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Background: Radiotherapy (RT) remains a cornerstone treatment for head and 
neck cancer squamous cell carcinoma. However, therapeutic responses vary 
considerably among patients due to radiation resistance, which limits long-term 
survival and contributes to recurrence and disease progression. Developing 
robust deep learning (DL) and machine learning (ML)-based predictive models 
is essential to improve response prediction, evaluate treatment outcomes, and 
identify biomarkers linked to radiosensitization.
Methods: This single-center retrospective study applied DL and ML models 
to analyze CT scans and RNA-seq gene expression data for prognostic and 
biomarker discovery purposes. For image analyses, two independent datasets 
were used. Dataset A includes 1,100 CT scans (pre- and post-treatment) from 
476 patients with stage III and IV laryngeal carcinoma treated with response-
adapted RT. A convolutional neural network (CNNs) integrated with a recurrent 
network (RNNs) was used for single-point tumor localization and response 
prediction. Dataset B, comprising 500 scans from 169 patients treated with 
radical RT, served as the additional validation cohort. Pre- and post-treatment 
scans were used to train a DL model, which showed better prediction 
performance for survival and disease-specific outcomes, including progression 
and locoregional recurrence. For gene expression-based biomarker analysis, 
TCGA data (n = 231) were examined using glmBoost, support vector machine 
classifier (SVM), and random forest (RF) algorithms to construct and predict 
genes associated with radiosensitivity, and the GSE20020 dataset was used to 
validate the model performance. Proteins and mRNA were used to confirm the 
signature biomarkers using qRT-PCR and LC–MS mass spectrometry.
Findings: For CT scan image analysis, the DL-model achieved AUCs of 0.792 
(p = 0.031) at 2-month and 0.832 (p < 0.01) at 6-month follow-up. Risk 
scores significantly correlated with overall survival (HR 1.59, 95% CI 1.34–3.22, 
p = 0.063), progression-free survival (1.39, 95% CI 1.16–2.29, p = 0.103). The 
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pathological response in dataset B was likewise significantly predicted by the 
model. Among 39 differentially expressed genes, ML-model analysis identified 
13 candidate genes associated with radiosensitivity on repeated cross-validation 
with an AUROC of 0.91 in the training set. In the validation dataset, when the 
models were optimized, the models consistently predicted seven core genes, 
achieving AUCs ranging from 0.96 to 0.94 to predict the radiosensitivity.
Interpretation: These findings highlight the effectiveness of DL and ML 
approaches in integrating imaging and transcriptomic data to predict response-
adapted RT response and patient outcomes. These automated, and interpretable 
AI-driven biomarkers hold significant potential for clinical translation. Future 
research should aim to expand datasets and validate the models in multicenter 
cohorts for broader applicability.

KEYWORDS

deep learning, head and neck cancer, machine learning, radiomics, radiotherapy, 
transcriptomics

Introduction

Cancer of the larynx represents one of the poorest prognoses 
among head and neck squamous cell carcinoma (HNSCCs). 
Treatment of this cancer is challenging, as it can profoundly affect 
speech, swallowing, and breathing (Yamakuni et al., 2023). Given the 
aggressive nature of this malignancy and the complex anatomy of 
surrounding functional architecture, both organ preservation and 
survival remain key treatment goals (Yamakuni et al., 2023; 
Williamson and Bondje, 2023). Treatment strategies for laryngeal 
cancer vary by disease stage. In early-stage disease, organ preservation 
through radiotherapy (RT) or conservative surgery achieves favorable 
outcomes. Despite the role of surgical resection in achieving maximal 
local control, laryngeal cancer often carries poor survival, higher risk 
of salvage surgery, and a long-term complication such as loss of 
natural voice, tracheotomy dependence, social isolation, swallowing, 
and breathing impairment (Lagha et al., 2013; Malik et al., 2023).

Response-adaptive approaches have emerged for individualized 
therapy. Patients demonstrating more than 80% regression after RT or 
CCRT typically continue non-surgical management, whereas those 
with <80% regression undergo surgery. This adaptive strategy has 
improved local control, survival, and organ preservation with an 
acceptable toxicity profile compared with ICT alone (Lefebvre et al., 
2012; Yi et al., 2017). Given these clinical challenges, there is a pressing 
need to evaluate a response-adapted strategy for laryngeal cancer. The 
application of artificial intelligence (AI) could be revolutionary in 
identifying biomarkers linked to radiation response and predicting 
early tumor responses.

Medical imaging plays a pivotal role in the diagnosis, treatment 
planning, monitoring progression, and treatment response. Among 
imaging modalities, computed tomography (CT) remains the most 
widely used and provides an enormous amount of fine-tuned 

information acquired by the scanner. Manual interpretation captures 
only a fraction of this data; therefore, validated computational 
algorithms are required to extract complex imaging features that may 
predict therapeutic outcomes. Tracking longitudinal radiographic 
changes through follow-up scans can offer valuable insights into the 
dynamics of tumors response dynamics.

Recent advances in AI have transformed cancer imaging and 
molecular analysis, enabling precise prediction of prognosis, treatment 
response, and molecular subtypes using CT, histopathology, and 
transcriptomic data (Cheng et al., 2021; Lan et al., 2024). Deep 
learning (DL) and machine learning (ML) algorithms have been 
successfully applied to tumor segmentation, grading, biomarker 
discovery, and treatment response (Xu et al., 2019). Most DL and ML 
have been developed to interpret complex spatial patterns of histologic 
images and features (gene) selection to predict survival and genomic 
alteration (Rakaee et al., 2025). However, few studies have integrated 
DL- and ML-based approaches combining radiologic and gene 
expression data to predict outcomes following response-adapted RT.

In this study, we sought to use AI-driven DL and ML models, 
specifically convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), glmBoost, support vector machine (SVM), and 
random forest (RF) to predict survival and other clinical endpoints of 
patients with resectable, locally advanced laryngeal carcinoma. We 
analyzed pre- and post-treatment CT images from patients receiving 
response-adapted treatment and follow-up CT images following RT 
alongside RNA-seq data from radiotherapy-resistant and sensitive 
patient cohorts. Two independent imaging datasets (A and B) with 
similar diagnoses of stage III and IV laryngeal cancer but treated with 
different therapy regimens were used for DL model development and 
validation, while transcriptomic data from TCGA and GSE20020 were 
used to train and validate ML models predicting radiosensitivity in 
laryngeal cancer.

Materials and methods

Ethics approval and consent to participate

Patient samples were collected from Chattogram Maa O Shishu 
Hospital, and ParkView Hospital, Chittagong, Bangladesh. The ethics 

Abbreviations: RT, radiation therapy; CT, computed tomography; CNN, 

convolutional neural network; RNN, recurrent neural network; DL, deep learning; 

ML, machine learning; CCRT, chemoradiation therapy; ICT, induction 

chemotherapy; SFL, survival of functional larynx; AUC, area under the curve; ACC, 

accuracy; SFN, sensitivity; SPE, specificity; RCS, restricted cubic splines; RART, 

response-adapted radiation therapy.
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committees at each of the institutes gave their approval to this study. 
The declaration of Helsinki has been followed in research presented 
here, and each participant has given their written informed consent to 
take part in the study.

