisition was performed
using HDMSE (High Definition MSE) mode with the following
settings: m/z range 50-2,000 Da, 120 min gradient run time, and ion
mobility mode of each sample was analysed in triplicate using
MassLynx v4.1 (SCN833).

Mass spectrometry data analysis

Data processing and protein identification were conducted using
Progenesis QI for Proteomics (QIP) v3.0 (Waters/Nonlinear
Dynamics, UK). Differentially expressed proteins (DEPs) between
sample groups were identified using Statistical filters: ANOVA,
p <0.05, and fold change > 1.5, based on/off filtering, i.e., Proteins
exclusively detected in one group. The quantitative analysis used ADH
(P00330) as the internal reference. Data were further subjected to
principal component analysis (PCA) and hierarchical clustering to
identify sample group separations.

qRT-PCR analysis of the patient’s sample

Total RNA was extracted from serum collected before and after
the radiotherapy from each patient using TRIzol reagent (Invitrogen,
USA). The RNA concentration was measured using Nanodrop 2000
(Thermo Fisher Scientific). cDNA synthesis was performed using
Superscript III First-Strand (Invitrogen, USA), and qRT-PCR was
performed using the SYBR green PCR master mix (Islam et al., 2024)
(Applied Biosystem, USA). The relative levels of mRNA gene
expression were calculated using the 242" method. Differences
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between treatments were evaluated using an unpaired two-tailed
Student’s t-test. Supplementary Table S1 contains information on the
primers used.

Statistical analysis

All statistical analyses were performed in Python (version 3.12.7)
and R (version 4.1.4). Comparisons between two groups were made;
continuous variables were analyzed using Students t-test, while
categorical variables were compared using Fisher’s exact test or the
chi-squared test. All predictions were evaluated on training tests set
for survival and prognostic factors after the response-adapted strategy
treatment group. The clinical endpoints included progression and
locoregional recurrence as well as overall survival following response-
adapted treatment. The analyses were compared to a random forest
clinical model with features of stage, gender, age, tumor grade,
performance, and tumor size. Survival and prognostic curves were
generated using the Kaplan-Meier method between high- and
low-mortality risk groups, stratified at the median prediction
probability using the log-rank test using the R package ‘Survminer’
(version 0.0.1). Cox regression analyses were performed for both
univariate and multivariate models to estimate hazard ratios. Statistical
differences between positive and negative survival groups are assessed
using the area under the receiver operator characteristics (AUC) and
the Wilcoxon rank-sums test. Model performance was assessed using
several metrics, including AUC, accuracy (ACC), precision, sensitivity
(SEN), specificity/Recall (SPE), F1-score, and the confusion matrix.

An additional test was performed for the second cohort using a
5-year survival model from the RT-only cohort with one time point.
Survival predictions were made from a 5-year survival model trained
from the response-adapted treatment-only dataset above. The model
predictions were used to stratify patients based on survival and tumor
response to RT. The groups were assessed using their respective AUC
and were tested with the Wilcoxon rank sum test. This was compared
to the volume change after RT and the random forest clinical model
with the same features used for the response-adapted treatment
dataset.

Results

Baseline clinical features of the study
cohort

A deep learning-based model was evaluated to identify overall
survival using 1,600 CT scans from 645 pre- and post-response-
adapted RT patients. There was no difference in the age between the
two cohorts (age 62.10 [mean SD 8.9] and age 61.5 [mean SD 10.1]).
All patients were predominantly diagnosed with stage III and IV
(stage IVA and stage IVB, cStage-AJCC 8th edition). Dataset A
consisted of a total of 476 patients treated with response-adapted RT
that was used as a cohort for testing and training deep learning
biomarkers (Table 1). Most patients in this dataset are male (n = 374,
79%). The median response-adapted treatment dose was 58 Gy (range
40-70 Gy). The median follow-up period was 42.5 months. The
validation cohort (dataset B) served as an additional test set and had
169 patients treated with radical RT. The median radical radiation

frontiersin.org


https://doi.org/10.3389/frai.2025.1738174
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Ujjahan et al. 10.3389/frai.2025.1738174

TABLE 1 Baseline patient characteristics of the training and testing cohort of dataset A (response-adapted radiation treatment group).