DL models for CT scans

Study design and data cohort selection
Two independent datasets were used: Dataset A (development 

cohort) and Dataset B (validation cohort), comprising 645 newly 
diagnosed patients with resectable stage III and IV laryngeal 
carcinoma.

Dataset A
Dataset A included 476 patients treated with a response-adapted 

RT strategy using standard-fractionated RT (1.8–2.2 Gy/day, 5 days/
week). Initial doses: 70 Gy to gross tumor volume, 60 Gy to tumor-bed 
area and high-risk clinical target volumes, 50 Gy to prophylactic 
regions. Then the response-adapted treatment strategy was 
determined based on the primary tumor response and was evaluated 
at a dose of 50 Gy. Patients with >80% regression received radical RT 
or CCRT; others underwent surgery. Partial responders were 
considered responsive; the rest were nonresponsive. These patients 
had at least one follow-up CT scan. A total of 1,100 CT scans with an 
average of 2.31 per patient. In some cases, it was not possible to 
achieve follow-up scans for some patients. Patients with prior surgery 
were excluded. The Patients’ cohort was randomly split into a 2:1 ratio, 
comprising training and development (n = 318) for the deep learning 
model and the other for the test (n = 158) cohort, evaluating its 
performance. The primary endpoint: OS and PFS; secondary: 
locoregional recurrence and progression with response-adapted RT 
treatment.

Dataset B
Dataset B consisted of 169 patients with similar pathological 

stages as dataset A, treated with radical RT or CCRT. A total of 500 CT 
scans were acquired pre- and post-RT. Patients were excluded from 
this cohort if patients were diagnosed with distant metastasis. The 
analysis of dataset B was included for further validation with a range 
of standard care treatment protocols. The primary outcome was 
pathological response (complete response vs residual disease) and 
locoregional recurrence.

CT image acquisition and image 
preprocessing

All CT scans were acquired using Siemens (Germany) according to 
institutional protocols. Images were obtained pre-contrast and follow-up 
with varying axial spacing. Slice thickness was 1.0 mm at 120 kVp, with 
soft tissue reconstruction. Axial, coronal, and sagittal images were 
obtained 1 min after intravenous administration of 80 mL Omnipaque 
350. Image resolution ranged from 0.5 to 0.6 mm with dimensions of 
450 × 450 pixels. For both the pre-treatment and the first and second 
follow-up CT scans following the therapy, the input of the tumor 
imaging region is defined at the center of the determined seed point. In 
3D Slicer 4.8.1, the seed points were manually defined (Xu et al., 2019). 

The imaging data has to be interpolated to homogeneous resolution in 
order to provide a steady input for the suggested architectures. This was 
done since maximum slice thickness was 5 mm and 2D input images 
were obtained at a non-interpolate slice that was no more than 2 mm 
distant. Axial slices of 50 × 50 mm2, centered on, 5 mm proximal to, and 
5 mm distal to the tumor, were input to the model. The model used a 
ResNet network pretrained on a general image dataset (ImageNet) and 
the fine-tuned it for CT images (Xu et al., 2019). Three axial slices per 
time point were used to balance feature representation and 
computational efficiency. Data augmentation, including flipping, 
translation, rotation, and small deformation, was applied to all images 
to reduce overfitting (Krizhevsky et al., 2017). The same augmentation 
was performed on the pre- and follow-up treatment images, such that 
the network generates a mapping for the entire input series of images.

Neural network structure

The model was implemented in Python, using Keras with a 
TensorFlow backend (Python 3.0, Keras 2.0.8, TensorFlow 1.3.0). The 
proposed network structure has a base ResNet convolutional neural 
network (CNN) trained on the database containing over 14 million 
neural images. One CNN was defined for each time point input, such 
that an input with scans at three time points would involve input into 
three CNNs. The output of the pretrained network model was then 
input into recurrent layers with a gated recurrent unit (GRU), which 
takes the time domain into account. The output of the pretrained 
network was masked to skip the time points. Averaging the fully 
connected layers is then applied after GRU with batch normalization 
and dropout after each fully connected layer to prevent overfitting (Ioffe 
and Szegedy, 2015; Srivastava et al., 2014). The final softmax layer allows 
for a binary classification output (Figure 1A). To test the model without 
the input of follow-up scans, the pre-treatment images alone were input 
into the proposed model, with the recurrent and average pooling layers 
replaced by fully connected layers, as there was only one input time 
point. For model training and transfer learning procedures, dataset A 
was divided into training and testing subsets using 2:1 ratio. Model 
training was conducted using Monte Carlo cross-validation, employing 
five randomized stratidfied splits across a cohort of 318 patients. Each 
split was trained for up to 200 epochs with class-weight balancing to 
account for outcome imbalance. Model performance was evaluated 
using an independent cohort comprising 158 patients who were not 
included in any part of training or hyperparameter tuning. This 
validation set served as to assess models’ generalizability and robustness 
to previously unseen data. For all experiments, pre-treatment images 
were used as input to the proposed model. Within the transfer-learning 
network, the original recurrent and average-pooling components of the 
architecture were replaced with a fully connected layers to better 
capture high-level imaging features relevant to the classification task.

Machine learning (ML) model and 
transcriptome data

Training data set: TCGA RNA-seq expression data, 
prediction, and patients’ prognosis evaluation

TCGA (The Cancer Genome Atlas) RNA-seq head and neck 
cancer count data (downloaded on May 2025) were retrieved via the 
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FIGURE 1

Deep learning analysis model and architecture. (A) The model depicts the deep learning model of two datasets. Dataset A consists of 476 patients 
treated with a response-adapted RT treatment strategy. Dataset A was used for training and fine-tuning the convolutional neural network combined 
with the recurrent neural network (RNN) for the prediction of survival. The test data set from dataset A was used to assess the performance and 
compared with the performance of radiographic and clinical features. Dataset B included patients treated with radical radiotherapy. This cohort was 
used as an additional set to predict pathological response, and the model predictions were compared to changes in tumor volume. The neural 

(Continued)
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TCGAbiolinks package in R. After preprocessing, 447 patients had 
complete clinical data; among these, 235 had laryngeal primary 
tumors. Genes with counts <5 were excluded, and the remaining data 
were normalized using the Limma (v3.64.3) R package. Differential 
expression (DE) analysis between radiation-sensitive and -resistant 
groups was performed using DESeq2.

Gene set enrichment analysis (GSEA) and 
enrichment analysis

GO and KEGG enrichment analyses were conducted using 
Python’s GSEApy package, GO Biological Process (GO-BP-2025), and 
KEGG-Human-2025 databases were used, with significance defined 
as adjusted p < 1e-3.

Application of machine learning

Machine learning model construction
In our training data set, gene expression raw data were obtained 

from TCGA, and differential analysis was performed, and the 
differentially expressed genes (DGEs) to develop a binary classification 
model using machine learning (ML) to predict radiotherapy outcomes 
in head and neck cancer patients. The entire ML analysis pipeline is 
summarized in Figure 1B. Due to the asymmetrical nature of the gene 
expression data in the training dataset, we applied a 5-fold stratified 
cross-validation process (Atreya et al., 2024; Banerjee et al., 2021), 
randomly partitioning the training dataset into five subsets. We 
termed this step as 5-fold cross-validation. Then, a feature selection 
method was applied to genes identified by DEGs to reduce the genes 
and applied non-linear approaches to identify an optimal set of highly 
discriminative genes. Our main goal for recursive feature elimination 
criterion was to discover a limited subset of features to remove 
redundancy and avoid overfitting. This strategy removes redundant 
features from the pooled feature set by removing them iteratively and 
developing a model of the remaining features. To implement the final 
feature selection method, we employed the feature selection models’ 
REFCV function. The REFCV function was invoked for each 
constructed classifier using a 3-fold cross-validation splitting 
technique and a “ROC-AUC” scoring method using a function 
parameter.

Preferred models
Considering the nature of the training data set and sample 

size, we choose three popular variable selection models: 
“glmBoost,” “random forest (RF),” and “support vector machine 
classifier (SVM).” Both glmBoost and RF are classified as soft 

classifiers, while SVM is a hard classifier. The gene features selected 
by each of the models were aggregated into a single input feature 
set, and the list of DGEs obtained from the training data set was 
added to this list. We employed a recursive feature elimination 
process to reduce the genes through feature selection methods. All 
the models were carried out using a Python-based library, 
scikit-learn.

Evaluation metrics
As the number of resistant and sensitive cases in the training 

cohort varies significantly (resistant cases 132, and sensitive cases 
344), metrics for model evaluation were reported metrics as: 
accuracy (ratio of all observations correctly predicted by the 
model), precision (positive predictive values), recall (sensitivity), 
and F1-score (harmonic mean of precision and recall). In addition, 
we computed and presented the area under the ROC (receiver 
operating characteristics) curve (AUC) in evaluating how 
efficiently the models are separating resistant and sensitive 
patients.

Experimental set-up
To minimize the errors from imbalance treatment outcome in 

the training dataset, each model was trained with different 
hyperparameters for tuning via a grid search technique on a subset 
of training data. We used cross-validation (CV) on the training 
cohort to select the best hyperparameters from each model. In CV, 
the data set was split into K-folds, with one-fold being left out for 
model evaluation and the rest used for training. The process is 
repeated K-times, using a different left-out fold each time. Hence, 
the final evaluation metric for a given model and a set of 
hyperparameters was computed as the average of the accuracies 
obtained on the left-out folds at each iteration. The fraction of times 
a particular gene was chosen out of each iteration was used to rank 
the genes in descending order for association strength. Genes 
associated with the outcome of interest in repeated cross-validation 
analyses were retained and tested for model optimization on the 
validation cohort.

Validation dataset

For validation of our training results, we used the GSE20020 
ArrayExpress dataset published by Thibodeau et al. (2015) consisted 
of 19 head and neck cancer patients. This dataset contains 12 samples 
of complete response (sensitive) and seven samples had radiation 
treatment failure (resistant). In this dataset, we trained multiple 
feature sets of the top genes identified through the training dataset to 
tune the optimal number of features, sampling methods, and classifier 

architecture includes a convolutional neural network (CNN) merged with a recurrent neural network (RNN) and was trained on baseline and follow-up 
scans. The input axial slices were 30 × 30 mm2 centered on 5 mm proximal to and 5 mm distal to the selected input point. Deep learning networks are 
trained on natural RGB images and thus require three slices per input. The outputs of each CNN model are input into the RNN, with a gated recurrent 
unit (GRU) for time-varying inputs. Masking was performed on certain inputs of the CNN scans that the recurrent network takes into account missed 
scans. The final softmax layer provides the prediction. (B) Machine learning framework to identify signature genes from differentially expressed genes 
dataset obtained from TCGA. Three feature selection algorithms glmBoost, supporting vector machine (SVM), and random forest (RF) were used to 
identify signature genes. Subsequently, feature elimination methods and tested model performance using GSE20020 dataset to predict patients’ 
radiotherapy outcome.

FIGURE 1 (Continued)
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combinations, and optimal probability threshold in the validation 
dataset.

In-solution protein digestion and mass 
spectrometry

Crude serum samples from two subject groups of sensitive and 
resistant patients were analysed using quantitative proteomics. For 
each group, 100 μg of protein was subjected to in-solution tryptic 
digestion before LC–MS/MS analysis, as previously described 
(Alaiya et al., 2021). Samples were heat-denatured at 80 °C for 
15 min, and reduction was achieved with 10 mM DTT at 60 °C for 
30 min. Samples were alkylated using 50 mM iodoacetamide (IAA) 
for 30 min at room temperature in the dark. Proteins were digested 
overnight at 37 °C with sequencing-grade trypsin (Promega, USA) 
at a 50:1 protein-to-trypsin ratio. After digestion, peptides were 
diluted with 0.1% formic acid to a final concentration of 1 μg/μL, 
and 3 μL of each sample was injected for LC–MS/MS analysis. To 
enable absolute quantification, all samples were spiked with yeast 
alcohol dehydrogenase (ADH; UniProt ID: P00330) as an internal 
standard.

Mass spectrometry platform

The peptide mixture was analysed using nanoAcquity UPLC 
coupled to a Synapt G2 HDMS instrument with a Trizaic Nano-Flow 
source (Water, Manchester, UK). Data acquisition was performed 
using HDMSE (High Definition MSE) mode with the following 
settings: m/z range 50–2,000 Da, 120 min gradient run time, and ion 
mobility mode of each sample was analysed in triplicate using 
MassLynx v4.1 (SCN833).

Mass spectrometry data analysis

Data processing and protein identification were conducted using 
Progenesis QI for Proteomics (QIP) v3.0 (Waters/Nonlinear 
Dynamics, UK). Differentially expressed proteins (DEPs) between 
sample groups were identified using Statistical filters: ANOVA, 
p ≤ 0.05, and fold change > 1.5, based on/off filtering, i.e., Proteins 
exclusively detected in one group. The quantitative analysis used ADH 
(P00330) as the internal reference. Data were further subjected to 
principal component analysis (PCA) and hierarchical clustering to 
identify sample group separations.

qRT-PCR analysis of the patient’s sample

Total RNA was extracted from serum collected before and after 
the radiotherapy from each patient using TRIzol reagent (Invitrogen, 
USA). The RNA concentration was measured using Nanodrop 2000 
(Thermo Fisher Scientific). cDNA synthesis was performed using 
Superscript III First-Strand (Invitrogen, USA), and qRT-PCR was 
performed using the SYBR green PCR master mix (Islam et al., 2024) 
(Applied Biosystem, USA). The relative levels of mRNA gene 
expression were calculated using the 2ΔΔCT method. Differences 

between treatments were evaluated using an unpaired two-tailed 
Student’s t-test. Supplementary Table S1 contains information on the 
primers used.