Variables N = 476* Training cohort N = 318* Testing cohort N = 158! p-value?
Sex
Male 374 (79%) 247 (78%) 127 (80%)

0.5 0.7
Female 102 (21%) 71 (22%) 31 (20%)
Age, median (range), y 62.12 (9.8) 61.0 (8.9) 61.5(10.1) 0.2 0.4
Subsites
Epiglottis 131 (28%) 98 (31%) 3 (2%)
Glottis 76 (16%) 49 (15%) 27 (17%)
Subglottis 80 (17%) 61 (19%) 19 (12%) 0.012 0.027
Supraglottis 72 (15%) 33 (10%) 39 (25%)
Vocal cord 117 (25%) 77 (24%) 70 (44%)
CCl*-score
0 194 (41%) 140 (44%) 54 (34%)
1 171 (36%) 124 (39%) 47 (30%)

0.8 0.8
2 70 (15%) 37 (12%) 33 (21%)
>3 41 (9%) 17 (5%) 24 (15%)
Clinical T-stage
Tl 22 (5%) 13 (4%) 9 (6%)
T2 43 (9%) 21 (7%) 22 (14%)

0.7 0.8
T3 197 (41%) 133 (42%) 64 (40%)
T4 214 (45%) 151 (48%) 63 (40%)
Clinical N-stage
NO 17 (4%) 11 (3%) 6 (4%)
N1 19 (4%) 9 (3%) 10 (6%)

<0.0001 <0.001

N2 310 (65%) 201 (63%) 109 (69%)
N3 130 (27%) 97 (30%) 33 (21%)
Clinical stage
111 64 (13%) 55 (17%) 9 (6%)
IVA 329 (69%) 198 (62%) 131 (83%) 0.8 0.8
IVB 83 (17%) 65 (20%) 18 (11%)
Concurrent chemotherapy 146 (31%) 129 (41%) 17 (11%) 0.007 0.019
Radiation techniques
3DCRT® 18 (4%) 15 (5%) 3 (2%)
IMRT® 450 (95%) 298 (94%) 152 (96%) 0.006 0.019
VMAT’ 8 (2%) 5(2%) 3(2%)
ECOG®
0 14 (3%) 11 (3%) 3 (2%)
1 460 (96%) 306 (96%) 154 (97%) <0.001 <0.001
>2 2 (1%) 1(1%) 1(1%)
Pretreatment evaluation
Laryngeal preservation 142 (30%) 109 (34%) 33 (21%)
Total laryngectomy 334 (70%) 209 (66%) 125 (79%) 02 7

"Mean (SD); n (%); *Wilcoxon rank sum test: Pearson’s Chi-squared test: Fishers exact test; *False discovery rate correction for multiple testing; *Charlson Comorbidity Index; *Definitive
Chemotherapy; ‘Intensity Modulated Radiation Therapy; "Volumetric Modulated Arc Therapy; *Eastern Cooperative Oncology Groups.
Median (range) was reported for continuous variables and counts (percentage) for categorical variables.
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dose was 70 Gy (range 55-80 Gy), and the median follow-up was
41.5 months. The combined median OS for stage III/Stage IV patients
was 12.3 months (95% CI: 8.0-17.8 months). The 1- and 5-year OS
were estimated to be 49% (95% CI: 47-53%) and 28% (95% CI:
21-43%), respectively (Supplementary Figure S1A). Furthermore,
median disease-free survival was 17.2 months (95% CI 11.6-
30.1 months) (Supplementary Figure S1B).

Tumor volume

The tumor volume was measured, and the mean tumor volume
was 4.98 (3.32) cm?, with median, minimum, and maximum values
found as 4.06 cm’, 0.22 cm?®, and 20.87 cm’, respectively. The
distribution of tumor volume for the response-adapted RT strategy
and radical radiotherapy (RRT) is shown in Figure 2A. Restricted
cubic splines (RCS) models based on the Cox proportional hazard

10.3389/frai.2025.1738174

model for the entire dataset A were analyzed to visualize the impact
of tumor size on prognosis. Results obtained from the RCS model
highlighted that the linearity assumption for both OS (p = 0.21) and
DEFS (p = 0.07) could not be rejected (Figures 2B,C).

Deep learning-based prediction of
prognostic biomarker and model
performance

The discovery component of dataset A was used for training the
model in order to generate deep learning (DL)-based biomarkers for
survival, progression-free survival, and locoregional recurrence. The
workflow for the prediction is presented in Figure 1A. The discovery
cohort was randomly split into a 2:1 ratio for training and development
(n =318) of the deep learning model and the remaining for testing
and evaluating the performance (n = 158). The baseline model with
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overall survival and progression-free survival.
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FIGURE 3
Performance of deep learning biomarkers with the increase in the
number of treatment time points. (A,B) AUC values were evaluated
on an independent test set from the deep learning models for 5-year
overall survival (OS), progression-free survival (PFS), and locoregional
recurrence-free survival (LRF). Values were significantly separated
with Wilcoxon's rank sum test in the response-adapted RT treatment
strategy (dataset A). The response-adapted RT treatment strategy
cohort with the input of the pre-treatment scans along with the
addition of 1- and 2-follow-up scans at 2- and 6-month follow-up.

only pretreatment scans showed low performance for predicting
5-year overall survival (AUC 0.60, 95% CI 0.52-0.69; p =0.17,
Wilcoxon’s test; Figure 3A). The pretreatment scans achieved low
performance, which was lower than the post-treatment 2- and
6-month scans (Figure 3A). The DL model demonstrated strong
predictive performance for predicting 5-year overall survival,
achieving AUCs of 0.792 (95% CI 0.790-0.817; p = 0.031) for the
2-month follow-up scans, while after the 6-month follow-up scans, the
AUC increased to 0.832 (95% CI 0.830-0.839; p = 0.01; Figures 3A,
Supplementary Figure S2). The DL performance model was assessed
on other clinical characteristics, i.e., 2-year overall survival and 5-year
survival, progression, and locoregional recurrence-free survival
(LRF). The model demonstrated comparable performance; however,
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there was no significant prediction of survival at 2 years (AUC = 0.671)
or 5 years (AUC = 0.746, p = 0.436; Figure 3B) or treatment response
(Supplementary Table S2).

Deep learning model and
response-adapted treatment strategy for
clinical endpoints

The median (IQR) follow-up time for the training cohort was
55.8 months (32.6-60.0) and 38.4 months (32.8-49.1) for the testing
cohort. The survival analyses were performed with Kaplan-Meier
estimates for high- and low-mortality risk groups based on median
stratification of patients’ prediction scores. The model yielded a
significant difference between the high and low score groups among
2 (p = 0.006, log-rank test) and 3 (p < 0.001, log-rank test) follow-up
scans. Patients with higher scores (> median) had significantly longer
overall survival and progression-free survival in 2 and 3 follow-up
scans (Figures 4A-F). Comparable results were found for the following
predictions with their respective hazard ratios. The hazard ratio for
five-year overall survival was 1.59 (95% CI 1.34-3.22, p = 0.063); for
progression-free survival, it was 1.39 (95% CI 1.16-2.29, p = 0.103);
and for locoregional recurrence-free survival, it was 1.87 (95% CI
1.11-5.12, p = 0.01), each with significant differences at two follow-up
time point scans.

Predicting pathologic response with the
independent validation dataset

To confirm the results from the training set (dataset A), we used
additional validation data to determine the relationship between
image analysis and pathological response in patients who were treated
with radical radiotherapy (primary RT). The pre-RRT and post-RRT
scans were given as input to the neural network model trained on
dataset A. First, for survival prediction analysis, the model was tested
on Dataset B. To match the number of input time points, the 5-year
survival model with pre-treatment and first follow-up at 2 months was
used. Interestingly, the model significantly predicted progression-free
survival and local regional recurrence (Supplementary Table S3).
From the results, it appears that the model accurately predicted all
clinical endpoints in dataset B.

In predicting the RT response, the predictive network was used to
categorize the pathological response. In the validation dataset
(n =169), the model demonstrated comparable performance, with an
F1-score of 0.67, recall of 0.79, and precision of 0.66. For dataset A of
the test set, the model correctly predicted non-responder status for 37
of 45 patients (23%) and responder status for 79 of 113 patients (50%),
reaching an overall accuracy of 73%. In the additional validation
cohort of dataset B, the model accurately predicted 41 of 63
non-responders (24%) and 64 of 106 responders (40%), achieving a
total accuracy of 64%.