Statistical analysis

All statistical analyses were performed in Python (version 3.12.7) 
and R (version 4.1.4). Comparisons between two groups were made; 
continuous variables were analyzed using Student’s t-test, while 
categorical variables were compared using Fisher’s exact test or the 
chi-squared test. All predictions were evaluated on training tests set 
for survival and prognostic factors after the response-adapted strategy 
treatment group. The clinical endpoints included progression and 
locoregional recurrence as well as overall survival following response-
adapted treatment. The analyses were compared to a random forest 
clinical model with features of stage, gender, age, tumor grade, 
performance, and tumor size. Survival and prognostic curves were 
generated using the Kaplan–Meier method between high- and 
low-mortality risk groups, stratified at the median prediction 
probability using the log-rank test using the R package ‘Survminer’ 
(version 0.0.1). Cox regression analyses were performed for both 
univariate and multivariate models to estimate hazard ratios. Statistical 
differences between positive and negative survival groups are assessed 
using the area under the receiver operator characteristics (AUC) and 
the Wilcoxon rank-sums test. Model performance was assessed using 
several metrics, including AUC, accuracy (ACC), precision, sensitivity 
(SEN), specificity/Recall (SPE), F1-score, and the confusion matrix.

An additional test was performed for the second cohort using a 
5-year survival model from the RT-only cohort with one time point. 
Survival predictions were made from a 5-year survival model trained 
from the response-adapted treatment-only dataset above. The model 
predictions were used to stratify patients based on survival and tumor 
response to RT. The groups were assessed using their respective AUC 
and were tested with the Wilcoxon rank sum test. This was compared 
to the volume change after RT and the random forest clinical model 
with the same features used for the response-adapted treatment 
dataset.

Results

Baseline clinical features of the study 
cohort

A deep learning-based model was evaluated to identify overall 
survival using 1,600 CT scans from 645 pre- and post-response-
adapted RT patients. There was no difference in the age between the 
two cohorts (age 62.10 [mean SD 8.9] and age 61.5 [mean SD 10.1]). 
All patients were predominantly diagnosed with stage III and IV 
(stage IVA and stage IVB, cStage-AJCC 8th edition). Dataset A 
consisted of a total of 476 patients treated with response-adapted RT 
that was used as a cohort for testing and training deep learning 
biomarkers (Table 1). Most patients in this dataset are male (n = 374, 
79%). The median response-adapted treatment dose was 58 Gy (range 
40–70 Gy). The median follow-up period was 42.5 months. The 
validation cohort (dataset B) served as an additional test set and had 
169 patients treated with radical RT. The median radical radiation 
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TABLE 1  Baseline patient characteristics of the training and testing cohort of dataset A (response-adapted radiation treatment group).

Variables N = 4761 Training cohort N = 3181 Testing cohort N = 1581 p-value2 q-value3

Sex

Male 374 (79%) 247 (78%) 127 (80%)
0.5 0.7

Female 102 (21%) 71 (22%) 31 (20%)

Age, median (range), y 62.12 (9.8) 61.0 (8.9) 61.5 (10.1) 0.2 0.4

Subsites

Epiglottis 131 (28%) 98 (31%) 3 (2%)

0.012 0.027

Glottis 76 (16%) 49 (15%) 27 (17%)

Subglottis 80 (17%) 61 (19%) 19 (12%)

Supraglottis 72 (15%) 33 (10%) 39 (25%)

Vocal cord 117 (25%) 77 (24%) 70 (44%)

CCI4-score

0 194 (41%) 140 (44%) 54 (34%)

0.8 0.8
1 171 (36%) 124 (39%) 47 (30%)

2 70 (15%) 37 (12%) 33 (21%)

>3 41 (9%) 17 (5%) 24 (15%)

Clinical T-stage

T1 22 (5%) 13 (4%) 9 (6%)

0.7 0.8
T2 43 (9%) 21 (7%) 22 (14%)

T3 197 (41%) 133 (42%) 64 (40%)

T4 214 (45%) 151 (48%) 63 (40%)

Clinical N-stage

N0 17 (4%) 11 (3%) 6 (4%)

<0.0001 <0.001
N1 19 (4%) 9 (3%) 10 (6%)

N2 310 (65%) 201 (63%) 109 (69%)

N3 130 (27%) 97 (30%) 33 (21%)

Clinical stage

III 64 (13%) 55 (17%) 9 (6%)

0.8 0.8IVA 329 (69%) 198 (62%) 131 (83%)

IVB 83 (17%) 65 (20%) 18 (11%)

Concurrent chemotherapy 146 (31%) 129 (41%) 17 (11%) 0.007 0.019

Radiation techniques

3DCRT5 18 (4%) 15 (5%) 3 (2%)

0.006 0.019IMRT6 450 (95%) 298 (94%) 152 (96%)

VMAT7 8 (2%) 5 (2%) 3 (2%)

ECOG8

0 14 (3%) 11 (3%) 3 (2%)

<0.001 <0.0011 460 (96%) 306 (96%) 154 (97%)

>2 2 (1%) 1 (1%) 1 (1%)

Pretreatment evaluation

Laryngeal preservation 142 (30%) 109 (34%) 33 (21%)
0.5 0.7

Total laryngectomy 334 (70%) 209 (66%) 125 (79%)

1Mean (SD); n (%); 2Wilcoxon rank sum test: Pearson’s Chi-squared test: Fishers exact test; 3False discovery rate correction for multiple testing; 4Charlson Comorbidity Index; 5Definitive 
Chemotherapy; 6Intensity Modulated Radiation Therapy; 7Volumetric Modulated Arc Therapy; 8Eastern Cooperative Oncology Groups.
Median (range) was reported for continuous variables and counts (percentage) for categorical variables.
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dose was 70 Gy (range 55–80 Gy), and the median follow-up was 
41.5 months. The combined median OS for stage III/Stage IV patients 
was 12.3 months (95% CI: 8.0–17.8 months). The 1- and 5-year OS 
were estimated to be 49% (95% CI: 47–53%) and 28% (95% CI: 
21–43%), respectively (Supplementary Figure S1A). Furthermore, 
median disease-free survival was 17.2 months (95% CI 11.6–
30.1 months) (Supplementary Figure S1B).