To categorize the pathological response, the predictive network
was used (Supplementary Figure S3). There was a significant and
distinguishable disparity between the responders and gross residual
disease. The AUC for responders was 0.785 (n =169, p=0.01,
Wilcoxon’s test) and 0.762 for changes in gross tumor volume (1 = 169,
p =0.001, Wilcoxon’s test). We built a combined model of the network
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to assess the pathologic response to RT and assess the changes in
tumor volume (Supplementary Table S4). Again, the model
demonstrated strong predictive performance for pathological response
(AUC of 0.753, n = 169, p = 0.021, Wilcoxon’s test). The prediction
probabilities and changes in tumor volume were significantly
correlated, achieving a correlation value of 0.61 (p = 0.033). Subgroup
analysis of other clinical parameters of clinical stage, age, and gender
yielded the least significant prediction for pathological response
(p =0.631, Wilcoxon’s test). Multivariate and univariate analyses
among all covariates demonstrate that DL was an independent
predictive factor for both PFS (HR 0.67, 95% CI 0.54-0.77, p = 0.01)
and OS (HR 0.58, 95% CI 0.46-0.81, p <0.001) (Figures 5A,B,
Supplementary Table S5).

Identification of radiation response
through gene expression signature and its
biological relevance

To evaluate biomarker contributions in predicting radiation
response treatment, we used the TCGA head and neck cancer dataset
(n =231) on patients who were treated with radiotherapy only. We
have downloaded raw RNA-seq data and patients’ complete clinical
metadata, such as age, treatment history, and overall survival and
progression-free survival (for details, please refer to the Materials and
methods section). To study the gene expression pattern among
radiation therapy-resistant and sensitive patients in TCGA gene
expression data, the raw expression data were normalized, and 39
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(Supplementary Figure S4: Heatmap) differentially expressed genes
(DEGs) were identified using DESeq2 following the criteria of
Benjamini-Hochberg adjusted p-value < 0.05 and logFC > 1 for all
samples. The number of differentially expressed genes per group is
shown in Figure 6A and Supplementary Figure S2. We then tested the
functional enrichment of the DEGs to identify the GO terms
associated with radiation resistance and sensitivity using EnrichR and
ClusterProfiler. GO and KEGG enrichment analysis showed that
DEGs were significantly enriched in co-translational protein targeting
to membrane, cholesterol biosynthesis, Wnt-Beta catenin, E2F targets,
cholesterol biosynthesis, PI3K/AKT signaling, and hypoxia
(Figures 6B,C). Similarly, these DEGs are enriched in carbohydrate
catabolic process, regulation of transcription from RNA Pol II
promoter in response to stress, cholesterol homoeostasis, and hypoxia
(Figures 6D-G).

Results from the discovery cohort: genes
identified with radiation therapy outcome

To accurately predict the outcome of radiation therapy and
whether the genes identified in Figure 6 are associated with resistance
or not, a feature selection method was employed. Three models,
glmBoost (gradient boosting with linear model), RF (random forest),
and SVM (support vector machine), were constructed after sample
weighting. To identify highly discriminative genes and to distinguish
patients with resistant and sensitive groups, we used glmBoost for
feature selection and RF for model fitting (Figure 7A). Following the
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FIGURE 6

Differential expression analysis from head and neck cancer TCGA dataset. (A) Number of differentially expressed genes in resistant and sensitive groups
from head and neck cancer TCGA RNA-sequence identified by DESeq?2. (B,C) Dot plot of GO and KEGG pathways enriched among patients with
radiotherapy sensitive and resistant patients. (D—F) GSEA analysis of core genes and relation to radio sensitization. GSEA of TPX2, HOXC6, MAP3K, and
ADH4. (H) Key pathway network identified by GSEA analysis.

application of three machine learning models, a set of core genes was  treatment outcome (Supplementary Table S6). The summary AUROC
identified for each feature selection method. The combination of these ~ for the treatment prediction model across repeated cross-validation
models identified 13 key genes that are associated with radiotherapy =~ experiments to distinguish patients with resistance from those with
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Construction of and validation of models using integrated machine learning. (A) Three machine learning algorithms (glmBoost, SVM, and RF), the area

et. (B) The number of genes identified by each model. (C) AUROC curve

for training and validation dataset. (D) AUROC curve and values obtained by for the validation cohort using three machine learning algorithms, with
optimized hyperparameters. (E—=G) Confusion matrix obtained by glmBoost, SVM, and RF, respectively, on the validation dataset. The performance
metric accuracy, recall (sensitivity), precision, and F1-score are shown below each confusion matrix plot. SVM, support vector machine, RF, random

sensitivity in the training data set was 0.91 with an F1-score of 0.66.
The model generated a sensitivity of 96.3% with a specificity of 83.1%.

In the validation dataset (GSE20020), the model predicted the
radiotherapy outcome for the top 7 genes out of 13 genes through
the training dataset. The results showed that a group of genes, such
as TPX2, HOXC6, MAPK3, KIF14, ESM1, ADH4, and STC2, were
consistently captured by these methods, suggesting their potential
significance in distinguishing between resistant and sensitive groups
(Figure 7B). Each of the genes was selected by the three feature
selection models. For the classification of patients with radiation
resistance and sensitivity using these 7-core genes, in all cases,
models were tuned through CV, StandardScaler, and Extra-Tree
Classifier from the RF process using the validation cohort. The
hyperparameters and values taken into consideration for each
model are assessed. Table 2 shows the accuracy and AUROC values
obtained from training and validation datasets via model parameters
mentioned above for each model considered. For each model, results
are shown with the best set of hyperparameters. In our case, all three
models generated identical results, ranging from an accuracy of
0.806-0.813, AUROC ranging from 0.964 to 0.941 in the training
dataset. In both datasets, glmBoost performed best among the other
two models (Table 3). In the validation cohort, more than 76% of
the resistant cases were predicted correctly by all three models
(recall), while in the sensitive cases correctly predicted ranged from
61 to 67%. In terms of recall, precision, and F1-score, glmBoost
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obtained the best results (Table 2). Figures 7C-G show the AUROC
and confusion matrix achieved by the three considered ML models
for the validation dataset, using as input of the 7-core genes
(Supplementary Figure S5).

Validation of the top seven genes in patient
serum samples and proteomics analysis

Lastly, we have validated 7-core signature genes using patients’
samples from resistant (n = 25) and sensitive (n = 25) head and neck
cancer patients who underwent response-adapted RT. These seven
signature genes exhibited significant differential expression between
the resistant and sensitive groups (Figures 8A-G). Finally, we have
explored protein analysis of patients from the resistant and sensitive
groups. Details of the sample processing LC-MS-based protein
analysis are described in the materials and methods. The analyses
yielded over 350 unique proteins, and 112 proteins showed significant
differential expression between resistant and sensitive groups
(Supplementary Table S7). The unique protein IDs were converted to
gene symbols. Notably, five of our signature genes are also differentially
expressed between the two groups, indicative of our model’s prediction
accuracy. The five genes were TPX2, ADH4, HOXC6, MAPK3, and
KIF14. These results suggest the accuracy and the precision of the
model correctly identified the gene features by the models. All 112
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TABLE 2 Evaluation of machine learning model performance using a 7-gene signature predictive of radiation treatment outcome.

Test type Sensitivity Specificity AUROC Accuracy Precision F1-score
(recall)

Validation 0.85 0.68 0.81 0.71 0.63 0.72

Training 0.75 0.65 0.77 0.65 0.71 0.63

TABLE 3 Performance metrics for machine learning (ML) models.