Tumor volume

The tumor volume was measured, and the mean tumor volume 
was 4.98 (3.32) cm3, with median, minimum, and maximum values 
found as 4.06 cm3, 0.22 cm3, and 20.87 cm3, respectively. The 
distribution of tumor volume for the response-adapted RT strategy 
and radical radiotherapy (RRT) is shown in Figure 2A. Restricted 
cubic splines (RCS) models based on the Cox proportional hazard 

model for the entire dataset A were analyzed to visualize the impact 
of tumor size on prognosis. Results obtained from the RCS model 
highlighted that the linearity assumption for both OS (p = 0.21) and 
DFS (p = 0.07) could not be rejected (Figures 2B,C).

Deep learning-based prediction of 
prognostic biomarker and model 
performance

The discovery component of dataset A was used for training the 
model in order to generate deep learning (DL)-based biomarkers for 
survival, progression-free survival, and locoregional recurrence. The 
workflow for the prediction is presented in Figure 1A. The discovery 
cohort was randomly split into a 2:1 ratio for training and development 
(n = 318) of the deep learning model and the remaining for testing 
and evaluating the performance (n = 158). The baseline model with 

FIGURE 2

(A) The distribution of tumor volume of all patients in dataset A. (B,C) Restricted cubic spline analysis showing associations between tumor volume and 
overall survival and progression-free survival.
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only pretreatment scans showed low performance for predicting 
5-year overall survival (AUC 0.60, 95% CI 0.52–0.69; p = 0.17, 
Wilcoxon’s test; Figure 3A). The pretreatment scans achieved low 
performance, which was lower than the post-treatment 2- and 
6-month scans (Figure 3A). The DL model demonstrated strong 
predictive performance for predicting 5-year overall survival, 
achieving AUCs of 0.792 (95% CI 0.790–0.817; p = 0.031) for the 
2-month follow-up scans, while after the 6-month follow-up scans, the 
AUC increased to 0.832 (95% CI 0.830–0.839; p = 0.01; Figures 3A, 
Supplementary Figure S2). The DL performance model was assessed 
on other clinical characteristics, i.e., 2-year overall survival and 5-year 
survival, progression, and locoregional recurrence-free survival 
(LRF). The model demonstrated comparable performance; however, 

there was no significant prediction of survival at 2 years (AUC = 0.671) 
or 5 years (AUC = 0.746, p = 0.436; Figure 3B) or treatment response 
(Supplementary Table S2).

Deep learning model and 
response-adapted treatment strategy for 
clinical endpoints

The median (IQR) follow-up time for the training cohort was 
55.8 months (32.6–60.0) and 38.4 months (32.8–49.1) for the testing 
cohort. The survival analyses were performed with Kaplan–Meier 
estimates for high- and low-mortality risk groups based on median 
stratification of patients’ prediction scores. The model yielded a 
significant difference between the high and low score groups among 
2 (p = 0.006, log-rank test) and 3 (p < 0.001, log-rank test) follow-up 
scans. Patients with higher scores (> median) had significantly longer 
overall survival and progression-free survival in 2 and 3 follow-up 
scans (Figures 4A–F). Comparable results were found for the following 
predictions with their respective hazard ratios. The hazard ratio for 
five-year overall survival was 1.59 (95% CI 1.34–3.22, p = 0.063); for 
progression-free survival, it was 1.39 (95% CI 1.16–2.29, p = 0.103); 
and for locoregional recurrence-free survival, it was 1.87 (95% CI 
1.11–5.12, p = 0.01), each with significant differences at two follow-up 
time point scans.

Predicting pathologic response with the 
independent validation dataset

To confirm the results from the training set (dataset A), we used 
additional validation data to determine the relationship between 
image analysis and pathological response in patients who were treated 
with radical radiotherapy (primary RT). The pre-RRT and post-RRT 
scans were given as input to the neural network model trained on 
dataset A. First, for survival prediction analysis, the model was tested 
on Dataset B. To match the number of input time points, the 5-year 
survival model with pre-treatment and first follow-up at 2 months was 
used. Interestingly, the model significantly predicted progression-free 
survival and local regional recurrence (Supplementary Table S3). 
From the results, it appears that the model accurately predicted all 
clinical endpoints in dataset B.

In predicting the RT response, the predictive network was used to 
categorize the pathological response. In the validation dataset 
(n = 169), the model demonstrated comparable performance, with an 
F1-score of 0.67, recall of 0.79, and precision of 0.66. For dataset A of 
the test set, the model correctly predicted non-responder status for 37 
of 45 patients (23%) and responder status for 79 of 113 patients (50%), 
reaching an overall accuracy of 73%. In the additional validation 
cohort of dataset B, the model accurately predicted 41 of 63 
non-responders (24%) and 64 of 106 responders (40%), achieving a 
total accuracy of 64%.

To categorize the pathological response, the predictive network 
was used (Supplementary Figure S3). There was a significant and 
distinguishable disparity between the responders and gross residual 
disease. The AUC for responders was 0.785 (n = 169, p = 0.01, 
Wilcoxon’s test) and 0.762 for changes in gross tumor volume (n = 169, 
p = 0.001, Wilcoxon’s test). We built a combined model of the network 

FIGURE 3

Performance of deep learning biomarkers with the increase in the 
number of treatment time points. (A,B) AUC values were evaluated 
on an independent test set from the deep learning models for 5-year 
overall survival (OS), progression-free survival (PFS), and locoregional 
recurrence-free survival (LRF). Values were significantly separated 
with Wilcoxon’s rank sum test in the response-adapted RT treatment 
strategy (dataset A). The response-adapted RT treatment strategy 
cohort with the input of the pre-treatment scans along with the 
addition of 1- and 2-follow-up scans at 2- and 6-month follow-up.
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to assess the pathologic response to RT and assess the changes in 
tumor volume (Supplementary Table S4). Again, the model 
demonstrated strong predictive performance for pathological response 
(AUC of 0.753, n = 169, p = 0.021, Wilcoxon’s test). The prediction 
probabilities and changes in tumor volume were significantly 
correlated, achieving a correlation value of 0.61 (p = 0.033). Subgroup 
analysis of other clinical parameters of clinical stage, age, and gender 
yielded the least significant prediction for pathological response 
(p = 0.631, Wilcoxon’s test). Multivariate and univariate analyses 
among all covariates demonstrate that DL was an independent 
predictive factor for both PFS (HR 0.67, 95% CI 0.54–0.77, p = 0.01) 
and OS (HR 0.58, 95% CI 0.46–0.81, p < 0.001) (Figures 5A,B, 
Supplementary Table S5).