Models Training cohort (CV) Validation cohort

Accuracy AUROC Accuracy AUROC Precision Recall Fl-score
glmBoost 0.813 0.964 0.761 0.865 0.674 0.813 0.803
RF 0.811 0.928 0.754 0.857 0.660 0.783 0.779
SVC 0.806 0.941 0.704 0.851 0.617 0.768 0.763

Performance metrics obtained on the training dataset via CV for the three ML models with optimized hyperparameters, as well as on the validation dataset, using as input the features (genes).
glmBoost generated the best results when using as input the features (genes). glmBoost, generalized linear model boost; RE, random forest, SVC, support vector machine; CV; cross-validation;

AUROG, area under receiver operating curve.
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FIGURE 8
Expression of seven core genes identified by machine learning models. (A—G) gRT-PCR mRNA gene expression analysis from resistant (n = 25) and
sensitive (n = 25) laryngeal cancer patients treated with response-adapted RT. (H) Graphical summary of networks highlights key mechanistic themes
for networks (please see all networks in Supplementary Figure S3). Statistical significance was determined by Student’s t-test (*p < 0.05, **p < 0.01).
(1-0) Kaplan—Meier curves for disease-free survival (DFS) for patients stratified by high and low expression in the signature biomarkers following
response-adapted radiation therapy.

DEPs were analyzed using the Ingenuity Pathway Analysis (IPA) to  Network 4, centered on NF-kB and transcriptional regulators (SOX2,
SP1, EHF), promoted chronic inflammation and stemness. Network
5 integrated HIF-la, EGFR, mTOR, and p-catenin signaling,
consistent with hypoxia-induced metabolic reprogramming and
EMT. Collectively, these pathways form a feedback loop where
hypoxia and tissue injury activate complement and coagulation
cascades, driving NF-xB- and RTK-PI3K/mTOR-f-catenin—

mediated inflammation, angiogenesis, and tumor plasticity

explore the associated biological themes and signaling pathways.
Proteomic pathway analysis comparing treatment-sensitive and
resistant pharyngeal cancers identified four interconnected signaling
networks underlying therapy resistance. Network 1 involved MAPK-
JNK-AKT activation with acute-phase and coagulation proteins,
reflecting inflammation and survival signaling. Network 3 connected
VEGF-ERK-PI3K and complement-NF-kB pathways, indicating

angiogenic and immune crosstalk in hypoxic microenvironments.  (Figure 8H, Supplementary Figure S6).
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ML identified signature biomarkers can
prognosticate patient outcome

Given the importance of the signature biomarkers in response-
adapted RT sensitivity and resistance outcome, we choose two groups
of patients (n = 50; 25 resistant and 25 sensitive). We extracted RNA
from serum samples and used qRT-PCR for relative expression
analysis. We observed a significant difference in disease-free survival
(DES) between patients resistant and sensitive patient samples. The
DFS for high expression of TPX2, HOXC6, MAPK3, and ADH4 were
11.1, 11.12%, 10.14, and 12.5 and 16.2%, 16.3, 20.3%, respectively
(Figures 8L]J,L,N). The overall DFS was reduced among patients with a
low expression of KIF14, ESM1, and STC4 signature (Figures 8K,M,0).
These findings are consistent with the results obtained in Figure 4.

Discussion

Management of locally advanced laryngeal cancer remains
challenging, with a declining survival rate. The 5-year overall survival
(OS) rate for locally advanced larynx cancer remains approximately
50-60%, and a large number of patients require total laryngectomy
(Malik et al., 2023; Megwalu and Sikora, 2014). Organ preservation
approaches, such as RT, concurrent chemoradiation (CCRT), and
induction chemotherapy (ICT) followed by RT or CCRT, can achieve
laryngeal preservation in up to 65% of selected patients (Yamakuni et
al.,, 2023; Lagha et al., 2013; Megwalu and Sikora, 2014). Nevertheless,
not all locally advanced cases behave uniformly particularly between
T3 and T4a stages (Malik et al., 2023; Grover et al., 2015). Although
CCRT is widely accepted as a standard treatment approach, the lack
of patient selection can adversely affect both OS and survival with
functional larynx (SFL).

In clinical practice, monitoring treatment outcomes and evaluating
tumors to predict patients’ survival following response-adapted RT plays
a critical role in adaptive treatment planning and improving patient
outcomes. Currently, radiologists rely on clinical parameters, serial
imaging, and changes in tumor load across multiple scans to assess
treatment response-an essential component of modern oncology
practice. Serial follow-up imaging, in addition to baseline scans,
provides valuable insights into treatment efficacy and disease
progression. Recent advances in artificial intelligence (AI) and deep
learning (DL) have enabled automated, precise evaluation of treatment
outcomes beyond traditional visual assessment. DL-based estimation of
tumor burden from CT images, combined with prognostic prediction,
can aid in evaluating patient outcomes in clinical trials and optimizing
response-adapted RT strategies. In this study, we demonstrate that
integrating pre-and post-treatment CT scans with gene expression
signatures associated with radiation resistance in laryngeal cancer allows
for robust outcome prediction using DL and ML-based approaches.

Al-based deep learning (DL) model
performance in assessing radiation
treatment outcome from patients’
follow-up CT scans

Quantitative image analysis has yet to become standard in
personalizing treatment for head and neck cancer (Hadjiiski et al., 20105
Ling et al., 2025; Zhai et al., 2019). To address the limitations of manual
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or semi-automated approaches as well as to reduce inter-observer
variability, we employed a DL framework combining convolutional
neural network (CNNs) and recurrent neural network (RNNs) for time-
dependent modeling. Using both pre-and post-treatment CT scans, our
model successfully predicted survival, prognosis, and adaptive radiation
doses required for local tumor control in patients treated with response-
adapted RT for laryngeal cancer. This supports our contention that
adaptive RT doses can be more individually tailored when pre- and post-
treatment CT scans are used. Remarkably, two key findings emerged
from the investigation. One of them is that the model performance
improved significantly as the number of post-treatment time points
increased. Second, the quantity data used as network input had a
substantial impact on the models performance. Despite some
performance variability, the model maintained consistent AUC values,
indicating the reliable prediction of treatment response, the target
endpoint, and potential treatment failure.

Although DL approaches have profoundly enhanced clinical
diagnosis from CT images, stratifying patients into high- and low-risk
groups remains challenging. Previous studies have developed and
validated DL models for risk stratification based on radiographic data
(Bang et al., 2023; Le et al., 2022), most focused on patient outcomes
rather than organ preservation or locoregional failure. Our neural
network approach effectively distinguishes between high-and
low-mortality risk groups, showing significant differences in overall
survival. Furthermore, the model accurately identified risks of local
recurrence when two post-treatment follow-up scans (obtained 2
months after response-adapted RT) were provided as input. The other
two outcomes, progression-free survival and locoregional recurrence,
also reliably stratified.

For model validation and response prediction, we included
post-RT and pre-surgical follow-up time points in dataset B (primary
RT).
development, the model successfully distinguished pathological

Despite being completely blinded throughout model

responders from patients with residual disease in the initial RT cohort.
Predictions correlated strongly with primary tumor size response,
confirming that volumetric tumor changes reflect treatment efficacy.
Notably, the inclusion of multiple follow-up time points enabled real-
time assessment of dynamic tumor changes, made possible through
RNN s that can process incomplete longitudinal data an essential
feature for retrospective studies like ours.

Machine learning (ML) approaches to
identify signature biomarkers from gene
expression data associated with radiation
therapy