Identification of radiation response 
through gene expression signature and its 
biological relevance

To evaluate biomarker contributions in predicting radiation 
response treatment, we used the TCGA head and neck cancer dataset 
(n = 231) on patients who were treated with radiotherapy only. We 
have downloaded raw RNA-seq data and patients’ complete clinical 
metadata, such as age, treatment history, and overall survival and 
progression-free survival (for details, please refer to the Materials and 
methods section). To study the gene expression pattern among 
radiation therapy-resistant and sensitive patients in TCGA gene 
expression data, the raw expression data were normalized, and 39 

(Supplementary Figure S4: Heatmap) differentially expressed genes 
(DEGs) were identified using DESeq2 following the criteria of 
Benjamini–Hochberg adjusted p-value < 0.05 and logFC > 1 for all 
samples. The number of differentially expressed genes per group is 
shown in Figure 6A and Supplementary Figure S2. We then tested the 
functional enrichment of the DEGs to identify the GO terms 
associated with radiation resistance and sensitivity using EnrichR and 
ClusterProfiler. GO and KEGG enrichment analysis showed that 
DEGs were significantly enriched in co-translational protein targeting 
to membrane, cholesterol biosynthesis, Wnt-Beta catenin, E2F targets, 
cholesterol biosynthesis, PI3K/AKT signaling, and hypoxia 
(Figures 6B,C). Similarly, these DEGs are enriched in carbohydrate 
catabolic process, regulation of transcription from RNA Pol II 
promoter in response to stress, cholesterol homoeostasis, and hypoxia 
(Figures 6D–G).

Results from the discovery cohort: genes 
identified with radiation therapy outcome

To accurately predict the outcome of radiation therapy and 
whether the genes identified in Figure 6 are associated with resistance 
or not, a feature selection method was employed. Three models, 
glmBoost (gradient boosting with linear model), RF (random forest), 
and SVM (support vector machine), were constructed after sample 
weighting. To identify highly discriminative genes and to distinguish 
patients with resistant and sensitive groups, we used glmBoost for 
feature selection and RF for model fitting (Figure 7A). Following the 

FIGURE 4

(A–F) Performance of DL biomarkers on validation dataset. The DL models were evaluated on an independent test set for performance. The 5-year 
overall survival Kaplan–Meier curves were generated with median stratification of the low- and high-mortality risk groups with follow-up data. Log 
rank p < 0.05 for >1 follow-up.
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application of three machine learning models, a set of core genes was 
identified for each feature selection method. The combination of these 
models identified 13 key genes that are associated with radiotherapy 

treatment outcome (Supplementary Table S6). The summary AUROC 
for the treatment prediction model across repeated cross-validation 
experiments to distinguish patients with resistance from those with 

FIGURE 5

Multivariate analysis in datasets A and B. (A,B) Cox proportional hazard model of significant independent predictive factors associated with 
progression-free survival and overall survival. ECOG, Eastern Cooperative Oncology Group, DL, deep learning; HR, hazard ratio; CI, 95% confidence 
interval.

FIGURE 6

Differential expression analysis from head and neck cancer TCGA dataset. (A) Number of differentially expressed genes in resistant and sensitive groups 
from head and neck cancer TCGA RNA-sequence identified by DESeq2. (B,C) Dot plot of GO and KEGG pathways enriched among patients with 
radiotherapy sensitive and resistant patients. (D–F) GSEA analysis of core genes and relation to radio sensitization. GSEA of TPX2, HOXC6, MAP3K, and 
ADH4. (H) Key pathway network identified by GSEA analysis.
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sensitivity in the training data set was 0.91 with an F1-score of 0.66. 
The model generated a sensitivity of 96.3% with a specificity of 83.1%.

In the validation dataset (GSE20020), the model predicted the 
radiotherapy outcome for the top 7 genes out of 13 genes through 
the training dataset. The results showed that a group of genes, such 
as TPX2, HOXC6, MAPK3, KIF14, ESM1, ADH4, and STC2, were 
consistently captured by these methods, suggesting their potential 
significance in distinguishing between resistant and sensitive groups 
(Figure 7B). Each of the genes was selected by the three feature 
selection models. For the classification of patients with radiation 
resistance and sensitivity using these 7-core genes, in all cases, 
models were tuned through CV, StandardScaler, and Extra-Tree 
Classifier from the RF process using the validation cohort. The 
hyperparameters and values taken into consideration for each 
model are assessed. Table 2 shows the accuracy and AUROC values 
obtained from training and validation datasets via model parameters 
mentioned above for each model considered. For each model, results 
are shown with the best set of hyperparameters. In our case, all three 
models generated identical results, ranging from an accuracy of 
0.806–0.813, AUROC ranging from 0.964 to 0.941 in the training 
dataset. In both datasets, glmBoost performed best among the other 
two models (Table 3). In the validation cohort, more than 76% of 
the resistant cases were predicted correctly by all three models 
(recall), while in the sensitive cases correctly predicted ranged from 
61 to 67%. In terms of recall, precision, and F1-score, glmBoost 

obtained the best results (Table 2). Figures 7C–G show the AUROC 
and confusion matrix achieved by the three considered ML models 
for the validation dataset, using as input of the 7-core genes 
(Supplementary Figure S5).

Validation of the top seven genes in patient 
serum samples and proteomics analysis

Lastly, we have validated 7-core signature genes using patients’ 
samples from resistant (n = 25) and sensitive (n = 25) head and neck 
cancer patients who underwent response-adapted RT. These seven 
signature genes exhibited significant differential expression between 
the resistant and sensitive groups (Figures 8A–G). Finally, we have 
explored protein analysis of patients from the resistant and sensitive 
groups. Details of the sample processing LC–MS-based protein 
analysis are described in the materials and methods. The analyses 
yielded over 350 unique proteins, and 112 proteins showed significant 
differential expression between resistant and sensitive groups 
(Supplementary Table S7). The unique protein IDs were converted to 
gene symbols. Notably, five of our signature genes are also differentially 
expressed between the two groups, indicative of our model’s prediction 
accuracy. The five genes were TPX2, ADH4, HOXC6, MAPK3, and 
KIF14. These results suggest the accuracy and the precision of the 
model correctly identified the gene features by the models. All 112 

FIGURE 7

Construction of and validation of models using integrated machine learning. (A) Three machine learning algorithms (glmBoost, SVM, and RF), the area 
under curve (AUC) was calculated for each model for test and validation dataset. (B) The number of genes identified by each model. (C) AUROC curve 
for training and validation dataset. (D) AUROC curve and values obtained by for the validation cohort using three machine learning algorithms, with 
optimized hyperparameters. (E–G) Confusion matrix obtained by glmBoost, SVM, and RF, respectively, on the validation dataset. The performance 
metric accuracy, recall (sensitivity), precision, and F1-score are shown below each confusion matrix plot. SVM, support vector machine, RF, random 
forest.
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DEPs were analyzed using the Ingenuity Pathway Analysis (IPA) to 
explore the associated biological themes and signaling pathways. 
Proteomic pathway analysis comparing treatment-sensitive and 
resistant pharyngeal cancers identified four interconnected signaling 
networks underlying therapy resistance. Network 1 involved MAPK–
JNK–AKT activation with acute-phase and coagulation proteins, 
reflecting inflammation and survival signaling. Network 3 connected 
VEGF–ERK–PI3K and complement–NF-κB pathways, indicating 
angiogenic and immune crosstalk in hypoxic microenvironments. 