In this segment of our results, we present data demonstrating the
gene expression signature by developing an integrative approach to
establish a consistent HNSCC radiotherapy treatment outcome
signature using samples from publicly available datasets. Using an ML
framework, we identified 13 genes consistently associated with
radiotherapy treatment response through repeated leave-one-out
cross-validation. Furthermore, validation identified seven core genes
that formed a fixed classifier reliably distinguishing radiotherapy
sensitivity from radiotherapy-resistant cases. Among the tested
models, the glmBoost algorithm exhibited the highest performance
and reproducibility compared to the random forest (RF) and support
vector machine classifier (SVM) models.
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Several of the identified genes, including TPX2, HOXC6, KIF14,
MAPK3, ESM1, ADH2, and STC2, have established roles in
chemoradiotherapy (Zhu et al., 2024; Moon et al., 2012; Matic et al.,
2023; Ngan et al., 2022; Xu et al., 2019; Al-Shamma et al., 2023; Qie
and Sang, 2022). TPX2 plays a critical role in various cellular and
molecular processes resulting in growth and metastasis, mitotic
survival, and is linked to the radiosensitivity of tumor cells (Huang et
al,, 2014; Kim et al., 2023). HOXC6 is involved in cell proliferation,
survival, and metastasis as well as many cellular processes (Li et al.,
2022). Furthermore, deregulated functions of HOXC6 may directly
influence cellular sensitivity and efficacy of radiation and
chemotherapy. High expression of HOXC6 is associated with poor
prognosis, higher risk of death, and is associated with immune-
modulatory genes (Du et al, 2014; Zhang et al, 2013). As a
microtubule-based motor protein, KIF14 is involved in growth and
cell motility in tumor cells and is associated with poor clinical
outcome (Corson and Gallie, 2006), which causes the response to
radiation therapy. Endothelial cell-specific molecule 1 (ESM1) is an
important proto-oncogene that may influence chemo and radio
sensitivity by regulating PI3K/AKT signaling pathway, and ESM1 can
be activated by inflammation and cytokines as well as play a role in
angiogenesis (Xu et al., 2019). Alcohol dehydrogenase-4 (ADH4) plays
key role in radiation resistance, inhibit the DNA damage and cell
death induced by radiotherapy, and ADH4 has been identified as a
cancer stem marker in different cancer (Januchowski et al., 2013;
Al-Shamma et al., 2023) Stanniocalcin 2 (STC2) overexpressed in
many cancer including head and neck cancer is correlated with tumor
development and metastasis and play substantial role in radiation
sensitivity via activating PI3K/AKT/and Snail signaling (Qie and
Sang, 2022; Yang et al., 2016). Collectively, these evidences confirm
that our core gene signature is biologically relevant and reliable for
predicting radiosensitivity in laryngeal cancer. Importantly, our gene
expression classifier demonstrated prognostic relevance in predicting
radiotherapy outcome. This ML-driven approach enables the
identification of gene signatures associated with treatment response,
optimizing individualized therapy. However, our findings from gene
expression signature may limit direct prediction of survival outcome
due to the involvement that other patient-specific confounding
factors. Overall, the novelty of this study lies in integrating patients’
follow-up images with gene expression-based ML models to identify
patients most likely to respond to response-adaptive RT.

Limitations

This study has several limitations that should be acknowledged. The
first relates to the relatively small sample size and single-center of the
study. Expanding the dataset and enrolling more centres, and employing
more CNNs, may substantially enhance the prediction accuracy and
help address this issue. Because the study is retrospective, the influence
of confounding variables and potential bias cannot be completely
excluded. Although three-dimensional imaging could more accurately
represent tumor biology and potentially strengthen model performance,
this work utilized two-dimensional images. Incorporating 3D imaging
in future research may yield a more comprehensive understanding of
tumor characteristics. DL and ML models often operate as “black boxes,”
where the internal reasoning behind predictions remains difficult to
interpret despite their strong performance. Our survival analysis relied
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solely on CT image features, excluding clinical factors such as age, sex,
histology, or smoking history, which may also hold prognostic values.
Integration of RNA-seq and microarray datasets may have introduced
variability linked to shared gene signatures associated with radiotherapy
resistance. Furthermore, while CT scans can be obtained at multiple
time points during a patient’s follow-up, gene expression profiles reflect
only a single snapshot, which might influence the interpretation of
results. Future studies that include longitudinal gene expression analysis
across multiple treatment stages could provide deeper insight into the
temporal dynamics of radiotherapy response and outcome. Finally,
because deep learning models we used in image analysis may not be
much informative on the biological difference. Therefore, we separately
used ML models, such as RE SVC, and glmBoost ML learning approach
to identify genes or biomarkers. Lastly, when building DL model we have
overlooked for image analysis, like visualizing GRAD-CAM generated
features which influence the model’s decision and to verify the model on
focusing anatomically relevant region, identify potential biases in
learning pattern and to improve model performance. Future studies will
be design to build the trustworthy of Al system to integrate the
diagnostic workflow. Despite all these constraints, our DL effectively
predicted survival and radiotherapy outcome, while the ML models
identified treatment response based on signature genes. Expanding
cohort size and refining models’ architecture in subsequent work should
further enhance the robustness and vulnerability of the predictive models.
In conclusion, our integrated DL and ML models demonstrate the
potential to predict tumor phenotype tracking, pathological response in
pre- and post-RT, and outcome of radiotherapy sensitivity in laryngeal
carcinoma using serial CT scans and gene expression data. These
approaches could provide a reliable, noninvasive approach, which may
have potential clinical implications for adaptive and precision therapy.
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