Network 4, centered on NF-κB and transcriptional regulators (SOX2, 
SP1, EHF), promoted chronic inflammation and stemness. Network 
5 integrated HIF-1α, EGFR, mTOR, and β-catenin signaling, 
consistent with hypoxia-induced metabolic reprogramming and 
EMT. Collectively, these pathways form a feedback loop where 
hypoxia and tissue injury activate complement and coagulation 
cascades, driving NF-κB– and RTK–PI3K/mTOR–β-catenin–
mediated inflammation, angiogenesis, and tumor plasticity 
(Figure 8H, Supplementary Figure S6).

TABLE 2  Evaluation of machine learning model performance using a 7-gene signature predictive of radiation treatment outcome.

Test type Sensitivity 
(recall)

Specificity AUROC Accuracy Precision F1-score

Validation 0.85 0.68 0.81 0.71 0.63 0.72

Training 0.75 0.65 0.77 0.65 0.71 0.63

TABLE 3  Performance metrics for machine learning (ML) models.

Models Training cohort (CV) Validation cohort

Accuracy AUROC Accuracy AUROC Precision Recall F1-score

glmBoost 0.813 0.964 0.761 0.865 0.674 0.813 0.803

RF 0.811 0.928 0.754 0.857 0.660 0.783 0.779

SVC 0.806 0.941 0.704 0.851 0.617 0.768 0.763

Performance metrics obtained on the training dataset via CV for the three ML models with optimized hyperparameters, as well as on the validation dataset, using as input the features (genes). 
glmBoost generated the best results when using as input the features (genes). glmBoost, generalized linear model boost; RF, random forest, SVC, support vector machine; CV, cross-validation; 
AUROC, area under receiver operating curve.

FIGURE 8

Expression of seven core genes identified by machine learning models. (A–G) qRT-PCR mRNA gene expression analysis from resistant (n = 25) and 
sensitive (n = 25) laryngeal cancer patients treated with response-adapted RT. (H) Graphical summary of networks highlights key mechanistic themes 
for networks (please see all networks in Supplementary Figure S3). Statistical significance was determined by Student’s t-test (*p < 0.05, **p < 0.01). 
(I–O) Kaplan–Meier curves for disease-free survival (DFS) for patients stratified by high and low expression in the signature biomarkers following 
response-adapted radiation therapy.

https://doi.org/10.3389/frai.2025.1738174
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Ujjahan et al.� 10.3389/frai.2025.1738174

Frontiers in Artificial Intelligence 14 frontiersin.org

ML identified signature biomarkers can 
prognosticate patient outcome

Given the importance of the signature biomarkers in response-
adapted RT sensitivity and resistance outcome, we choose two groups 
of patients (n = 50; 25 resistant and 25 sensitive). We extracted RNA 
from serum samples and used qRT-PCR for relative expression 
analysis. We observed a significant difference in disease-free survival 
(DFS) between patients resistant and sensitive patient samples. The 
DFS for high expression of TPX2, HOXC6, MAPK3, and ADH4 were 
11.1, 11.12%, 10.14, and 12.5 and 16.2%, 16.3, 20.3%, respectively 
(Figures 8I,J,L,N). The overall DFS was reduced among patients with a 
low expression of KIF14, ESM1, and STC4 signature (Figures 8K,M,O). 
These findings are consistent with the results obtained in Figure 4.

Discussion

Management of locally advanced laryngeal cancer remains 
challenging, with a declining survival rate. The 5-year overall survival 
(OS) rate for locally advanced larynx cancer remains approximately 
50–60%, and a large number of patients require total laryngectomy 
(Malik et al., 2023; Megwalu and Sikora, 2014). Organ preservation 
approaches, such as RT, concurrent chemoradiation (CCRT), and 
induction chemotherapy (ICT) followed by RT or CCRT, can achieve 
laryngeal preservation in up to 65% of selected patients (Yamakuni et 
al., 2023; Lagha et al., 2013; Megwalu and Sikora, 2014). Nevertheless, 
not all locally advanced cases behave uniformly particularly between 
T3 and T4a stages (Malik et al., 2023; Grover et al., 2015). Although 
CCRT is widely accepted as a standard treatment approach, the lack 
of patient selection can adversely affect both OS and survival with 
functional larynx (SFL).

In clinical practice, monitoring treatment outcomes and evaluating 
tumors to predict patients’ survival following response-adapted RT plays 
a critical role in adaptive treatment planning and improving patient 
outcomes. Currently, radiologists rely on clinical parameters, serial 
imaging, and changes in tumor load across multiple scans to assess 
treatment response-an essential component of modern oncology 
practice. Serial follow-up imaging, in addition to baseline scans, 
provides valuable insights into treatment efficacy and disease 
progression. Recent advances in artificial intelligence (AI) and deep 
learning (DL) have enabled automated, precise evaluation of treatment 
outcomes beyond traditional visual assessment. DL-based estimation of 
tumor burden from CT images, combined with prognostic prediction, 
can aid in evaluating patient outcomes in clinical trials and optimizing 
response-adapted RT strategies. In this study, we demonstrate that 
integrating pre-and post-treatment CT scans with gene expression 
signatures associated with radiation resistance in laryngeal cancer allows 
for robust outcome prediction using DL and ML-based approaches.

AI-based deep learning (DL) model 
performance in assessing radiation 
treatment outcome from patients’ 
follow-up CT scans

Quantitative image analysis has yet to become standard in 
personalizing treatment for head and neck cancer (Hadjiiski et al., 2010; 
Ling et al., 2025; Zhai et al., 2019). To address the limitations of manual 

or semi-automated approaches as well as to reduce inter-observer 
variability, we employed a DL framework combining convolutional 
neural network (CNNs) and recurrent neural network (RNNs) for time-
dependent modeling. Using both pre-and post-treatment CT scans, our 
model successfully predicted survival, prognosis, and adaptive radiation 
doses required for local tumor control in patients treated with response-
adapted RT for laryngeal cancer. This supports our contention that 
adaptive RT doses can be more individually tailored when pre- and post-
treatment CT scans are used. Remarkably, two key findings emerged 
from the investigation. One of them is that the model performance 
improved significantly as the number of post-treatment time points 
increased. Second, the quantity data used as network input had a 
substantial impact on the model’s performance. Despite some 
performance variability, the model maintained consistent AUC values, 
indicating the reliable prediction of treatment response, the target 
endpoint, and potential treatment failure.

Although DL approaches have profoundly enhanced clinical 
diagnosis from CT images, stratifying patients into high- and low-risk 
groups remains challenging. Previous studies have developed and 
validated DL models for risk stratification based on radiographic data 
(Bang et al., 2023; Le et al., 2022), most focused on patient outcomes 
rather than organ preservation or locoregional failure. Our neural 
network approach effectively distinguishes between high-and 
low-mortality risk groups, showing significant differences in overall 
survival. Furthermore, the model accurately identified risks of local 
recurrence when two post-treatment follow-up scans (obtained 2 
months after response-adapted RT) were provided as input. The other 
two outcomes, progression-free survival and locoregional recurrence, 
also reliably stratified.

For model validation and response prediction, we included 
post-RT and pre-surgical follow-up time points in dataset B (primary 
RT). Despite being completely blinded throughout model 
development, the model successfully distinguished pathological 
responders from patients with residual disease in the initial RT cohort. 
Predictions correlated strongly with primary tumor size response, 
confirming that volumetric tumor changes reflect treatment efficacy. 
Notably, the inclusion of multiple follow-up time points enabled real-
time assessment of dynamic tumor changes, made possible through 
RNNs that can process incomplete longitudinal data an essential 
feature for retrospective studies like ours.

Machine learning (ML) approaches to 
identify signature biomarkers from gene 
expression data associated with radiation 
therapy

In this segment of our results, we present data demonstrating the 
gene expression signature by developing an integrative approach to 
establish a consistent HNSCC radiotherapy treatment outcome 
signature using samples from publicly available datasets. Using an ML 
framework, we identified 13 genes consistently associated with 
radiotherapy treatment response through repeated leave-one-out 
cross-validation. Furthermore, validation identified seven core genes 
that formed a fixed classifier reliably distinguishing radiotherapy 
sensitivity from radiotherapy-resistant cases. Among the tested 
models, the glmBoost algorithm exhibited the highest performance 
and reproducibility compared to the random forest (RF) and support 
vector machine classifier (SVM) models.
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Several of the identified genes, including TPX2, HOXC6, KIF14, 
MAPK3, ESM1, ADH2, and STC2, have established roles in 
chemoradiotherapy (Zhu et al., 2024; Moon et al., 2012; Matic et al., 
2023; Ngan et al., 2022; Xu et al., 2019; Al-Shamma et al., 2023; Qie 
and Sang, 2022). TPX2 plays a critical role in various cellular and 
molecular processes resulting in growth and metastasis, mitotic 
survival, and is linked to the radiosensitivity of tumor cells (Huang et 
al., 2014; Kim et al., 2023). HOXC6 is involved in cell proliferation, 
survival, and metastasis as well as many cellular processes (Li et al., 
2022). Furthermore, deregulated functions of HOXC6 may directly 
influence cellular sensitivity and efficacy of radiation and 
chemotherapy. High expression of HOXC6 is associated with poor 
prognosis, higher risk of death, and is associated with immune-
modulatory genes (Du et al., 2014; Zhang et al., 2013). As a 
microtubule-based motor protein, KIF14 is involved in growth and 
cell motility in tumor cells and is associated with poor clinical 
outcome (Corson and Gallie, 2006), which causes the response to 
radiation therapy. Endothelial cell-specific molecule 1 (ESM1) is an 
important proto-oncogene that may influence chemo and radio 
sensitivity by regulating PI3K/AKT signaling pathway, and ESM1 can 
be activated by inflammation and cytokines as well as play a role in 
angiogenesis (Xu et al., 2019). Alcohol dehydrogenase-4 (ADH4) plays 
key role in radiation resistance, inhibit the DNA damage and cell 
death induced by radiotherapy, and ADH4 has been identified as a 
cancer stem marker in different cancer (Januchowski et al., 2013; 
Al-Shamma et al., 2023) Stanniocalcin 2 (STC2) overexpressed in 
many cancer including head and neck cancer is correlated with tumor 
development and metastasis and play substantial role in radiation 
sensitivity via activating PI3K/AKT/and Snail signaling (Qie and 
Sang, 2022; Yang et al., 2016). Collectively, these evidences confirm 
that our core gene signature is biologically relevant and reliable for 
predicting radiosensitivity in laryngeal cancer. Importantly, our gene 
expression classifier demonstrated prognostic relevance in predicting 
radiotherapy outcome. This ML-driven approach enables the 
identification of gene signatures associated with treatment response, 
optimizing individualized therapy. However, our findings from gene 
expression signature may limit direct prediction of survival outcome 
due to the involvement that other patient-specific confounding 
factors. Overall, the novelty of this study lies in integrating patients’ 
follow-up images with gene expression-based ML models to identify 
patients most likely to respond to response-adaptive RT.

Limitations

This study has several limitations that should be acknowledged. The 
first relates to the relatively small sample size and single-center of the 
study. Expanding the dataset and enrolling more centres, and employing 
more CNNs, may substantially enhance the prediction accuracy and 
help address this issue. Because the study is retrospective, the influence 
of confounding variables and potential bias cannot be completely 
excluded. Although three-dimensional imaging could more accurately 
represent tumor biology and potentially strengthen model performance, 
this work utilized two-dimensional images. Incorporating 3D imaging 
in future research may yield a more comprehensive understanding of 
tumor characteristics. DL and ML models often operate as “black boxes,” 
where the internal reasoning behind predictions remains difficult to 
interpret despite their strong performance. Our survival analysis relied 

solely on CT image features, excluding clinical factors such as age, sex, 
histology, or smoking history, which may also hold prognostic values. 
Integration of RNA-seq and microarray datasets may have introduced 
variability linked to shared gene signatures associated with radiotherapy 
resistance. Furthermore, while CT scans can be obtained at multiple 
time points during a patient’s follow-up, gene expression profiles reflect 
only a single snapshot, which might influence the interpretation of 
results. Future studies that include longitudinal gene expression analysis 
across multiple treatment stages could provide deeper insight into the 
temporal dynamics of radiotherapy response and outcome. Finally, 
because deep learning models we used in image analysis may not be 
much informative on the biological difference. Therefore, we separately 
used ML models, such as RF, SVC, and glmBoost ML learning approach 
to identify genes or biomarkers. Lastly, when building DL model we have 
overlooked for image analysis, like visualizing GRAD-CAM generated 
features which influence the model’s decision and to verify the model on 
focusing anatomically relevant region, identify potential biases in 
learning pattern and to improve model performance. Future studies will 
be design to build the trustworthy of AI system to integrate the 
diagnostic workflow. Despite all these constraints, our DL effectively 
predicted survival and radiotherapy outcome, while the ML models 
identified treatment response based on signature genes. Expanding 
cohort size and refining models’ architecture in subsequent work should 
further enhance the robustness and vulnerability of the predictive models.

In conclusion, our integrated DL and ML models demonstrate the 
potential to predict tumor phenotype tracking, pathological response in 
pre- and post-RT, and outcome of radiotherapy sensitivity in laryngeal 
carcinoma using serial CT scans and gene expression data. These 
approaches could provide a reliable, noninvasive approach, which may 
have potential clinical implications for adaptive and precision therapy.
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